1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/class.c
ko1 9e73d45e0f * method.h: introduce rb_method_refined_t for refined method entry.
* class.c (move_refined_method): catch up this fix.
* gc.c (mark_method_entry): ditto.
* vm_eval.c (vm_call0_body): ditto.
* vm_insnhelper.c (vm_call_method): ditto.
* vm_method.c: ditto.



git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@50761 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-06-03 22:27:51 +00:00

2005 lines
51 KiB
C

/**********************************************************************
class.c -
$Author$
created at: Tue Aug 10 15:05:44 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
/*!
* \defgroup class Classes and their hierarchy.
* \par Terminology
* - class: same as in Ruby.
* - singleton class: class for a particular object
* - eigenclass: = singleton class
* - metaclass: class of a class. metaclass is a kind of singleton class.
* - metametaclass: class of a metaclass.
* - meta^(n)-class: class of a meta^(n-1)-class.
* - attached object: A singleton class knows its unique instance.
* The instance is called the attached object for the singleton class.
* \{
*/
#include "internal.h"
#include "ruby/st.h"
#include "constant.h"
#include "vm_core.h"
#include <ctype.h>
#define id_attached id__attached__
void
rb_class_subclass_add(VALUE super, VALUE klass)
{
rb_subclass_entry_t *entry, *head;
if (super && super != Qundef) {
entry = ALLOC(rb_subclass_entry_t);
entry->klass = klass;
entry->next = NULL;
head = RCLASS_EXT(super)->subclasses;
if (head) {
entry->next = head;
RCLASS_EXT(head->klass)->parent_subclasses = &entry->next;
}
RCLASS_EXT(super)->subclasses = entry;
RCLASS_EXT(klass)->parent_subclasses = &RCLASS_EXT(super)->subclasses;
}
}
static void
rb_module_add_to_subclasses_list(VALUE module, VALUE iclass)
{
rb_subclass_entry_t *entry, *head;
entry = ALLOC(rb_subclass_entry_t);
entry->klass = iclass;
entry->next = NULL;
head = RCLASS_EXT(module)->subclasses;
if (head) {
entry->next = head;
RCLASS_EXT(head->klass)->module_subclasses = &entry->next;
}
RCLASS_EXT(module)->subclasses = entry;
RCLASS_EXT(iclass)->module_subclasses = &RCLASS_EXT(module)->subclasses;
}
void
rb_class_remove_from_super_subclasses(VALUE klass)
{
rb_subclass_entry_t *entry;
if (RCLASS_EXT(klass)->parent_subclasses) {
entry = *RCLASS_EXT(klass)->parent_subclasses;
*RCLASS_EXT(klass)->parent_subclasses = entry->next;
if (entry->next) {
RCLASS_EXT(entry->next->klass)->parent_subclasses = RCLASS_EXT(klass)->parent_subclasses;
}
xfree(entry);
}
RCLASS_EXT(klass)->parent_subclasses = NULL;
}
void
rb_class_remove_from_module_subclasses(VALUE klass)
{
rb_subclass_entry_t *entry;
if (RCLASS_EXT(klass)->module_subclasses) {
entry = *RCLASS_EXT(klass)->module_subclasses;
*RCLASS_EXT(klass)->module_subclasses = entry->next;
if (entry->next) {
RCLASS_EXT(entry->next->klass)->module_subclasses = RCLASS_EXT(klass)->module_subclasses;
}
xfree(entry);
}
RCLASS_EXT(klass)->module_subclasses = NULL;
}
void
rb_class_foreach_subclass(VALUE klass, void (*f)(VALUE, VALUE), VALUE arg)
{
rb_subclass_entry_t *cur = RCLASS_EXT(klass)->subclasses;
/* do not be tempted to simplify this loop into a for loop, the order of
operations is important here if `f` modifies the linked list */
while (cur) {
VALUE curklass = cur->klass;
cur = cur->next;
f(curklass, arg);
}
}
static void
class_detach_subclasses(VALUE klass, VALUE arg)
{
rb_class_remove_from_super_subclasses(klass);
}
void
rb_class_detach_subclasses(VALUE klass)
{
rb_class_foreach_subclass(klass, class_detach_subclasses, Qnil);
}
static void
class_detach_module_subclasses(VALUE klass, VALUE arg)
{
rb_class_remove_from_module_subclasses(klass);
}
void
rb_class_detach_module_subclasses(VALUE klass)
{
rb_class_foreach_subclass(klass, class_detach_module_subclasses, Qnil);
}
/**
* Allocates a struct RClass for a new class.
*
* \param flags initial value for basic.flags of the returned class.
* \param klass the class of the returned class.
* \return an uninitialized Class object.
* \pre \p klass must refer \c Class class or an ancestor of Class.
* \pre \code (flags | T_CLASS) != 0 \endcode
* \post the returned class can safely be \c #initialize 'd.
*
* \note this function is not Class#allocate.
*/
static VALUE
class_alloc(VALUE flags, VALUE klass)
{
NEWOBJ_OF(obj, struct RClass, klass, (flags & T_MASK) | FL_PROMOTED1 /* start from age == 2 */ | (RGENGC_WB_PROTECTED_CLASS ? FL_WB_PROTECTED : 0));
obj->ptr = ZALLOC(rb_classext_t);
/* ZALLOC
RCLASS_IV_TBL(obj) = 0;
RCLASS_CONST_TBL(obj) = 0;
RCLASS_M_TBL(obj) = 0;
RCLASS_IV_INDEX_TBL(obj) = 0;
RCLASS_SET_SUPER((VALUE)obj, 0);
RCLASS_EXT(obj)->subclasses = NULL;
RCLASS_EXT(obj)->parent_subclasses = NULL;
RCLASS_EXT(obj)->module_subclasses = NULL;
*/
RCLASS_SET_ORIGIN((VALUE)obj, (VALUE)obj);
RCLASS_SERIAL(obj) = rb_next_class_serial();
RCLASS_REFINED_CLASS(obj) = Qnil;
RCLASS_EXT(obj)->allocator = 0;
return (VALUE)obj;
}
/*!
* A utility function that wraps class_alloc.
*
* allocates a class and initializes safely.
* \param super a class from which the new class derives.
* \return a class object.
* \pre \a super must be a class.
* \post the metaclass of the new class is Class.
*/
VALUE
rb_class_boot(VALUE super)
{
VALUE klass = class_alloc(T_CLASS, rb_cClass);
RCLASS_SET_SUPER(klass, super);
RCLASS_M_TBL_INIT(klass);
OBJ_INFECT(klass, super);
return (VALUE)klass;
}
/*!
* Ensures a class can be derived from super.
*
* \param super a reference to an object.
* \exception TypeError if \a super is not a Class or \a super is a singleton class.
*/
void
rb_check_inheritable(VALUE super)
{
if (!RB_TYPE_P(super, T_CLASS)) {
rb_raise(rb_eTypeError, "superclass must be a Class (%s given)",
rb_obj_classname(super));
}
if (RBASIC(super)->flags & FL_SINGLETON) {
rb_raise(rb_eTypeError, "can't make subclass of singleton class");
}
if (super == rb_cClass) {
rb_raise(rb_eTypeError, "can't make subclass of Class");
}
}
/*!
