1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/transcode.c
akr 96ae1f008f * transcode.c (conv_init): check empty name.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@18637 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-08-15 00:34:16 +00:00

1746 lines
52 KiB
C

/**********************************************************************
transcode.c -
$Author$
created at: Tue Oct 30 16:10:22 JST 2007
Copyright (C) 2007 Martin Duerst
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/encoding.h"
#define PType (int)
#include "transcode_data.h"
#include <ctype.h>
VALUE rb_eConversionUndefined;
VALUE rb_eInvalidByteSequence;
VALUE rb_cEncodingConverter;
static VALUE sym_invalid, sym_undef, sym_ignore, sym_replace;
#define INVALID_IGNORE 0x1
#define INVALID_REPLACE 0x2
#define UNDEF_IGNORE 0x10
#define UNDEF_REPLACE 0x20
/*
* Dispatch data and logic
*/
typedef struct {
const char *from;
const char *to;
const char *lib; /* maybe null. it means that don't load the library. */
const rb_transcoder *transcoder;
} transcoder_entry_t;
static st_table *transcoder_table;
static transcoder_entry_t *
make_transcoder_entry(const char *from, const char *to)
{
st_data_t val;
st_table *table2;
if (!st_lookup(transcoder_table, (st_data_t)from, &val)) {
val = (st_data_t)st_init_strcasetable();
st_add_direct(transcoder_table, (st_data_t)from, val);
}
table2 = (st_table *)val;
if (!st_lookup(table2, (st_data_t)to, &val)) {
transcoder_entry_t *entry = ALLOC(transcoder_entry_t);
entry->from = from;
entry->to = to;
entry->lib = NULL;
entry->transcoder = NULL;
val = (st_data_t)entry;
st_add_direct(table2, (st_data_t)to, val);
}
return (transcoder_entry_t *)val;
}
static transcoder_entry_t *
get_transcoder_entry(const char *from, const char *to)
{
st_data_t val;
st_table *table2;
if (!st_lookup(transcoder_table, (st_data_t)from, &val)) {
return NULL;
}
table2 = (st_table *)val;
if (!st_lookup(table2, (st_data_t)to, &val)) {
return NULL;
}
return (transcoder_entry_t *)val;
}
void
rb_register_transcoder(const rb_transcoder *tr)
{
const char *const from_e = tr->from_encoding;
const char *const to_e = tr->to_encoding;
transcoder_entry_t *entry;
entry = make_transcoder_entry(from_e, to_e);
if (entry->transcoder) {
rb_raise(rb_eArgError, "transcoder from %s to %s has been already registered",
from_e, to_e);
}
entry->transcoder = tr;
}
static void
declare_transcoder(const char *to, const char *from, const char *lib)
{
transcoder_entry_t *entry;
entry = make_transcoder_entry(from, to);
entry->lib = lib;
}
#define MAX_TRANSCODER_LIBNAME_LEN 64
static const char transcoder_lib_prefix[] = "enc/trans/";
void
rb_declare_transcoder(const char *enc1, const char *enc2, const char *lib)
{
if (!lib || strlen(lib) > MAX_TRANSCODER_LIBNAME_LEN) {
rb_raise(rb_eArgError, "invalid library name - %s",
lib ? lib : "(null)");
}
declare_transcoder(enc1, enc2, lib);
declare_transcoder(enc2, enc1, lib);
}
#define encoding_equal(enc1, enc2) (STRCASECMP(enc1, enc2) == 0)
typedef struct search_path_queue_tag {
struct search_path_queue_tag *next;
const char *enc;
} search_path_queue_t;
typedef struct {
st_table *visited;
search_path_queue_t *queue;
search_path_queue_t **queue_last_ptr;
const char *base_enc;
} search_path_bfs_t;
static int
transcode_search_path_i(st_data_t key, st_data_t val, st_data_t arg)
{
const char *to = (const char *)key;
search_path_bfs_t *bfs = (search_path_bfs_t *)arg;
search_path_queue_t *q;
if (st_lookup(bfs->visited, (st_data_t)to, &val)) {
return ST_CONTINUE;
}
q = ALLOC(search_path_queue_t);
q->enc = to;
q->next = NULL;
*bfs->queue_last_ptr = q;
bfs->queue_last_ptr = &q->next;
st_add_direct(bfs->visited, (st_data_t)to, (st_data_t)bfs->base_enc);
return ST_CONTINUE;
}
static int
transcode_search_path(const char *from, const char *to,
void (*callback)(const char *from, const char *to, int depth, void *arg),
void *arg)
{
search_path_bfs_t bfs;
search_path_queue_t *q;
st_data_t val;
st_table *table2;
int found;
int pathlen;
q = ALLOC(search_path_queue_t);
q->enc = from;
q->next = NULL;
bfs.queue_last_ptr = &q->next;
bfs.queue = q;
bfs.visited = st_init_strcasetable();
st_add_direct(bfs.visited, (st_data_t)from, (st_data_t)NULL);
while (bfs.queue) {
q = bfs.queue;
bfs.queue = q->next;
if (!bfs.queue)
bfs.queue_last_ptr = &bfs.queue;
if (!st_lookup(transcoder_table, (st_data_t)q->enc, &val)) {
xfree(q);
continue;
}
table2 = (st_table *)val;
if (st_lookup(table2, (st_data_t)to, &val)) {
st_add_direct(bfs.visited, (st_data_t)to, (st_data_t)q->enc);
xfree(q);
found = 1;
goto cleanup;
}
bfs.base_enc = q->enc;
st_foreach(table2, transcode_search_path_i, (st_data_t)&bfs);
bfs.base_enc = NULL;
xfree(q);
}
found = 0;
cleanup:
while (bfs.queue) {
q = bfs.queue;
bfs.queue = q->next;
xfree(q);
}
if (found) {
const char *enc = to;
int depth;
pathlen = 0;
while (1) {
st_lookup(bfs.visited, (st_data_t)enc, &val);
if (!val)
break;
pathlen++;
enc = (const char *)val;
}
depth = pathlen;
enc = to;
while (1) {
st_lookup(bfs.visited, (st_data_t)enc, &val);
if (!val)
break;
callback((const char *)val, enc, --depth, arg);
enc = (const char *)val;
}
}
st_free_table(bfs.visited);
if (found)
return pathlen;
else
return -1;
}
static const rb_transcoder *
load_transcoder_entry(transcoder_entry_t *entry)
{
if (entry->transcoder)
return entry->transcoder;
if (entry->lib) {
const char *lib = entry->lib;
int len = strlen(lib);
char path[sizeof(transcoder_lib_prefix) + MAX_TRANSCODER_LIBNAME_LEN];
entry->lib = NULL;
if (len > MAX_TRANSCODER_LIBNAME_LEN)
return NULL;
memcpy(path, transcoder_lib_prefix, sizeof(transcoder_lib_prefix) - 1);
memcpy(path + sizeof(transcoder_lib_prefix) - 1, lib, len + 1);
if (!rb_require(path))
return NULL;
}
if (entry->transcoder)
return entry->transcoder;
