mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 ad52268581
			
		
	
	
		ad52268581
		
	
	
	
	
		
			
			* rational.c (nurat_coerce): accepts Rational instances. [ruby-core:23859] git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@23718 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			1590 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1590 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|   rational.c: Coded by Tadayoshi Funaba 2008,2009
 | |
| 
 | |
|   This implementation is based on Keiju Ishitsuka's Rational library
 | |
|   which is written in ruby.
 | |
| */
 | |
| 
 | |
| #include "ruby.h"
 | |
| #include <math.h>
 | |
| #include <float.h>
 | |
| 
 | |
| #ifdef HAVE_IEEEFP_H
 | |
| #include <ieeefp.h>
 | |
| #endif
 | |
| 
 | |
| #define NDEBUG
 | |
| #include <assert.h>
 | |
| 
 | |
| #ifndef RATIONAL_NAME
 | |
| #define RATIONAL_NAME "Rational"
 | |
| #endif
 | |
| 
 | |
| #define ZERO INT2FIX(0)
 | |
| #define ONE INT2FIX(1)
 | |
| #define TWO INT2FIX(2)
 | |
| 
 | |
| VALUE rb_cRational;
 | |
| 
 | |
| static ID id_abs, id_cmp, id_convert, id_equal_p, id_expt, id_fdiv,
 | |
|     id_floor, id_idiv, id_inspect, id_integer_p, id_negate, id_to_f,
 | |
|     id_to_i, id_to_s, id_truncate;
 | |
| 
 | |
| #define f_boolcast(x) ((x) ? Qtrue : Qfalse)
 | |
| 
 | |
| #define binop(n,op) \
 | |
| inline static VALUE \
 | |
| f_##n(VALUE x, VALUE y)\
 | |
| {\
 | |
|   return rb_funcall(x, op, 1, y);\
 | |
| }
 | |
| 
 | |
| #define fun1(n) \
 | |
| inline static VALUE \
 | |
| f_##n(VALUE x)\
 | |
| {\
 | |
|     return rb_funcall(x, id_##n, 0);\
 | |
| }
 | |
| 
 | |
| #define fun2(n) \
 | |
| inline static VALUE \
 | |
| f_##n(VALUE x, VALUE y)\
 | |
| {\
 | |
|     return rb_funcall(x, id_##n, 1, y);\
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_add(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y) && FIX2LONG(y) == 0)
 | |
| 	return x;
 | |
|     else if (FIXNUM_P(x) && FIX2LONG(x) == 0)
 | |
| 	return y;
 | |
|     return rb_funcall(x, '+', 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y)) {
 | |
| 	long c = FIX2LONG(x) - FIX2LONG(y);
 | |
| 	if (c > 0)
 | |
| 	    c = 1;
 | |
| 	else if (c < 0)
 | |
| 	    c = -1;
 | |
| 	return INT2FIX(c);
 | |
|     }
 | |
|     return rb_funcall(x, id_cmp, 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_div(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y) && FIX2LONG(y) == 1)
 | |
| 	return x;
 | |
|     return rb_funcall(x, '/', 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_gt_p(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	return f_boolcast(FIX2LONG(x) > FIX2LONG(y));
 | |
|     return rb_funcall(x, '>', 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_lt_p(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	return f_boolcast(FIX2LONG(x) < FIX2LONG(y));
 | |
|     return rb_funcall(x, '<', 1, y);
 | |
| }
 | |
| 
 | |
| binop(mod, '%')
 | |
| 
 | |
| inline static VALUE
 | |
| f_mul(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long iy = FIX2LONG(y);
 | |
| 	if (iy == 0) {
 | |
| 	    if (FIXNUM_P(x) || TYPE(x) == T_BIGNUM)
 | |
| 		return ZERO;
 | |
| 	}
 | |
| 	else if (iy == 1)
 | |
| 	    return x;
 | |
|     }
 | |
|     else if (FIXNUM_P(x)) {
 | |
| 	long ix = FIX2LONG(x);
 | |
| 	if (ix == 0) {
 | |
| 	    if (FIXNUM_P(y) || TYPE(y) == T_BIGNUM)
 | |
| 		return ZERO;
 | |
| 	}
 | |
| 	else if (ix == 1)
 | |
| 	    return y;
 | |
|     }
 | |
|     return rb_funcall(x, '*', 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_sub(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y) && FIX2LONG(y) == 0)
 | |
| 	return x;
 | |
|     return rb_funcall(x, '-', 1, y);
 | |
| }
 | |
| 
 | |
| fun1(abs)
 | |
| fun1(floor)
 | |
| fun1(inspect)
 | |
| fun1(integer_p)
 | |
| fun1(negate)
 | |
| fun1(to_f)
 | |
| fun1(to_i)
 | |
| fun1(to_s)
 | |
| fun1(truncate)
 | |
| 
 | |
| inline static VALUE
 | |
| f_equal_p(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	return f_boolcast(FIX2LONG(x) == FIX2LONG(y));
 | |
|     return rb_funcall(x, id_equal_p, 1, y);
 | |
| }
 | |
| 
 | |
| fun2(expt)
 | |
| fun2(fdiv)
 | |
| fun2(idiv)
 | |
| 
 | |
| inline static VALUE
 | |
| f_negative_p(VALUE x)
 | |
| {
 | |
|     if (FIXNUM_P(x))
 | |
| 	return f_boolcast(FIX2LONG(x) < 0);
 | |
|     return rb_funcall(x, '<', 1, ZERO);
 | |
| }
 | |
| 
 | |
| #define f_positive_p(x) (!f_negative_p(x))
 | |
| 
 | |
| inline static VALUE
 | |
| f_zero_p(VALUE x)
 | |
| {
 | |
|     if (FIXNUM_P(x))
 | |
| 	return f_boolcast(FIX2LONG(x) == 0);
 | |
|     return rb_funcall(x, id_equal_p, 1, ZERO);
 | |
| }
 | |
| 
 | |
| #define f_nonzero_p(x) (!f_zero_p(x))
 | |
| 
 | |
| inline static VALUE
 | |
| f_one_p(VALUE x)
 | |
| {
 | |
|     if (FIXNUM_P(x))
 | |
| 	return f_boolcast(FIX2LONG(x) == 1);
 | |
|     return rb_funcall(x, id_equal_p, 1, ONE);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_kind_of_p(VALUE x, VALUE c)
 | |
| {
 | |