* Creates a new class.
* \param super a class from which the new class derives.
* \exception TypeError \a super is not inheritable.
* \exception TypeError \a super is the Class class.
*/
VALUE
rb_class_new(VALUE super)
{
Check_Type(super, T_CLASS);
rb_check_inheritable(super);
return rb_class_boot(super);
}
static void
clone_method(VALUE old_klass, VALUE new_klass, ID mid, const rb_method_entry_t *me)
{
if (me->def->type == VM_METHOD_TYPE_ISEQ) {
VALUE newiseqval;
rb_cref_t *new_cref;
newiseqval = rb_iseq_clone(me->def->body.iseq.iseqptr->self, new_klass);
rb_vm_rewrite_cref(me->def->body.iseq.cref, old_klass, new_klass, &new_cref);
rb_add_method_iseq(new_klass, mid, newiseqval, new_cref, me->def->flags.visi);
RB_GC_GUARD(newiseqval);
}
else {
rb_method_entry_set(new_klass, mid, me, me->def->flags.visi);
}
}
struct clone_method_arg {
VALUE new_klass;
VALUE old_klass;
};
static int
clone_method_i(st_data_t key, st_data_t value, st_data_t data)
{
const struct clone_method_arg *arg = (struct clone_method_arg *)data;
clone_method(arg->old_klass, arg->new_klass, (ID)key, (const rb_method_entry_t *)value);
return ST_CONTINUE;
}
struct clone_const_arg {
VALUE klass;
st_table *tbl;
};
static int
clone_const(ID key, const rb_const_entry_t *ce, struct clone_const_arg *arg)
{
rb_const_entry_t *nce = ALLOC(rb_const_entry_t);
MEMCPY(nce, ce, rb_const_entry_t, 1);
RB_OBJ_WRITTEN(arg->klass, Qundef, ce->value);
RB_OBJ_WRITTEN(arg->klass, Qundef, ce->file);
st_insert(arg->tbl, key, (st_data_t)nce);
return ST_CONTINUE;
}
static int
clone_const_i(st_data_t key, st_data_t value, st_data_t data)
{
return clone_const((ID)key, (const rb_const_entry_t *)value, (struct clone_const_arg *)data);
}
static void
class_init_copy_check(VALUE clone, VALUE orig)
{
if (orig == rb_cBasicObject) {
rb_raise(rb_eTypeError, "can't copy the root class");
}
if (RCLASS_SUPER(clone) != 0 || clone == rb_cBasicObject) {
rb_raise(rb_eTypeError, "already initialized class");
}
if (FL_TEST(orig, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "can't copy singleton class");
}
}
/* :nodoc: */
VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
if (RB_TYPE_P(clone, T_CLASS)) {
class_init_copy_check(clone, orig);
}
if (!OBJ_INIT_COPY(clone, orig)) return clone;
if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone);
}
RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig));
RCLASS_EXT(clone)->allocator = RCLASS_EXT(orig)->allocator;
if (RCLASS_IV_TBL(clone)) {
st_free_table(RCLASS_IV_TBL(clone));
RCLASS_IV_TBL(clone) = 0;
}
if (RCLASS_CONST_TBL(clone)) {
rb_free_const_table(RCLASS_CONST_TBL(clone));
RCLASS_CONST_TBL(clone) = 0;
}
RCLASS_M_TBL(clone) = 0;
if (RCLASS_IV_TBL(orig)) {
st_data_t id;
RCLASS_IV_TBL(clone) = rb_st_copy(clone, RCLASS_IV_TBL(orig));
CONST_ID(id, "__tmp_classpath__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
CONST_ID(id, "__classpath__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
CONST_ID(id, "__classid__");
st_delete(RCLASS_IV_TBL(clone), &id, 0);
}
if (RCLASS_CONST_TBL(orig)) {
struct clone_const_arg arg;
RCLASS_CONST_TBL(clone) = st_init_numtable();
arg.klass = clone;
arg.tbl = RCLASS_CONST_TBL(clone);
st_foreach(RCLASS_CONST_TBL(orig), clone_const_i, (st_data_t)&arg);
}
if (RCLASS_M_TBL(orig)) {
struct clone_method_arg arg;
arg.old_klass = orig;
arg.new_klass = clone;
RCLASS_M_TBL_INIT(clone);
st_foreach(RCLASS_M_TBL(orig), clone_method_i, (st_data_t)&arg);
}
return clone;
}
VALUE
rb_singleton_class_clone(VALUE obj)
{
return rb_singleton_class_clone_and_attach(obj, Qundef);
}
VALUE
rb_singleton_class_clone_and_attach(VALUE obj, VALUE attach)
{
const VALUE klass = RBASIC(obj)->klass;
if (!FL_TEST(klass, FL_SINGLETON))
return klass;
else {
/* copy singleton(unnamed) class */
VALUE clone = class_alloc(RBASIC(klass)->flags, 0);
if (BUILTIN_TYPE(obj) == T_CLASS) {
RBASIC_SET_CLASS(clone, clone);
}
else {
RBASIC_SET_CLASS(clone, rb_singleton_class_clone(klass));
}
RCLASS_SET_SUPER(clone, RCLASS_SUPER(klass));
RCLASS_EXT(clone)->allocator = RCLASS_EXT(klass)->allocator;
if (RCLASS_IV_TBL(klass)) {
RCLASS_IV_TBL(clone) = rb_st_copy(clone, RCLASS_IV_TBL(klass));
}
if (RCLASS_CONST_TBL(klass)) {
struct clone_const_arg arg;
RCLASS_CONST_TBL(clone) = st_init_numtable();
arg.klass = clone;
arg.tbl = RCLASS_CONST_TBL(clone);
st_foreach(RCLASS_CONST_TBL(klass), clone_const_i, (st_data_t)&arg);
}
if (attach != Qundef) {
rb_singleton_class_attached(clone, attach);
}
RCLASS_M_TBL_INIT(clone);
{
struct clone_method_arg arg;
arg.old_klass = klass;
arg.new_klass = clone;
st_foreach(RCLASS_M_TBL(klass), clone_method_i, (st_data_t)&arg);
}
rb_singleton_class_attached(RBASIC(clone)->klass, clone);
FL_SET(clone, FL_SINGLETON);
return clone;
}
}
/*!
* Attach a object to a singleton class.
* @pre \a klass is the singleton class of \a obj.
*/
void
rb_singleton_class_attached(VALUE klass, VALUE obj)
{
if (FL_TEST(klass, FL_SINGLETON)) {
if (!RCLASS_IV_TBL(klass)) {
RCLASS_IV_TBL(klass) = st_init_numtable();
}
rb_st_insert_id_and_value(klass, RCLASS_IV_TBL(klass), id_attached, obj);
}
}
#define METACLASS_OF(k) RBASIC(k)->klass
#define SET_METACLASS_OF(k, cls) RBASIC_SET_CLASS(k, cls)
/*!