return NULL;
}
static const char*
get_replacement_character(rb_encoding *enc, int *len_ret)
{
static rb_encoding *utf16be_encoding, *utf16le_encoding;
static rb_encoding *utf32be_encoding, *utf32le_encoding;
if (!utf16be_encoding) {
utf16be_encoding = rb_enc_find("UTF-16BE");
utf16le_encoding = rb_enc_find("UTF-16LE");
utf32be_encoding = rb_enc_find("UTF-32BE");
utf32le_encoding = rb_enc_find("UTF-32LE");
}
if (rb_utf8_encoding() == enc) {
*len_ret = 3;
return "\xEF\xBF\xBD";
}
else if (utf16be_encoding == enc) {
*len_ret = 2;
return "\xFF\xFD";
}
else if (utf16le_encoding == enc) {
*len_ret = 2;
return "\xFD\xFF";
}
else if (utf32be_encoding == enc) {
*len_ret = 4;
return "\x00\x00\xFF\xFD";
}
else if (utf32le_encoding == enc) {
*len_ret = 4;
return "\xFD\xFF\x00\x00";
}
else {
*len_ret = 1;
return "?";
}
}
/*
* Transcoding engine logic
*/
static const unsigned char *
transcode_char_start(rb_transcoding *tc,
const unsigned char *in_start,
const unsigned char *inchar_start,
const unsigned char *in_p,
size_t *char_len_ptr)
{
const unsigned char *ptr;
if (inchar_start - in_start < tc->recognized_len) {
MEMCPY(TRANSCODING_READBUF(tc) + tc->recognized_len,
inchar_start, unsigned char, in_p - inchar_start);
ptr = TRANSCODING_READBUF(tc);
}
else {
ptr = inchar_start - tc->recognized_len;
}
*char_len_ptr = tc->recognized_len + (in_p - inchar_start);
return ptr;
}
static rb_econv_result_t
transcode_restartable0(const unsigned char **in_pos, unsigned char **out_pos,
const unsigned char *in_stop, unsigned char *out_stop,
rb_transcoding *tc,
const int opt)
{
const rb_transcoder *tr = tc->transcoder;
int unitlen = tr->input_unit_length;
int readagain_len = 0;
const unsigned char *inchar_start;
const unsigned char *in_p;
unsigned char *out_p;
unsigned char empty_buf;
unsigned char *empty_ptr = &empty_buf;
if (!in_pos) {
in_pos = (const unsigned char **)&empty_ptr;
in_stop = empty_ptr;
}
if (!out_pos) {
out_pos = &empty_ptr;
out_stop = empty_ptr;
}
in_p = inchar_start = *in_pos;
out_p = *out_pos;
#define SUSPEND(ret, num) \
do { \
tc->resume_position = (num); \
if (0 < in_p - inchar_start) \
MEMMOVE(TRANSCODING_READBUF(tc)+tc->recognized_len, \
inchar_start, unsigned char, in_p - inchar_start); \
*in_pos = in_p; \
*out_pos = out_p; \
tc->recognized_len += in_p - inchar_start; \
if (readagain_len) { \
tc->recognized_len -= readagain_len; \
tc->readagain_len = readagain_len; \
} \
return ret; \
resume_label ## num:; \
} while (0)
#define SUSPEND_OBUF(num) \
do { \
while (out_stop - out_p < 1) { SUSPEND(econv_destination_buffer_full, num); } \
} while (0)
#define SUSPEND_OUTPUT_FOLLOWED_BY_INPUT(num) \
if ((opt & ECONV_OUTPUT_FOLLOWED_BY_INPUT) && *out_pos != out_p) { \
SUSPEND(econv_output_followed_by_input, num); \
}
#define next_table (tc->next_table)
#define next_info (tc->next_info)
#define next_byte (tc->next_byte)
#define writebuf_len (tc->writebuf_len)
#define writebuf_off (tc->writebuf_off)
switch (tc->resume_position) {
case 0: break;
case 1: goto resume_label1;
case 2: goto resume_label2;
case 3: goto resume_label3;
case 4: goto resume_label4;
case 5: goto resume_label5;
case 6: goto resume_label6;
case 7: goto resume_label7;
case 8: goto resume_label8;
case 9: goto resume_label9;
case 10: goto resume_label10;
case 11: goto resume_label11;
case 12: goto resume_label12;
case 13: goto resume_label13;
case 14: goto resume_label14;
case 15: goto resume_label15;
case 16: goto resume_label16;
case 17: goto resume_label17;
case 18: goto resume_label18;
case 19: goto resume_label19;
case 20: goto resume_label20;
case 21: goto resume_label21;
case 22: goto resume_label22;
case 23: goto resume_label23;
case 24: goto resume_label24;
case 25: goto resume_label25;
case 26: goto resume_label26;
}
while (1) {
SUSPEND_OUTPUT_FOLLOWED_BY_INPUT(24);
if (in_stop <= in_p) {
if (!(opt & ECONV_PARTIAL_INPUT))
break;
SUSPEND(econv_source_buffer_empty, 7);
continue;
}
tc->recognized_len = 0;
inchar_start = in_p;
next_table = tr->conv_tree_start;
next_byte = (unsigned char)*in_p++;
follow_byte:
if (next_byte < next_table->base[0] || next_table->base[1] < next_byte)
next_info = INVALID;
else {
unsigned int next_offset = next_table->base[2+next_byte-next_table->base[0]];
next_info = (VALUE)next_table->info[next_offset];
}
follow_info:
switch (next_info & 0x1F) {
case NOMAP: /* xxx: copy last byte only? */
SUSPEND_OBUF(3); *out_p++ = next_byte;
continue;
case 0x00: case 0x04: case 0x08: case 0x0C:
case 0x10: case 0x14: case 0x18: case 0x1C:
SUSPEND_OUTPUT_FOLLOWED_BY_INPUT(25);
while (in_p >= in_stop) {
if (!(opt & ECONV_PARTIAL_INPUT))
goto invalid;
SUSPEND(econv_source_buffer_empty, 5);
}
next_byte = (unsigned char)*in_p++;
next_table = (const BYTE_LOOKUP *)next_info;
goto follow_byte;
case ZERObt: /* drop input */
continue;
case ONEbt:
SUSPEND_OBUF(9); *out_p++ = getBT1(next_info);
continue;
case TWObt:
SUSPEND_OBUF(10); *out_p++ = getBT1(next_info);
SUSPEND_OBUF(21); *out_p++ = getBT2(next_info);
continue;
case THREEbt:
SUSPEND_OBUF(11); *out_p++ = getBT1(next_info);
SUSPEND_OBUF(15); *out_p++ = getBT2(next_info);
SUSPEND_OBUF(16); *out_p++ = getBT3(next_info);
continue;
case FOURbt:
SUSPEND_OBUF(12); *out_p++ = getBT0(next_info);
SUSPEND_OBUF(17); *out_p++ = getBT1(next_info);
SUSPEND_OBUF(18); *out_p++ = getBT2(next_info);
SUSPEND_OBUF(19); *out_p++ = getBT3(next_info);
continue;
case FUNii:
next_info = (VALUE)(*tr->func_ii)(tc, next_info);
goto follow_info;
case FUNsi:
{
const unsigned char *char_start;
size_t char_len;
char_start = transcode_char_start(tc, *in_pos, inchar_start, in_p, &char_len);
next_info = (VALUE)(*tr->func_si)(tc, char_start, (size_t)char_len);
goto follow_info;
}
case FUNio:
SUSPEND_OBUF(13);
if (tr->max_output <= out_stop - out_p)
