mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			2213 lines
		
	
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2213 lines
		
	
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   class.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Tue Aug 10 15:05:44 JST 1993
 | |
| 
 | |
|   Copyright (C) 1993-2007 Yukihiro Matsumoto
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| /*!
 | |
|  * \defgroup class Classes and their hierarchy.
 | |
|  * \par Terminology
 | |
|  * - class: same as in Ruby.
 | |
|  * - singleton class: class for a particular object
 | |
|  * - eigenclass: = singleton class
 | |
|  * - metaclass: class of a class. metaclass is a kind of singleton class.
 | |
|  * - metametaclass: class of a metaclass.
 | |
|  * - meta^(n)-class: class of a meta^(n-1)-class.
 | |
|  * - attached object: A singleton class knows its unique instance.
 | |
|  *   The instance is called the attached object for the singleton class.
 | |
|  * \{
 | |
|  */
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "ruby/st.h"
 | |
| #include "constant.h"
 | |
| #include "vm_core.h"
 | |
| #include "id_table.h"
 | |
| #include <ctype.h>
 | |
| 
 | |
| #define id_attached id__attached__
 | |
| 
 | |
| void
 | |
| rb_class_subclass_add(VALUE super, VALUE klass)
 | |
| {
 | |
|     rb_subclass_entry_t *entry, *head;
 | |
| 
 | |
|     if (super && super != Qundef) {
 | |
| 	entry = ALLOC(rb_subclass_entry_t);
 | |
| 	entry->klass = klass;
 | |
| 	entry->next = NULL;
 | |
| 
 | |
| 	head = RCLASS_EXT(super)->subclasses;
 | |
| 	if (head) {
 | |
| 	    entry->next = head;
 | |
| 	    RCLASS_EXT(head->klass)->parent_subclasses = &entry->next;
 | |
| 	}
 | |
| 
 | |
| 	RCLASS_EXT(super)->subclasses = entry;
 | |
| 	RCLASS_EXT(klass)->parent_subclasses = &RCLASS_EXT(super)->subclasses;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_module_add_to_subclasses_list(VALUE module, VALUE iclass)
 | |
| {
 | |
|     rb_subclass_entry_t *entry, *head;
 | |
| 
 | |
|     entry = ALLOC(rb_subclass_entry_t);
 | |
|     entry->klass = iclass;
 | |
|     entry->next = NULL;
 | |
| 
 | |
|     head = RCLASS_EXT(module)->subclasses;
 | |
|     if (head) {
 | |
| 	entry->next = head;
 | |
| 	RCLASS_EXT(head->klass)->module_subclasses = &entry->next;
 | |
|     }
 | |
| 
 | |
|     RCLASS_EXT(module)->subclasses = entry;
 | |
|     RCLASS_EXT(iclass)->module_subclasses = &RCLASS_EXT(module)->subclasses;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_class_remove_from_super_subclasses(VALUE klass)
 | |
| {
 | |
|     rb_subclass_entry_t *entry;
 | |
| 
 | |
|     if (RCLASS_EXT(klass)->parent_subclasses) {
 | |
| 	entry = *RCLASS_EXT(klass)->parent_subclasses;
 | |
| 
 | |
| 	*RCLASS_EXT(klass)->parent_subclasses = entry->next;
 | |
| 	if (entry->next) {
 | |
| 	    RCLASS_EXT(entry->next->klass)->parent_subclasses = RCLASS_EXT(klass)->parent_subclasses;
 | |
| 	}
 | |
| 	xfree(entry);
 | |
|     }
 | |
| 
 | |
|     RCLASS_EXT(klass)->parent_subclasses = NULL;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_class_remove_from_module_subclasses(VALUE klass)
 | |
| {
 | |
|     rb_subclass_entry_t *entry;
 | |
| 
 | |
|     if (RCLASS_EXT(klass)->module_subclasses) {
 | |
| 	entry = *RCLASS_EXT(klass)->module_subclasses;
 | |
| 	*RCLASS_EXT(klass)->module_subclasses = entry->next;
 | |
| 
 | |
| 	if (entry->next) {
 | |
| 	    RCLASS_EXT(entry->next->klass)->module_subclasses = RCLASS_EXT(klass)->module_subclasses;
 | |
| 	}
 | |
| 
 | |
| 	xfree(entry);
 | |
|     }
 | |
| 
 | |
|     RCLASS_EXT(klass)->module_subclasses = NULL;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_class_foreach_subclass(VALUE klass, void (*f)(VALUE, VALUE), VALUE arg)
 | |
| {
 | |
|     rb_subclass_entry_t *cur = RCLASS_EXT(klass)->subclasses;
 | |
| 
 | |
|     /* do not be tempted to simplify this loop into a for loop, the order of
 | |
|        operations is important here if `f` modifies the linked list */
 | |
|     while (cur) {
 | |
| 	VALUE curklass = cur->klass;
 | |
| 	cur = cur->next;
 | |
| 	f(curklass, arg);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| class_detach_subclasses(VALUE klass, VALUE arg)
 | |
| {
 | |
|     rb_class_remove_from_super_subclasses(klass);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_class_detach_subclasses(VALUE klass)
 | |
| {
 | |
|     rb_class_foreach_subclass(klass, class_detach_subclasses, Qnil);
 | |
| }
 | |
| 
 | |
| static void
 | |
| class_detach_module_subclasses(VALUE klass, VALUE arg)
 | |
| {
 | |
|     rb_class_remove_from_module_subclasses(klass);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_class_detach_module_subclasses(VALUE klass)
 | |
| {
 | |
|     rb_class_foreach_subclass(klass, class_detach_module_subclasses, Qnil);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Allocates a struct RClass for a new class.