* whether k is a meta^(n)-class of Class class
* @retval 1 if \a k is a meta^(n)-class of Class class (n >= 0)
* @retval 0 otherwise
*/
#define META_CLASS_OF_CLASS_CLASS_P(k) (METACLASS_OF(k) == (k))
/*!
* whether k has a metaclass
* @retval 1 if \a k has a metaclass
* @retval 0 otherwise
*/
#define HAVE_METACLASS_P(k) \
(FL_TEST(METACLASS_OF(k), FL_SINGLETON) && \
rb_ivar_get(METACLASS_OF(k), id_attached) == (k))
/*!
* ensures \a klass belongs to its own eigenclass.
* @return the eigenclass of \a klass
* @post \a klass belongs to the returned eigenclass.
* i.e. the attached object of the eigenclass is \a klass.
* @note this macro creates a new eigenclass if necessary.
*/
#define ENSURE_EIGENCLASS(klass) \
(HAVE_METACLASS_P(klass) ? METACLASS_OF(klass) : make_metaclass(klass))
/*!
* Creates a metaclass of \a klass
* \param klass a class
* \return created metaclass for the class
* \pre \a klass is a Class object
* \pre \a klass has no singleton class.
* \post the class of \a klass is the returned class.
* \post the returned class is meta^(n+1)-class when \a klass is a meta^(n)-klass for n >= 0
*/
static inline VALUE
make_metaclass(VALUE klass)
{
VALUE super;
VALUE metaclass = rb_class_boot(Qundef);
FL_SET(metaclass, FL_SINGLETON);
rb_singleton_class_attached(metaclass, klass);
if (META_CLASS_OF_CLASS_CLASS_P(klass)) {
SET_METACLASS_OF(klass, metaclass);
SET_METACLASS_OF(metaclass, metaclass);
}
else {
VALUE tmp = METACLASS_OF(klass); /* for a meta^(n)-class klass, tmp is meta^(n)-class of Class class */
SET_METACLASS_OF(klass, metaclass);
SET_METACLASS_OF(metaclass, ENSURE_EIGENCLASS(tmp));
}
super = RCLASS_SUPER(klass);
while (RB_TYPE_P(super, T_ICLASS)) super = RCLASS_SUPER(super);
RCLASS_SET_SUPER(metaclass, super ? ENSURE_EIGENCLASS(super) : rb_cClass);
OBJ_INFECT(metaclass, RCLASS_SUPER(metaclass));
return metaclass;
}
/*!
* Creates a singleton class for \a obj.
* \pre \a obj must not a immediate nor a special const.
* \pre \a obj must not a Class object.
* \pre \a obj has no singleton class.
*/
static inline VALUE
make_singleton_class(VALUE obj)
{
VALUE orig_class = RBASIC(obj)->klass;
VALUE klass = rb_class_boot(orig_class);
FL_SET(klass, FL_SINGLETON);
RBASIC_SET_CLASS(obj, klass);
rb_singleton_class_attached(klass, obj);
SET_METACLASS_OF(klass, METACLASS_OF(rb_class_real(orig_class)));
return klass;
}
static VALUE
boot_defclass(const char *name, VALUE super)
{
VALUE obj = rb_class_boot(super);
ID id = rb_intern(name);
rb_name_class(obj, id);
rb_const_set((rb_cObject ? rb_cObject : obj), id, obj);
return obj;
}
void
Init_class_hierarchy(void)
{
rb_cBasicObject = boot_defclass("BasicObject", 0);
rb_cObject = boot_defclass("Object", rb_cBasicObject);
rb_cModule = boot_defclass("Module", rb_cObject);
rb_cClass = boot_defclass("Class", rb_cModule);
rb_const_set(rb_cObject, rb_intern_const("BasicObject"), rb_cBasicObject);
RBASIC_SET_CLASS(rb_cClass, rb_cClass);
RBASIC_SET_CLASS(rb_cModule, rb_cClass);
RBASIC_SET_CLASS(rb_cObject, rb_cClass);
RBASIC_SET_CLASS(rb_cBasicObject, rb_cClass);
}
/*!
* \internal
* Creates a new *singleton class* for an object.
*
* \pre \a obj has no singleton class.
* \note DO NOT USE the function in an extension libraries. Use \ref rb_singleton_class.
* \param obj An object.
* \param unused ignored.
* \return The singleton class of the object.
*/
VALUE
rb_make_metaclass(VALUE obj, VALUE unused)
{
if (BUILTIN_TYPE(obj) == T_CLASS) {
return make_metaclass(obj);
}
else {
return make_singleton_class(obj);
}
}
/*!
* Defines a new class.
* \param id ignored
* \param super A class from which the new class will derive. NULL means \c Object class.
* \return the created class
* \throw TypeError if super is not a \c Class object.
*
* \note the returned class will not be associated with \a id.
* You must explicitly set a class name if necessary.
*/
VALUE
rb_define_class_id(ID id, VALUE super)
{
VALUE klass;
if (!super) super = rb_cObject;
klass = rb_class_new(super);
rb_make_metaclass(klass, RBASIC(super)->klass);
return klass;
}
/*!
* Calls Class#inherited.
* \param super A class which will be called #inherited.
* NULL means Object class.
* \param klass A Class object which derived from \a super
* \return the value \c Class#inherited's returns
* \pre Each of \a super and \a klass must be a \c Class object.
*/
VALUE
rb_class_inherited(VALUE super, VALUE klass)
{
ID inherited;
if (!super) super = rb_cObject;
CONST_ID(inherited, "inherited");
return rb_funcall(super, inherited, 1, klass);
}
/*!
* Defines a top-level class.
* \param name name of the class
* \param super a class from which the new class will derive.
* NULL means \c Object class.
* \return the created class
* \throw TypeError if the constant name \a name is already taken but
* the constant is not a \c Class.
* \throw NameError if the class is already defined but the class can not
* be reopened because its superclass is not \a super.
* \post top-level constant named \a name refers the returned class.
*
* \note if a class named \a name is already defined and its superclass is
* \a super, the function just returns the defined class.
*/
VALUE
rb_define_class(const char *name, VALUE super)
{
VALUE klass;
ID id;
id = rb_intern(name);
if (rb_const_defined(rb_cObject, id)) {
klass = rb_const_get(rb_cObject, id);
if (!RB_TYPE_P(klass, T_CLASS)) {
rb_raise(rb_eTypeError, "%s is not a class", name);
}
if (rb_class_real(RCLASS_SUPER(klass)) != super) {
rb_raise(rb_eTypeError, "superclass mismatch for class %s", name);
}
return klass;
}
if (!super) {
rb_warn("no super class for `%s', Object assumed", name);
}
klass = rb_define_class_id(id, super);
rb_vm_add_root_module(id, klass);
rb_name_class(klass, id);
rb_const_set(rb_cObject, id, klass);
rb_class_inherited(super, klass);
return klass;
}
/*!
* Defines a class under the namespace of \a outer.
* \param outer a class which contains the new class.
* \param name name of the new class
* \param super a class from which the new class will derive.
* NULL means \c Object class.
* \return the created class
* \throw TypeError if the constant name \a name is already taken but
* the constant is not a \c Class.
* \throw NameError if the class is already defined but the class can not
* be reopened because its superclass is not \a super.