out_p += (VALUE)(*tr->func_io)(tc, next_info, out_p);
else {
writebuf_len = (VALUE)(*tr->func_io)(tc, next_info, TRANSCODING_WRITEBUF(tc));
writebuf_off = 0;
while (writebuf_off < writebuf_len) {
SUSPEND_OBUF(20);
*out_p++ = TRANSCODING_WRITEBUF(tc)[writebuf_off++];
}
}
break;
case FUNso:
{
const unsigned char *char_start;
size_t char_len;
SUSPEND_OBUF(14);
if (tr->max_output <= out_stop - out_p) {
char_start = transcode_char_start(tc, *in_pos, inchar_start, in_p, &char_len);
out_p += (VALUE)(*tr->func_so)(tc, char_start, (size_t)char_len, out_p);
}
else {
char_start = transcode_char_start(tc, *in_pos, inchar_start, in_p, &char_len);
writebuf_len = (VALUE)(*tr->func_so)(tc, char_start, (size_t)char_len, TRANSCODING_WRITEBUF(tc));
writebuf_off = 0;
while (writebuf_off < writebuf_len) {
SUSPEND_OBUF(22);
*out_p++ = TRANSCODING_WRITEBUF(tc)[writebuf_off++];
}
}
break;
}
case INVALID:
if (tc->recognized_len + (in_p - inchar_start) <= unitlen) {
if (tc->recognized_len + (in_p - inchar_start) < unitlen)
SUSPEND_OUTPUT_FOLLOWED_BY_INPUT(26);
while ((opt & ECONV_PARTIAL_INPUT) && tc->recognized_len + (in_stop - inchar_start) < unitlen) {
in_p = in_stop;
SUSPEND(econv_source_buffer_empty, 8);
}
if (tc->recognized_len + (in_stop - inchar_start) <= unitlen) {
in_p = in_stop;
}
else {
in_p = inchar_start + (unitlen - tc->recognized_len);
}
}
else {
int invalid_len; /* including the last byte which causes invalid */
int discard_len;
invalid_len = tc->recognized_len + (in_p - inchar_start);
discard_len = ((invalid_len - 1) / unitlen) * unitlen;
readagain_len = invalid_len - discard_len;
}
goto invalid;
case UNDEF:
goto undef;
}
continue;
invalid:
SUSPEND(econv_invalid_byte_sequence, 1);
continue;
undef:
SUSPEND(econv_undefined_conversion, 2);
continue;
}
/* cleanup */
if (tr->finish_func) {
SUSPEND_OBUF(4);
if (tr->max_output <= out_stop - out_p) {
out_p += tr->finish_func(tc, out_p);
}
else {
writebuf_len = tr->finish_func(tc, TRANSCODING_WRITEBUF(tc));
writebuf_off = 0;
while (writebuf_off < writebuf_len) {
SUSPEND_OBUF(23);
*out_p++ = TRANSCODING_WRITEBUF(tc)[writebuf_off++];
}
}
}
while (1)
SUSPEND(econv_finished, 6);
#undef SUSPEND
#undef next_table
#undef next_info
#undef next_byte
#undef writebuf_len
#undef writebuf_off
}
static rb_econv_result_t
transcode_restartable(const unsigned char **in_pos, unsigned char **out_pos,
const unsigned char *in_stop, unsigned char *out_stop,
rb_transcoding *tc,
const int opt)
{
if (tc->readagain_len) {
unsigned char *readagain_buf = ALLOCA_N(unsigned char, tc->readagain_len);
const unsigned char *readagain_pos = readagain_buf;
const unsigned char *readagain_stop = readagain_buf + tc->readagain_len;
rb_econv_result_t res;
MEMCPY(readagain_buf, TRANSCODING_READBUF(tc) + tc->recognized_len,
unsigned char, tc->readagain_len);
tc->readagain_len = 0;
res = transcode_restartable0(&readagain_pos, out_pos, readagain_stop, out_stop, tc, opt|ECONV_PARTIAL_INPUT);
if (res != econv_source_buffer_empty) {
MEMCPY(TRANSCODING_READBUF(tc) + tc->recognized_len + tc->readagain_len,
readagain_pos, unsigned char, readagain_stop - readagain_pos);
tc->readagain_len += readagain_stop - readagain_pos;
return res;
}
}
return transcode_restartable0(in_pos, out_pos, in_stop, out_stop, tc, opt);
}
static rb_transcoding *
rb_transcoding_open_by_transcoder(const rb_transcoder *tr, int flags)
{
rb_transcoding *tc;
tc = ALLOC(rb_transcoding);
tc->transcoder = tr;
tc->flags = flags;
memset(tc->stateful, 0, sizeof(tc->stateful));
tc->resume_position = 0;
tc->recognized_len = 0;
tc->readagain_len = 0;
tc->writebuf_len = 0;
tc->writebuf_off = 0;
if (sizeof(tc->readbuf.ary) < tr->max_input) {
tc->readbuf.ptr = xmalloc(tr->max_input);
}
if (sizeof(tc->writebuf.ary) < tr->max_output) {
tc->writebuf.ptr = xmalloc(tr->max_output);
}
return tc;
}
static rb_econv_result_t
rb_transcoding_convert(rb_transcoding *tc,
const unsigned char **input_ptr, const unsigned char *input_stop,
unsigned char **output_ptr, unsigned char *output_stop,
int flags)
{
return transcode_restartable(
input_ptr, output_ptr,
input_stop, output_stop,
tc, flags);
}
static void
rb_transcoding_close(rb_transcoding *tc)
{
const rb_transcoder *tr = tc->transcoder;
if (sizeof(tc->readbuf.ary) < tr->max_input)
xfree(tc->readbuf.ptr);
if (sizeof(tc->writebuf.ary) < tr->max_output)
xfree(tc->writebuf.ptr);
xfree(tc);
}
static rb_econv_t *
rb_econv_open_by_transcoder_entries(int n, transcoder_entry_t **entries)
{
rb_econv_t *ec;
int i;
for (i = 0; i < n; i++) {
const rb_transcoder *tr;
tr = load_transcoder_entry(entries[i]);
if (!tr)
return NULL;
}
ec = ALLOC(rb_econv_t);
ec->num_trans = n;
ec->elems = ALLOC_N(rb_econv_elem_t, ec->num_trans);
ec->num_finished = 0;
ec->last_tc = NULL;
ec->source_encoding = NULL;
ec->destination_encoding = NULL;
for (i = 0; i < ec->num_trans; i++) {
const rb_transcoder *tr = load_transcoder_entry(entries[i]);
ec->elems[i].from = tr->from_encoding;
ec->elems[i].to = tr->to_encoding;
ec->elems[i].tc = rb_transcoding_open_by_transcoder(tr, 0);
ec->elems[i].out_buf_start = NULL;
ec->elems[i].out_data_start = NULL;
ec->elems[i].out_data_end = NULL;
ec->elems[i].out_buf_end = NULL;
ec->elems[i].last_result = econv_source_buffer_empty;
}
ec->last_tc = ec->elems[ec->num_trans-1].tc;
for (i = 0; i < ec->num_trans-1; i++) {
int bufsize = 4096;
unsigned char *p;
p = xmalloc(bufsize);
ec->elems[i].out_buf_start = p;
ec->elems[i].out_buf_end = p + bufsize;
ec->elems[i].out_data_start = p;
ec->elems[i].out_data_end = p;
}
return ec;
}
static void
trans_open_i(const char *from, const char *to, int depth, void *arg)
{
transcoder_entry_t ***entries_ptr = arg;
transcoder_entry_t **entries;
if (!*entries_ptr) {
entries = ALLOC_N(transcoder_entry_t *, depth+1+2);
