mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			1511 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1511 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * 'OpenSSL for Ruby' project
 | |
|  * Copyright (C) 2001-2002  Michal Rokos <m.rokos@sh.cvut.cz>
 | |
|  * All rights reserved.
 | |
|  */
 | |
| /*
 | |
|  * This program is licensed under the same licence as Ruby.
 | |
|  * (See the file 'LICENCE'.)
 | |
|  */
 | |
| #include "ossl.h"
 | |
| 
 | |
| /*
 | |
|  * Classes
 | |
|  */
 | |
| VALUE mPKey;
 | |
| VALUE cPKey;
 | |
| VALUE ePKeyError;
 | |
| static ID id_private_q;
 | |
| 
 | |
| static void
 | |
| ossl_evp_pkey_free(void *ptr)
 | |
| {
 | |
|     EVP_PKEY_free(ptr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Public
 | |
|  */
 | |
| const rb_data_type_t ossl_evp_pkey_type = {
 | |
|     "OpenSSL/EVP_PKEY",
 | |
|     {
 | |
| 	0, ossl_evp_pkey_free,
 | |
|     },
 | |
|     0, 0, RUBY_TYPED_FREE_IMMEDIATELY,
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| pkey_new0(VALUE arg)
 | |
| {
 | |
|     EVP_PKEY *pkey = (EVP_PKEY *)arg;
 | |
|     VALUE klass, obj;
 | |
|     int type;
 | |
| 
 | |
|     if (!pkey || (type = EVP_PKEY_base_id(pkey)) == EVP_PKEY_NONE)
 | |
| 	ossl_raise(rb_eRuntimeError, "pkey is empty");
 | |
| 
 | |
|     switch (type) {
 | |
| #if !defined(OPENSSL_NO_RSA)
 | |
|       case EVP_PKEY_RSA: klass = cRSA; break;
 | |
| #endif
 | |
| #if !defined(OPENSSL_NO_DSA)
 | |
|       case EVP_PKEY_DSA: klass = cDSA; break;
 | |
| #endif
 | |
| #if !defined(OPENSSL_NO_DH)
 | |
|       case EVP_PKEY_DH:  klass = cDH; break;
 | |
| #endif
 | |
| #if !defined(OPENSSL_NO_EC)
 | |
|       case EVP_PKEY_EC:  klass = cEC; break;
 | |
| #endif
 | |
|       default:           klass = cPKey; break;
 | |
|     }
 | |
|     obj = NewPKey(klass);
 | |
|     SetPKey(obj, pkey);
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| ossl_pkey_new(EVP_PKEY *pkey)
 | |
| {
 | |
|     VALUE obj;
 | |
|     int status;
 | |
| 
 | |
|     obj = rb_protect(pkey_new0, (VALUE)pkey, &status);
 | |
|     if (status) {
 | |
| 	EVP_PKEY_free(pkey);
 | |
| 	rb_jump_tag(status);
 | |
|     }
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| EVP_PKEY *
 | |
| ossl_pkey_read_generic(BIO *bio, VALUE pass)
 | |
| {
 | |
|     void *ppass = (void *)pass;
 | |
|     EVP_PKEY *pkey;
 | |
| 
 | |
|     if ((pkey = d2i_PrivateKey_bio(bio, NULL)))
 | |
| 	goto out;
 | |
|     OSSL_BIO_reset(bio);
 | |
|     if ((pkey = d2i_PKCS8PrivateKey_bio(bio, NULL, ossl_pem_passwd_cb, ppass)))
 | |
| 	goto out;
 | |
|     OSSL_BIO_reset(bio);
 | |
|     if ((pkey = d2i_PUBKEY_bio(bio, NULL)))
 | |
| 	goto out;
 | |
|     OSSL_BIO_reset(bio);
 | |
|     /* PEM_read_bio_PrivateKey() also parses PKCS #8 formats */
 | |
|     if ((pkey = PEM_read_bio_PrivateKey(bio, NULL, ossl_pem_passwd_cb, ppass)))
 | |
| 	goto out;
 | |
|     OSSL_BIO_reset(bio);
 | |
|     if ((pkey = PEM_read_bio_PUBKEY(bio, NULL, NULL, NULL)))
 | |
| 	goto out;
 | |
|     OSSL_BIO_reset(bio);
 | |
|     if ((pkey = PEM_read_bio_Parameters(bio, NULL)))
 | |
| 	goto out;
 | |
| 
 | |
|   out:
 | |
|     return pkey;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     OpenSSL::PKey.read(string [, pwd ]) -> PKey
 | |
|  *     OpenSSL::PKey.read(io [, pwd ]) -> PKey
 | |
|  *
 | |
|  * Reads a DER or PEM encoded string from _string_ or _io_ and returns an
 | |
|  * instance of the appropriate PKey class.
 | |
|  *
 | |
|  * === Parameters
 | |
|  * * _string_ is a DER- or PEM-encoded string containing an arbitrary private
 | |
|  *   or public key.
 | |
|  * * _io_ is an instance of IO containing a DER- or PEM-encoded
 | |
|  *   arbitrary private or public key.
 | |
|  * * _pwd_ is an optional password in case _string_ or _io_ is an encrypted
 | |
|  *   PEM resource.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_new_from_data(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     BIO *bio;
 | |
|     VALUE data, pass;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "11", &data, &pass);
 | |
|     bio = ossl_obj2bio(&data);
 | |
|     pkey = ossl_pkey_read_generic(bio, ossl_pem_passwd_value(pass));
 | |
|     BIO_free(bio);
 | |
|     if (!pkey)
 | |
| 	ossl_raise(ePKeyError, "Could not parse PKey");
 | |
|     return ossl_pkey_new(pkey);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| pkey_ctx_apply_options_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ctx_v))
 | |
| {
 | |
|     VALUE key = rb_ary_entry(i, 0), value = rb_ary_entry(i, 1);
 | |
|     EVP_PKEY_CTX *ctx = (EVP_PKEY_CTX *)ctx_v;
 | |
| 
 | |
|     if (SYMBOL_P(key))
 | |
|         key = rb_sym2str(key);
 | |
|     value = rb_String(value);
 | |
| 
 | |
|     if (EVP_PKEY_CTX_ctrl_str(ctx, StringValueCStr(key), StringValueCStr(value)) <= 0)
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_CTX_ctrl_str(ctx, %+"PRIsVALUE", %+"PRIsVALUE")",
 | |
|                    key, value);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| pkey_ctx_apply_options0(VALUE args_v)
 | |
| {
 | |
|     VALUE *args = (VALUE *)args_v;
 | |
| 
 | |
|     rb_block_call(args[1], rb_intern("each"), 0, NULL,
 | |
|                   pkey_ctx_apply_options_i, args[0]);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static void
 | |
| pkey_ctx_apply_options(EVP_PKEY_CTX *ctx, VALUE options, int *state)
 | |
| {
 | |
|     VALUE args[2];
 | |
|     args[0] = (VALUE)ctx;
 | |
|     args[1] = options;
 | |
| 
 | |
|     rb_protect(pkey_ctx_apply_options0, (VALUE)args, state);
 | |
| }
 | |
| 
 | |
| struct pkey_blocking_generate_arg {
 | |
|     EVP_PKEY_CTX *ctx;
 | |
|     EVP_PKEY *pkey;
 | |
|     int state;
 | |
|     int yield: 1;
 | |
|     int genparam: 1;
 | |
|     int interrupted: 1;
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| pkey_gen_cb_yield(VALUE ctx_v)
 | |
| {
 | |
|     EVP_PKEY_CTX *ctx = (void *)ctx_v;
 | |
|     int i, info_num;
 | |
|     VALUE *argv;
 | |
| 
 | |
|     info_num = EVP_PKEY_CTX_get_keygen_info(ctx, -1);
 | |
|     argv = ALLOCA_N(VALUE, info_num);
 | |
|     for (i = 0; i < info_num; i++)
 | |
|         argv[i] = INT2NUM(EVP_PKEY_CTX_get_keygen_info(ctx, i));
 | |
| 
 | |
|     return rb_yield_values2(info_num, argv);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| call_check_ints0(VALUE arg)
 | |
| {
 | |