 | |
|  *
 | |
|  * \param flags     initial value for basic.flags of the returned class.
 | |
|  * \param klass     the class of the returned class.
 | |
|  * \return          an uninitialized Class object.
 | |
|  * \pre  \p klass must refer \c Class class or an ancestor of Class.
 | |
|  * \pre  \code (flags | T_CLASS) != 0  \endcode
 | |
|  * \post the returned class can safely be \c #initialize 'd.
 | |
|  *
 | |
|  * \note this function is not Class#allocate.
 | |
|  */
 | |
| static VALUE
 | |
| class_alloc(VALUE flags, VALUE klass)
 | |
| {
 | |
|     NEWOBJ_OF(obj, struct RClass, klass, (flags & T_MASK) | FL_PROMOTED1 /* start from age == 2 */ | (RGENGC_WB_PROTECTED_CLASS ? FL_WB_PROTECTED : 0));
 | |
|     obj->ptr = ZALLOC(rb_classext_t);
 | |
|     /* ZALLOC
 | |
|       RCLASS_IV_TBL(obj) = 0;
 | |
|       RCLASS_CONST_TBL(obj) = 0;
 | |
|       RCLASS_M_TBL(obj) = 0;
 | |
|       RCLASS_IV_INDEX_TBL(obj) = 0;
 | |
|       RCLASS_SET_SUPER((VALUE)obj, 0);
 | |
|       RCLASS_EXT(obj)->subclasses = NULL;
 | |
|       RCLASS_EXT(obj)->parent_subclasses = NULL;
 | |
|       RCLASS_EXT(obj)->module_subclasses = NULL;
 | |
|      */
 | |
|     RCLASS_SET_ORIGIN((VALUE)obj, (VALUE)obj);
 | |
|     RCLASS_SERIAL(obj) = rb_next_class_serial();
 | |
|     RB_OBJ_WRITE(obj, &RCLASS_REFINED_CLASS(obj), Qnil);
 | |
|     RCLASS_EXT(obj)->allocator = 0;
 | |
| 
 | |
|     return (VALUE)obj;
 | |
| }
 | |
| 
 | |
| static void
 | |
| RCLASS_M_TBL_INIT(VALUE c)
 | |
| {
 | |
|     RCLASS_M_TBL(c) = rb_id_table_create(0);
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * A utility function that wraps class_alloc.
 | |
|  *
 | |
|  * allocates a class and initializes safely.
 | |
|  * \param super     a class from which the new class derives.
 | |
|  * \return          a class object.
 | |
|  * \pre  \a super must be a class.
 | |
|  * \post the metaclass of the new class is Class.
 | |
|  */
 | |
| VALUE
 | |
| rb_class_boot(VALUE super)
 | |
| {
 | |
|     VALUE klass = class_alloc(T_CLASS, rb_cClass);
 | |
| 
 | |
|     RCLASS_SET_SUPER(klass, super);
 | |
|     RCLASS_M_TBL_INIT(klass);
 | |
| 
 | |
|     OBJ_INFECT(klass, super);
 | |
|     return (VALUE)klass;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Ensures a class can be derived from super.
 | |
|  *
 | |
|  * \param super a reference to an object.
 | |
|  * \exception TypeError if \a super is not a Class or \a super is a singleton class.