*entries_ptr = entries;
}
else {
entries = *entries_ptr;
}
entries[depth] = get_transcoder_entry(from, to);
}
rb_econv_t *
rb_econv_open(const char *from, const char *to, int flags)
{
transcoder_entry_t **entries = NULL;
int num_trans;
static rb_econv_t *ec;
num_trans = transcode_search_path(from, to, trans_open_i, (void *)&entries);
if (num_trans < 0 || !entries)
return NULL;
if (flags & (ECONV_CRLF_NEWLINE_ENCODER|ECONV_CR_NEWLINE_ENCODER)) {
const char *name = (flags & ECONV_CRLF_NEWLINE_ENCODER) ? "crlf_newline" : "cr_newline";
transcoder_entry_t *e = get_transcoder_entry("", name);
if (!e)
return NULL;
MEMMOVE(entries+1, entries, transcoder_entry_t *, num_trans);
entries[0] = e;
num_trans++;
}
if (flags & ECONV_UNIVERSAL_NEWLINE_DECODER) {
transcoder_entry_t *e = get_transcoder_entry("universal_newline", "");
if (!e)
return NULL;
entries[num_trans++] = e;
}
ec = rb_econv_open_by_transcoder_entries(num_trans, entries);
if (flags & ECONV_UNIVERSAL_NEWLINE_DECODER) {
ec->last_tc = ec->elems[ec->num_trans-2].tc;
}
return ec;
}
static int
trans_sweep(rb_econv_t *ec,
const unsigned char **input_ptr, const unsigned char *input_stop,
unsigned char **output_ptr, unsigned char *output_stop,
int flags,
int start)
{
int try;
int i, f;
const unsigned char **ipp, *is, *iold;
unsigned char **opp, *os, *oold;
rb_econv_result_t res;
try = 1;
while (try) {
try = 0;
for (i = start; i < ec->num_trans; i++) {
rb_econv_elem_t *te = &ec->elems[i];
if (i == 0) {
ipp = input_ptr;
is = input_stop;
}
else {
rb_econv_elem_t *prev_te = &ec->elems[i-1];
ipp = (const unsigned char **)&prev_te->out_data_start;
is = prev_te->out_data_end;
}
if (!te->out_buf_start) {
opp = output_ptr;
os = output_stop;
}
else {
if (te->out_buf_start != te->out_data_start) {
int len = te->out_data_end - te->out_data_start;
int off = te->out_data_start - te->out_buf_start;
MEMMOVE(te->out_buf_start, te->out_data_start, unsigned char, len);
te->out_data_start = te->out_buf_start;
te->out_data_end -= off;
}
opp = &te->out_data_end;
os = te->out_buf_end;
}
f = flags;
if (ec->num_finished != i)
f |= ECONV_PARTIAL_INPUT;
if (i == 0 && (flags & ECONV_OUTPUT_FOLLOWED_BY_INPUT)) {
start = 1;
flags &= ~ECONV_OUTPUT_FOLLOWED_BY_INPUT;
}
if (i != 0)
f &= ~ECONV_OUTPUT_FOLLOWED_BY_INPUT;
iold = *ipp;
oold = *opp;
te->last_result = res = rb_transcoding_convert(te->tc, ipp, is, opp, os, f);
if (iold != *ipp || oold != *opp)
try = 1;
switch (res) {
case econv_invalid_byte_sequence:
case econv_undefined_conversion:
case econv_output_followed_by_input:
return i;
case econv_destination_buffer_full:
case econv_source_buffer_empty:
break;
case econv_finished:
ec->num_finished = i+1;
break;
}
}
}
return -1;
}
static rb_econv_result_t
rb_trans_conv(rb_econv_t *ec,
const unsigned char **input_ptr, const unsigned char *input_stop,
unsigned char **output_ptr, unsigned char *output_stop,
int flags)
{
int i;
int needreport_index;
int sweep_start;
unsigned char empty_buf;
unsigned char *empty_ptr = &empty_buf;
if (!input_ptr) {
input_ptr = (const unsigned char **)&empty_ptr;
input_stop = empty_ptr;
}
if (!output_ptr) {
output_ptr = &empty_ptr;
output_stop = empty_ptr;
}
if (ec->elems[0].last_result == econv_output_followed_by_input)
ec->elems[0].last_result = econv_source_buffer_empty;
needreport_index = -1;
for (i = ec->num_trans-1; 0 <= i; i--) {
switch (ec->elems[i].last_result) {
case econv_invalid_byte_sequence:
case econv_undefined_conversion:
case econv_output_followed_by_input:
case econv_finished:
sweep_start = i+1;
needreport_index = i;
goto found_needreport;
case econv_destination_buffer_full:
case econv_source_buffer_empty:
break;
default:
rb_bug("unexpected transcode last result");
}
}
/* /^[io]+$/ is confirmed. but actually /^i*o*$/. */
if (ec->elems[ec->num_trans-1].last_result == econv_destination_buffer_full &&
(flags & ECONV_OUTPUT_FOLLOWED_BY_INPUT)) {
rb_econv_result_t res;
res = rb_trans_conv(ec, NULL, NULL, output_ptr, output_stop,
(flags & ~ECONV_OUTPUT_FOLLOWED_BY_INPUT)|ECONV_PARTIAL_INPUT);
if (res == econv_source_buffer_empty)
return econv_output_followed_by_input;
return res;
}
sweep_start = 0;
found_needreport:
do {
needreport_index = trans_sweep(ec, input_ptr, input_stop, output_ptr, output_stop, flags, sweep_start);
sweep_start = needreport_index + 1;
} while (needreport_index != -1 && needreport_index != ec->num_trans-1);
for (i = ec->num_trans-1; 0 <= i; i--) {
if (ec->elems[i].last_result != econv_source_buffer_empty) {
rb_econv_result_t res = ec->elems[i].last_result;
if (res == econv_invalid_byte_sequence ||
res == econv_undefined_conversion ||
res == econv_output_followed_by_input) {
ec->elems[i].last_result = econv_source_buffer_empty;
}
return res;
}
}
return econv_source_buffer_empty;
}
rb_econv_result_t
rb_econv_convert(rb_econv_t *ec,
const unsigned char **input_ptr, const unsigned char *input_stop,
unsigned char **output_ptr, unsigned char *output_stop,
int flags)
{
rb_econv_result_t res;
if ((flags & ECONV_OUTPUT_FOLLOWED_BY_INPUT) ||
ec->num_trans == 1)
return rb_trans_conv(ec, input_ptr, input_stop, output_ptr, output_stop, flags);
flags |= ECONV_OUTPUT_FOLLOWED_BY_INPUT;
do {
res = rb_trans_conv(ec, input_ptr, input_stop, output_ptr, output_stop, flags);
} while (res == econv_output_followed_by_input);
return res;
}
int
rb_econv_output(rb_econv_t *ec,
const unsigned char *str, size_t len, /* string in destination encoding */
unsigned char **destination_buffer_ptr, unsigned char *destination_buffer_end,
size_t *required_size)
{
size_t reset_len, total_len;
rb_transcoding *tc = ec->last_tc;
const rb_transcoder *tr = tc->transcoder;
/*
* Assumption for stateful encoding:
*
* - str can be output on resetted state and doesn't change the state.