|     rb_thread_check_ints();
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static void *
 | |
| call_check_ints(void *arg)
 | |
| {
 | |
|     int state;
 | |
|     rb_protect(call_check_ints0, Qnil, &state);
 | |
|     return (void *)(VALUE)state;
 | |
| }
 | |
| 
 | |
| static int
 | |
| pkey_gen_cb(EVP_PKEY_CTX *ctx)
 | |
| {
 | |
|     struct pkey_blocking_generate_arg *arg = EVP_PKEY_CTX_get_app_data(ctx);
 | |
|     int state;
 | |
| 
 | |
|     if (arg->yield) {
 | |
|         rb_protect(pkey_gen_cb_yield, (VALUE)ctx, &state);
 | |
|         if (state) {
 | |
|             arg->state = state;
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     if (arg->interrupted) {
 | |
|         arg->interrupted = 0;
 | |
|         state = (int)(VALUE)rb_thread_call_with_gvl(call_check_ints, NULL);
 | |
|         if (state) {
 | |
|             arg->state = state;
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| pkey_blocking_gen_stop(void *ptr)
 | |
| {
 | |
|     struct pkey_blocking_generate_arg *arg = ptr;
 | |
|     arg->interrupted = 1;
 | |
| }
 | |
| 
 | |
| static void *
 | |
| pkey_blocking_gen(void *ptr)
 | |
| {
 | |
|     struct pkey_blocking_generate_arg *arg = ptr;
 | |
| 
 | |
|     if (arg->genparam && EVP_PKEY_paramgen(arg->ctx, &arg->pkey) <= 0)
 | |
|         return NULL;
 | |
|     if (!arg->genparam && EVP_PKEY_keygen(arg->ctx, &arg->pkey) <= 0)
 | |
|         return NULL;
 | |
|     return arg->pkey;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| pkey_generate(int argc, VALUE *argv, VALUE self, int genparam)
 | |
| {
 | |
|     EVP_PKEY_CTX *ctx;
 | |
|     VALUE alg, options;
 | |
|     struct pkey_blocking_generate_arg gen_arg = { 0 };
 | |
|     int state;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "11", &alg, &options);
 | |
|     if (rb_obj_is_kind_of(alg, cPKey)) {
 | |
|         EVP_PKEY *base_pkey;
 | |
| 
 | |
|         GetPKey(alg, base_pkey);
 | |
|         ctx = EVP_PKEY_CTX_new(base_pkey, NULL/* engine */);
 | |
|         if (!ctx)
 | |
|             ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
 | |
|     }
 | |
|     else {
 | |
|         const EVP_PKEY_ASN1_METHOD *ameth;
 | |
|         ENGINE *tmpeng;
 | |
|         int pkey_id;
 | |
| 
 | |
|         StringValue(alg);
 | |
|         ameth = EVP_PKEY_asn1_find_str(&tmpeng, RSTRING_PTR(alg),
 | |
|                                        RSTRING_LENINT(alg));
 | |
|         if (!ameth)
 | |
|             ossl_raise(ePKeyError, "algorithm %"PRIsVALUE" not found", alg);
 | |
|         EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, ameth);
 | |
| #if !defined(OPENSSL_NO_ENGINE)
 | |
|         if (tmpeng)
 | |
|             ENGINE_finish(tmpeng);
 | |
| #endif
 | |
| 
 | |
|         ctx = EVP_PKEY_CTX_new_id(pkey_id, NULL/* engine */);
 | |
|         if (!ctx)
 | |
|             ossl_raise(ePKeyError, "EVP_PKEY_CTX_new_id");
 | |
|     }
 | |
| 
 | |
|     if (genparam && EVP_PKEY_paramgen_init(ctx) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_paramgen_init");
 | |
|     }
 | |
|     if (!genparam && EVP_PKEY_keygen_init(ctx) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_keygen_init");
 | |
|     }
 | |
| 
 | |
|     if (!NIL_P(options)) {
 | |
|         pkey_ctx_apply_options(ctx, options, &state);
 | |
|         if (state) {
 | |
|             EVP_PKEY_CTX_free(ctx);
 | |
|             rb_jump_tag(state);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     gen_arg.genparam = genparam;
 | |
|     gen_arg.ctx = ctx;
 | |
|     gen_arg.yield = rb_block_given_p();
 | |
|     EVP_PKEY_CTX_set_app_data(ctx, &gen_arg);
 | |
|     EVP_PKEY_CTX_set_cb(ctx, pkey_gen_cb);
 | |
|     if (gen_arg.yield)
 | |
|         pkey_blocking_gen(&gen_arg);
 | |
|     else
 | |
|         rb_thread_call_without_gvl(pkey_blocking_gen, &gen_arg,
 | |
|                                    pkey_blocking_gen_stop, &gen_arg);
 | |
|     EVP_PKEY_CTX_free(ctx);
 | |
|     if (!gen_arg.pkey) {
 | |
|         if (gen_arg.state) {
 | |
|             ossl_clear_error();
 | |
|             rb_jump_tag(gen_arg.state);
 | |
|         }
 | |
|         else {
 | |
|             ossl_raise(ePKeyError, genparam ? "EVP_PKEY_paramgen" : "EVP_PKEY_keygen");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ossl_pkey_new(gen_arg.pkey);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    OpenSSL::PKey.generate_parameters(algo_name [, options]) -> pkey
 | |
|  *
 | |
|  * Generates new parameters for the algorithm. _algo_name_ is a String that
 | |
|  * represents the algorithm. The optional argument _options_ is a Hash that
 | |
|  * specifies the options specific to the algorithm. The order of the options
 | |
|  * can be important.
 | |
|  *
 | |
|  * A block can be passed optionally. The meaning of the arguments passed to
 | |
|  * the block varies depending on the implementation of the algorithm. The block
 | |
|  * may be called once or multiple times, or may not even be called.
 | |
|  *
 | |
|  * For the supported options, see the documentation for the 'openssl genpkey'
 | |
|  * utility command.
 | |
|  *
 | |
|  * == Example
 | |
|  *   pkey = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048)
 | |
|  *   p pkey.p.num_bits #=> 2048
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_s_generate_parameters(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return pkey_generate(argc, argv, self, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    OpenSSL::PKey.generate_key(algo_name [, options]) -> pkey
 | |
|  *    OpenSSL::PKey.generate_key(pkey [, options]) -> pkey
 | |
|  *
 | |
|  * Generates a new key (pair).
 | |
|  *
 | |
|  * If a String is given as the first argument, it generates a new random key
 | |
|  * for the algorithm specified by the name just as ::generate_parameters does.
 | |
|  * If an OpenSSL::PKey::PKey is given instead, it generates a new random key
 | |
|  * for the same algorithm as the key, using the parameters the key contains.
 | |
|  *
 | |
|  * See ::generate_parameters for the details of _options_ and the given block.
 | |
|  *
 | |
|  * == Example
 | |
|  *   pkey_params = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048)
 | |
|  *   pkey_params.priv_key #=> nil
 | |
|  *   pkey = OpenSSL::PKey.generate_key(pkey_params)
 | |
|  *   pkey.priv_key #=> #<OpenSSL::BN 6277...