* \post top-level constant named \a name refers the returned class.
*
* \note if a class named \a name is already defined and its superclass is
* \a super, the function just returns the defined class.
*/
VALUE
rb_define_class_under(VALUE outer, const char *name, VALUE super)
{
return rb_define_class_id_under(outer, rb_intern(name), super);
}
/*!
* Defines a class under the namespace of \a outer.
* \param outer a class which contains the new class.
* \param id name of the new class
* \param super a class from which the new class will derive.
* NULL means \c Object class.
* \return the created class
* \throw TypeError if the constant name \a name is already taken but
* the constant is not a \c Class.
* \throw NameError if the class is already defined but the class can not
* be reopened because its superclass is not \a super.
* \post top-level constant named \a name refers the returned class.
*
* \note if a class named \a name is already defined and its superclass is
* \a super, the function just returns the defined class.
*/
VALUE
rb_define_class_id_under(VALUE outer, ID id, VALUE super)
{
VALUE klass;
if (rb_const_defined_at(outer, id)) {
klass = rb_const_get_at(outer, id);
if (!RB_TYPE_P(klass, T_CLASS)) {
rb_raise(rb_eTypeError, "%"PRIsVALUE" is not a class", rb_id2str(id));
}
if (rb_class_real(RCLASS_SUPER(klass)) != super) {
rb_name_error(id, "%"PRIsVALUE" is already defined", rb_id2str(id));
}
return klass;
}
if (!super) {
rb_warn("no super class for `%"PRIsVALUE"::%"PRIsVALUE"', Object assumed",
rb_class_path(outer), rb_id2str(id));
}
klass = rb_define_class_id(id, super);
rb_set_class_path_string(klass, outer, rb_id2str(id));
rb_const_set(outer, id, klass);
rb_class_inherited(super, klass);
rb_gc_register_mark_object(klass);
return klass;
}
VALUE
rb_module_new(void)
{
VALUE mdl = class_alloc(T_MODULE, rb_cModule);
RCLASS_M_TBL_INIT(mdl);
return (VALUE)mdl;
}
VALUE
rb_define_module_id(ID id)
{
VALUE mdl;
mdl = rb_module_new();
rb_name_class(mdl, id);
return mdl;
}
VALUE
rb_define_module(const char *name)
{
VALUE module;
ID id;
id = rb_intern(name);
if (rb_const_defined(rb_cObject, id)) {
module = rb_const_get(rb_cObject, id);
if (RB_TYPE_P(module, T_MODULE))
return module;
rb_raise(rb_eTypeError, "%s is not a module", rb_obj_classname(module));
}
module = rb_define_module_id(id);
rb_vm_add_root_module(id, module);
rb_const_set(rb_cObject, id, module);
return module;
}
VALUE
rb_define_module_under(VALUE outer, const char *name)
{
return rb_define_module_id_under(outer, rb_intern(name));
}
VALUE
rb_define_module_id_under(VALUE outer, ID id)
{
VALUE module;
if (rb_const_defined_at(outer, id)) {
module = rb_const_get_at(outer, id);
if (RB_TYPE_P(module, T_MODULE))
return module;
rb_raise(rb_eTypeError, "%s::%s is not a module",
rb_class2name(outer), rb_obj_classname(module));
}
module = rb_define_module_id(id);
rb_const_set(outer, id, module);
rb_set_class_path_string(module, outer, rb_id2str(id));
rb_gc_register_mark_object(module);
return module;
}
VALUE
rb_include_class_new(VALUE module, VALUE super)
{
VALUE klass = class_alloc(T_ICLASS, rb_cClass);
if (BUILTIN_TYPE(module) == T_ICLASS) {
module = RBASIC(module)->klass;
}
if (!RCLASS_IV_TBL(module)) {
RCLASS_IV_TBL(module) = st_init_numtable();
}
if (!RCLASS_CONST_TBL(module)) {
RCLASS_CONST_TBL(module) = st_init_numtable();
}
RCLASS_IV_TBL(klass) = RCLASS_IV_TBL(module);
RCLASS_CONST_TBL(klass) = RCLASS_CONST_TBL(module);
RCLASS_M_TBL(OBJ_WB_UNPROTECT(klass)) =
RCLASS_M_TBL(OBJ_WB_UNPROTECT(RCLASS_ORIGIN(module))); /* TODO: unprotected? */
RCLASS_SET_SUPER(klass, super);
if (RB_TYPE_P(module, T_ICLASS)) {
RBASIC_SET_CLASS(klass, RBASIC(module)->klass);
}
else {
RBASIC_SET_CLASS(klass, module);
}
OBJ_INFECT(klass, module);
OBJ_INFECT(klass, super);
return (VALUE)klass;
}
static int include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super);
void
rb_include_module(VALUE klass, VALUE module)
{
int changed = 0;
rb_frozen_class_p(klass);
if (!RB_TYPE_P(module, T_MODULE)) {
Check_Type(module, T_MODULE);
}
OBJ_INFECT(klass, module);
changed = include_modules_at(klass, RCLASS_ORIGIN(klass), module, TRUE);
if (changed < 0)
rb_raise(rb_eArgError, "cyclic include detected");
}
static int
add_refined_method_entry_i(st_data_t key, st_data_t value, st_data_t data)
{
rb_add_refined_method_entry((VALUE) data, (ID) key);
return ST_CONTINUE;
}
static int
include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super)
{
VALUE p, iclass;
int method_changed = 0, constant_changed = 0;
const st_table *const klass_m_tbl = RCLASS_M_TBL(RCLASS_ORIGIN(klass));
while (module) {
int superclass_seen = FALSE;
if (RCLASS_ORIGIN(module) != module)
goto skip;
if (klass_m_tbl && klass_m_tbl == RCLASS_M_TBL(module))
return -1;
/* ignore if the module included already in superclasses */
for (p = RCLASS_SUPER(klass); p; p = RCLASS_SUPER(p)) {
int type = BUILTIN_TYPE(p);
if (type == T_ICLASS) {
if (RCLASS_M_TBL(p) == RCLASS_M_TBL(module)) {
if (!superclass_seen) {
c = p; /* move insertion point */
}
goto skip;
}
}
else if (type == T_CLASS) {
if (!search_super) break;
superclass_seen = TRUE;
}
}
iclass = rb_include_class_new(module, RCLASS_SUPER(c));
c = RCLASS_SET_SUPER(c, iclass);
{
VALUE m = module;
if (BUILTIN_TYPE(m) == T_ICLASS) m = RBASIC(m)->klass;
rb_module_add_to_subclasses_list(m, iclass);
}
if (FL_TEST(klass, RMODULE_IS_REFINEMENT)) {
VALUE refined_class =
rb_refinement_module_get_refined_class(klass);
st_foreach(RMODULE_M_TBL(module), add_refined_method_entry_i,
(st_data_t) refined_class);
FL_SET(c, RMODULE_INCLUDED_INTO_REFINEMENT);
}
if (RMODULE_M_TBL(module) && RMODULE_M_TBL(module)->num_entries)
method_changed = 1;
if (RMODULE_CONST_TBL(module) && RMODULE_CONST_TBL(module)->num_entries)
constant_changed = 1;
skip:
module = RCLASS_SUPER(module);
}
if (method_changed) rb_clear_method_cache_by_class(klass);
if (constant_changed) rb_clear_constant_cache();
return method_changed;
}
static int
move_refined_method(st_data_t key, st_data_t value, st_data_t data)