|     return rb_obj_is_kind_of(x, c);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_numeric_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cNumeric);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_integer_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cInteger);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_float_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cFloat);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_rational_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cRational);
 | |
| }
 | |
| 
 | |
| #define k_exact_p(x) (!k_float_p(x))
 | |
| #define k_inexact_p(x) k_float_p(x)
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #define f_gcd f_gcd_orig
 | |
| #endif
 | |
| 
 | |
| inline static long
 | |
| i_gcd(long x, long y)
 | |
| {
 | |
|     if (x < 0)
 | |
| 	x = -x;
 | |
|     if (y < 0)
 | |
| 	y = -y;
 | |
| 
 | |
|     if (x == 0)
 | |
| 	return y;
 | |
|     if (y == 0)
 | |
| 	return x;
 | |
| 
 | |
|     while (x > 0) {
 | |
| 	long t = x;
 | |
| 	x = y % x;
 | |
| 	y = t;
 | |
|     }
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_gcd(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
| 
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
 | |
| 
 | |
|     if (f_negative_p(x))
 | |
| 	x = f_negate(x);
 | |
|     if (f_negative_p(y))
 | |
| 	y = f_negate(y);
 | |
| 
 | |
|     if (f_zero_p(x))
 | |
| 	return y;
 | |
|     if (f_zero_p(y))
 | |
| 	return x;
 | |
| 
 | |
|     for (;;) {
 | |
| 	if (FIXNUM_P(x)) {
 | |
| 	    if (FIX2LONG(x) == 0)
 | |
| 		return y;
 | |
| 	    if (FIXNUM_P(y))
 | |
| 		return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
 | |
| 	}
 | |
| 	z = x;
 | |
| 	x = f_mod(y, x);
 | |
| 	y = z;
 | |
|     }
 | |
|     /* NOTREACHED */
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #undef f_gcd
 | |
| 
 | |
| inline static VALUE
 | |
| f_gcd(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE r = f_gcd_orig(x, y);
 | |
|     if (f_nonzero_p(r)) {
 | |
| 	assert(f_zero_p(f_mod(x, r)));
 | |
| 	assert(f_zero_p(f_mod(y, r)));
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static VALUE
 | |
| f_lcm(VALUE x, VALUE y)
 | |
| {
 | |
|     if (f_zero_p(x) || f_zero_p(y))
 | |
| 	return ZERO;
 | |
|     return f_abs(f_mul(f_div(x, f_gcd(x, y)), y));
 | |
| }
 | |
| 
 | |
| #define get_dat1(x) \
 | |
|     struct RRational *dat;\
 | |
|     dat = ((struct RRational *)(x))
 | |
| 
 | |
| #define get_dat2(x,y) \
 | |
|     struct RRational *adat, *bdat;\
 | |
|     adat = ((struct RRational *)(x));\
 | |
|     bdat = ((struct RRational *)(y))
 | |
| 
 | |
| inline static VALUE
 | |
| nurat_s_new_internal(VALUE klass, VALUE num, VALUE den)
 | |
| {
 | |
|     NEWOBJ(obj, struct RRational);
 | |
|     OBJSETUP(obj, klass, T_RATIONAL);
 | |
| 
 | |
|     obj->num = num;
 | |
|     obj->den = den;
 | |
| 
 | |
|     return (VALUE)obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_s_alloc(VALUE klass)
 | |
| {
 | |
|     return nurat_s_new_internal(klass, ZERO, ONE);
 | |
| }
 | |
| 
 | |
| #define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by zero")
 | |
| 
 | |
| #if 0
 | |
| static VALUE
 | |
| nurat_s_new_bang(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE num, den;
 | |
| 
 | |
|     switch (rb_scan_args(argc, argv, "11", &num, &den)) {
 | |
|       case 1:
 | |
| 	if (!k_integer_p(num))
 | |
| 	    num = f_to_i(num);
 | |
| 	den = ONE;
 | |
| 	break;
 | |
|       default:
 | |
| 	if (!k_integer_p(num))
 | |
| 	    num = f_to_i(num);
 | |
| 	if (!k_integer_p(den))
 | |
| 	    den = f_to_i(den);
 | |
| 
 | |
| 	switch (FIX2INT(f_cmp(den, ZERO))) {
 | |
| 	  case -1:
 | |
| 	    num = f_negate(num);
 | |
| 	    den = f_negate(den);
 | |
| 	    break;
 | |
| 	  case 0:
 | |
| 	    rb_raise_zerodiv();
 | |
| 	    break;
 | |
| 	}
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     return nurat_s_new_internal(klass, num, den);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static VALUE
 | |
| f_rational_new_bang1(VALUE klass, VALUE x)
 | |
| {
 | |
|     return nurat_s_new_internal(klass, x, ONE);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_rational_new_bang2(VALUE klass, VALUE x, VALUE y)
 | |
| {
 | |
|     assert(f_positive_p(y));
 | |
|     assert(f_nonzero_p(y));
 | |
|     return nurat_s_new_internal(klass, x, y);
 | |
| }
 | |
| 
 | |
| #ifdef CANONICALIZATION_FOR_MATHN
 | |
| #define CANON
 | |
| #endif
 | |
| 
 | |
| #ifdef CANON
 | |
| static int canonicalization = 0;
 | |
| 
 | |
| void
 | |
| nurat_canonicalization(int f)
 | |
| {
 | |
|     canonicalization = f;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static void
 | |
| nurat_int_check(VALUE num)
 | |
| {
 | |
|     switch (TYPE(num)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	break;
 | |
|       default:
 | |
| 	if (!k_numeric_p(num) || !f_integer_p(num))
 | |
| 	    rb_raise(rb_eArgError, "not an integer");
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| nurat_int_value(VALUE num)
 | |
| {
 | |
|     nurat_int_check(num);
 | |
|     if (!k_integer_p(num))
 | |
| 	num = f_to_i(num);
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| nurat_s_canonicalize_internal(VALUE klass, VALUE num, VALUE den)
 | |
| {
 | |
|     VALUE gcd;
 | |
| 
 | |
|     switch (FIX2INT(f_cmp(den, ZERO))) {
 | |
|       case -1:
 | |
| 	num = f_negate(num);
 | |
| 	den = f_negate(den);