 | |
|  */
 | |
| void
 | |
| rb_check_inheritable(VALUE super)
 | |
| {
 | |
|     if (!RB_TYPE_P(super, T_CLASS)) {
 | |
| 	rb_raise(rb_eTypeError, "superclass must be a Class (%"PRIsVALUE" given)",
 | |
| 		 rb_obj_class(super));
 | |
|     }
 | |
|     if (RBASIC(super)->flags & FL_SINGLETON) {
 | |
| 	rb_raise(rb_eTypeError, "can't make subclass of singleton class");
 | |
|     }
 | |
|     if (super == rb_cClass) {
 | |
| 	rb_raise(rb_eTypeError, "can't make subclass of Class");
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Creates a new class.
 | |
|  * \param super     a class from which the new class derives.
 | |
|  * \exception TypeError \a super is not inheritable.
 | |
|  * \exception TypeError \a super is the Class class.
 | |
|  */
 | |
| VALUE
 | |
| rb_class_new(VALUE super)
 | |
| {
 | |
|     Check_Type(super, T_CLASS);
 | |
|     rb_check_inheritable(super);
 | |
|     return rb_class_boot(super);
 | |
| }
 | |
| 
 | |
| static void
 | |
| clone_method(VALUE old_klass, VALUE new_klass, ID mid, const rb_method_entry_t *me)
 | |
| {
 | |
|     if (me->def->type == VM_METHOD_TYPE_ISEQ) {
 | |
| 	rb_cref_t *new_cref;
 | |
| 	rb_vm_rewrite_cref(me->def->body.iseq.cref, old_klass, new_klass, &new_cref);
 | |
| 	rb_add_method_iseq(new_klass, mid, me->def->body.iseq.iseqptr, new_cref, METHOD_ENTRY_VISI(me));
 | |
|     }
 | |
|     else {
 | |
| 	rb_method_entry_set(new_klass, mid, me, METHOD_ENTRY_VISI(me));
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct clone_method_arg {
 | |
|     VALUE new_klass;
 | |
|     VALUE old_klass;
 | |
| };
 | |
| 
 | |
| static enum rb_id_table_iterator_result
 | |
| clone_method_i(ID key, VALUE value, void *data)
 | |
| {
 | |
|     const struct clone_method_arg *arg = (struct clone_method_arg *)data;
 | |
|     clone_method(arg->old_klass, arg->new_klass, key, (const rb_method_entry_t *)value);
 | |
|     return ID_TABLE_CONTINUE;
 | |
| }
 | |
| 
 | |
| struct clone_const_arg {
 | |
|     VALUE klass;
 | |
|     struct rb_id_table *tbl;
 | |
| };
 | |
| 
 | |
| static int
 | |
| clone_const(ID key, const rb_const_entry_t *ce, struct clone_const_arg *arg)
 | |
| {
 | |
|     rb_const_entry_t *nce = ALLOC(rb_const_entry_t);
 | |
|     MEMCPY(nce, ce, rb_const_entry_t, 1);
 | |
|     RB_OBJ_WRITTEN(arg->klass, Qundef, ce->value);
 | |
|     RB_OBJ_WRITTEN(arg->klass, Qundef, ce->file);
 | |
| 
 | |
|     rb_id_table_insert(arg->tbl, key, (VALUE)nce);
 | |
|     return ID_TABLE_CONTINUE;
 | |
| }
 | |
| 
 | |
| static enum rb_id_table_iterator_result
 | |
| clone_const_i(ID key, VALUE value, void *data)
 | |
| {
 | |
|     return clone_const(key, (const rb_const_entry_t *)value, data);
 | |
| }
 | |
| 
 | |
| static void
 | |
| class_init_copy_check(VALUE clone, VALUE orig)
 | |
| {
 | |
|     if (orig == rb_cBasicObject) {
 | |
| 	rb_raise(rb_eTypeError, "can't copy the root class");
 | |
|     }
 | |
|     if (RCLASS_SUPER(clone) != 0 || clone == rb_cBasicObject) {
 | |
| 	rb_raise(rb_eTypeError, "already initialized class");
 | |
|     }
 | |
|     if (FL_TEST(orig, FL_SINGLETON)) {
 | |
| 	rb_raise(rb_eTypeError, "can't copy singleton class");
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| VALUE
 | |
| rb_mod_init_copy(VALUE clone, VALUE orig)
 | |
| {
 | |
|     /* cloned flag is refer at constant inline cache
 | |
|      * see vm_get_const_key_cref() in vm_insnhelper.c
 | |
|      */
 | |
|     FL_SET(clone, RCLASS_CLONED);
 | |
|     FL_SET(orig , RCLASS_CLONED);
 | |
| 
 | |