* - it is acceptable that extra state changing sequence if str contains
* a state changing sequence.
*
* Currently the replacement character for stateful encoding such as
* ISO-2022-JP is "?" and it has no state changing sequence.
* So the extra state changing sequence don't occur when
* rb_econv_output is used for replacement characters.
*
* Thease assumption may be removed in future.
* It needs to scan str to check state changing sequences in it.
*/
reset_len = 0;
if (tr->resetsize_func) {
reset_len = tr->resetsize_func(tc);
}
total_len = reset_len + len;
if (total_len < len)
return -1;
if (required_size) {
*required_size = total_len;
}
if (destination_buffer_end - *destination_buffer_ptr < total_len)
return -1;
if (reset_len) {
*destination_buffer_ptr += tr->resetstate_func(tc, *destination_buffer_ptr);
}
memcpy(*destination_buffer_ptr, str, len);
*destination_buffer_ptr += len;
return 0;
}
void
rb_econv_close(rb_econv_t *ec)
{
int i;
for (i = 0; i < ec->num_trans; i++) {
rb_transcoding_close(ec->elems[i].tc);
if (ec->elems[i].out_buf_start)
xfree(ec->elems[i].out_buf_start);
}
xfree(ec->elems);
xfree(ec);
}
static void
more_output_buffer(
VALUE destination,
unsigned char *(*resize_destination)(VALUE, int, int),
int max_output,
unsigned char **out_start_ptr,
unsigned char **out_pos,
unsigned char **out_stop_ptr)
{
size_t len = (*out_pos - *out_start_ptr);
size_t new_len = (len + max_output) * 2;
*out_start_ptr = resize_destination(destination, len, new_len);
*out_pos = *out_start_ptr + len;
*out_stop_ptr = *out_start_ptr + new_len;
}
static int
output_replacement_character(
VALUE destination,
unsigned char *(*resize_destination)(VALUE, int, int),
rb_econv_t *ec,
unsigned char **out_start_ptr,
unsigned char **out_pos,
unsigned char **out_stop_ptr)
{
rb_transcoding *tc = ec->last_tc;
const rb_transcoder *tr;
rb_encoding *enc;
const unsigned char *replacement;
int len;
size_t required_size;
tr = tc->transcoder;
enc = rb_enc_find(tr->to_encoding);
replacement = (const unsigned char *)get_replacement_character(enc, &len);
if (rb_econv_output(ec, replacement, len, out_pos, *out_stop_ptr, &required_size) == 0)
return 0;
if (required_size < len)
return -1; /* overflow */
more_output_buffer(destination, resize_destination, required_size, out_start_ptr, out_pos, out_stop_ptr);
if (rb_econv_output(ec, replacement, len, out_pos, *out_stop_ptr, &required_size) == 0)
return 0;
return -1;
}
#if 1
static void
transcode_loop(const unsigned char **in_pos, unsigned char **out_pos,
const unsigned char *in_stop, unsigned char *out_stop,
VALUE destination,
unsigned char *(*resize_destination)(VALUE, int, int),
const char *from_encoding,
const char *to_encoding,
const int opt)
{
rb_econv_t *ec;
rb_transcoding *last_tc;
rb_econv_result_t ret;
unsigned char *out_start = *out_pos;
int max_output;
ec = rb_econv_open(from_encoding, to_encoding, 0);
if (!ec)
rb_raise(rb_eArgError, "transcoding not supported (from %s to %s)", from_encoding, to_encoding);
last_tc = ec->last_tc;
max_output = last_tc->transcoder->max_output;
resume:
ret = rb_econv_convert(ec, in_pos, in_stop, out_pos, out_stop, opt);
if (ret == econv_invalid_byte_sequence) {
/* deal with invalid byte sequence */
/* todo: add more alternative behaviors */
if (opt&INVALID_IGNORE) {
goto resume;
}
else if (opt&INVALID_REPLACE) {
if (output_replacement_character(destination, resize_destination, ec, &out_start, out_pos, &out_stop) == 0)
goto resume;
}
rb_econv_close(ec);
rb_raise(rb_eInvalidByteSequence, "invalid byte sequence");
}
if (ret == econv_undefined_conversion) {
/* valid character in from encoding
* but no related character(s) in to encoding */
/* todo: add more alternative behaviors */
if (opt&UNDEF_IGNORE) {
goto resume;
}
else if (opt&UNDEF_REPLACE) {
if (output_replacement_character(destination, resize_destination, ec, &out_start, out_pos, &out_stop) == 0)
goto resume;
}
rb_econv_close(ec);
rb_raise(rb_eConversionUndefined, "conversion undefined for byte sequence (maybe invalid byte sequence)");
}
if (ret == econv_destination_buffer_full) {
more_output_buffer(destination, resize_destination, max_output, &out_start, out_pos, &out_stop);
goto resume;
}
rb_econv_close(ec);
return;
}
#else
/* sample transcode_loop implementation in byte-by-byte stream style */
static void
transcode_loop(const unsigned char **in_pos, unsigned char **out_pos,
const unsigned char *in_stop, unsigned char *out_stop,
VALUE destination,
unsigned char *(*resize_destination)(VALUE, int, int),
const char *from_encoding,
const char *to_encoding,
const int opt)
{
rb_econv_t *ec;
rb_transcoding *last_tc;
rb_econv_result_t ret;
unsigned char *out_start = *out_pos;
const unsigned char *ptr;
int max_output;
ec = rb_econv_open(from_encoding, to_encoding, 0);
if (!ec)
rb_raise(rb_eArgError, "transcoding not supported (from %s to %s)", from_encoding, to_encoding);
last_tc = ec->last_tc;
max_output = ec->elems[ec->num_trans-1].tc->transcoder->max_output;
ret = econv_source_buffer_empty;
ptr = *in_pos;
while (ret != econv_finished) {