 | |
| 	break;
 | |
|       case 0:
 | |
| 	rb_raise_zerodiv();
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     gcd = f_gcd(num, den);
 | |
|     num = f_idiv(num, gcd);
 | |
|     den = f_idiv(den, gcd);
 | |
| 
 | |
| #ifdef CANON
 | |
|     if (f_one_p(den) && canonicalization)
 | |
| 	return num;
 | |
| #endif
 | |
|     return nurat_s_new_internal(klass, num, den);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| nurat_s_canonicalize_internal_no_reduce(VALUE klass, VALUE num, VALUE den)
 | |
| {
 | |
|     switch (FIX2INT(f_cmp(den, ZERO))) {
 | |
|       case -1:
 | |
| 	num = f_negate(num);
 | |
| 	den = f_negate(den);
 | |
| 	break;
 | |
|       case 0:
 | |
| 	rb_raise_zerodiv();
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
| #ifdef CANON
 | |
|     if (f_one_p(den) && canonicalization)
 | |
| 	return num;
 | |
| #endif
 | |
|     return nurat_s_new_internal(klass, num, den);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_s_new(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE num, den;
 | |
| 
 | |
|     switch (rb_scan_args(argc, argv, "11", &num, &den)) {
 | |
|       case 1:
 | |
| 	num = nurat_int_value(num);
 | |
| 	den = ONE;
 | |
| 	break;
 | |
|       default:
 | |
| 	num = nurat_int_value(num);
 | |
| 	den = nurat_int_value(den);
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     return nurat_s_canonicalize_internal(klass, num, den);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_rational_new1(VALUE klass, VALUE x)
 | |
| {
 | |
|     assert(!k_rational_p(x));
 | |
|     return nurat_s_canonicalize_internal(klass, x, ONE);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_rational_new2(VALUE klass, VALUE x, VALUE y)
 | |
| {
 | |
|     assert(!k_rational_p(x));
 | |
|     assert(!k_rational_p(y));
 | |
|     return nurat_s_canonicalize_internal(klass, x, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_rational_new_no_reduce1(VALUE klass, VALUE x)
 | |
| {
 | |
|     assert(!k_rational_p(x));
 | |
|     return nurat_s_canonicalize_internal_no_reduce(klass, x, ONE);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y)
 | |
| {
 | |
|     assert(!k_rational_p(x));
 | |
|     assert(!k_rational_p(y));
 | |
|     return nurat_s_canonicalize_internal_no_reduce(klass, x, y);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_f_rational(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     return rb_funcall2(rb_cRational, id_convert, argc, argv);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_numerator(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return dat->num;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_denominator(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return dat->den;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #define f_imul f_imul_orig
 | |
| #endif
 | |
| 
 | |
| inline static VALUE
 | |
| f_imul(long a, long b)
 | |
| {
 | |
|     VALUE r;
 | |
|     long c;
 | |
| 
 | |
|     if (a == 0 || b == 0)
 | |
| 	return ZERO;
 | |
|     else if (a == 1)
 | |
| 	return LONG2NUM(b);
 | |
|     else if (b == 1)
 | |
| 	return LONG2NUM(a);
 | |
| 
 | |
|     c = a * b;
 | |
|     r = LONG2NUM(c);
 | |
|     if (NUM2LONG(r) != c || (c / a) != b)
 | |
| 	r = rb_big_mul(rb_int2big(a), rb_int2big(b));
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #undef f_imul
 | |
| 
 | |
| inline static VALUE
 | |
| f_imul(long x, long y)
 | |
| {
 | |
|     VALUE r = f_imul_orig(x, y);
 | |
|     assert(f_equal_p(r, f_mul(LONG2NUM(x), LONG2NUM(y))));
 | |
|     return r;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static VALUE
 | |
| f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
 | |
| {
 | |
|     VALUE num, den;
 | |
| 
 | |
|     if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
 | |
| 	FIXNUM_P(bnum) && FIXNUM_P(bden)) {
 | |
| 	long an = FIX2LONG(anum);
 | |
| 	long ad = FIX2LONG(aden);
 | |
| 	long bn = FIX2LONG(bnum);
 | |
| 	long bd = FIX2LONG(bden);
 | |
| 	long ig = i_gcd(ad, bd);
 | |
| 
 | |
| 	VALUE g = LONG2NUM(ig);
 | |
| 	VALUE a = f_imul(an, bd / ig);
 | |
| 	VALUE b = f_imul(bn, ad / ig);
 | |
| 	VALUE c;
 | |
| 
 | |
| 	if (k == '+')
 | |
| 	    c = f_add(a, b);
 | |
| 	else
 | |
| 	    c = f_sub(a, b);
 | |
| 
 | |
| 	b = f_idiv(aden, g);
 | |
| 	g = f_gcd(c, g);
 | |
| 	num = f_idiv(c, g);
 | |
| 	a = f_idiv(bden, g);
 | |
| 	den = f_mul(a, b);
 | |
|     }
 | |
|     else {
 | |
| 	VALUE g = f_gcd(aden, bden);
 | |
| 	VALUE a = f_mul(anum, f_idiv(bden, g));
 | |
| 	VALUE b = f_mul(bnum, f_idiv(aden, g));
 | |
| 	VALUE c;
 | |
| 
 | |
| 	if (k == '+')
 | |
| 	    c = f_add(a, b);
 | |
| 	else
 | |
| 	    c = f_sub(a, b);
 | |
| 
 | |
| 	b = f_idiv(aden, g);
 | |
| 	g = f_gcd(c, g);
 | |
| 	num = f_idiv(c, g);
 | |
| 	a = f_idiv(bden, g);
 | |
| 	den = f_mul(a, b);
 | |
|     }
 | |
|     return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_add(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_addsub(self,
 | |
| 			    dat->num, dat->den,
 | |
| 			    other, ONE, '+');
 | |
| 	}
 | |
|       case T_FLOAT:
 | |
| 	return f_add(f_to_f(self), other);
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    return f_addsub(self,