|     if (RB_TYPE_P(clone, T_CLASS)) {
 | |
| 	class_init_copy_check(clone, orig);
 | |
|     }
 | |
|     if (!OBJ_INIT_COPY(clone, orig)) return clone;
 | |
|     if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
 | |
| 	RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
 | |
| 	rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone);
 | |
|     }
 | |
|     RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig));
 | |
|     RCLASS_EXT(clone)->allocator = RCLASS_EXT(orig)->allocator;
 | |
|     if (RCLASS_IV_TBL(clone)) {
 | |
| 	st_free_table(RCLASS_IV_TBL(clone));
 | |
| 	RCLASS_IV_TBL(clone) = 0;
 | |
|     }
 | |
|     if (RCLASS_CONST_TBL(clone)) {
 | |
| 	rb_free_const_table(RCLASS_CONST_TBL(clone));
 | |
| 	RCLASS_CONST_TBL(clone) = 0;
 | |
|     }
 | |
|     RCLASS_M_TBL(clone) = 0;
 | |
|     if (RCLASS_IV_TBL(orig)) {
 | |
| 	st_data_t id;
 | |
| 
 | |
| 	rb_iv_tbl_copy(clone, orig);
 | |
| 	CONST_ID(id, "__tmp_classpath__");
 | |
| 	st_delete(RCLASS_IV_TBL(clone), &id, 0);
 | |
| 	CONST_ID(id, "__classpath__");
 | |
| 	st_delete(RCLASS_IV_TBL(clone), &id, 0);
 | |
| 	CONST_ID(id, "__classid__");
 | |
| 	st_delete(RCLASS_IV_TBL(clone), &id, 0);
 | |
|     }
 | |
|     if (RCLASS_CONST_TBL(orig)) {
 | |
| 	struct clone_const_arg arg;
 | |
| 
 | |
| 	arg.tbl = RCLASS_CONST_TBL(clone) = rb_id_table_create(0);
 | |
| 	arg.klass = clone;
 | |
| 	rb_id_table_foreach(RCLASS_CONST_TBL(orig), clone_const_i, &arg);
 | |
|     }
 | |
|     if (RCLASS_M_TBL(orig)) {
 | |
| 	struct clone_method_arg arg;
 | |
| 	arg.old_klass = orig;
 | |
| 	arg.new_klass = clone;
 | |
| 	RCLASS_M_TBL_INIT(clone);
 | |
| 	rb_id_table_foreach(RCLASS_M_TBL(orig), clone_method_i, &arg);
 | |
|     }
 | |
| 
 | |
|     return clone;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_singleton_class_clone(VALUE obj)
 | |
| {
 | |
|     return rb_singleton_class_clone_and_attach(obj, Qundef);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_singleton_class_clone_and_attach(VALUE obj, VALUE attach)
 | |
| {
 | |
|     const VALUE klass = RBASIC(obj)->klass;
 | |
| 
 | |
|     if (!FL_TEST(klass, FL_SINGLETON))
 | |
| 	return klass;
 | |
|     else {
 | |
| 	/* copy singleton(unnamed) class */
 | |
| 	VALUE clone = class_alloc(RBASIC(klass)->flags, 0);
 | |
| 
 | |
| 	if (BUILTIN_TYPE(obj) == T_CLASS) {
 | |
| 	    RBASIC_SET_CLASS(clone, clone);
 | |
| 	}
 | |
| 	else {
 | |
| 	    RBASIC_SET_CLASS(clone, rb_singleton_class_clone(klass));
 | |
| 	}
 | |
| 
 | |
| 	RCLASS_SET_SUPER(clone, RCLASS_SUPER(klass));
 | |
| 	RCLASS_EXT(clone)->allocator = RCLASS_EXT(klass)->allocator;
 | |
| 	if (RCLASS_IV_TBL(klass)) {
 | |
| 	    rb_iv_tbl_copy(clone, klass);
 | |
| 	}
 | |
| 	if (RCLASS_CONST_TBL(klass)) {
 | |
| 	    struct clone_const_arg arg;
 | |
| 	    arg.tbl = RCLASS_CONST_TBL(clone) = rb_id_table_create(0);
 | |
| 	    arg.klass = clone;
 | |
| 	    rb_id_table_foreach(RCLASS_CONST_TBL(klass), clone_const_i, &arg);
 | |
| 	}
 | |
| 	if (attach != Qundef) {
 | |
| 	    rb_singleton_class_attached(clone, attach);
 | |
| 	}
 | |
| 	RCLASS_M_TBL_INIT(clone);
 | |
| 	{
 | |
| 	    struct clone_method_arg arg;
 | |
| 	    arg.old_klass = klass;
 | |
| 	    arg.new_klass = clone;
 | |
| 	    rb_id_table_foreach(RCLASS_M_TBL(klass), clone_method_i, &arg);
 | |
| 	}
 | |
| 	rb_singleton_class_attached(RBASIC(clone)->klass, clone);
 | |
| 	FL_SET(clone, FL_SINGLETON);
 | |
| 
 | |
| 	return clone;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * Attach a object to a singleton class.