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_s_generate_key(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return pkey_generate(argc, argv, self, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| ossl_pkey_check_public_key(const EVP_PKEY *pkey)
 | |
| {
 | |
|     void *ptr;
 | |
|     const BIGNUM *n, *e, *pubkey;
 | |
| 
 | |
|     if (EVP_PKEY_missing_parameters(pkey))
 | |
| 	ossl_raise(ePKeyError, "parameters missing");
 | |
| 
 | |
|     /* OpenSSL < 1.1.0 takes non-const pointer */
 | |
|     ptr = EVP_PKEY_get0((EVP_PKEY *)pkey);
 | |
|     switch (EVP_PKEY_base_id(pkey)) {
 | |
|       case EVP_PKEY_RSA:
 | |
| 	RSA_get0_key(ptr, &n, &e, NULL);
 | |
| 	if (n && e)
 | |
| 	    return;
 | |
| 	break;
 | |
|       case EVP_PKEY_DSA:
 | |
| 	DSA_get0_key(ptr, &pubkey, NULL);
 | |
| 	if (pubkey)
 | |
| 	    return;
 | |
| 	break;
 | |
|       case EVP_PKEY_DH:
 | |
| 	DH_get0_key(ptr, &pubkey, NULL);
 | |
| 	if (pubkey)
 | |
| 	    return;
 | |
| 	break;
 | |
| #if !defined(OPENSSL_NO_EC)
 | |
|       case EVP_PKEY_EC:
 | |
| 	if (EC_KEY_get0_public_key(ptr))
 | |
| 	    return;
 | |
| 	break;
 | |
| #endif
 | |
|       default:
 | |
| 	/* unsupported type; assuming ok */
 | |
| 	return;
 | |
|     }
 | |
|     ossl_raise(ePKeyError, "public key missing");
 | |
| }
 | |
| 
 | |
| EVP_PKEY *
 | |
| GetPKeyPtr(VALUE obj)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
| 
 | |
|     GetPKey(obj, pkey);
 | |
| 
 | |
|     return pkey;
 | |
| }
 | |
| 
 | |
| EVP_PKEY *
 | |
| GetPrivPKeyPtr(VALUE obj)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
| 
 | |
|     GetPKey(obj, pkey);
 | |
|     if (OSSL_PKEY_IS_PRIVATE(obj))
 | |
|         return pkey;
 | |
|     /*
 | |
|      * The EVP API does not provide a way to check if the EVP_PKEY has private
 | |
|      * components. Assuming it does...
 | |
|      */
 | |
|     if (!rb_respond_to(obj, id_private_q))
 | |
|         return pkey;
 | |
|     if (RTEST(rb_funcallv(obj, id_private_q, 0, NULL)))
 | |
|         return pkey;
 | |
| 
 | |
|     rb_raise(rb_eArgError, "private key is needed");
 | |
| }
 | |
| 
 | |
| EVP_PKEY *
 | |
| DupPKeyPtr(VALUE obj)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
| 
 | |
|     GetPKey(obj, pkey);
 | |
|     EVP_PKEY_up_ref(pkey);
 | |
| 
 | |
|     return pkey;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Private
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_alloc(VALUE klass)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     VALUE obj;
 | |
| 
 | |
|     obj = NewPKey(klass);
 | |
|     if (!(pkey = EVP_PKEY_new())) {
 | |
| 	ossl_raise(ePKeyError, NULL);
 | |
|     }
 | |
|     SetPKey(obj, pkey);
 | |
| 
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *      PKeyClass.new -> self
 | |
|  *
 | |
|  * Because PKey is an abstract class, actually calling this method explicitly
 | |
|  * will raise a NotImplementedError.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_initialize(VALUE self)
 | |
| {
 | |
|     if (rb_obj_is_instance_of(self, cPKey)) {
 | |
| 	ossl_raise(rb_eTypeError, "OpenSSL::PKey::PKey can't be instantiated directly");
 | |
|     }
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.oid -> string
 | |
|  *
 | |
|  * Returns the short name of the OID associated with _pkey_.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_oid(VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     int nid;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     nid = EVP_PKEY_id(pkey);
 | |
|     return rb_str_new_cstr(OBJ_nid2sn(nid));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.inspect -> string
 | |
|  *
 | |
|  * Returns a string describing the PKey object.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_inspect(VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     int nid;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     nid = EVP_PKEY_id(pkey);
 | |
|     return rb_sprintf("#<%"PRIsVALUE":%p oid=%s>",
 | |
|                       rb_class_name(CLASS_OF(self)), (void *)self,
 | |
|                       OBJ_nid2sn(nid));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.to_text -> string
 | |
|  *
 | |
|  * Dumps key parameters, public key, and private key components contained in
 | |
|  * the key into a human-readable text.
 | |
|  *
 | |
|  * This is intended for debugging purpose.
 | |
|  *
 | |
|  * See also the man page EVP_PKEY_print_private(3).
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_to_text(VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     BIO *bio;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     if (!(bio = BIO_new(BIO_s_mem())))
 | |
|         ossl_raise(ePKeyError, "BIO_new");
 | |
| 
 | |
|     if (EVP_PKEY_print_private(bio, pkey, 0, NULL) == 1)
 | |
|         goto out;
 | |
|     OSSL_BIO_reset(bio);
 | |
|     if (EVP_PKEY_print_public(bio, pkey, 0, NULL) == 1)
 | |
|         goto out;
 | |
|     OSSL_BIO_reset(bio);
 | |
|     if (EVP_PKEY_print_params(bio, pkey, 0, NULL) == 1)
 | |
|         goto out;
 | |
| 
 | |
|     BIO_free(bio);
 | |
|     ossl_raise(ePKeyError, "EVP_PKEY_print_params");
 | |
| 
 | |
|   out:
 | |
|     return ossl_membio2str(bio);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| ossl_pkey_export_traditional(int argc, VALUE *argv, VALUE self, int to_der)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     VALUE cipher, pass;
 | |
|     const EVP_CIPHER *enc = NULL;
 | |
|     BIO *bio;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     rb_scan_args(argc, argv, "02", &cipher, &pass);
 | |
|     if (!NIL_P(cipher)) {
 | |
| 	enc = ossl_evp_get_cipherbyname(cipher);
 | |
| 	pass = ossl_pem_passwd_value(pass);
 | |
|     }
 | |
| 
 | |
|     bio = BIO_new(BIO_s_mem());
 | |
|     if (!bio)
 | |
| 	ossl_raise(ePKeyError, "BIO_new");
 | |
|     if (to_der) {
 | |
| 	if (!i2d_PrivateKey_bio(bio, pkey)) {
 | |
| 	    BIO_free(bio);
 | |
| 	    ossl_raise(ePKeyError, "i2d_PrivateKey_bio");
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| #if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
 | |
| 	if (!PEM_write_bio_PrivateKey_traditional(bio, pkey, enc, NULL, 0,
 | |
| 						  ossl_pem_passwd_cb,
 | |
| 						  (void *)pass)) {
 | |
| #else
 | |
| 	char pem_str[80];
 | |
| 	const char *aname;
 | |
| 
 | |
| 	EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL, &aname, pkey->ameth);
 | |
| 	snprintf(pem_str, sizeof(pem_str), "%s PRIVATE KEY", aname);
 | |
| 	if (!PEM_ASN1_write_bio((i2d_of_void *)i2d_PrivateKey, pem_str, bio,
 | |
| 				pkey, enc, NULL, 0, ossl_pem_passwd_cb,
 | |
| 				(void *)pass)) {
 | |
| #endif
 | |
| 	    BIO_free(bio);
 | |
| 	    ossl_raise(ePKeyError, "PEM_write_bio_PrivateKey_traditional");
 | |
| 	}
 | |
|     }
 | |
|     return ossl_membio2str(bio);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| do_pkcs8_export(int argc, VALUE *argv, VALUE self, int to_der)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     VALUE cipher, pass;
 | |
|     const EVP_CIPHER *enc = NULL;
 | |
|     BIO *bio;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     rb_scan_args(argc, argv, "02", &cipher, &pass);
 | |
|     if (argc > 0) {
 | |
| 	/*
 | |
| 	 * TODO: EncryptedPrivateKeyInfo actually has more options.