 | |
| 			    adat->num, adat->den,
 | |
| 			    bdat->num, bdat->den, '+');
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(self, other, '+');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_sub(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_addsub(self,
 | |
| 			    dat->num, dat->den,
 | |
| 			    other, ONE, '-');
 | |
| 	}
 | |
|       case T_FLOAT:
 | |
| 	return f_sub(f_to_f(self), other);
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    return f_addsub(self,
 | |
| 			    adat->num, adat->den,
 | |
| 			    bdat->num, bdat->den, '-');
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(self, other, '-');
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
 | |
| {
 | |
|     VALUE num, den;
 | |
| 
 | |
|     if (k == '/') {
 | |
| 	VALUE t;
 | |
| 
 | |
| 	if (f_negative_p(bnum)) {
 | |
| 	    anum = f_negate(anum);
 | |
| 	    bnum = f_negate(bnum);
 | |
| 	}
 | |
| 	t = bnum;
 | |
| 	bnum = bden;
 | |
| 	bden = t;
 | |
|     }
 | |
| 
 | |
|     if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
 | |
| 	FIXNUM_P(bnum) && FIXNUM_P(bden)) {
 | |
| 	long an = FIX2LONG(anum);
 | |
| 	long ad = FIX2LONG(aden);
 | |
| 	long bn = FIX2LONG(bnum);
 | |
| 	long bd = FIX2LONG(bden);
 | |
| 	long g1 = i_gcd(an, bd);
 | |
| 	long g2 = i_gcd(ad, bn);
 | |
| 
 | |
| 	num = f_imul(an / g1, bn / g2);
 | |
| 	den = f_imul(ad / g2, bd / g1);
 | |
|     }
 | |
|     else {
 | |
| 	VALUE g1 = f_gcd(anum, bden);
 | |
| 	VALUE g2 = f_gcd(aden, bnum);
 | |
| 
 | |
| 	num = f_mul(f_idiv(anum, g1), f_idiv(bnum, g2));
 | |
| 	den = f_mul(f_idiv(aden, g2), f_idiv(bden, g1));
 | |
|     }
 | |
|     return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_mul(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_muldiv(self,
 | |
| 			    dat->num, dat->den,
 | |
| 			    other, ONE, '*');
 | |
| 	}
 | |
|       case T_FLOAT:
 | |
| 	return f_mul(f_to_f(self), other);
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    return f_muldiv(self,
 | |
| 			    adat->num, adat->den,
 | |
| 			    bdat->num, bdat->den, '*');
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(self, other, '*');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_div(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	if (f_zero_p(other))
 | |
| 	    rb_raise_zerodiv();
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_muldiv(self,
 | |
| 			    dat->num, dat->den,
 | |
| 			    other, ONE, '/');
 | |
| 	}
 | |
|       case T_FLOAT:
 | |
| 	return rb_funcall(f_to_f(self), '/', 1, other);
 | |
|       case T_RATIONAL:
 | |
| 	if (f_zero_p(other))
 | |
| 	    rb_raise_zerodiv();
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    return f_muldiv(self,
 | |
| 			    adat->num, adat->den,
 | |
| 			    bdat->num, bdat->den, '/');
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(self, other, '/');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_fdiv(VALUE self, VALUE other)
 | |
| {
 | |
|     return f_div(f_to_f(self), other);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_expt(VALUE self, VALUE other)
 | |
| {
 | |
|     if (k_exact_p(other) && f_zero_p(other))
 | |
| 	return f_rational_new_bang1(CLASS_OF(self), ONE);
 | |
| 
 | |
|     if (k_rational_p(other)) {
 | |
| 	get_dat1(other);
 | |
| 
 | |
| 	if (f_one_p(dat->den))
 | |
| 	    other = dat->num; /* good? */
 | |
|     }
 | |
| 
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	{
 | |
| 	    VALUE num, den;
 | |
| 
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    switch (FIX2INT(f_cmp(other, ZERO))) {
 | |
| 	      case 1:
 | |
| 		num = f_expt(dat->num, other);
 | |
| 		den = f_expt(dat->den, other);
 | |
| 		break;
 | |
| 	      case -1:
 | |
| 		num = f_expt(dat->den, f_negate(other));
 | |
| 		den = f_expt(dat->num, f_negate(other));
 | |
| 		break;
 | |
| 	      default:
 | |
| 		num = ONE;
 | |
| 		den = ONE;
 | |
| 		break;
 | |
| 	    }
 | |
| 	    return f_rational_new2(CLASS_OF(self), num, den);
 | |
| 	}
 | |
|       case T_FLOAT:
 | |
|       case T_RATIONAL:
 | |
| 	return f_expt(f_to_f(self), other);
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(self, other, id_expt);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_cmp(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    if (FIXNUM_P(dat->den) && FIX2LONG(dat->den) == 1)
 | |
| 		return f_cmp(dat->num, other);
 | |
| 	    return f_cmp(self, f_rational_new_bang1(CLASS_OF(self), other));
 | |
| 	}
 | |
|       case T_FLOAT:
 | |
| 	return f_cmp(f_to_f(self), other);
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    VALUE num1, num2;
 | |
| 
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
 | |
| 		FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
 | |
| 		num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
 | |
| 		num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
 | |
| 	    }
 | |
| 	    else {
 | |
| 		num1 = f_mul(adat->num, bdat->den);
 | |
| 		num2 = f_mul(bdat->num, adat->den);
 | |
| 	    }
 | |
| 	    return f_cmp(f_sub(num1, num2), ZERO);