 | |
|  * @pre \a klass is the singleton class of \a obj.
 | |
|  */
 | |
| void
 | |
| rb_singleton_class_attached(VALUE klass, VALUE obj)
 | |
| {
 | |
|     if (FL_TEST(klass, FL_SINGLETON)) {
 | |
| 	if (!RCLASS_IV_TBL(klass)) {
 | |
| 	    RCLASS_IV_TBL(klass) = st_init_numtable();
 | |
| 	}
 | |
| 	rb_class_ivar_set(klass, id_attached, obj);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #define METACLASS_OF(k) RBASIC(k)->klass
 | |
| #define SET_METACLASS_OF(k, cls) RBASIC_SET_CLASS(k, cls)
 | |
| 
 | |
| /*!
 | |
|  * whether k is a meta^(n)-class of Class class
 | |
|  * @retval 1 if \a k is a meta^(n)-class of Class class (n >= 0)
 | |
|  * @retval 0 otherwise
 | |
|  */
 | |
| #define META_CLASS_OF_CLASS_CLASS_P(k)  (METACLASS_OF(k) == (k))
 | |
| 
 | |
| static int
 | |
| rb_singleton_class_has_metaclass_p(VALUE sklass)
 | |
| {
 | |
|     return rb_attr_get(METACLASS_OF(sklass), id_attached) == sklass;
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_singleton_class_internal_p(VALUE sklass)
 | |
| {
 | |
|     return (RB_TYPE_P(rb_attr_get(sklass, id_attached), T_CLASS) &&
 | |
| 	    !rb_singleton_class_has_metaclass_p(sklass));
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * whether k has a metaclass
 | |
|  * @retval 1 if \a k has a metaclass
 | |
|  * @retval 0 otherwise
 | |
|  */
 | |
| #define HAVE_METACLASS_P(k) \
 | |
|     (FL_TEST(METACLASS_OF(k), FL_SINGLETON) && \
 | |
|      rb_singleton_class_has_metaclass_p(k))
 | |
| 
 | |
| /*!
 | |
|  * ensures \a klass belongs to its own eigenclass.
 | |
|  * @return the eigenclass of \a klass
 | |
|  * @post \a klass belongs to the returned eigenclass.
 | |
|  *       i.e. the attached object of the eigenclass is \a klass.
 | |
|  * @note this macro creates a new eigenclass if necessary.
 | |
|  */
 | |
| #define ENSURE_EIGENCLASS(klass) \
 | |
|     (HAVE_METACLASS_P(klass) ? METACLASS_OF(klass) : make_metaclass(klass))
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Creates a metaclass of \a klass
 | |
|  * \param klass     a class
 | |
|  * \return          created metaclass for the class
 | |
|  * \pre \a klass is a Class object
 | |
|  * \pre \a klass has no singleton class.
 | |
|  * \post the class of \a klass is the returned class.
 | |
|  * \post the returned class is meta^(n+1)-class when \a klass is a meta^(n)-klass for n >= 0
 | |
|  */
 | |
| static inline VALUE
 | |
| make_metaclass(VALUE klass)
 | |
| {
 | |
|     VALUE super;
 | |
|     VALUE metaclass = rb_class_boot(Qundef);
 | |
| 
 | |
|     FL_SET(metaclass, FL_SINGLETON);
 | |
|     rb_singleton_class_attached(metaclass, klass);
 | |
| 
 | |
|     if (META_CLASS_OF_CLASS_CLASS_P(klass)) {
 | |
| 	SET_METACLASS_OF(klass, metaclass);
 | |
| 	SET_METACLASS_OF(metaclass, metaclass);
 | |
|     }
 | |
|     else {
 | |
| 	VALUE tmp = METACLASS_OF(klass); /* for a meta^(n)-class klass, tmp is meta^(n)-class of Class class */
 | |
| 	SET_METACLASS_OF(klass, metaclass);
 | |
| 	SET_METACLASS_OF(metaclass, ENSURE_EIGENCLASS(tmp));
 | |
|     }
 | |
| 
 | |
|     super = RCLASS_SUPER(klass);
 | |
|     while (RB_TYPE_P(super, T_ICLASS)) super = RCLASS_SUPER(super);
 | |
|     RCLASS_SET_SUPER(metaclass, super ? ENSURE_EIGENCLASS(super) : rb_cClass);
 | |
| 
 | |
|     OBJ_INFECT(metaclass, RCLASS_SUPER(metaclass));
 | |
| 
 | |
|     return metaclass;
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * Creates a singleton class for \a obj.