unsigned char input_byte;
const unsigned char *p = &input_byte;
if (ret == econv_source_buffer_empty) {
if (ptr < in_stop) {
input_byte = *ptr;
ret = rb_econv_convert(ec, &p, p+1, out_pos, out_stop, ECONV_PARTIAL_INPUT);
}
else {
ret = rb_econv_convert(ec, NULL, NULL, out_pos, out_stop, 0);
}
}
else {
ret = rb_econv_convert(ec, NULL, NULL, out_pos, out_stop, ECONV_PARTIAL_INPUT);
}
if (&input_byte != p)
ptr += p - &input_byte;
switch (ret) {
case econv_invalid_byte_sequence:
/* deal with invalid byte sequence */
/* todo: add more alternative behaviors */
if (opt&INVALID_IGNORE) {
break;
}
else if (opt&INVALID_REPLACE) {
if (output_replacement_character(destination, resize_destination, ec, &out_start, out_pos, &out_stop) == 0)
break;
}
rb_econv_close(ec);
rb_raise(rb_eInvalidByteSequence, "invalid byte sequence");
break;
case econv_undefined_conversion:
/* valid character in from encoding
* but no related character(s) in to encoding */
/* todo: add more alternative behaviors */
if (opt&UNDEF_IGNORE) {
break;
}
else if (opt&UNDEF_REPLACE) {
if (output_replacement_character(destination, resize_destination, ec, &out_start, out_pos, &out_stop) == 0)
break;
}
rb_econv_close(ec);
rb_raise(rb_eConversionUndefined, "conversion undefined for byte sequence (maybe invalid byte sequence)");
break;
case econv_destination_buffer_full:
more_output_buffer(destination, resize_destination, max_output, &out_start, out_pos, &out_stop);
break;
case econv_source_buffer_empty:
break;
case econv_finished:
break;
}
}
rb_econv_close(ec);
*in_pos = in_stop;
return;
}
#endif
/*
* String-specific code
*/
static unsigned char *
str_transcoding_resize(VALUE destination, int len, int new_len)
{
rb_str_resize(destination, new_len);
return (unsigned char *)RSTRING_PTR(destination);
}
static int
str_transcode(int argc, VALUE *argv, VALUE *self)
{
VALUE dest;
VALUE str = *self;
long blen, slen;
unsigned char *buf, *bp, *sp;
const unsigned char *fromp;
rb_encoding *from_enc, *to_enc;
const char *from_e, *to_e;
int from_encidx, to_encidx;
VALUE from_encval, to_encval;
VALUE opt;
int options = 0;
opt = rb_check_convert_type(argv[argc-1], T_HASH, "Hash", "to_hash");
if (!NIL_P(opt)) {
VALUE v;
argc--;
v = rb_hash_aref(opt, sym_invalid);
if (NIL_P(v)) {
}
else if (v==sym_ignore) {
options |= INVALID_IGNORE;
}
else if (v==sym_replace) {
options |= INVALID_REPLACE;
v = rb_hash_aref(opt, sym_replace);
}
else {
rb_raise(rb_eArgError, "unknown value for invalid character option");
}
v = rb_hash_aref(opt, sym_undef);
if (NIL_P(v)) {
}
else if (v==sym_ignore) {
options |= UNDEF_IGNORE;
}
else if (v==sym_replace) {
options |= UNDEF_REPLACE;
}
else {
rb_raise(rb_eArgError, "unknown value for undefined character option");
}
}
if (argc < 1 || argc > 2) {
rb_raise(rb_eArgError, "wrong number of arguments (%d for 1..2)", argc);
}
if ((to_encidx = rb_to_encoding_index(to_encval = argv[0])) < 0) {
to_enc = 0;
to_encidx = 0;
to_e = StringValueCStr(to_encval);
}
else {
to_enc = rb_enc_from_index(to_encidx);
to_e = rb_enc_name(to_enc);
}
if (argc==1) {
from_encidx = rb_enc_get_index(str);
from_enc = rb_enc_from_index(from_encidx);
from_e = rb_enc_name(from_enc);
}
else if ((from_encidx = rb_to_encoding_index(from_encval = argv[1])) < 0) {
from_enc = 0;
from_e = StringValueCStr(from_encval);
}
else {
from_enc = rb_enc_from_index(from_encidx);
from_e = rb_enc_name(from_enc);
}
if (from_enc && from_enc == to_enc) {
return -1;
}
if (from_enc && to_enc && rb_enc_asciicompat(from_enc) && rb_enc_asciicompat(to_enc)) {
if (ENC_CODERANGE(str) == ENC_CODERANGE_7BIT) {
return to_encidx;
}
}
if (encoding_equal(from_e, to_e)) {
return -1;
}
fromp = sp = (unsigned char *)RSTRING_PTR(str);
slen = RSTRING_LEN(str);
blen = slen + 30; /* len + margin */
dest = rb_str_tmp_new(blen);
bp = (unsigned char *)RSTRING_PTR(dest);
transcode_loop(&fromp, &bp, (sp+slen), (bp+blen), dest, str_transcoding_resize, from_e, to_e, options);
if (fromp != sp+slen) {
rb_raise(rb_eArgError, "not fully converted, %"PRIdPTRDIFF" bytes left", sp+slen-fromp);
}
buf = (unsigned char *)RSTRING_PTR(dest);
*bp = '\0';
rb_str_set_len(dest, bp - buf);
/* set encoding */
if (!to_enc) {
to_encidx = rb_define_dummy_encoding(to_e);
}
*self = dest;
return to_encidx;
}
static inline VALUE
str_encode_associate(VALUE str, int encidx)
{
int cr = 0;
rb_enc_associate_index(str, encidx);
/* transcoded string never be broken. */
if (rb_enc_asciicompat(rb_enc_from_index(encidx))) {
rb_str_coderange_scan_restartable(RSTRING_PTR(str), RSTRING_END(str), 0, &cr);
}
else {
cr = ENC_CODERANGE_VALID;
}
ENC_CODERANGE_SET(str, cr);
return str;
}
/*
* call-seq:
* str.encode!(encoding [, options] ) => str
* str.encode!(to_encoding, from_encoding [, options] ) => str
*
* The first form transcodes the contents of <i>str</i> from
* str.encoding to +encoding+.
* The second form transcodes the contents of <i>str</i> from
* from_encoding to to_encoding.
* The options Hash gives details for conversion. See String#encode
* for details.
* Returns the string even if no changes were made.