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(self, other, id_cmp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_equal_p(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    if (f_zero_p(dat->num) && f_zero_p(other))
 | |
| 		return Qtrue;
 | |
| 
 | |
| 	    if (!FIXNUM_P(dat->den))
 | |
| 		return Qfalse;
 | |
| 	    if (FIX2LONG(dat->den) != 1)
 | |
| 		return Qfalse;
 | |
| 	    if (f_equal_p(dat->num, other))
 | |
| 		return Qtrue;
 | |
| 	    return Qfalse;
 | |
| 	}
 | |
|       case T_FLOAT:
 | |
| 	return f_equal_p(f_to_f(self), other);
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    if (f_zero_p(adat->num) && f_zero_p(bdat->num))
 | |
| 		return Qtrue;
 | |
| 
 | |
| 	    return f_boolcast(f_equal_p(adat->num, bdat->num) &&
 | |
| 			      f_equal_p(adat->den, bdat->den));
 | |
| 	}
 | |
|       default:
 | |
| 	return f_equal_p(other, self);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_coerce(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
 | |
|       case T_FLOAT:
 | |
| 	return rb_assoc_new(other, f_to_f(self));
 | |
|       case T_RATIONAL:
 | |
| 	return rb_assoc_new(other, self);
 | |
|     }
 | |
| 
 | |
|     rb_raise(rb_eTypeError, "%s can't be coerced into %s",
 | |
| 	     rb_obj_classname(other), rb_obj_classname(self));
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_idiv(VALUE self, VALUE other)
 | |
| {
 | |
|     return f_floor(f_div(self, other));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_mod(VALUE self, VALUE other)
 | |
| {
 | |
|     VALUE val = f_floor(f_div(self, other));
 | |
|     return f_sub(self, f_mul(other, val));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_divmod(VALUE self, VALUE other)
 | |
| {
 | |
|     VALUE val = f_floor(f_div(self, other));
 | |
|     return rb_assoc_new(val, f_sub(self, f_mul(other, val)));
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static VALUE
 | |
| nurat_quot(VALUE self, VALUE other)
 | |
| {
 | |
|     return f_truncate(f_div(self, other));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static VALUE
 | |
| nurat_rem(VALUE self, VALUE other)
 | |
| {
 | |
|     VALUE val = f_truncate(f_div(self, other));
 | |
|     return f_sub(self, f_mul(other, val));
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static VALUE
 | |
| nurat_quotrem(VALUE self, VALUE other)
 | |
| {
 | |
|     VALUE val = f_truncate(f_div(self, other));
 | |
|     return rb_assoc_new(val, f_sub(self, f_mul(other, val)));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static VALUE
 | |
| nurat_abs(VALUE self)
 | |
| {
 | |
|     if (f_positive_p(self))
 | |
| 	return self;
 | |
|     return f_negate(self);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static VALUE
 | |
| nurat_true(VALUE self)
 | |
| {
 | |
|     return Qtrue;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static VALUE
 | |
| nurat_floor(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return f_idiv(dat->num, dat->den);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_ceil(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return f_negate(f_idiv(f_negate(dat->num), dat->den));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_truncate(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     if (f_negative_p(dat->num))
 | |
| 	return f_negate(f_idiv(f_negate(dat->num), dat->den));
 | |
|     return f_idiv(dat->num, dat->den);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_round(VALUE self)
 | |
| {
 | |
|     VALUE num, den, neg;
 | |
| 
 | |
|     get_dat1(self);
 | |
| 
 | |
|     num = dat->num;
 | |
|     den = dat->den;
 | |
|     neg = f_negative_p(num);
 | |
| 
 | |
|     if (neg)
 | |
| 	num = f_negate(num);
 | |
| 
 | |
|     num = f_add(f_mul(num, TWO), den);
 | |
|     den = f_mul(den, TWO);
 | |
|     num = f_idiv(num, den);
 | |
| 
 | |
|     if (neg)
 | |
| 	num = f_negate(num);
 | |
| 
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_round_common(int argc, VALUE *argv, VALUE self,
 | |
| 		   VALUE (*func)(VALUE))
 | |
| {
 | |
|     VALUE n, b, s;
 | |
| 
 | |
|     if (argc == 0)
 | |
| 	return (*func)(self);
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &n);
 | |
| 
 | |
|     if (!k_integer_p(n))
 | |
| 	rb_raise(rb_eTypeError, "not an integer");
 | |
| 
 | |
|     b = f_expt(INT2FIX(10), n);
 | |
|     s = f_mul(self, b);
 | |
| 
 | |
|     s = (*func)(s);
 | |
| 
 | |
|     s = f_div(f_rational_new_bang1(CLASS_OF(self), s), b);
 | |
| 
 | |
|     if (f_lt_p(n, ONE))
 | |
| 	s = f_to_i(s);
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_floor_n(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return nurat_round_common(argc, argv, self, nurat_floor);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_ceil_n(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return nurat_round_common(argc, argv, self, nurat_ceil);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_truncate_n(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return nurat_round_common(argc, argv, self, nurat_truncate);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_round_n(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return nurat_round_common(argc, argv, self, nurat_round);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_to_f(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return f_fdiv(dat->num, dat->den);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_to_r(VALUE self)