 | |
| 	 * Should they be exposed?
 | |
| 	 */
 | |
| 	enc = ossl_evp_get_cipherbyname(cipher);
 | |
| 	pass = ossl_pem_passwd_value(pass);
 | |
|     }
 | |
| 
 | |
|     bio = BIO_new(BIO_s_mem());
 | |
|     if (!bio)
 | |
| 	ossl_raise(ePKeyError, "BIO_new");
 | |
|     if (to_der) {
 | |
| 	if (!i2d_PKCS8PrivateKey_bio(bio, pkey, enc, NULL, 0,
 | |
| 				     ossl_pem_passwd_cb, (void *)pass)) {
 | |
| 	    BIO_free(bio);
 | |
| 	    ossl_raise(ePKeyError, "i2d_PKCS8PrivateKey_bio");
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	if (!PEM_write_bio_PKCS8PrivateKey(bio, pkey, enc, NULL, 0,
 | |
| 					   ossl_pem_passwd_cb, (void *)pass)) {
 | |
| 	    BIO_free(bio);
 | |
| 	    ossl_raise(ePKeyError, "PEM_write_bio_PKCS8PrivateKey");
 | |
| 	}
 | |
|     }
 | |
|     return ossl_membio2str(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.private_to_der                   -> string
 | |
|  *    pkey.private_to_der(cipher, password) -> string
 | |
|  *
 | |
|  * Serializes the private key to DER-encoded PKCS #8 format. If called without
 | |
|  * arguments, unencrypted PKCS #8 PrivateKeyInfo format is used. If called with
 | |
|  * a cipher name and a password, PKCS #8 EncryptedPrivateKeyInfo format with
 | |
|  * PBES2 encryption scheme is used.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_private_to_der(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return do_pkcs8_export(argc, argv, self, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.private_to_pem                   -> string
 | |
|  *    pkey.private_to_pem(cipher, password) -> string
 | |
|  *
 | |
|  * Serializes the private key to PEM-encoded PKCS #8 format. See #private_to_der
 | |
|  * for more details.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_private_to_pem(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return do_pkcs8_export(argc, argv, self, 0);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| ossl_pkey_export_spki(VALUE self, int to_der)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     BIO *bio;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     bio = BIO_new(BIO_s_mem());
 | |
|     if (!bio)
 | |
| 	ossl_raise(ePKeyError, "BIO_new");
 | |
|     if (to_der) {
 | |
| 	if (!i2d_PUBKEY_bio(bio, pkey)) {
 | |
| 	    BIO_free(bio);
 | |
| 	    ossl_raise(ePKeyError, "i2d_PUBKEY_bio");
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	if (!PEM_write_bio_PUBKEY(bio, pkey)) {
 | |
| 	    BIO_free(bio);
 | |
| 	    ossl_raise(ePKeyError, "PEM_write_bio_PUBKEY");
 | |
| 	}
 | |
|     }
 | |
|     return ossl_membio2str(bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.public_to_der -> string
 | |
|  *
 | |
|  * Serializes the public key to DER-encoded X.509 SubjectPublicKeyInfo format.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_public_to_der(VALUE self)
 | |
| {
 | |
|     return ossl_pkey_export_spki(self, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.public_to_pem -> string
 | |
|  *
 | |
|  * Serializes the public key to PEM-encoded X.509 SubjectPublicKeyInfo format.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_public_to_pem(VALUE self)
 | |
| {
 | |
|     return ossl_pkey_export_spki(self, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *      pkey.compare?(another_pkey) -> true | false
 | |
|  *
 | |
|  * Used primarily to check if an OpenSSL::X509::Certificate#public_key compares to its private key.
 | |
|  *
 | |
|  * == Example
 | |
|  *   x509 = OpenSSL::X509::Certificate.new(pem_encoded_certificate)
 | |
|  *   rsa_key = OpenSSL::PKey::RSA.new(pem_encoded_private_key)
 | |
|  *
 | |
|  *   rsa_key.compare?(x509.public_key) => true | false
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_compare(VALUE self, VALUE other)
 | |
| {
 | |
|     int ret;
 | |
|     EVP_PKEY *selfPKey;
 | |
|     EVP_PKEY *otherPKey;
 | |
| 
 | |
|     GetPKey(self, selfPKey);
 | |
|     GetPKey(other, otherPKey);
 | |
| 
 | |
|     /* Explicitly check the key type given EVP_PKEY_ASN1_METHOD(3)
 | |
|      * docs param_cmp could return any negative number.
 | |
|      */
 | |
|     if (EVP_PKEY_id(selfPKey) != EVP_PKEY_id(otherPKey))
 | |
|         ossl_raise(rb_eTypeError, "cannot match different PKey types");
 | |
| 
 | |
|     ret = EVP_PKEY_cmp(selfPKey, otherPKey);
 | |
| 
 | |
|     if (ret == 0)
 | |
|         return Qfalse;
 | |
|     else if (ret == 1)
 | |
|         return Qtrue;
 | |
|     else
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_cmp");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.sign(digest, data [, options]) -> string
 | |
|  *
 | |
|  * Hashes and signs the +data+ using a message digest algorithm +digest+ and
 | |
|  * a private key +pkey+.
 | |
|  *
 | |
|  * See #verify for the verification operation.
 | |
|  *
 | |
|  * See also the man page EVP_DigestSign(3).
 | |
|  *
 | |
|  * +digest+::
 | |
|  *   A String that represents the message digest algorithm name, or +nil+
 | |
|  *   if the PKey type requires no digest algorithm.
 | |
|  *   For backwards compatibility, this can be an instance of OpenSSL::Digest.
 | |
|  *   Its state will not affect the signature.
 | |
|  * +data+::
 | |
|  *   A String. The data to be hashed and signed.
 | |
|  * +options+::
 | |
|  *   A Hash that contains algorithm specific control operations to \OpenSSL.
 | |
|  *   See OpenSSL's man page EVP_PKEY_CTX_ctrl_str(3) for details.
 | |
|  *   +options+ parameter was added in version 3.0.
 | |
|  *
 | |
|  * Example:
 | |
|  *   data = "Sign me!"
