mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
1866d483dc
Miller Rabin algorithm can be used to test primality for integers smaller than a max value "MaxMR" (~3e24) It can be much faster than previous implementation: ~100x faster for numbers with 13 digits, at least 5 orders of magnitude for even larger numbers (previous implementation is so slow that it requires more patience than I have for more precise estimate). Miller Rabin test becomes faster than previous implementation at somewhere in the range 1e5-1e6. It seems that the range 62000..66000 is where Miller Rabin starts being always faster, so I picked 0xffff arbitrarily; before that, or above "MaxMR", the previous implementation remains. I compared the `faster_prime` gem too. It is slower than previous implementation up to ~1e4. After that it becomes faster and faster compared to previous implementation, but is still slower than Miller Rabin starting at ~1e5 and up to MaxMR. Thus, after this commit, builtin `Integer#prime?` will be similar or faster than `faster_prime` up to "MaxMR". Adapted from patch of Stephen Blackstone [Feature #16468] Benchmark results and code: https://gist.github.com/marcandre/b263bdae488e76dabdda84daf73733b9 Co-authored-by: Stephen Blackstone <sblackstone@gmail.com>
299 lines
8.2 KiB
Ruby
299 lines
8.2 KiB
Ruby
# frozen_string_literal: false
|
|
require 'test/unit'
|
|
require 'prime'
|
|
require 'timeout'
|
|
|
|
class TestPrime < Test::Unit::TestCase
|
|
# The first 100 prime numbers
|
|
PRIMES = [
|
|
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
|
|
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
|
|
89, 97, 101, 103, 107, 109, 113, 127, 131,
|
|
137, 139, 149, 151, 157, 163, 167, 173, 179,
|
|
181, 191, 193, 197, 199, 211, 223, 227, 229,
|
|
233, 239, 241, 251, 257, 263, 269, 271, 277,
|
|
281, 283, 293, 307, 311, 313, 317, 331, 337,
|
|
347, 349, 353, 359, 367, 373, 379, 383, 389,
|
|
397, 401, 409, 419, 421, 431, 433, 439, 443,
|
|
449, 457, 461, 463, 467, 479, 487, 491, 499,
|
|
503, 509, 521, 523, 541,
|
|
]
|
|
def test_each
|
|
primes = []
|
|
Prime.each do |p|
|
|
break if p > 541
|
|
primes << p
|
|
end
|
|
assert_equal PRIMES, primes
|
|
end
|
|
|
|
def test_include?
|
|
assert_equal(false, Prime.include?(nil))
|
|
assert_equal(true, Prime.include?(3))
|
|
assert_equal(false, Prime.include?(4))
|
|
assert_equal(true, Prime.include?(Enumerable))
|
|
assert_equal(false, Prime.include?(Comparable))
|
|
end
|
|
|
|
def test_integer_each_prime
|
|
primes = []
|
|
Integer.each_prime(1000) do |p|
|
|
break if p > 541
|
|
primes << p
|
|
end
|
|
assert_equal PRIMES, primes
|
|
end
|
|
|
|
def test_each_by_prime_number_theorem
|
|
3.upto(15) do |i|
|
|
max = 2**i
|
|
primes = []
|
|
Prime.each do |p|
|
|
break if p >= max
|
|
primes << p
|
|
end
|
|
|
|
# Prime number theorem
|
|
assert_operator primes.length, :>=, max/Math.log(max)
|
|
delta = 0.05
|
|
li = (2..max).step(delta).inject(0){|sum,x| sum + delta/Math.log(x)}
|
|
assert_operator primes.length, :<=, li
|
|
end
|
|
end
|
|
|
|
def test_each_without_block
|
|
enum = Prime.each
|
|
assert_respond_to(enum, :each)
|
|
assert_kind_of(Enumerable, enum)
|
|
assert_respond_to(enum, :with_index)
|
|
assert_respond_to(enum, :next)