 | |
| {
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_hash(VALUE self)
 | |
| {
 | |
|     long v, h[3];
 | |
|     VALUE n;
 | |
| 
 | |
|     get_dat1(self);
 | |
|     h[0] = rb_hash(rb_obj_class(self));
 | |
|     n = rb_hash(dat->num);
 | |
|     h[1] = NUM2LONG(n);
 | |
|     n = rb_hash(dat->den);
 | |
|     h[2] = NUM2LONG(n);
 | |
|     v = rb_memhash(h, sizeof(h));
 | |
|     return LONG2FIX(v);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_format(VALUE self, VALUE (*func)(VALUE))
 | |
| {
 | |
|     VALUE s;
 | |
|     get_dat1(self);
 | |
| 
 | |
|     s = (*func)(dat->num);
 | |
|     rb_str_cat2(s, "/");
 | |
|     rb_str_concat(s, (*func)(dat->den));
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_to_s(VALUE self)
 | |
| {
 | |
|     return nurat_format(self, f_to_s);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_inspect(VALUE self)
 | |
| {
 | |
|     VALUE s;
 | |
| 
 | |
|     s = rb_usascii_str_new2("(");
 | |
|     rb_str_concat(s, nurat_format(self, f_inspect));
 | |
|     rb_str_cat2(s, ")");
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_marshal_dump(VALUE self)
 | |
| {
 | |
|     VALUE a;
 | |
|     get_dat1(self);
 | |
| 
 | |
|     a = rb_assoc_new(dat->num, dat->den);
 | |
|     rb_copy_generic_ivar(a, self);
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_marshal_load(VALUE self, VALUE a)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     dat->num = RARRAY_PTR(a)[0];
 | |
|     dat->den = RARRAY_PTR(a)[1];
 | |
|     rb_copy_generic_ivar(self, a);
 | |
| 
 | |
|     if (f_zero_p(dat->den))
 | |
| 	rb_raise_zerodiv();
 | |
| 
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /* --- */
 | |
| 
 | |
| VALUE
 | |
| rb_gcd(VALUE self, VALUE other)
 | |
| {
 | |
|     other = nurat_int_value(other);
 | |
|     return f_gcd(self, other);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_lcm(VALUE self, VALUE other)
 | |
| {
 | |
|     other = nurat_int_value(other);
 | |
|     return f_lcm(self, other);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_gcdlcm(VALUE self, VALUE other)
 | |
| {
 | |
|     other = nurat_int_value(other);
 | |
|     return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_rational_raw(VALUE x, VALUE y)
 | |
| {
 | |
|     return nurat_s_new_internal(rb_cRational, x, y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_rational_new(VALUE x, VALUE y)
 | |
| {
 | |
|     return nurat_s_canonicalize_internal(rb_cRational, x, y);
 | |
| }
 | |
| 
 | |
| static VALUE nurat_s_convert(int argc, VALUE *argv, VALUE klass);
 | |
| 
 | |
| VALUE
 | |
| rb_Rational(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE a[2];
 | |
|     a[0] = x;
 | |
|     a[1] = y;
 | |
|     return nurat_s_convert(2, a, rb_cRational);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nilclass_to_r(VALUE self)
 | |
| {
 | |
|     return rb_rational_new1(INT2FIX(0));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| integer_to_r(VALUE self)
 | |
| {
 | |
|     return rb_rational_new1(self);
 | |
| }
 | |
| 
 | |
| static void
 | |
| float_decode_internal(VALUE self, VALUE *rf, VALUE *rn)
 | |
| {
 | |
|     double f;
 | |
|     int n;
 | |
| 
 | |
|     f = frexp(RFLOAT_VALUE(self), &n);
 | |
|     f = ldexp(f, DBL_MANT_DIG);
 | |
|     n -= DBL_MANT_DIG;
 | |
|     *rf = rb_dbl2big(f);
 | |
|     *rn = INT2FIX(n);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static VALUE
 | |
| float_decode(VALUE self)
 | |
| {
 | |
|     VALUE f, n;
 | |
| 
 | |
|     float_decode_internal(self, &f, &n);
 | |
|     return rb_assoc_new(f, n);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static VALUE
 | |
| float_to_r(VALUE self)
 | |
| {
 | |
|     VALUE f, n;
 | |
| 
 | |
|     float_decode_internal(self, &f, &n);
 | |
|     return f_mul(f, f_expt(INT2FIX(FLT_RADIX), n));
 | |
| }
 | |
| 
 | |
| static VALUE rat_pat, an_e_pat, a_dot_pat, underscores_pat, an_underscore;
 | |
| 
 | |
| #define WS "\\s*"
 | |
| #define DIGITS "(?:\\d(?:_\\d|\\d)*)"
 | |
| #define NUMERATOR "(?:" DIGITS "?\\.)?" DIGITS "(?:[eE][-+]?" DIGITS ")?"
 | |
| #define DENOMINATOR DIGITS
 | |
| #define PATTERN "\\A" WS "([-+])?(" NUMERATOR ")(?:\\/(" DENOMINATOR "))?" WS
 | |
| 
 | |
| static void
 | |
| make_patterns(void)
 | |
| {
 | |
|     static const char rat_pat_source[] = PATTERN;
 | |
|     static const char an_e_pat_source[] = "[eE]";
 | |
|     static const char a_dot_pat_source[] = "\\.";
 | |
|     static const char underscores_pat_source[] = "_+";
 | |
| 
 | |
|     if (rat_pat) return;
 | |
| 
 | |
|     rat_pat = rb_reg_new(rat_pat_source, sizeof rat_pat_source - 1, 0);
 | |
|     rb_gc_register_mark_object(rat_pat);
 | |
| 
 | |
|     an_e_pat = rb_reg_new(an_e_pat_source, sizeof an_e_pat_source - 1, 0);
 | |
|     rb_gc_register_mark_object(an_e_pat);
 | |
| 
 | |
|     a_dot_pat = rb_reg_new(a_dot_pat_source, sizeof a_dot_pat_source - 1, 0);
 | |
|     rb_gc_register_mark_object(a_dot_pat);
 | |
| 
 | |
|     underscores_pat = rb_reg_new(underscores_pat_source,