 | |
|  *   pkey = OpenSSL::PKey.generate_key("RSA", rsa_keygen_bits: 2048)
 | |
|  *   signopts = { rsa_padding_mode: "pss" }
 | |
|  *   signature = pkey.sign("SHA256", data, signopts)
 | |
|  *
 | |
|  *   # Creates a copy of the RSA key pkey, but without the private components
 | |
|  *   pub_key = pkey.public_key
 | |
|  *   puts pub_key.verify("SHA256", signature, data, signopts) # => true
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_sign(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     VALUE digest, data, options, sig;
 | |
|     const EVP_MD *md = NULL;
 | |
|     EVP_MD_CTX *ctx;
 | |
|     EVP_PKEY_CTX *pctx;
 | |
|     size_t siglen;
 | |
|     int state;
 | |
| 
 | |
|     pkey = GetPrivPKeyPtr(self);
 | |
|     rb_scan_args(argc, argv, "21", &digest, &data, &options);
 | |
|     if (!NIL_P(digest))
 | |
|         md = ossl_evp_get_digestbyname(digest);
 | |
|     StringValue(data);
 | |
| 
 | |
|     ctx = EVP_MD_CTX_new();
 | |
|     if (!ctx)
 | |
|         ossl_raise(ePKeyError, "EVP_MD_CTX_new");
 | |
|     if (EVP_DigestSignInit(ctx, &pctx, md, /* engine */NULL, pkey) < 1) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_DigestSignInit");
 | |
|     }
 | |
|     if (!NIL_P(options)) {
 | |
|         pkey_ctx_apply_options(pctx, options, &state);
 | |
|         if (state) {
 | |
|             EVP_MD_CTX_free(ctx);
 | |
|             rb_jump_tag(state);
 | |
|         }
 | |
|     }
 | |
| #if OPENSSL_VERSION_NUMBER >= 0x10101000 && !defined(LIBRESSL_VERSION_NUMBER)
 | |
|     if (EVP_DigestSign(ctx, NULL, &siglen, (unsigned char *)RSTRING_PTR(data),
 | |
|                        RSTRING_LEN(data)) < 1) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_DigestSign");
 | |
|     }
 | |
|     if (siglen > LONG_MAX) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         rb_raise(ePKeyError, "signature would be too large");
 | |
|     }
 | |
|     sig = ossl_str_new(NULL, (long)siglen, &state);
 | |
|     if (state) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         rb_jump_tag(state);
 | |
|     }
 | |
|     if (EVP_DigestSign(ctx, (unsigned char *)RSTRING_PTR(sig), &siglen,
 | |
|                        (unsigned char *)RSTRING_PTR(data),
 | |
|                        RSTRING_LEN(data)) < 1) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_DigestSign");
 | |
|     }
 | |
| #else
 | |
|     if (EVP_DigestSignUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data)) < 1) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_DigestSignUpdate");
 | |
|     }
 | |
|     if (EVP_DigestSignFinal(ctx, NULL, &siglen) < 1) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_DigestSignFinal");
 | |
|     }
 | |
|     if (siglen > LONG_MAX) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         rb_raise(ePKeyError, "signature would be too large");
 | |
|     }
 | |
|     sig = ossl_str_new(NULL, (long)siglen, &state);
 | |
|     if (state) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         rb_jump_tag(state);
 | |
|     }
 | |
|     if (EVP_DigestSignFinal(ctx, (unsigned char *)RSTRING_PTR(sig),
 | |
|                             &siglen) < 1) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_DigestSignFinal");
 | |
|     }
 | |
| #endif
 | |
|     EVP_MD_CTX_free(ctx);
 | |
|     rb_str_set_len(sig, siglen);
 | |
|     return sig;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.verify(digest, signature, data [, options]) -> true or false
 | |
|  *
 | |
|  * Verifies the +signature+ for the +data+ using a message digest algorithm
 | |
|  * +digest+ and a public key +pkey+.
 | |
|  *
 | |
|  * Returns +true+ if the signature is successfully verified, +false+ otherwise.
 | |
|  * The caller must check the return value.
 | |
|  *
 | |
|  * See #sign for the signing operation and an example.
 | |
|  *
 | |
|  * See also the man page EVP_DigestVerify(3).
 | |
|  *
 | |
|  * +digest+::
 | |
|  *   See #sign.
 | |
|  * +signature+::
 | |
|  *   A String containing the signature to be verified.
 | |
|  * +data+::
 | |
|  *   See #sign.
 | |
|  * +options+::
 | |
|  *   See #sign. +options+ parameter was added in version 3.0.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_verify(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     VALUE digest, sig, data, options;
 | |
|     const EVP_MD *md = NULL;
 | |
|     EVP_MD_CTX *ctx;
 | |
|     EVP_PKEY_CTX *pctx;
 | |
|     int state, ret;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     rb_scan_args(argc, argv, "31", &digest, &sig, &data, &options);
 | |
|     ossl_pkey_check_public_key(pkey);
 | |
|     if (!NIL_P(digest))
 | |
|         md = ossl_evp_get_digestbyname(digest);
 | |
|     StringValue(sig);
 | |
|     StringValue(data);
 | |
| 
 | |
|     ctx = EVP_MD_CTX_new();
 | |
|     if (!ctx)
 | |
|         ossl_raise(ePKeyError, "EVP_MD_CTX_new");
 | |
|     if (EVP_DigestVerifyInit(ctx, &pctx, md, /* engine */NULL, pkey) < 1) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_DigestVerifyInit");
 | |
|     }
 | |
|     if (!NIL_P(options)) {
 | |
|         pkey_ctx_apply_options(pctx, options, &state);
 | |
|         if (state) {
 | |
|             EVP_MD_CTX_free(ctx);
 | |
|             rb_jump_tag(state);
 | |
|         }
 | |
|     }
 | |
| #if OPENSSL_VERSION_NUMBER >= 0x10101000 && !defined(LIBRESSL_VERSION_NUMBER)
 | |
|     ret = EVP_DigestVerify(ctx, (unsigned char *)RSTRING_PTR(sig),
 | |
|                            RSTRING_LEN(sig), (unsigned char *)RSTRING_PTR(data),
 | |
|                            RSTRING_LEN(data));
 | |
|     EVP_MD_CTX_free(ctx);
 | |
|     if (ret < 0)
 | |
|         ossl_raise(ePKeyError, "EVP_DigestVerify");
 | |
| #else
 | |
|     if (EVP_DigestVerifyUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data)) < 1) {
 | |
|         EVP_MD_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_DigestVerifyUpdate");
 | |
|     }
 | |
|     ret = EVP_DigestVerifyFinal(ctx, (unsigned char *)RSTRING_PTR(sig),
 | |
|                                 RSTRING_LEN(sig));
 | |
|     EVP_MD_CTX_free(ctx);
 | |
|     if (ret < 0)
 | |
|         ossl_raise(ePKeyError, "EVP_DigestVerifyFinal");
 | |
| #endif
 | |
|     if (ret)
 | |
|         return Qtrue;
 | |
|     else {
 | |
|         ossl_clear_error();
 | |
|         return Qfalse;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.sign_raw(digest, data [, options]) -> string
 | |
|  *
 | |
|  * Signs +data+ using a private key +pkey+. Unlike #sign, +data+ will not be
 | |
|  * hashed by +digest+ automatically.
 | |
|  *
 | |
|  * See #verify_raw for the verification operation.
 | |
|  *
 | |
|  * Added in version 3.0. See also the man page EVP_PKEY_sign(3).