{
rb_method_entry_t *me = (rb_method_entry_t *) value;
st_table *tbl = (st_table *) data;
if (me->def->type == VM_METHOD_TYPE_REFINED) {
if (me->def->body.refined.orig_me) {
rb_method_entry_t *orig_me = me->def->body.refined.orig_me, *new_me;
me->def->body.refined.orig_me = NULL;
new_me = rb_method_entry_clone(me);
st_add_direct(tbl, key, (st_data_t) new_me);
rb_method_entry_copy(me, orig_me);
return ST_CONTINUE;
}
else {
st_add_direct(tbl, key, (st_data_t) me);
return ST_DELETE;
}
}
else {
return ST_CONTINUE;
}
}
void
rb_prepend_module(VALUE klass, VALUE module)
{
VALUE origin;
int changed = 0;
rb_frozen_class_p(klass);
Check_Type(module, T_MODULE);
OBJ_INFECT(klass, module);
origin = RCLASS_ORIGIN(klass);
if (origin == klass) {
origin = class_alloc(T_ICLASS, klass);
OBJ_WB_UNPROTECT(origin); /* TODO: conservative shading. Need more survey. */
RCLASS_SET_SUPER(origin, RCLASS_SUPER(klass));
RCLASS_SET_SUPER(klass, origin);
RCLASS_SET_ORIGIN(klass, origin);
RCLASS_M_TBL(origin) = RCLASS_M_TBL(klass);
RCLASS_M_TBL_INIT(klass);
st_foreach(RCLASS_M_TBL(origin), move_refined_method,
(st_data_t) RCLASS_M_TBL(klass));
}
changed = include_modules_at(klass, klass, module, FALSE);
if (changed < 0)
rb_raise(rb_eArgError, "cyclic prepend detected");
if (changed) {
rb_vm_check_redefinition_by_prepend(klass);
}
}
/*
* call-seq:
* mod.included_modules -> array
*
* Returns the list of modules included in <i>mod</i>.
*
* module Mixin
* end
*
* module Outer
* include Mixin
* end
*
* Mixin.included_modules #=> []
* Outer.included_modules #=> [Mixin]
*/
VALUE
rb_mod_included_modules(VALUE mod)
{
VALUE ary = rb_ary_new();
VALUE p;
VALUE origin = RCLASS_ORIGIN(mod);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (p != origin && BUILTIN_TYPE(p) == T_ICLASS) {
VALUE m = RBASIC(p)->klass;
if (RB_TYPE_P(m, T_MODULE))
rb_ary_push(ary, m);
}
}
return ary;
}
/*
* call-seq:
* mod.include?(module) -> true or false
*
* Returns <code>true</code> if <i>module</i> is included in
* <i>mod</i> or one of <i>mod</i>'s ancestors.
*
* module A
* end
* class B
* include A
* end
* class C < B
* end
* B.include?(A) #=> true
* C.include?(A) #=> true
* A.include?(A) #=> false
*/
VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
VALUE p;
Check_Type(mod2, T_MODULE);
for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS) {
if (RBASIC(p)->klass == mod2) return Qtrue;
}
}
return Qfalse;
}
/*
* call-seq:
* mod.ancestors -> array
*
* Returns a list of modules included/prepended in <i>mod</i>
* (including <i>mod</i> itself).
*
* module Mod
* include Math
* include Comparable
* prepend Enumerable
* end
*
* Mod.ancestors #=> [Enumerable, Mod, Comparable, Math]
* Math.ancestors #=> [Math]
* Enumerable.ancestors #=> [Enumerable]
*/
VALUE
rb_mod_ancestors(VALUE mod)
{
VALUE p, ary = rb_ary_new();
for (p = mod; p; p = RCLASS_SUPER(p)) {
if (BUILTIN_TYPE(p) == T_ICLASS) {
rb_ary_push(ary, RBASIC(p)->klass);
}
else if (p == RCLASS_ORIGIN(p)) {
rb_ary_push(ary, p);
}
}
return ary;
}
static int
ins_methods_push(ID name, long type, VALUE ary, long visi)
{
if (type == METHOD_VISI_UNDEF) return ST_CONTINUE;
switch ((rb_method_visibility_t)visi) {
case METHOD_VISI_UNDEF:
return ST_CONTINUE;
case METHOD_VISI_PRIVATE:
case METHOD_VISI_PROTECTED:
case METHOD_VISI_PUBLIC:
visi = (type == visi);
break;
default:
visi = (type != METHOD_VISI_PRIVATE);
break;
}
if (visi) {
rb_ary_push(ary, ID2SYM(name));
}
return ST_CONTINUE;
}
static int
ins_methods_i(st_data_t name, st_data_t type, st_data_t ary)
{
return ins_methods_push((ID)name, (long)type, (VALUE)ary, -1); /* everything but private */
}
static int
ins_methods_prot_i(st_data_t name, st_data_t type, st_data_t ary)
{
return ins_methods_push((ID)name, (long)type, (VALUE)ary, METHOD_VISI_PROTECTED);
}
static int
ins_methods_priv_i(st_data_t name, st_data_t type, st_data_t ary)
{
return ins_methods_push((ID)name, (long)type, (VALUE)ary, METHOD_VISI_PRIVATE);
}
static int
ins_methods_pub_i(st_data_t name, st_data_t type, st_data_t ary)
{
return ins_methods_push((ID)name, (long)type, (VALUE)ary, METHOD_VISI_PUBLIC);
}
struct method_entry_arg {
st_table *list;
int recur;
};
static int
method_entry_i(st_data_t key, st_data_t value, st_data_t data)
{
const rb_method_entry_t *me = (const rb_method_entry_t *)value;
struct method_entry_arg *arg = (struct method_entry_arg *)data;
rb_method_visibility_t type;
if (me->def->type == VM_METHOD_TYPE_REFINED) {
VALUE klass = me->klass;
me = rb_resolve_refined_method(Qnil, me, NULL);
if (!me) return ST_CONTINUE;
if (!arg->recur && me->klass != klass) return ST_CONTINUE;
}
if (!st_lookup(arg->list, key, 0)) {
if (UNDEFINED_METHOD_ENTRY_P(me)) {
type = METHOD_VISI_UNDEF; /* none */
}
else {
type = me->def->flags.visi;
}
st_add_direct(arg->list, key, (long)type);
}
return ST_CONTINUE;
}
static VALUE
class_instance_method_list(int argc, const VALUE *argv, VALUE mod, int obj, int (*func) (st_data_t, st_data_t, st_data_t))
{
VALUE ary;
int recur, prepended = 0;
struct method_entry_arg me_arg;
if (argc == 0) {
recur = TRUE;
}
else {
VALUE r;
rb_scan_args(argc, argv, "01", &r);
recur = RTEST(r);
}
if (!recur && RCLASS_ORIGIN(mod) != mod) {
mod = RCLASS_ORIGIN(mod);
prepended = 1;
}
me_arg.list = st_init_numtable();
me_arg.recur = recur;
for (; mod; mod = RCLASS_SUPER(mod)) {
if (RCLASS_M_TBL(mod)) st_foreach(RCLASS_M_TBL(mod), method_entry_i, (st_data_t)&me_arg);
if (BUILTIN_TYPE(mod) == T_ICLASS && !prepended) continue;
if (obj && FL_TEST(mod, FL_SINGLETON)) continue;
if (!recur) break;
}
ary = rb_ary_new();
st_foreach(me_arg.list, func, ary);
st_free_table(me_arg.list);
return ary;
}
/*
* call-seq:
* mod.instance_methods(include_super=true) -> array
*
* Returns an array containing the names of the public and protected instance
* methods in the receiver. For a module, these are the public and protected methods;
* for a class, they are the instance (not singleton) methods. If the optional
* parameter is <code>false</code>, the methods of any ancestors are not included.