 | |
| 				 sizeof underscores_pat_source - 1, 0);
 | |
|     rb_gc_register_mark_object(underscores_pat);
 | |
| 
 | |
|     an_underscore = rb_usascii_str_new2("_");
 | |
|     rb_gc_register_mark_object(an_underscore);
 | |
| }
 | |
| 
 | |
| #define id_match rb_intern("match")
 | |
| #define f_match(x,y) rb_funcall(x, id_match, 1, y)
 | |
| 
 | |
| #define id_aref rb_intern("[]")
 | |
| #define f_aref(x,y) rb_funcall(x, id_aref, 1, y)
 | |
| 
 | |
| #define id_post_match rb_intern("post_match")
 | |
| #define f_post_match(x) rb_funcall(x, id_post_match, 0)
 | |
| 
 | |
| #define id_split rb_intern("split")
 | |
| #define f_split(x,y) rb_funcall(x, id_split, 1, y)
 | |
| 
 | |
| #include <ctype.h>
 | |
| 
 | |
| static VALUE
 | |
| string_to_r_internal(VALUE self)
 | |
| {
 | |
|     VALUE s, m;
 | |
| 
 | |
|     s = self;
 | |
| 
 | |
|     if (RSTRING_LEN(s) == 0)
 | |
| 	return rb_assoc_new(Qnil, self);
 | |
| 
 | |
|     m = f_match(rat_pat, s);
 | |
| 
 | |
|     if (!NIL_P(m)) {
 | |
| 	VALUE v, ifp, exp, ip, fp;
 | |
| 	VALUE si = f_aref(m, INT2FIX(1));
 | |
| 	VALUE nu = f_aref(m, INT2FIX(2));
 | |
| 	VALUE de = f_aref(m, INT2FIX(3));
 | |
| 	VALUE re = f_post_match(m);
 | |
| 
 | |
| 	{
 | |
| 	    VALUE a;
 | |
| 
 | |
| 	    a = f_split(nu, an_e_pat);
 | |
| 	    ifp = RARRAY_PTR(a)[0];
 | |
| 	    if (RARRAY_LEN(a) != 2)
 | |
| 		exp = Qnil;
 | |
| 	    else
 | |
| 		exp = RARRAY_PTR(a)[1];
 | |
| 
 | |
| 	    a = f_split(ifp, a_dot_pat);
 | |
| 	    ip = RARRAY_PTR(a)[0];
 | |
| 	    if (RARRAY_LEN(a) != 2)
 | |
| 		fp = Qnil;
 | |
| 	    else
 | |
| 		fp = RARRAY_PTR(a)[1];
 | |
| 	}
 | |
| 
 | |
| 	v = rb_rational_new1(f_to_i(ip));
 | |
| 
 | |
| 	if (!NIL_P(fp)) {
 | |
| 	    char *p = StringValuePtr(fp);
 | |
| 	    long count = 0;
 | |
| 	    VALUE l;
 | |
| 
 | |
| 	    while (*p) {
 | |
| 		if (rb_isdigit(*p))
 | |
| 		    count++;
 | |
| 		p++;
 | |
| 	    }
 | |
| 
 | |
| 	    l = f_expt(INT2FIX(10), LONG2NUM(count));
 | |
| 	    v = f_mul(v, l);
 | |
| 	    v = f_add(v, f_to_i(fp));
 | |
| 	    v = f_div(v, l);
 | |
| 	}
 | |
| 	if (!NIL_P(si) && *StringValuePtr(si) == '-')
 | |
| 	    v = f_negate(v);
 | |
| 	if (!NIL_P(exp))
 | |
| 	    v = f_mul(v, f_expt(INT2FIX(10), f_to_i(exp)));
 | |
| #if 0
 | |
| 	if (!NIL_P(de) && (!NIL_P(fp) || !NIL_P(exp)))
 | |
| 	    return rb_assoc_new(v, rb_usascii_str_new2("dummy"));
 | |
| #endif
 | |
| 	if (!NIL_P(de))
 | |
| 	    v = f_div(v, f_to_i(de));
 | |
| 
 | |
| 	return rb_assoc_new(v, re);
 | |
|     }
 | |
|     return rb_assoc_new(Qnil, self);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| string_to_r_strict(VALUE self)
 | |
| {
 | |
|     VALUE a = string_to_r_internal(self);
 | |
|     if (NIL_P(RARRAY_PTR(a)[0]) || RSTRING_LEN(RARRAY_PTR(a)[1]) > 0) {
 | |
| 	VALUE s = f_inspect(self);
 | |
| 	rb_raise(rb_eArgError, "invalid value for convert(): %s",
 | |
| 		 StringValuePtr(s));
 | |
|     }
 | |
|     return RARRAY_PTR(a)[0];
 | |
| }
 | |
| 
 | |
| #define id_gsub rb_intern("gsub")
 | |
| #define f_gsub(x,y,z) rb_funcall(x, id_gsub, 2, y, z)
 | |
| 
 | |
| static VALUE
 | |
| string_to_r(VALUE self)
 | |
| {
 | |
|     VALUE s, a, backref;
 | |
| 
 | |
|     backref = rb_backref_get();
 | |
|     rb_match_busy(backref);
 | |
| 
 | |
|     s = f_gsub(self, underscores_pat, an_underscore);
 | |
|     a = string_to_r_internal(s);
 | |
| 
 | |
|     rb_backref_set(backref);
 | |
| 
 | |
|     if (!NIL_P(RARRAY_PTR(a)[0]))
 | |
| 	return RARRAY_PTR(a)[0];
 | |
|     return rb_rational_new1(INT2FIX(0));
 | |
| }
 | |
| 
 | |
| #define id_to_r rb_intern("to_r")
 | |
| #define f_to_r(x) rb_funcall(x, id_to_r, 0)
 | |
| 
 | |
| static VALUE
 | |
| nurat_s_convert(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE a1, a2, backref;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "11", &a1, &a2);
 | |
| 
 | |
|     switch (TYPE(a1)) {
 | |
|       case T_COMPLEX:
 | |
| 	if (k_exact_p(RCOMPLEX(a1)->imag) && f_zero_p(RCOMPLEX(a1)->imag))
 | |
| 	    a1 = RCOMPLEX(a1)->real;
 | |
|     }
 | |
| 
 | |
|     switch (TYPE(a2)) {
 | |
|       case T_COMPLEX:
 | |
| 	if (k_exact_p(RCOMPLEX(a2)->imag) && f_zero_p(RCOMPLEX(a2)->imag))
 | |
| 	    a2 = RCOMPLEX(a2)->real;
 | |
|     }
 | |
| 
 | |
|     backref = rb_backref_get();
 | |
|     rb_match_busy(backref);
 | |
| 
 | |
|     switch (TYPE(a1)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	break;
 | |
|       case T_FLOAT:
 | |
| 	a1 = f_to_r(a1);
 | |
| 	break;
 | |
|       case T_STRING:
 | |
| 	a1 = string_to_r_strict(a1);
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     switch (TYPE(a2)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	break;
 | |
|       case T_FLOAT:
 | |
| 	a2 = f_to_r(a2);
 | |
| 	break;
 | |
|       case T_STRING:
 | |
| 	a2 = string_to_r_strict(a2);
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     rb_backref_set(backref);
 | |
| 
 | |
|     switch (TYPE(a1)) {
 | |
|       case T_RATIONAL:
 | |
| 	if (argc == 1 || (k_exact_p(a2) && f_one_p(a2)))
 | |
| 	    return a1;
 | |
|     }
 | |
| 
 | |
|     if (argc == 1) {
 | |
| 	if (k_numeric_p(a1) && !f_integer_p(a1))
 | |
| 	    return a1;
 | |