 | |
|  * \pre \a obj must not a immediate nor a special const.
 | |
|  * \pre \a obj must not a Class object.
 | |
|  * \pre \a obj has no singleton class.
 | |
|  */
 | |
| static inline VALUE
 | |
| make_singleton_class(VALUE obj)
 | |
| {
 | |
|     VALUE orig_class = RBASIC(obj)->klass;
 | |
|     VALUE klass = rb_class_boot(orig_class);
 | |
| 
 | |
|     FL_SET(klass, FL_SINGLETON);
 | |
|     RBASIC_SET_CLASS(obj, klass);
 | |
|     rb_singleton_class_attached(klass, obj);
 | |
| 
 | |
|     SET_METACLASS_OF(klass, METACLASS_OF(rb_class_real(orig_class)));
 | |
|     return klass;
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| boot_defclass(const char *name, VALUE super)
 | |
| {
 | |
|     VALUE obj = rb_class_boot(super);
 | |
|     ID id = rb_intern(name);
 | |
| 
 | |
|     rb_const_set((rb_cObject ? rb_cObject : obj), id, obj);
 | |
|     rb_vm_add_root_module(id, obj);
 | |
|     return obj;
 | |
| }
 | |
| 
 | |
| void
 | |
| Init_class_hierarchy(void)
 | |
| {
 | |
|     rb_cBasicObject = boot_defclass("BasicObject", 0);
 | |
|     rb_cObject = boot_defclass("Object", rb_cBasicObject);
 | |
|     rb_gc_register_mark_object(rb_cObject);
 | |
| 
 | |
|     /* resolve class name ASAP for order-independence */
 | |
|     rb_set_class_path_string(rb_cObject, rb_cObject, rb_fstring_lit("Object"));
 | |
| 
 | |
|     rb_cModule = boot_defclass("Module", rb_cObject);
 | |
|     rb_cClass =  boot_defclass("Class",  rb_cModule);
 | |
| 
 | |
|     rb_const_set(rb_cObject, rb_intern_const("BasicObject"), rb_cBasicObject);
 | |
|     RBASIC_SET_CLASS(rb_cClass, rb_cClass);
 | |
|     RBASIC_SET_CLASS(rb_cModule, rb_cClass);
 | |
|     RBASIC_SET_CLASS(rb_cObject, rb_cClass);
 | |
|     RBASIC_SET_CLASS(rb_cBasicObject, rb_cClass);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * \internal
 | |
|  * Creates a new *singleton class* for an object.
 | |
|  *
 | |
|  * \pre \a obj has no singleton class.
 | |
|  * \note DO NOT USE the function in an extension libraries. Use \ref rb_singleton_class.
 | |
|  * \param obj     An object.
 | |
|  * \param unused  ignored.
 | |
|  * \return        The singleton class of the object.
 | |
|  */
 | |
| VALUE
 | |
| rb_make_metaclass(VALUE obj, VALUE unused)
 | |
| {
 | |
|     if (BUILTIN_TYPE(obj) == T_CLASS) {
 | |
| 	return make_metaclass(obj);
 | |
|     }
 | |
|     else {
 | |
| 	return make_singleton_class(obj);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Defines a new class.
 | |
|  * \param id     ignored
 | |
|  * \param super  A class from which the new class will derive. NULL means \c Object class.
 | |
|  * \return       the created class
 | |
|  * \throw TypeError if super is not a \c Class object.
 | |
|  *
 | |
|  * \note the returned class will not be associated with \a id.
 | |
|  *       You must explicitly set a class name if necessary.
 | |
|  */
 | |
| VALUE
 | |
| rb_define_class_id(ID id, VALUE super)
 | |
| {
 | |
|     VALUE klass;
 | |
| 
 | |
|     if (!super) super = rb_cObject;
 | |
|     klass = rb_class_new(super);
 | |
|     rb_make_metaclass(klass, RBASIC(super)->klass);
 | |
| 
 | |
|     return klass;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Calls Class#inherited.
 | |
|  * \param super  A class which will be called #inherited.