*
* module A
* def method1() end
* end
* class B
* include A
* def method2() end
* end
* class C < B
* def method3() end
* end
*
* A.instance_methods(false) #=> [:method1]
* B.instance_methods(false) #=> [:method2]
* B.instance_methods(true).include?(:method1) #=> true
* C.instance_methods(false) #=> [:method3]
* C.instance_methods.include?(:method2) #=> true
*/
VALUE
rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}
/*
* call-seq:
* mod.protected_instance_methods(include_super=true) -> array
*
* Returns a list of the protected instance methods defined in
* <i>mod</i>. If the optional parameter is <code>false</code>, the
* methods of any ancestors are not included.
*/
VALUE
rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}
/*
* call-seq:
* mod.private_instance_methods(include_super=true) -> array
*
* Returns a list of the private instance methods defined in
* <i>mod</i>. If the optional parameter is <code>false</code>, the
* methods of any ancestors are not included.
*
* module Mod
* def method1() end
* private :method1
* def method2() end
* end
* Mod.instance_methods #=> [:method2]
* Mod.private_instance_methods #=> [:method1]
*/
VALUE
rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}
/*
* call-seq:
* mod.public_instance_methods(include_super=true) -> array
*
* Returns a list of the public instance methods defined in <i>mod</i>.
* If the optional parameter is <code>false</code>, the methods of
* any ancestors are not included.
*/
VALUE
rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}
/*
* call-seq:
* obj.methods(regular=true) -> array
*
* Returns a list of the names of public and protected methods of
* <i>obj</i>. This will include all the methods accessible in
* <i>obj</i>'s ancestors.
* If the optional parameter is <code>false</code>, it
* returns an array of <i>obj<i>'s public and protected singleton methods,
* the array will not include methods in modules included in <i>obj</i>.
*
* class Klass
* def klass_method()
* end
* end
* k = Klass.new
* k.methods[0..9] #=> [:klass_method, :nil?, :===,
* # :==~, :!, :eql?
* # :hash, :<=>, :class, :singleton_class]
* k.methods.length #=> 56
*
* k.methods(false) #=> []
* def k.singleton_method; end
* k.methods(false) #=> [:singleton_method]
*
* module M123; def m123; end end
* k.extend M123
* k.methods(false) #=> [:singleton_method]
*/
VALUE
rb_obj_methods(int argc, const VALUE *argv, VALUE obj)
{
rb_check_arity(argc, 0, 1);
if (argc > 0 && !RTEST(argv[0])) {
return rb_obj_singleton_methods(argc, argv, obj);
}
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i);
}
/*
* call-seq:
* obj.protected_methods(all=true) -> array
*
* Returns the list of protected methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
VALUE
rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i);
}
/*
* call-seq:
* obj.private_methods(all=true) -> array
*
* Returns the list of private methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
VALUE
rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i);
}
/*
* call-seq:
* obj.public_methods(all=true) -> array
*
* Returns the list of public methods accessible to <i>obj</i>. If
* the <i>all</i> parameter is set to <code>false</code>, only those methods
* in the receiver will be listed.
*/
VALUE
rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj)
{
return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i);
}
/*
* call-seq:
* obj.singleton_methods(all=true) -> array
*
* Returns an array of the names of singleton methods for <i>obj</i>.
* If the optional <i>all</i> parameter is true, the list will include
* methods in modules included in <i>obj</i>.
* Only public and protected singleton methods are returned.
*
* module Other
* def three() end
* end
*
* class Single
* def Single.four() end
* end
*
* a = Single.new
*
* def a.one()
* end
*
* class << a
* include Other
* def two()
* end
* end
*
* Single.singleton_methods #=> [:four]
* a.singleton_methods(false) #=> [:two, :one]
* a.singleton_methods #=> [:two, :one, :three]
*/
VALUE
rb_obj_singleton_methods(int argc, const VALUE *argv, VALUE obj)
{
VALUE recur, ary, klass, origin;
struct method_entry_arg me_arg;
st_table *mtbl;
if (argc == 0) {
recur = Qtrue;
}
else {
rb_scan_args(argc, argv, "01", &recur);
}
klass = CLASS_OF(obj);
origin = RCLASS_ORIGIN(klass);
me_arg.list = st_init_numtable();
me_arg.recur = RTEST(recur);
if (klass && FL_TEST(klass, FL_SINGLETON)) {
if ((mtbl = RCLASS_M_TBL(origin)) != 0)
st_foreach(mtbl, method_entry_i, (st_data_t)&me_arg);
klass = RCLASS_SUPER(klass);
}
if (RTEST(recur)) {
while (klass && (FL_TEST(klass, FL_SINGLETON) || RB_TYPE_P(klass, T_ICLASS))) {
if (klass != origin && (mtbl = RCLASS_M_TBL(klass)) != 0)
st_foreach(mtbl, method_entry_i, (st_data_t)&me_arg);
klass = RCLASS_SUPER(klass);
}
}
ary = rb_ary_new();
st_foreach(me_arg.list, ins_methods_i, ary);
st_free_table(me_arg.list);
return ary;
}
/*!
* \}
*/
/*!
* \defgroup defmethod Defining methods
* There are some APIs to define a method from C.
* These API takes a C function as a method body.
*
* \par Method body functions
* Method body functions must return a VALUE and
* can be one of the following form:
* <dl>
* <dt>Fixed number of parameters</dt>
* <dd>
* This form is a normal C function, excepting it takes
* a receiver object as the first argument.
*
* \code
* static VALUE my_method(VALUE self, VALUE x, VALUE y);
* \endcode
* </dd>
* <dt>argc and argv style</dt>
* <dd>
* This form takes three parameters: \a argc, \a argv and \a self.
* \a self is the receiver. \a argc is the number of arguments.
* \a argv is a pointer to an array of the arguments.
*
* \code
* static VALUE my_method(int argc, VALUE *argv, VALUE self);
* \endcode
* </dd>
* <dt>Ruby array style</dt>
* <dd>
* This form takes two parameters: self and args.
* \a self is the receiver. \a args is an Array object which
* contains the arguments.