|     }
 | |
|     else {
 | |
| 	if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
 | |
| 	    (!f_integer_p(a1) || !f_integer_p(a2)))
 | |
| 	    return f_div(a1, a2);
 | |
|     }
 | |
| 
 | |
|     {
 | |
| 	VALUE argv2[2];
 | |
| 	argv2[0] = a1;
 | |
| 	argv2[1] = a2;
 | |
| 	return nurat_s_new(argc, argv2, klass);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| Init_Rational(void)
 | |
| {
 | |
| #undef rb_intern
 | |
| #define rb_intern(str) rb_intern_const(str)
 | |
| 
 | |
|     assert(fprintf(stderr, "assert() is now active\n"));
 | |
| 
 | |
|     id_abs = rb_intern("abs");
 | |
|     id_cmp = rb_intern("<=>");
 | |
|     id_convert = rb_intern("convert");
 | |
|     id_equal_p = rb_intern("==");
 | |
|     id_expt = rb_intern("**");
 | |
|     id_fdiv = rb_intern("fdiv");
 | |
|     id_floor = rb_intern("floor");
 | |
|     id_idiv = rb_intern("div");
 | |
|     id_inspect = rb_intern("inspect");
 | |
|     id_integer_p = rb_intern("integer?");
 | |
|     id_negate = rb_intern("-@");
 | |
|     id_to_f = rb_intern("to_f");
 | |
|     id_to_i = rb_intern("to_i");
 | |
|     id_to_s = rb_intern("to_s");
 | |
|     id_truncate = rb_intern("truncate");
 | |
| 
 | |
|     rb_cRational = rb_define_class(RATIONAL_NAME, rb_cNumeric);
 | |
| 
 | |
|     rb_define_alloc_func(rb_cRational, nurat_s_alloc);
 | |
|     rb_undef_method(CLASS_OF(rb_cRational), "allocate");
 | |
| 
 | |
| #if 0
 | |
|     rb_define_private_method(CLASS_OF(rb_cRational), "new!", nurat_s_new_bang, -1);
 | |
|     rb_define_private_method(CLASS_OF(rb_cRational), "new", nurat_s_new, -1);
 | |
| #else
 | |
|     rb_undef_method(CLASS_OF(rb_cRational), "new");
 | |
| #endif
 | |
| 
 | |
|     rb_define_global_function(RATIONAL_NAME, nurat_f_rational, -1);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "numerator", nurat_numerator, 0);
 | |
|     rb_define_method(rb_cRational, "denominator", nurat_denominator, 0);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "+", nurat_add, 1);
 | |
|     rb_define_method(rb_cRational, "-", nurat_sub, 1);
 | |
|     rb_define_method(rb_cRational, "*", nurat_mul, 1);
 | |
|     rb_define_method(rb_cRational, "/", nurat_div, 1);
 | |
|     rb_define_method(rb_cRational, "quo", nurat_div, 1);
 | |
|     rb_define_method(rb_cRational, "fdiv", nurat_fdiv, 1);
 | |
|     rb_define_method(rb_cRational, "**", nurat_expt, 1);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "<=>", nurat_cmp, 1);
 | |
|     rb_define_method(rb_cRational, "==", nurat_equal_p, 1);
 | |
|     rb_define_method(rb_cRational, "coerce", nurat_coerce, 1);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "div", nurat_idiv, 1);
 | |
| 
 | |
| #if 0 /* NUBY */
 | |
|     rb_define_method(rb_cRational, "//", nurat_idiv, 1);
 | |
| #endif
 | |
| 
 | |
|     rb_define_method(rb_cRational, "modulo", nurat_mod, 1);
 | |
|     rb_define_method(rb_cRational, "%", nurat_mod, 1);
 | |
|     rb_define_method(rb_cRational, "divmod", nurat_divmod, 1);
 | |
| 
 | |
| #if 0
 | |
|     rb_define_method(rb_cRational, "quot", nurat_quot, 1);
 | |
| #endif
 | |
|     rb_define_method(rb_cRational, "remainder", nurat_rem, 1);
 | |
| #if 0
 | |
|     rb_define_method(rb_cRational, "quotrem", nurat_quotrem, 1);
 | |
| #endif
 | |
| 
 | |
|     rb_define_method(rb_cRational, "abs", nurat_abs, 0);
 | |
| 
 | |
| #if 0
 | |
|     rb_define_method(rb_cRational, "rational?", nurat_true, 0);
 | |
|     rb_define_method(rb_cRational, "exact?", nurat_true, 0);
 | |
| #endif
 | |
| 
 | |
|     rb_define_method(rb_cRational, "floor", nurat_floor_n, -1);
 | |
|     rb_define_method(rb_cRational, "ceil", nurat_ceil_n, -1);
 | |
|     rb_define_method(rb_cRational, "truncate", nurat_truncate_n, -1);
 | |
|     rb_define_method(rb_cRational, "round", nurat_round_n, -1);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "to_i", nurat_truncate, 0);
 | |
|     rb_define_method(rb_cRational, "to_f", nurat_to_f, 0);
 | |
|     rb_define_method(rb_cRational, "to_r", nurat_to_r, 0);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "hash", nurat_hash, 0);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "to_s", nurat_to_s, 0);
 | |
|     rb_define_method(rb_cRational, "inspect", nurat_inspect, 0);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "marshal_dump", nurat_marshal_dump, 0);
 | |
|     rb_define_method(rb_cRational, "marshal_load", nurat_marshal_load, 1);
 | |
| 
 | |
|     /* --- */
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "gcd", rb_gcd, 1);
 | |
|     rb_define_method(rb_cInteger, "lcm", rb_lcm, 1);
 | |
|     rb_define_method(rb_cInteger, "gcdlcm", rb_gcdlcm, 1);
 | |
| 
 | |
|     rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0);
 | |
|     rb_define_method(rb_cInteger, "to_r", integer_to_r, 0);
 | |
|     rb_define_method(rb_cFloat, "to_r", float_to_r, 0);
 | |
| 
 | |
|     make_patterns();
 | |
| 
 | |
|     rb_define_method(rb_cString, "to_r", string_to_r, 0);
 | |
| 
 | |
|     rb_define_private_method(CLASS_OF(rb_cRational), "convert", nurat_s_convert, -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| Local variables:
 | |
| c-file-style: "ruby"
 | |
| End:
 | |
| */
 |