|
|
assert_respond_to(enum, :succ)
|
|
assert_respond_to(enum, :rewind)
|
|
end
|
|
|
|
def test_instance_without_block
|
|
enum = Prime.instance.each
|
|
assert_respond_to(enum, :each)
|
|
assert_kind_of(Enumerable, enum)
|
|
assert_respond_to(enum, :with_index)
|
|
assert_respond_to(enum, :next)
|
|
assert_respond_to(enum, :succ)
|
|
assert_respond_to(enum, :rewind)
|
|
end
|
|
|
|
def test_new
|
|
assert_raise(NoMethodError) { Prime.new }
|
|
end
|
|
|
|
def test_enumerator_succ
|
|
enum = Prime.each
|
|
assert_equal PRIMES[0, 50], 50.times.map{ enum.succ }
|
|
assert_equal PRIMES[50, 50], 50.times.map{ enum.succ }
|
|
enum.rewind
|
|
assert_equal PRIMES[0, 100], 100.times.map{ enum.succ }
|
|
end
|
|
|
|
def test_enumerator_with_index
|
|
enum = Prime.each
|
|
last = -1
|
|
enum.with_index do |p,i|
|
|
break if i >= 100
|
|
assert_equal last+1, i
|
|
assert_equal PRIMES[i], p
|
|
last = i
|
|
end
|
|
end
|
|
|
|
def test_enumerator_with_index_with_offset
|
|
enum = Prime.each
|
|
last = 5-1
|
|
enum.with_index(5).each do |p,i|
|
|
break if i >= 100+5
|
|
assert_equal last+1, i
|
|
assert_equal PRIMES[i-5], p
|
|
last = i
|
|
end
|
|
end
|
|
|
|
def test_enumerator_with_object
|
|
object = Object.new
|
|
enum = Prime.each
|
|
enum.with_object(object).each do |p, o|
|
|
assert_equal object, o
|
|
break
|
|
end
|
|
end
|
|
|
|
def test_enumerator_size
|
|
enum = Prime.each
|
|
assert_equal Float::INFINITY, enum.size
|
|
assert_equal Float::INFINITY, enum.with_object(nil).size
|
|
assert_equal Float::INFINITY, enum.with_index(42).size
|
|
end
|
|
|
|
def test_default_instance_does_not_have_compatibility_methods
|
|
assert_not_respond_to(Prime.instance, :succ)
|
|
assert_not_respond_to(Prime.instance, :next)
|
|
end
|
|
|
|
def test_prime_each_basic_argument_checking
|
|
assert_raise(ArgumentError) { Prime.prime?(1,2) }
|
|
assert_raise(ArgumentError) { Prime.prime?(1.2) }
|
|
end
|
|
|
|
def test_prime?
|
|
assert_equal Prime.prime?(1), false
|
|
assert_equal Prime.prime?(2), true
|
|
assert_equal Prime.prime?(4), false
|
|
end
|
|
|
|
class TestPseudoPrimeGenerator < Test::Unit::TestCase
|
|
def test_upper_bound
|
|
pseudo_prime_generator = Prime::PseudoPrimeGenerator.new(42)
|
|
assert_equal pseudo_prime_generator.upper_bound, 42
|
|
end
|
|
|
|
def test_succ
|
|
pseudo_prime_generator = Prime::PseudoPrimeGenerator.new(42)
|
|
assert_raise(NotImplementedError) { pseudo_prime_generator.succ }
|
|
end
|
|
|
|
def test_next
|
|
pseudo_prime_generator = Prime::PseudoPrimeGenerator.new(42)
|
|
assert_raise(NotImplementedError) { pseudo_prime_generator.next }
|
|
end
|
|
|
|
def test_rewind
|
|
pseudo_prime_generator = Prime::PseudoPrimeGenerator.new(42)
|
|
assert_raise(NotImplementedError) { pseudo_prime_generator.rewind }
|
|
end
|
|
end
|
|
|
|
class TestTrialDivisionGenerator < Test::Unit::TestCase
|
|
# The first 100 prime numbers
|
|
PRIMES = [
|
|
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
|
|
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
|
|
89, 97, 101, 103, 107, 109, 113, 127, 131,
|
|
137, 139, 149, 151, 157, 163, 167, 173, 179,
|
|
181, 191, 193, 197, 199, 211, 223, 227, 229,
|
|
233, 239, 241, 251, 257, 263, 269, 271, 277,
|
|