*
* \code
* static VALUE my_method(VALUE self, VALUE args);
* \endcode
* </dd>
*
* \par Number of parameters
* Method defining APIs takes the number of parameters which the
* method will takes. This number is called \a argc.
* \a argc can be:
* <dl>
* <dt>zero or positive number</dt>
* <dd>This means the method body function takes a fixed number of parameters</dd>
* <dt>-1</dt>
* <dd>This means the method body function is "argc and argv" style.</dd>
* <dt>-2</dt>
* <dd>This means the method body function is "self and args" style.</dd>
* </dl>
* \{
*/
void
rb_define_method_id(VALUE klass, ID mid, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, mid, func, argc, METHOD_VISI_PUBLIC);
}
void
rb_define_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PUBLIC);
}
void
rb_define_protected_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PROTECTED);
}
void
rb_define_private_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PRIVATE);
}
void
rb_undef_method(VALUE klass, const char *name)
{
rb_add_method(klass, rb_intern(name), VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_UNDEF);
}
/*!
* \}
*/
/*!
* \addtogroup class
* \{
*/
#define SPECIAL_SINGLETON(x,c) do {\
if (obj == (x)) {\
return (c);\
}\
} while (0)
static inline VALUE
special_singleton_class_of(VALUE obj)
{
SPECIAL_SINGLETON(Qnil, rb_cNilClass);
SPECIAL_SINGLETON(Qfalse, rb_cFalseClass);
SPECIAL_SINGLETON(Qtrue, rb_cTrueClass);
return Qnil;
}
VALUE
rb_special_singleton_class(VALUE obj)
{
return special_singleton_class_of(obj);
}
/*!
* \internal
* Returns the singleton class of \a obj. Creates it if necessary.
*
* \note DO NOT expose the returned singleton class to
* outside of class.c.
* Use \ref rb_singleton_class instead for
* consistency of the metaclass hierarchy.
*/
static VALUE
singleton_class_of(VALUE obj)
{
VALUE klass;
if (FIXNUM_P(obj) || FLONUM_P(obj) || STATIC_SYM_P(obj)) {
no_singleton:
rb_raise(rb_eTypeError, "can't define singleton");
}
if (SPECIAL_CONST_P(obj)) {
klass = special_singleton_class_of(obj);
if (NIL_P(klass))
rb_bug("unknown immediate %p", (void *)obj);
return klass;
}
else {
switch (BUILTIN_TYPE(obj)) {
case T_FLOAT: case T_BIGNUM: case T_SYMBOL:
goto no_singleton;
}
}
klass = RBASIC(obj)->klass;
if (!(FL_TEST(klass, FL_SINGLETON) &&
rb_ivar_get(klass, id_attached) == obj)) {
klass = rb_make_metaclass(obj, klass);
}
if (OBJ_TAINTED(obj)) {
OBJ_TAINT(klass);
}
else {
FL_UNSET(klass, FL_TAINT);
}
if (OBJ_FROZEN(obj)) OBJ_FREEZE_RAW(klass);
return klass;
}
void
rb_freeze_singleton_class(VALUE x)
{
/* should not propagate to meta-meta-class, and so on */
if (!(RBASIC(x)->flags & FL_SINGLETON)) {
VALUE klass = RBASIC_CLASS(x);
if (klass && (klass = RCLASS_ORIGIN(klass)) != 0 &&
FL_TEST(klass, (FL_SINGLETON|FL_FREEZE)) == FL_SINGLETON) {
OBJ_FREEZE_RAW(klass);
}
}
}
/*!
* Returns the singleton class of \a obj, or nil if obj is not a
* singleton object.
*
* \param obj an arbitrary object.
* \return the singleton class or nil.
*/
VALUE
rb_singleton_class_get(VALUE obj)
{
VALUE klass;
if (SPECIAL_CONST_P(obj)) {
return rb_special_singleton_class(obj);
}
klass = RBASIC(obj)->klass;
if (!FL_TEST(klass, FL_SINGLETON)) return Qnil;
if (rb_ivar_get(klass, id_attached) != obj) return Qnil;
return klass;
}
/*!
* Returns the singleton class of \a obj. Creates it if necessary.
*
* \param obj an arbitrary object.
* \throw TypeError if \a obj is a Fixnum or a Symbol.
* \return the singleton class.
*
* \post \a obj has its own singleton class.
* \post if \a obj is a class,
* the returned singleton class also has its own
* singleton class in order to keep consistency of the
* inheritance structure of metaclasses.
* \note a new singleton class will be created
* if \a obj does not have it.
* \note the singleton classes for nil, true and false are:
* NilClass, TrueClass and FalseClass.
*/
VALUE
rb_singleton_class(VALUE obj)
{
VALUE klass = singleton_class_of(obj);
/* ensures an exposed class belongs to its own eigenclass */
if (RB_TYPE_P(obj, T_CLASS)) (void)ENSURE_EIGENCLASS(klass);
return klass;
}
/*!
* \}
*/
/*!
* \addtogroup defmethod
* \{
*/
/*!
* Defines a singleton method for \a obj.
* \param obj an arbitrary object
* \param name name of the singleton method
* \param func the method body
* \param argc the number of parameters, or -1 or -2. see \ref defmethod.
*/
void
rb_define_singleton_method(VALUE obj, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_method(singleton_class_of(obj), name, func, argc);
}
/*!
* Defines a module function for \a module.
* \param module an module or a class.
* \param name name of the function
* \param func the method body
* \param argc the number of parameters, or -1 or -2. see \ref defmethod.
*/
void
rb_define_module_function(VALUE module, const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_private_method(module, name, func, argc);
rb_define_singleton_method(module, name, func, argc);
}
/*!
* Defines a global function
* \param name name of the function
* \param func the method body
* \param argc the number of parameters, or -1 or -2. see \ref defmethod.
*/
void
rb_define_global_function(const char *name, VALUE (*func)(ANYARGS), int argc)
{
rb_define_module_function(rb_mKernel, name, func, argc);
}
/*!
* Defines an alias of a method.
* \param klass the class which the original method belongs to
* \param name1 a new name for the method
* \param name2 the original name of the method
*/
void
rb_define_alias(VALUE klass, const char *name1, const char *name2)
{
rb_alias(klass, rb_intern(name1), rb_intern(name2));
}
/*!
* Defines (a) public accessor method(s) for an attribute.
* \param klass the class which the attribute will belongs to
* \param name name of the attribute
* \param read a getter method for the attribute will be defined if \a read is non-zero.
* \param write a setter method for the attribute will be defined if \a write is non-zero.
*/
void
rb_define_attr(VALUE klass, const char *name, int read, int write)
{
rb_attr(klass, rb_intern(name), read, write, FALSE);
}
int
rb_obj_basic_to_s_p(VALUE obj)
{
const rb_method_entry_t *me = rb_method_entry(CLASS_OF(obj), rb_intern("to_s"), 0);
if (me && me->def && me->def->type == VM_METHOD_TYPE_CFUNC &&
me->def->body.cfunc.func == rb_any_to_s)
return 1;
return 0;
}
#include <stdarg.h>
int
rb_scan_args(int argc, const VALUE *argv, const char *fmt, ...)