*/
static VALUE
str_encode_bang(int argc, VALUE *argv, VALUE str)
{
VALUE newstr = str;
int encidx = str_transcode(argc, argv, &newstr);
if (encidx < 0) return str;
rb_str_shared_replace(str, newstr);
return str_encode_associate(str, encidx);
}
/*
* call-seq:
* str.encode(encoding [, options] ) => str
* str.encode(to_encoding, from_encoding [, options] ) => str
*
* The first form returns a copy of <i>str</i> transcoded
* to encoding +encoding+.
* The second form returns a copy of <i>str</i> transcoded
* from from_encoding to to_encoding.
* The options Hash gives details for conversion. Details
* to be added.
*/
static VALUE
str_encode(int argc, VALUE *argv, VALUE str)
{
VALUE newstr = str;
int encidx = str_transcode(argc, argv, &newstr);
if (encidx < 0) return rb_str_dup(str);
RBASIC(newstr)->klass = rb_obj_class(str);
return str_encode_associate(newstr, encidx);
}
VALUE
rb_str_transcode(VALUE str, VALUE to)
{
return str_encode(1, &to, str);
}
static void
econv_free(rb_econv_t *ec)
{
rb_econv_close(ec);
}
static VALUE
econv_s_allocate(VALUE klass)
{
return Data_Wrap_Struct(klass, NULL, econv_free, NULL);
}
static rb_encoding *
make_dummy_encoding(const char *name)
{
rb_encoding *enc;
int idx;
idx = rb_define_dummy_encoding(name);
enc = rb_enc_from_index(idx);
return enc;
}
/*
* call-seq:
* Encoding::Converter.new(source_encoding, destination_encoding)
* Encoding::Converter.new(source_encoding, destination_encoding, flags)
*
* possible flags:
* Encoding::Converter::UNIVERSAL_NEWLINE_DECODER # convert CRLF and CR to LF at last
* Encoding::Converter::CRLF_NEWLINE_ENCODER # convert LF to CRLF at first
* Encoding::Converter::CR_NEWLINE_ENCODER # convert LF to CR at first
*
* Encoding::Converter.new creates an instance of Encoding::Converter.
*
* source_encoding and destination_encoding should be a string.
* flags should be an integer.
*
* example:
* # UTF-16BE to UTF-8
* ec = Encoding::Converter.new("UTF-16BE", "UTF-8")
*
* # (1) convert UTF-16BE to UTF-8
* # (2) convert CRLF and CR to LF
* ec = Encoding::Converter.new("UTF-16BE", "UTF-8", Encoding::Converter::UNIVERSAL_NEWLINE_DECODER)
*
* # (1) convert LF to CRLF
* # (2) convert UTF-8 to UTF-16BE
* ec = Encoding::Converter.new("UTF-8", "UTF-16BE", Encoding::Converter::CRLF_NEWLINE_ENCODER)
*
*/
static VALUE
econv_init(int argc, VALUE *argv, VALUE self)
{
VALUE source_encoding, destination_encoding, flags_v;
int sidx, didx;
const char *sname, *dname;
rb_encoding *senc, *denc;
rb_econv_t *ec;
int flags;
rb_scan_args(argc, argv, "21", &source_encoding, &destination_encoding, &flags_v);
if (flags_v == Qnil)
flags = 0;
else
flags = NUM2INT(flags_v);
senc = NULL;
sidx = rb_to_encoding_index(source_encoding);
if (0 <= sidx) {
senc = rb_enc_from_index(sidx);
}
else {
StringValue(source_encoding);
}
denc = NULL;
didx = rb_to_encoding_index(destination_encoding);
if (0 <= didx) {
denc = rb_enc_from_index(didx);
}
else {
StringValue(destination_encoding);
}
sname = senc ? senc->name : StringValueCStr(source_encoding);
dname = denc ? denc->name : StringValueCStr(destination_encoding);
if (DATA_PTR(self)) {
rb_raise(rb_eTypeError, "already initialized");
}
ec = rb_econv_open(sname, dname, flags);
if (!ec) {
rb_raise(rb_eArgError, "encoding convewrter not supported (from %s to %s)", sname, dname);
}
if (*sname && *dname) { /* check "" to "universal_newline" */
if (!senc)
senc = make_dummy_encoding(sname);
if (!denc)
denc = make_dummy_encoding(dname);
}
ec->source_encoding = senc;
ec->destination_encoding = denc;
DATA_PTR(self) = ec;
return self;
}
static VALUE
econv_inspect(VALUE self)
{
const char *cname = rb_obj_classname(self);
rb_econv_t *ec = DATA_PTR(self);
if (!ec)
return rb_sprintf("#<%s: uninitialized>", cname);
else
return rb_sprintf("#<%s: %s to %s>", cname,
ec->elems[0].from,
ec->last_tc->transcoder->to_encoding);
}
#define IS_ECONV(obj) (RDATA(obj)->dfree == (RUBY_DATA_FUNC)econv_free)
static rb_econv_t *
check_econv(VALUE self)
{
Check_Type(self, T_DATA);
if (!IS_ECONV(self)) {
rb_raise(rb_eTypeError, "wrong argument type %s (expected Encoding::Converter)",
rb_class2name(CLASS_OF(self)));
}
if (!DATA_PTR(self)) {
rb_raise(rb_eTypeError, "uninitialized encoding converter");
}
return DATA_PTR(self);
}
/*
* call-seq:
* source_encoding -> encoding
*
* returns source encoding as Encoding object.
*/
static VALUE
econv_source_encoding(VALUE self)
{
rb_econv_t *ec = check_econv(self);
if (!ec->source_encoding)
return Qnil;
return rb_enc_from_encoding(ec->source_encoding);
}
/*
* call-seq:
* destination_encoding -> encoding
*
* returns destination encoding as Encoding object.
*/
static VALUE
econv_destination_encoding(VALUE self)
{
rb_econv_t *ec = check_econv(self);
if (!ec->destination_encoding)
return Qnil;
return rb_enc_from_encoding(ec->destination_encoding);
}
/*
* call-seq:
* primitive_convert(source_buffer, destination_buffer, destination_byteoffset, destination_bytesize) -> symbol
* primitive_convert(source_buffer, destination_buffer, destination_byteoffset, destination_bytesize, flags) -> symbol
*
* possible flags:
* Encoding::Converter::PARTIAL_INPUT # source buffer may be part of larger source
* Encoding::Converter::OUTPUT_FOLLOWED_BY_INPUT # stop conversion after output before input
*
* possible results:
* :invalid_byte_sequence
* :undefined_conversion
* :output_followed_by_input
* :destination_buffer_full
* :source_buffer_empty
* :finished
*
* primitive_convert converts source_buffer into destination_buffer.
*
* source_buffer and destination_buffer should be a string.
* destination_byteoffset should be an integer or nil.
* destination_bytesize and flags should be an integer.
*
* primitive_convert convert the content of source_buffer from beginning
* and store the result into destination_buffer.
*
* destination_byteoffset and destination_bytesize specify the region which
* the converted result is stored.
* destination_byteoffset specifies the start position in destination_buffer in bytes.