 | |
|  *               NULL means Object class.
 | |
|  * \param klass  A Class object which derived from \a super
 | |
|  * \return the value \c Class#inherited's returns
 | |
|  * \pre Each of \a super and \a klass must be a \c Class object.
 | |
|  */
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_class_inherited(VALUE super, VALUE klass)
 | |
| {
 | |
|     ID inherited;
 | |
|     if (!super) super = rb_cObject;
 | |
|     CONST_ID(inherited, "inherited");
 | |
|     return rb_funcall(super, inherited, 1, klass);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Defines a top-level class.
 | |
|  * \param name   name of the class
 | |
|  * \param super  a class from which the new class will derive.
 | |
|  * \return the created class
 | |
|  * \throw TypeError if the constant name \a name is already taken but
 | |
|  *                  the constant is not a \c Class.
 | |
|  * \throw TypeError if the class is already defined but the class can not
 | |
|  *                  be reopened because its superclass is not \a super.
 | |
|  * \throw ArgumentError if the \a super is NULL.
 | |
|  * \post top-level constant named \a name refers the returned class.
 | |
|  *
 | |
|  * \note if a class named \a name is already defined and its superclass is
 | |
|  *       \a super, the function just returns the defined class.
 | |
|  */
 | |
| VALUE
 | |
| rb_define_class(const char *name, VALUE super)
 | |
| {
 | |
|     VALUE klass;
 | |
|     ID id;
 | |
| 
 | |
|     id = rb_intern(name);
 | |
|     if (rb_const_defined(rb_cObject, id)) {
 | |
| 	klass = rb_const_get(rb_cObject, id);
 | |
| 	if (!RB_TYPE_P(klass, T_CLASS)) {
 | |
| 	    rb_raise(rb_eTypeError, "%s is not a class (%"PRIsVALUE")",
 | |
| 		     name, rb_obj_class(klass));
 | |
| 	}
 | |
| 	if (rb_class_real(RCLASS_SUPER(klass)) != super) {
 | |
| 	    rb_raise(rb_eTypeError, "superclass mismatch for class %s", name);
 | |
| 	}
 | |
| 
 | |
|         /* Class may have been defined in Ruby and not pin-rooted */
 | |
|         rb_vm_add_root_module(id, klass);
 | |
| 	return klass;
 | |
|     }
 | |
|     if (!super) {
 | |
| 	rb_raise(rb_eArgError, "no super class for `%s'", name);
 | |
|     }
 | |
|     klass = rb_define_class_id(id, super);
 | |
|     rb_vm_add_root_module(id, klass);
 | |
|     rb_const_set(rb_cObject, id, klass);
 | |
|     rb_class_inherited(super, klass);
 | |
| 
 | |
|     return klass;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Defines a class under the namespace of \a outer.
 | |
|  * \param outer  a class which contains the new class.
 | |
|  * \param name   name of the new class
 | |
|  * \param super  a class from which the new class will derive.
 | |
|  *               NULL means \c Object class.
 | |
|  * \return the created class
 | |
|  * \throw TypeError if the constant name \a name is already taken but
 | |
|  *                  the constant is not a \c Class.
 | |
|  * \throw TypeError if the class is already defined but the class can not
 | |
|  *                  be reopened because its superclass is not \a super.
 | |
|  * \post top-level constant named \a name refers the returned class.
 | |
|  *
 | |
|  * \note if a class named \a name is already defined and its superclass is
 | |
|  *       \a super, the function just returns the defined class.
 | |
|  */
 | |
| VALUE
 | |
| rb_define_class_under(VALUE outer, const char *name, VALUE super)
 | |
| {
 | |
|     return rb_define_class_id_under(outer, rb_intern(name), super);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Defines a class under the namespace of \a outer.
 | |
|  * \param outer  a class which contains the new class.
 | |
|  * \param id     name of the new class
 | |
|  * \param super  a class from which the new class will derive.
 | |
|  *               NULL means \c Object class.
 | |
|  * \return the created class
 | |
|  * \throw TypeError if the constant name \a name is already taken but
 | |
|  *                  the constant is not a \c Class.
 | |
|  * \throw TypeError if the class is already defined but the class can not
 | |
|  *                  be reopened because its superclass is not \a super.
 | |
|  * \post top-level constant named \a name refers the returned class.
 | |
|  *
 | |
|  * \note if a class named \a name is already defined and its superclass is
 | |
|  *       \a super, the function just returns the defined class.