{
int i;
const char *p = fmt;
VALUE *var;
va_list vargs;
int f_var = 0, f_hash = 0, f_block = 0;
int n_lead = 0, n_opt = 0, n_trail = 0, n_mand;
int argi = 0;
VALUE hash = Qnil;
if (ISDIGIT(*p)) {
n_lead = *p - '0';
p++;
if (ISDIGIT(*p)) {
n_opt = *p - '0';
p++;
if (ISDIGIT(*p)) {
n_trail = *p - '0';
p++;
goto block_arg;
}
}
}
if (*p == '*') {
f_var = 1;
p++;
if (ISDIGIT(*p)) {
n_trail = *p - '0';
p++;
}
}
block_arg:
if (*p == ':') {
f_hash = 1;
p++;
}
if (*p == '&') {
f_block = 1;
p++;
}
if (*p != '\0') {
rb_fatal("bad scan arg format: %s", fmt);
}
n_mand = n_lead + n_trail;
if (argc < n_mand)
goto argc_error;
va_start(vargs, fmt);
/* capture an option hash - phase 1: pop */
if (f_hash && n_mand < argc) {
VALUE last = argv[argc - 1];
if (NIL_P(last)) {
/* nil is taken as an empty option hash only if it is not
ambiguous; i.e. '*' is not specified and arguments are
given more than sufficient */
if (!f_var && n_mand + n_opt < argc)
argc--;
}
else {
hash = rb_check_hash_type(last);
if (!NIL_P(hash)) {
VALUE opts = rb_extract_keywords(&hash);
if (!hash) argc--;
hash = opts ? opts : Qnil;
}
}
}
/* capture leading mandatory arguments */
for (i = n_lead; i-- > 0; ) {
var = va_arg(vargs, VALUE *);
if (var) *var = argv[argi];
argi++;
}
/* capture optional arguments */
for (i = n_opt; i-- > 0; ) {
var = va_arg(vargs, VALUE *);
if (argi < argc - n_trail) {
if (var) *var = argv[argi];
argi++;
}
else {
if (var) *var = Qnil;
}
}
/* capture variable length arguments */
if (f_var) {
int n_var = argc - argi - n_trail;
var = va_arg(vargs, VALUE *);
if (0 < n_var) {
if (var) *var = rb_ary_new4(n_var, &argv[argi]);
argi += n_var;
}
else {
if (var) *var = rb_ary_new();
}
}
/* capture trailing mandatory arguments */
for (i = n_trail; i-- > 0; ) {
var = va_arg(vargs, VALUE *);
if (var) *var = argv[argi];
argi++;
}
/* capture an option hash - phase 2: assignment */
if (f_hash) {
var = va_arg(vargs, VALUE *);
if (var) *var = hash;
}
/* capture iterator block */
if (f_block) {
var = va_arg(vargs, VALUE *);
if (rb_block_given_p()) {
*var = rb_block_proc();
}
else {
*var = Qnil;
}
}
va_end(vargs);
if (argi < argc) {
argc_error:
rb_error_arity(argc, n_mand, f_var ? UNLIMITED_ARGUMENTS : n_mand + n_opt);
}
return argc;
}
VALUE
rb_keyword_error_new(const char *error, VALUE keys)
{
const char *msg = "";
VALUE error_message;
if (RARRAY_LEN(keys) == 1) {
keys = RARRAY_AREF(keys, 0);
}
else {
keys = rb_ary_join(keys, rb_usascii_str_new2(", "));
msg = "s";
}
error_message = rb_sprintf("%s keyword%s: %"PRIsVALUE, error, msg, keys);
return rb_exc_new_str(rb_eArgError, error_message);
}
NORETURN(static void rb_keyword_error(const char *error, VALUE keys));
static void
rb_keyword_error(const char *error, VALUE keys)
{
rb_exc_raise(rb_keyword_error_new(error, keys));
}
NORETURN(static void unknown_keyword_error(VALUE hash, const ID *table, int keywords));
static void
unknown_keyword_error(VALUE hash, const ID *table, int keywords)
{
st_table *tbl = rb_hash_tbl_raw(hash);
VALUE keys;
int i;
for (i = 0; i < keywords; i++) {
st_data_t key = ID2SYM(table[i]);
st_delete(tbl, &key, NULL);
}
keys = rb_funcallv(hash, rb_intern("keys"), 0, 0);
if (!RB_TYPE_P(keys, T_ARRAY)) rb_raise(rb_eArgError, "unknown keyword");
rb_keyword_error("unknown", keys);
}
static int
separate_symbol(st_data_t key, st_data_t value, st_data_t arg)
{
VALUE *kwdhash = (VALUE *)arg;
if (!SYMBOL_P(key)) kwdhash++;
if (!*kwdhash) *kwdhash = rb_hash_new();
rb_hash_aset(*kwdhash, (VALUE)key, (VALUE)value);
return ST_CONTINUE;
}
VALUE
rb_extract_keywords(VALUE *orighash)
{
VALUE parthash[2] = {0, 0};
VALUE hash = *orighash;
if (RHASH_EMPTY_P(hash)) {
*orighash = 0;
return hash;
}
st_foreach(rb_hash_tbl_raw(hash), separate_symbol, (st_data_t)&parthash);
*orighash = parthash[1];
return parthash[0];
}
int
rb_get_kwargs(VALUE keyword_hash, const ID *table, int required, int optional, VALUE *values)
{
int i = 0, j;
int rest = 0;
VALUE missing = Qnil;
st_data_t key;
#define extract_kwarg(keyword, val) \
(key = (st_data_t)(keyword), values ? \
st_delete(rb_hash_tbl_raw(keyword_hash), &key, (val)) : \
st_lookup(rb_hash_tbl_raw(keyword_hash), key, (val)))
if (NIL_P(keyword_hash)) keyword_hash = 0;
if (optional < 0) {
rest = 1;
optional = -1-optional;
}
if (values) {
for (j = 0; j < required + optional; j++) {
values[j] = Qundef;
}
}
if (required) {
for (; i < required; i++) {
VALUE keyword = ID2SYM(table[i]);
if (keyword_hash) {
st_data_t val;
if (extract_kwarg(keyword, &val)) {
if (values) values[i] = (VALUE)val;
continue;
}
}
if (NIL_P(missing)) missing = rb_ary_tmp_new(1);
rb_ary_push(missing, keyword);
}
if (!NIL_P(missing)) {
rb_keyword_error("missing", missing);
}
}
j = i;
if (optional && keyword_hash) {
for (i = 0; i < optional; i++) {
st_data_t val;
if (extract_kwarg(ID2SYM(table[required+i]), &val)) {
if (values) values[required+i] = (VALUE)val;
j++;
}
}
}
if (!rest && keyword_hash) {
if (RHASH_SIZE(keyword_hash) > (unsigned int)j) {
unknown_keyword_error(keyword_hash, table, required+optional);
}
}
return j;
#undef extract_kwarg
}
int
rb_class_has_methods(VALUE c)
{
st_table *mtbl = RCLASS_M_TBL(c);
return mtbl && mtbl->num_entries ? TRUE : FALSE;
}
/*!
* \}
*/