* If destination_byteoffset is nil,
* destination_buffer.bytesize is used for appending the result.
* destination_bytesize specifies maximum number of bytes.
* After conversion, destination_buffer is resized to
* destination_byteoffset + actually converted number of bytes.
* Also destination_buffer's encoding is set to destination_encoding.
*
* primitive_convert drops the first part of source_buffer.
* the dropped part is converted in destination_buffer or
* buffered in Encoding::Converter object.
*
* primitive_convert stops conversion when one of following condition met.
* - invalid byte sequence found in source buffer (:invalid_byte_sequence)
* - character not representable in output encoding (:undefined_conversion)
* - after some output is generated, before input is done (:output_followed_by_input)
* this occur only when OUTPUT_FOLLOWED_BY_INPUT is specified.
* - destination buffer is full (:destination_buffer_full)
* - source buffer is empty (:source_buffer_empty)
* this occur only when PARTIAL_INPUT is specified.
* - conversion is finished (:finished)
*
* example:
* ec = Encoding::Converter.new("UTF-8", "UTF-16BE")
* ret = ec.primitive_convert(src="pi", dst="", 100)
* p [ret, src, dst] #=> [:finished, "", "\x00p\x00i"]
*
* ec = Encoding::Converter.new("UTF-8", "UTF-16BE")
* ret = ec.primitive_convert(src="pi", dst="", 1)
* p [ret, src, dst] #=> [:destination_buffer_full, "i", "\x00"]
* ret = ec.primitive_convert(src, dst="", 1)
* p [ret, src, dst] #=> [:destination_buffer_full, "", "p"]
* ret = ec.primitive_convert(src, dst="", 1)
* p [ret, src, dst] #=> [:destination_buffer_full, "", "\x00"]
* ret = ec.primitive_convert(src, dst="", 1)
* p [ret, src, dst] #=> [:finished, "", "i"]
*
*/
static VALUE
econv_primitive_convert(int argc, VALUE *argv, VALUE self)
{
VALUE input, output, output_byteoffset_v, output_bytesize_v, flags_v;
rb_econv_t *ec = check_econv(self);
rb_econv_result_t res;
const unsigned char *ip, *is;
unsigned char *op, *os;
long output_byteoffset, output_bytesize;
unsigned long output_byteend;
int flags;
rb_scan_args(argc, argv, "41", &input, &output, &output_byteoffset_v, &output_bytesize_v, &flags_v);
if (output_byteoffset_v == Qnil)
output_byteoffset = 0;
else
output_byteoffset = NUM2LONG(output_byteoffset_v);
output_bytesize = NUM2LONG(output_bytesize_v);
if (flags_v == Qnil)
flags = 0;
else
flags = NUM2INT(flags_v);
StringValue(output);
StringValue(input);
rb_str_modify(output);
if (output_byteoffset_v == Qnil)
output_byteoffset = RSTRING_LEN(output);
if (output_byteoffset < 0)
rb_raise(rb_eArgError, "negative output_byteoffset");
if (RSTRING_LEN(output) < output_byteoffset)
rb_raise(rb_eArgError, "output_byteoffset too big");
if (output_bytesize < 0)
rb_raise(rb_eArgError, "negative output_bytesize");
output_byteend = (unsigned long)output_byteoffset +
(unsigned long)output_bytesize;
if (output_byteend < (unsigned long)output_byteoffset ||
LONG_MAX < output_byteend)
rb_raise(rb_eArgError, "output_byteoffset+output_bytesize too big");
if (rb_str_capacity(output) < output_byteend)
rb_str_resize(output, output_byteend);
ip = (const unsigned char *)RSTRING_PTR(input);
is = ip + RSTRING_LEN(input);
op = (unsigned char *)RSTRING_PTR(output) + output_byteoffset;
os = op + output_bytesize;
res = rb_econv_convert(ec, &ip, is, &op, os, flags);
rb_str_set_len(output, op-(unsigned char *)RSTRING_PTR(output));
rb_str_drop_bytes(input, ip - (unsigned char *)RSTRING_PTR(input));
if (ec->destination_encoding) {
rb_enc_associate(output, ec->destination_encoding);
}
switch (res) {
case econv_invalid_byte_sequence: return ID2SYM(rb_intern("invalid_byte_sequence"));
case econv_undefined_conversion: return ID2SYM(rb_intern("undefined_conversion"));
case econv_destination_buffer_full: return ID2SYM(rb_intern("destination_buffer_full"));
case econv_source_buffer_empty: return ID2SYM(rb_intern("source_buffer_empty"));
case econv_finished: return ID2SYM(rb_intern("finished"));
case econv_output_followed_by_input: return ID2SYM(rb_intern("output_followed_by_input"));
default: return INT2NUM(res); /* should not be reached */
}
}
void
Init_transcode(void)
{
rb_eConversionUndefined = rb_define_class_under(rb_cEncoding, "ConversionUndefined", rb_eStandardError);
rb_eInvalidByteSequence = rb_define_class_under(rb_cEncoding, "InvalidByteSequence", rb_eStandardError);
transcoder_table = st_init_strcasetable();
sym_invalid = ID2SYM(rb_intern("invalid"));
sym_undef = ID2SYM(rb_intern("undef"));
sym_ignore = ID2SYM(rb_intern("ignore"));
sym_replace = ID2SYM(rb_intern("replace"));
rb_define_method(rb_cString, "encode", str_encode, -1);
rb_define_method(rb_cString, "encode!", str_encode_bang, -1);
rb_cEncodingConverter = rb_define_class_under(rb_cEncoding, "Converter", rb_cData);
rb_define_alloc_func(rb_cEncodingConverter, econv_s_allocate);
rb_define_method(rb_cEncodingConverter, "initialize", econv_init, -1);
rb_define_method(rb_cEncodingConverter, "inspect", econv_inspect, 0);
rb_define_method(rb_cEncodingConverter, "source_encoding", econv_source_encoding, 0);
rb_define_method(rb_cEncodingConverter, "destination_encoding", econv_destination_encoding, 0);
rb_define_method(rb_cEncodingConverter, "primitive_convert", econv_primitive_convert, -1);
rb_define_const(rb_cEncodingConverter, "PARTIAL_INPUT", INT2FIX(ECONV_PARTIAL_INPUT));
rb_define_const(rb_cEncodingConverter, "OUTPUT_FOLLOWED_BY_INPUT", INT2FIX(ECONV_OUTPUT_FOLLOWED_BY_INPUT));
rb_define_const(rb_cEncodingConverter, "UNIVERSAL_NEWLINE_DECODER", INT2FIX(ECONV_UNIVERSAL_NEWLINE_DECODER));
rb_define_const(rb_cEncodingConverter, "CRLF_NEWLINE_ENCODER", INT2FIX(ECONV_CRLF_NEWLINE_ENCODER));
rb_define_const(rb_cEncodingConverter, "CR_NEWLINE_ENCODER", INT2FIX(ECONV_CR_NEWLINE_ENCODER));
}