 | |
|  *
 | |
|  * +digest+::
 | |
|  *   A String that represents the message digest algorithm name, or +nil+
 | |
|  *   if the PKey type requires no digest algorithm.
 | |
|  *   Although this method will not hash +data+ with it, this parameter may still
 | |
|  *   be required depending on the signature algorithm.
 | |
|  * +data+::
 | |
|  *   A String. The data to be signed.
 | |
|  * +options+::
 | |
|  *   A Hash that contains algorithm specific control operations to \OpenSSL.
 | |
|  *   See OpenSSL's man page EVP_PKEY_CTX_ctrl_str(3) for details.
 | |
|  *
 | |
|  * Example:
 | |
|  *   data = "Sign me!"
 | |
|  *   hash = OpenSSL::Digest.digest("SHA256", data)
 | |
|  *   pkey = OpenSSL::PKey.generate_key("RSA", rsa_keygen_bits: 2048)
 | |
|  *   signopts = { rsa_padding_mode: "pss" }
 | |
|  *   signature = pkey.sign_raw("SHA256", hash, signopts)
 | |
|  *
 | |
|  *   # Creates a copy of the RSA key pkey, but without the private components
 | |
|  *   pub_key = pkey.public_key
 | |
|  *   puts pub_key.verify_raw("SHA256", signature, hash, signopts) # => true
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_sign_raw(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     VALUE digest, data, options, sig;
 | |
|     const EVP_MD *md = NULL;
 | |
|     EVP_PKEY_CTX *ctx;
 | |
|     size_t outlen;
 | |
|     int state;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     rb_scan_args(argc, argv, "21", &digest, &data, &options);
 | |
|     if (!NIL_P(digest))
 | |
|         md = ossl_evp_get_digestbyname(digest);
 | |
|     StringValue(data);
 | |
| 
 | |
|     ctx = EVP_PKEY_CTX_new(pkey, /* engine */NULL);
 | |
|     if (!ctx)
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
 | |
|     if (EVP_PKEY_sign_init(ctx) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_sign_init");
 | |
|     }
 | |
|     if (md && EVP_PKEY_CTX_set_signature_md(ctx, md) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_CTX_set_signature_md");
 | |
|     }
 | |
|     if (!NIL_P(options)) {
 | |
|         pkey_ctx_apply_options(ctx, options, &state);
 | |
|         if (state) {
 | |
|             EVP_PKEY_CTX_free(ctx);
 | |
|             rb_jump_tag(state);
 | |
|         }
 | |
|     }
 | |
|     if (EVP_PKEY_sign(ctx, NULL, &outlen, (unsigned char *)RSTRING_PTR(data),
 | |
|                       RSTRING_LEN(data)) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_sign");
 | |
|     }
 | |
|     if (outlen > LONG_MAX) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         rb_raise(ePKeyError, "signature would be too large");
 | |
|     }
 | |
|     sig = ossl_str_new(NULL, (long)outlen, &state);
 | |
|     if (state) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         rb_jump_tag(state);
 | |
|     }
 | |
|     if (EVP_PKEY_sign(ctx, (unsigned char *)RSTRING_PTR(sig), &outlen,
 | |
|                       (unsigned char *)RSTRING_PTR(data),
 | |
|                       RSTRING_LEN(data)) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_sign");
 | |
|     }
 | |
|     EVP_PKEY_CTX_free(ctx);
 | |
|     rb_str_set_len(sig, outlen);
 | |
|     return sig;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.verify_raw(digest, signature, data [, options]) -> true or false
 | |
|  *
 | |
|  * Verifies the +signature+ for the +data+ using a public key +pkey+. Unlike
 | |
|  * #verify, this method will not hash +data+ with +digest+ automatically.
 | |
|  *
 | |
|  * Returns +true+ if the signature is successfully verified, +false+ otherwise.
 | |
|  * The caller must check the return value.
 | |
|  *
 | |
|  * See #sign_raw for the signing operation and an example code.
 | |
|  *
 | |
|  * Added in version 3.0. See also the man page EVP_PKEY_verify(3).
 | |
|  *
 | |
|  * +signature+::
 | |
|  *   A String containing the signature to be verified.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_verify_raw(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     VALUE digest, sig, data, options;
 | |
|     const EVP_MD *md = NULL;
 | |
|     EVP_PKEY_CTX *ctx;
 | |
|     int state, ret;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     rb_scan_args(argc, argv, "31", &digest, &sig, &data, &options);
 | |
|     ossl_pkey_check_public_key(pkey);
 | |
|     if (!NIL_P(digest))
 | |
|         md = ossl_evp_get_digestbyname(digest);
 | |
|     StringValue(sig);
 | |
|     StringValue(data);
 | |
| 
 | |
|     ctx = EVP_PKEY_CTX_new(pkey, /* engine */NULL);
 | |
|     if (!ctx)
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
 | |
|     if (EVP_PKEY_verify_init(ctx) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_verify_init");
 | |
|     }
 | |
|     if (md && EVP_PKEY_CTX_set_signature_md(ctx, md) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_CTX_set_signature_md");
 | |
|     }
 | |
|     if (!NIL_P(options)) {
 | |
|         pkey_ctx_apply_options(ctx, options, &state);
 | |
|         if (state) {
 | |
|             EVP_PKEY_CTX_free(ctx);
 | |
|             rb_jump_tag(state);
 | |
|         }
 | |
|     }
 | |
|     ret = EVP_PKEY_verify(ctx, (unsigned char *)RSTRING_PTR(sig),
 | |
|                           RSTRING_LEN(sig),
 | |
|                           (unsigned char *)RSTRING_PTR(data),
 | |
|                           RSTRING_LEN(data));
 | |
|     EVP_PKEY_CTX_free(ctx);
 | |
|     if (ret < 0)
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_verify");
 | |
| 
 | |
|     if (ret)
 | |
|         return Qtrue;
 | |
|     else {
 | |
|         ossl_clear_error();
 | |
|         return Qfalse;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.verify_recover(digest, signature [, options]) -> string
 | |
|  *
 | |
|  * Recovers the signed data from +signature+ using a public key +pkey+. Not all
 | |
|  * signature algorithms support this operation.
 | |
|  *
 | |
|  * Added in version 3.0. See also the man page EVP_PKEY_verify_recover(3).
