mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
f8e5c7c79e
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@40553 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
135 lines
3.5 KiB
Ruby
135 lines
3.5 KiB
Ruby
# encoding: utf-8
|
|
######################################################################
|
|
# This file is imported from the minitest project.
|
|
# DO NOT make modifications in this repo. They _will_ be reverted!
|
|
# File a patch instead and assign it to Ryan Davis.
|
|
######################################################################
|
|
|
|
require 'minitest/autorun'
|
|
require 'minitest/benchmark'
|
|
|
|
##
|
|
# Used to verify data:
|
|
# http://www.wolframalpha.com/examples/RegressionAnalysis.html
|
|
|
|
class TestMiniTestBenchmark < MiniTest::Unit::TestCase
|
|
def test_cls_bench_exp
|
|
assert_equal [2, 4, 8, 16, 32], self.class.bench_exp(2, 32, 2)
|
|
end
|
|
|
|
def test_cls_bench_linear
|
|
assert_equal [2, 4, 6, 8, 10], self.class.bench_linear(2, 10, 2)
|
|
end
|
|
|
|
def test_cls_benchmark_methods
|
|
assert_equal [], self.class.benchmark_methods
|
|
|
|
c = Class.new(MiniTest::Unit::TestCase) do
|
|
def bench_blah
|
|
end
|
|
end
|
|
|
|
assert_equal ["bench_blah"], c.benchmark_methods
|
|
end
|
|
|
|
def test_cls_bench_range
|
|
assert_equal [1, 10, 100, 1_000, 10_000], self.class.bench_range
|
|
end
|
|
|
|
def test_fit_exponential_clean
|
|
x = [1.0, 2.0, 3.0, 4.0, 5.0]
|
|
y = x.map { |n| 1.1 * Math.exp(2.1 * n) }
|
|
|
|
assert_fit :exponential, x, y, 1.0, 1.1, 2.1
|
|
end
|
|
|
|
def test_fit_exponential_noisy
|
|
x = [1.0, 1.9, 2.6, 3.4, 5.0]
|
|
y = [12, 10, 8.2, 6.9, 5.9]
|
|
|
|
# verified with Numbers and R
|
|
assert_fit :exponential, x, y, 0.95, 13.81148, -0.1820
|
|
end
|
|
|
|
def test_fit_logarithmic_clean
|
|
x = [1.0, 2.0, 3.0, 4.0, 5.0]
|
|
y = x.map { |n| 1.1 + 2.1 * Math.log(n) }
|
|
|
|
assert_fit :logarithmic, x, y, 1.0, 1.1, 2.1
|
|
end
|
|
|
|
def test_fit_logarithmic_noisy
|
|
x = [1.0, 2.0, 3.0, 4.0, 5.0]
|
|
# Generated with
|
|
# y = x.map { |n| jitter = 0.999 + 0.002 * rand; (Math.log(n) ) * jitter }
|
|
y = [0.0, 0.6935, 1.0995, 1.3873, 1.6097]
|
|
|
|
assert_fit :logarithmic, x, y, 0.95, 0, 1
|
|
end
|
|
|
|
def test_fit_constant_clean
|
|
x = (1..5).to_a
|
|
y = [5.0, 5.0, 5.0, 5.0, 5.0]
|
|
|
|
assert_fit :linear, x, y, nil, 5.0, 0
|
|
end
|
|
|
|
def test_fit_constant_noisy
|
|
x = (1..5).to_a
|
|
y = [1.0, 1.2, 1.0, 0.8, 1.0]
|
|
|
|
# verified in numbers and R
|
|
assert_fit :linear, x, y, nil, 1.12, -0.04
|
|
end
|
|
|
|
def test_fit_linear_clean
|
|
# y = m * x + b where m = 2.2, b = 3.1
|
|
x = (1..5).to_a
|
|
y = x.map { |n| 2.2 * n + 3.1 }
|
|
|
|
assert_fit :linear, x, y, 1.0, 3.1, 2.2
|
|
end
|
|
|
|
def test_fit_linear_noisy
|
|
x = [ 60, 61, 62, 63, 65]
|
|
y = [3.1, 3.6, 3.8, 4.0, 4.1]
|
|
|
|
# verified in numbers and R
|
|
assert_fit :linear, x, y, 0.8315, -7.9635, 0.1878
|
|
end
|
|
|
|
def test_fit_power_clean
|
|
# y = A x ** B, where B = b and A = e ** a
|
|
# if, A = 1, B = 2, then
|
|
|
|
x = [1.0, 2.0, 3.0, 4.0, 5.0]
|
|
y = [1.0, 4.0, 9.0, 16.0, 25.0]
|
|
|
|
assert_fit :power, x, y, 1.0, 1.0, 2.0
|
|
end
|
|
|
|
def test_fit_power_noisy
|
|
# from www.engr.uidaho.edu/thompson/courses/ME330/lecture/least_squares.html
|
|
x = [10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35]
|
|
y = [95, 105, 125, 141, 173, 200, 253, 298, 385, 459, 602]
|
|
|
|
# verified in numbers
|
|
assert_fit :power, x, y, 0.90, 2.6217, 1.4556
|
|
|
|
# income to % of households below income amount
|
|
# http://library.wolfram.com/infocenter/Conferences/6461/PowerLaws.nb
|
|
x = [15000, 25000, 35000, 50000, 75000, 100000]
|
|
y = [0.154, 0.283, 0.402, 0.55, 0.733, 0.843]
|
|
|
|
# verified in numbers
|
|
assert_fit :power, x, y, 0.96, 3.119e-5, 0.8959
|
|
end
|
|
|
|
def assert_fit msg, x, y, fit, exp_a, exp_b
|
|
a, b, rr = send "fit_#{msg}", x, y
|
|
|
|
assert_operator rr, :>=, fit if fit
|
|
assert_in_delta exp_a, a
|
|
assert_in_delta exp_b, b
|
|
end
|
|
end
|