281, 283, 293, 307, 311, 313, 317, 331, 337,
|
|
347, 349, 353, 359, 367, 373, 379, 383, 389,
|
|
397, 401, 409, 419, 421, 431, 433, 439, 443,
|
|
449, 457, 461, 463, 467, 479, 487, 491, 499,
|
|
503, 509, 521, 523, 541,
|
|
]
|
|
|
|
def test_each
|
|
primes = []
|
|
Prime.each(nil, Prime::TrialDivisionGenerator.new) do |p|
|
|
break if p > 541
|
|
primes << p
|
|
end
|
|
assert_equal PRIMES, primes
|
|
end
|
|
|
|
def test_rewind
|
|
generator = Prime::TrialDivisionGenerator.new
|
|
assert_equal generator.next, 2
|
|
assert_equal generator.next, 3
|
|
generator.rewind
|
|
assert_equal generator.next, 2
|
|
end
|
|
end
|
|
|
|
class TestGenerator23 < Test::Unit::TestCase
|
|
def test_rewind
|
|
generator = Prime::Generator23.new
|
|
assert_equal generator.next, 2
|
|
assert_equal generator.next, 3
|
|
generator.rewind
|
|
assert_equal generator.next, 2
|
|
end
|
|
end
|
|
|
|
class TestInteger < Test::Unit::TestCase
|
|
def test_prime_division
|
|
pd = PRIMES.inject(&:*).prime_division
|
|
assert_equal PRIMES.map{|p| [p, 1]}, pd
|
|
|
|
pd = (-PRIMES.inject(&:*)).prime_division
|
|
assert_equal [-1, *PRIMES].map{|p| [p, 1]}, pd
|
|
end
|
|
|
|
def test_from_prime_division
|
|
assert_equal PRIMES.inject(&:*), Integer.from_prime_division(PRIMES.map{|p| [p,1]})
|
|
|
|
assert_equal(-PRIMES.inject(&:*), Integer.from_prime_division([[-1, 1]] + PRIMES.map{|p| [p,1]}))
|
|
end
|
|
|
|
def test_prime?
|
|
PRIMES.each do |p|
|
|
assert_predicate(p, :prime?)
|
|
end
|
|
|
|
composites = (0..PRIMES.last).to_a - PRIMES
|
|
composites.each do |c|
|
|
assert_not_predicate(c, :prime?)
|
|
end
|
|
|
|
# mersenne numbers
|
|
assert_predicate((2**31-1), :prime?)
|
|
assert_not_predicate((2**32-1), :prime?)
|
|
|
|
# fermat numbers
|
|
assert_predicate((2**(2**4)+1), :prime?)
|
|
assert_not_predicate((2**(2**5)+1), :prime?) # Euler!
|
|
|
|
# large composite
|
|
assert_not_predicate(((2**13-1) * (2**17-1)), :prime?)
|
|
|
|
# factorial
|
|
assert_not_predicate((2...100).inject(&:*), :prime?)
|
|
|
|
# negative
|
|
assert_not_predicate(-1, :prime?)
|
|
assert_not_predicate(-2, :prime?)
|
|
assert_not_predicate(-3, :prime?)
|
|
assert_not_predicate(-4, :prime?)
|
|
|
|
assert_equal 1229, (1..10_000).count(&:prime?)
|
|
assert_equal 861, (100_000..110_000).count(&:prime?)
|
|
end
|
|
|
|
=begin
|
|
# now Ractor should not use in test-all process
|
|
def test_prime_in_ractor
|
|
# Test usage of private constant...
|
|
assert_equal false, Ractor.new { ((2**13-1) * (2**17-1)).prime? }.take
|
|
end if defined?(Ractor)
|
|
=end
|
|
end
|
|
|
|
def test_eratosthenes_works_fine_after_timeout
|
|
sieve = Prime::EratosthenesSieve.instance
|
|
sieve.send(:initialize)
|
|
# simulates that Timeout.timeout interrupts Prime::EratosthenesSieve#compute_primes
|
|
class << Integer
|
|
alias_method :org_sqrt, :sqrt
|
|
end
|
|
begin
|
|
def Integer.sqrt(n)
|
|
sleep 10 if /compute_primes/ =~ caller.first
|
|
org_sqrt(n)
|
|
end
|
|
assert_raise(Timeout::Error) do
|
|
Timeout.timeout(0.5) { Prime.each(7*37){} }
|
|
end
|
|
ensure
|
|
class << Integer
|
|
remove_method :sqrt
|
|
alias_method :sqrt, :org_sqrt
|
|
remove_method :org_sqrt
|
|
end
|
|
end
|
|
|
|
assert_not_include Prime.each(7*37).to_a, 7*37, "[ruby-dev:39465]"
|
|
end
|
|
end
|