 | |
|  *
 | |
|  * +signature+::
 | |
|  *   A String containing the signature to be verified.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_verify_recover(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     VALUE digest, sig, options, out;
 | |
|     const EVP_MD *md = NULL;
 | |
|     EVP_PKEY_CTX *ctx;
 | |
|     int state;
 | |
|     size_t outlen;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     rb_scan_args(argc, argv, "21", &digest, &sig, &options);
 | |
|     ossl_pkey_check_public_key(pkey);
 | |
|     if (!NIL_P(digest))
 | |
|         md = ossl_evp_get_digestbyname(digest);
 | |
|     StringValue(sig);
 | |
| 
 | |
|     ctx = EVP_PKEY_CTX_new(pkey, /* engine */NULL);
 | |
|     if (!ctx)
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
 | |
|     if (EVP_PKEY_verify_recover_init(ctx) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_verify_recover_init");
 | |
|     }
 | |
|     if (md && EVP_PKEY_CTX_set_signature_md(ctx, md) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_CTX_set_signature_md");
 | |
|     }
 | |
|     if (!NIL_P(options)) {
 | |
|         pkey_ctx_apply_options(ctx, options, &state);
 | |
|         if (state) {
 | |
|             EVP_PKEY_CTX_free(ctx);
 | |
|             rb_jump_tag(state);
 | |
|         }
 | |
|     }
 | |
|     if (EVP_PKEY_verify_recover(ctx, NULL, &outlen,
 | |
|                                 (unsigned char *)RSTRING_PTR(sig),
 | |
|                                 RSTRING_LEN(sig)) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_verify_recover");
 | |
|     }
 | |
|     out = ossl_str_new(NULL, (long)outlen, &state);
 | |
|     if (state) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         rb_jump_tag(state);
 | |
|     }
 | |
|     if (EVP_PKEY_verify_recover(ctx, (unsigned char *)RSTRING_PTR(out), &outlen,
 | |
|                                 (unsigned char *)RSTRING_PTR(sig),
 | |
|                                 RSTRING_LEN(sig)) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_verify_recover");
 | |
|     }
 | |
|     EVP_PKEY_CTX_free(ctx);
 | |
|     rb_str_set_len(out, outlen);
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.derive(peer_pkey) -> string
 | |
|  *
 | |
|  * Derives a shared secret from _pkey_ and _peer_pkey_. _pkey_ must contain
 | |
|  * the private components, _peer_pkey_ must contain the public components.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_derive(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey, *peer_pkey;
 | |
|     EVP_PKEY_CTX *ctx;
 | |
|     VALUE peer_pkey_obj, str;
 | |
|     size_t keylen;
 | |
|     int state;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     rb_scan_args(argc, argv, "1", &peer_pkey_obj);
 | |
|     GetPKey(peer_pkey_obj, peer_pkey);
 | |
| 
 | |
|     ctx = EVP_PKEY_CTX_new(pkey, /* engine */NULL);
 | |
|     if (!ctx)
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
 | |
|     if (EVP_PKEY_derive_init(ctx) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_derive_init");
 | |
|     }
 | |
|     if (EVP_PKEY_derive_set_peer(ctx, peer_pkey) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_derive_set_peer");
 | |
|     }
 | |
|     if (EVP_PKEY_derive(ctx, NULL, &keylen) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_derive");
 | |
|     }
 | |
|     if (keylen > LONG_MAX)
 | |
|         rb_raise(ePKeyError, "derived key would be too large");
 | |
|     str = ossl_str_new(NULL, (long)keylen, &state);
 | |
|     if (state) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         rb_jump_tag(state);
 | |
|     }
 | |
|     if (EVP_PKEY_derive(ctx, (unsigned char *)RSTRING_PTR(str), &keylen) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_derive");
 | |
|     }
 | |
|     EVP_PKEY_CTX_free(ctx);
 | |
|     rb_str_set_len(str, keylen);
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.encrypt(data [, options]) -> string
 | |
|  *
 | |
|  * Performs a public key encryption operation using +pkey+.
 | |
|  *
 | |
|  * See #decrypt for the reverse operation.
 | |
|  *
 | |
|  * Added in version 3.0. See also the man page EVP_PKEY_encrypt(3).
 | |
|  *
 | |
|  * +data+::
 | |
|  *   A String to be encrypted.
 | |
|  * +options+::
 | |
|  *   A Hash that contains algorithm specific control operations to \OpenSSL.
 | |
|  *   See OpenSSL's man page EVP_PKEY_CTX_ctrl_str(3) for details.
 | |
|  *
 | |
|  * Example:
 | |
|  *   pkey = OpenSSL::PKey.generate_key("RSA", rsa_keygen_bits: 2048)
 | |
|  *   data = "secret data"
 | |
|  *   encrypted = pkey.encrypt(data, rsa_padding_mode: "oaep")
 | |
|  *   decrypted = pkey.decrypt(data, rsa_padding_mode: "oaep")
 | |
|  *   p decrypted #=> "secret data"
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_encrypt(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     EVP_PKEY_CTX *ctx;
 | |
|     VALUE data, options, str;
 | |
|     size_t outlen;
 | |
|     int state;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     rb_scan_args(argc, argv, "11", &data, &options);
 | |
|     StringValue(data);
 | |
| 
 | |
|     ctx = EVP_PKEY_CTX_new(pkey, /* engine */NULL);
 | |
|     if (!ctx)
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
 | |
|     if (EVP_PKEY_encrypt_init(ctx) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_encrypt_init");
 | |
|     }
 | |
|     if (!NIL_P(options)) {
 | |
|         pkey_ctx_apply_options(ctx, options, &state);
 | |
|         if (state) {
 | |
|             EVP_PKEY_CTX_free(ctx);
 | |
|             rb_jump_tag(state);
 | |
|         }
 | |
|     }
 | |
|     if (EVP_PKEY_encrypt(ctx, NULL, &outlen,
 | |
|                          (unsigned char *)RSTRING_PTR(data),
 | |
|                          RSTRING_LEN(data)) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_encrypt");
 | |
|     }
 | |
|     if (outlen > LONG_MAX) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         rb_raise(ePKeyError, "encrypted data would be too large");
 | |
|     }
 | |
|     str = ossl_str_new(NULL, (long)outlen, &state);
 | |
|     if (state) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         rb_jump_tag(state);
 | |
|     }
 | |
|     if (EVP_PKEY_encrypt(ctx, (unsigned char *)RSTRING_PTR(str), &outlen,
 | |
|                          (unsigned char *)RSTRING_PTR(data),
 | |
|                          RSTRING_LEN(data)) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_encrypt");
 | |
|     }
 | |
|     EVP_PKEY_CTX_free(ctx);
 | |
|     rb_str_set_len(str, outlen);
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    pkey.decrypt(data [, options]) -> string
 | |
|  *
 | |
|  * Performs a public key decryption operation using +pkey+.
 | |
|  *
 | |
|  * See #encrypt for a description of the parameters and an example.
 | |
|  *
 | |
|  * Added in version 3.0. See also the man page EVP_PKEY_decrypt(3).
 | |
|  */
 | |
| static VALUE
 | |
| ossl_pkey_decrypt(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     EVP_PKEY *pkey;
 | |
|     EVP_PKEY_CTX *ctx;
 | |
|     VALUE data, options, str;
 | |
|     size_t outlen;
 | |
|     int state;
 | |
| 
 | |
|     GetPKey(self, pkey);
 | |
|     rb_scan_args(argc, argv, "11", &data, &options);
 | |
|     StringValue(data);
 | |
| 
 | |
|     ctx = EVP_PKEY_CTX_new(pkey, /* engine */NULL);
 | |
|     if (!ctx)
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
 | |
|     if (EVP_PKEY_decrypt_init(ctx) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_decrypt_init");
 | |
|     }
 | |
|     if (!NIL_P(options)) {
 | |
|         pkey_ctx_apply_options(ctx, options, &state);
 | |
|         if (state) {
 | |
|             EVP_PKEY_CTX_free(ctx);
 | |
|             rb_jump_tag(state);
 | |
|         }
 | |
|     }
 | |
|     if (EVP_PKEY_decrypt(ctx, NULL, &outlen,
 | |
|                          (unsigned char *)RSTRING_PTR(data),
 | |
|                          RSTRING_LEN(data)) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_decrypt");
 | |
|     }
 | |
|     if (outlen > LONG_MAX) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         rb_raise(ePKeyError, "decrypted data would be too large");
 | |
|     }
 | |
|     str = ossl_str_new(NULL, (long)outlen, &state);
 | |
|     if (state) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         rb_jump_tag(state);
 | |
|     }
 | |
|     if (EVP_PKEY_decrypt(ctx, (unsigned char *)RSTRING_PTR(str), &outlen,
 | |
|                          (unsigned char *)RSTRING_PTR(data),
 | |
|                          RSTRING_LEN(data)) <= 0) {
 | |
|         EVP_PKEY_CTX_free(ctx);
 | |
|         ossl_raise(ePKeyError, "EVP_PKEY_decrypt");
 | |
|     }
 | |
|     EVP_PKEY_CTX_free(ctx);
 | |
|     rb_str_set_len(str, outlen);
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * INIT
 | |
|  */
 | |
| void
 | |
| Init_ossl_pkey(void)
 | |
| {
 | |
| #undef rb_intern
 | |
| #if 0
 | |
|     mOSSL = rb_define_module("OpenSSL");
 | |
|     eOSSLError = rb_define_class_under(mOSSL, "OpenSSLError", rb_eStandardError);
 | |
| #endif
 | |
| 
 | |
|     /* Document-module: OpenSSL::PKey
 | |
|      *
 | |
|      * == Asymmetric Public Key Algorithms
 | |
|      *
 | |
|      * Asymmetric public key algorithms solve the problem of establishing and
 | |
|      * sharing secret keys to en-/decrypt messages. The key in such an
 | |
|      * algorithm consists of two parts: a public key that may be distributed
 | |
|      * to others and a private key that needs to remain secret.
 | |
|      *
 | |
|      * Messages encrypted with a public key can only be decrypted by
 | |
|      * recipients that are in possession of the associated private key.
 | |
|      * Since public key algorithms are considerably slower than symmetric
 | |
|      * key algorithms (cf. OpenSSL::Cipher) they are often used to establish
 | |
|      * a symmetric key shared between two parties that are in possession of
 | |
|      * each other's public key.
 | |
|      *
 | |
|      * Asymmetric algorithms offer a lot of nice features that are used in a
 | |
|      * lot of different areas. A very common application is the creation and
 | |
|      * validation of digital signatures. To sign a document, the signatory
 | |
|      * generally uses a message digest algorithm (cf. OpenSSL::Digest) to
 | |
|      * compute a digest of the document that is then encrypted (i.e. signed)
 | |
|      * using the private key. Anyone in possession of the public key may then
 | |
|      * verify the signature by computing the message digest of the original
 | |
|      * document on their own, decrypting the signature using the signatory's
 | |
|      * public key and comparing the result to the message digest they
 | |
|      * previously computed. The signature is valid if and only if the
 | |
|      * decrypted signature is equal to this message digest.
 | |
|      *
 | |
|      * The PKey module offers support for three popular public/private key
 | |
|      * algorithms:
 | |
|      * * RSA (OpenSSL::PKey::RSA)
 | |
|      * * DSA (OpenSSL::PKey::DSA)
 | |
|      * * Elliptic Curve Cryptography (OpenSSL::PKey::EC)
 | |
|      * Each of these implementations is in fact a sub-class of the abstract
 | |
|      * PKey class which offers the interface for supporting digital signatures
 | |
|      * in the form of PKey#sign and PKey#verify.
 | |
|      *
 | |
|      * == Diffie-Hellman Key Exchange
 | |
|      *
 | |
|      * Finally PKey also features OpenSSL::PKey::DH, an implementation of
 | |
|      * the Diffie-Hellman key exchange protocol based on discrete logarithms
 | |
|      * in finite fields, the same basis that DSA is built on.
 | |
|      * The Diffie-Hellman protocol can be used to exchange (symmetric) keys
 | |
|      * over insecure channels without needing any prior joint knowledge
 | |
|      * between the participating parties. As the security of DH demands
 | |
|      * relatively long "public keys" (i.e. the part that is overtly
 | |
|      * transmitted between participants) DH tends to be quite slow. If
 | |
|      * security or speed is your primary concern, OpenSSL::PKey::EC offers
 | |
|      * another implementation of the Diffie-Hellman protocol.
 | |
|      *
 | |
|      */
 | |
|     mPKey = rb_define_module_under(mOSSL, "PKey");
 | |
| 
 | |
|     /* Document-class: OpenSSL::PKey::PKeyError
 | |
|      *
 | |
|      *Raised when errors occur during PKey#sign or PKey#verify.
 | |
|      */
 | |
|     ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError);
 | |
| 
 | |
|     /* Document-class: OpenSSL::PKey::PKey
 | |
|      *
 | |
|      * An abstract class that bundles signature creation (PKey#sign) and
 | |
|      * validation (PKey#verify) that is common to all implementations except
 | |
|      * OpenSSL::PKey::DH
 | |
|      * * OpenSSL::PKey::RSA
 | |
|      * * OpenSSL::PKey::DSA
 | |
|      * * OpenSSL::PKey::EC
 | |
|      */
 | |
|     cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject);
 | |
| 
 | |
|     rb_define_module_function(mPKey, "read", ossl_pkey_new_from_data, -1);
 | |
|     rb_define_module_function(mPKey, "generate_parameters", ossl_pkey_s_generate_parameters, -1);
 | |
|     rb_define_module_function(mPKey, "generate_key", ossl_pkey_s_generate_key, -1);
 | |
| 
 | |
|     rb_define_alloc_func(cPKey, ossl_pkey_alloc);
 | |
|     rb_define_method(cPKey, "initialize", ossl_pkey_initialize, 0);
 | |
|     rb_define_method(cPKey, "oid", ossl_pkey_oid, 0);
 | |
|     rb_define_method(cPKey, "inspect", ossl_pkey_inspect, 0);
 | |
|     rb_define_method(cPKey, "to_text", ossl_pkey_to_text, 0);
 | |
|     rb_define_method(cPKey, "private_to_der", ossl_pkey_private_to_der, -1);
 | |
|     rb_define_method(cPKey, "private_to_pem", ossl_pkey_private_to_pem, -1);
 | |
|     rb_define_method(cPKey, "public_to_der", ossl_pkey_public_to_der, 0);
 | |
|     rb_define_method(cPKey, "public_to_pem", ossl_pkey_public_to_pem, 0);
 | |
|     rb_define_method(cPKey, "compare?", ossl_pkey_compare, 1);
 | |
| 
 | |
|     rb_define_method(cPKey, "sign", ossl_pkey_sign, -1);
 | |
|     rb_define_method(cPKey, "verify", ossl_pkey_verify, -1);
 | |
|     rb_define_method(cPKey, "sign_raw", ossl_pkey_sign_raw, -1);
 | |
|     rb_define_method(cPKey, "verify_raw", ossl_pkey_verify_raw, -1);
 | |
|     rb_define_method(cPKey, "verify_recover", ossl_pkey_verify_recover, -1);
 | |
|     rb_define_method(cPKey, "derive", ossl_pkey_derive, -1);
 | |
|     rb_define_method(cPKey, "encrypt", ossl_pkey_encrypt, -1);
 | |
|     rb_define_method(cPKey, "decrypt", ossl_pkey_decrypt, -1);
 | |
| 
 | |
|     id_private_q = rb_intern("private?");
 | |
| 
 | |
|     /*
 | |
|      * INIT rsa, dsa, dh, ec
 | |
|      */
 | |
|     Init_ossl_rsa();
 | |
|     Init_ossl_dsa();
 | |
|     Init_ossl_dh();
 | |
|     Init_ossl_ec();
 | |
| }
 | 