 | |
|  */
 | |
| VALUE
 | |
| rb_define_class_id_under(VALUE outer, ID id, VALUE super)
 | |
| {
 | |
|     VALUE klass;
 | |
| 
 | |
|     if (rb_const_defined_at(outer, id)) {
 | |
| 	klass = rb_const_get_at(outer, id);
 | |
| 	if (!RB_TYPE_P(klass, T_CLASS)) {
 | |
| 	    rb_raise(rb_eTypeError, "%"PRIsVALUE"::%"PRIsVALUE" is not a class"
 | |
| 		     " (%"PRIsVALUE")",
 | |
| 		     outer, rb_id2str(id), rb_obj_class(klass));
 | |
| 	}
 | |
| 	if (rb_class_real(RCLASS_SUPER(klass)) != super) {
 | |
| 	    rb_raise(rb_eTypeError, "superclass mismatch for class "
 | |
| 		     "%"PRIsVALUE"::%"PRIsVALUE""
 | |
| 		     " (%"PRIsVALUE" is given but was %"PRIsVALUE")",
 | |
| 		     outer, rb_id2str(id), RCLASS_SUPER(klass), super);
 | |
| 	}
 | |
|         /* Class may have been defined in Ruby and not pin-rooted */
 | |
|         rb_vm_add_root_module(id, klass);
 | |
| 
 | |
| 	return klass;
 | |
|     }
 | |
|     if (!super) {
 | |
| 	rb_raise(rb_eArgError, "no super class for `%"PRIsVALUE"::%"PRIsVALUE"'",
 | |
| 		 rb_class_path(outer), rb_id2str(id));
 | |
|     }
 | |
|     klass = rb_define_class_id(id, super);
 | |
|     rb_set_class_path_string(klass, outer, rb_id2str(id));
 | |
|     rb_const_set(outer, id, klass);
 | |
|     rb_class_inherited(super, klass);
 | |
|     rb_vm_add_root_module(id, klass);
 | |
|     rb_gc_register_mark_object(klass);
 | |
| 
 | |
|     return klass;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_module_new(void)
 | |
| {
 | |
|     VALUE mdl = class_alloc(T_MODULE, rb_cModule);
 | |
|     RCLASS_M_TBL_INIT(mdl);
 | |
|     return (VALUE)mdl;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_define_module_id(ID id)
 | |
| {
 | |
|     VALUE mdl;
 | |
| 
 | |
|     mdl = rb_module_new();
 | |
| 
 | |
|     return mdl;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_define_module(const char *name)
 | |
| {
 | |
|     VALUE module;
 | |
|     ID id;
 | |
| 
 | |
|     id = rb_intern(name);
 | |
|     if (rb_const_defined(rb_cObject, id)) {
 | |
| 	module = rb_const_get(rb_cObject, id);
 | |
| 	if (!RB_TYPE_P(module, T_MODULE)) {
 | |
| 	    rb_raise(rb_eTypeError, "%s is not a module (%"PRIsVALUE")",
 | |
| 		     name, rb_obj_class(module));
 | |
| 	}
 | |
|         /* Module may have been defined in Ruby and not pin-rooted */
 | |
|         rb_vm_add_root_module(id, module);
 | |
| 	return module;
 | |
|     }
 | |
|     module = rb_define_module_id(id);
 | |
|     rb_vm_add_root_module(id, module);
 | |
|     rb_gc_register_mark_object(module);
 | |
|     rb_const_set(rb_cObject, id, module);
 | |
| 
 | |
|     return module;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_define_module_under(VALUE outer, const char *name)
 | |
| {
 | |
|     return rb_define_module_id_under(outer, rb_intern(name));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_define_module_id_under(VALUE outer, ID id)
 | |
| {
 | |
|     VALUE module;
 | |
| 
 | |
|     if (rb_const_defined_at(outer, id)) {
 | |
| 	module = rb_const_get_at(outer, id);
 | |
| 	if (!RB_TYPE_P(module, T_MODULE)) {
 | |
| 	    rb_raise(rb_eTypeError, "%"PRIsVALUE"::%"PRIsVALUE" is not a module"
 | |
| 		     " (%"PRIsVALUE")",
 | |
| 		     outer, rb_id2str(id), rb_obj_class(module));
 | |
| 	}
 | |
| 	return module;
 | |
|     }
 | |
|     module = rb_define_module_id(id);
 | |
|     rb_const_set(outer, id, module);
 | |
|     rb_set_class_path_string(module, outer, rb_id2str(id));
 | |
|     rb_gc_register_mark_object(module);
 | |
| 
 | |
|     return module;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_include_class_new(VALUE module, VALUE super)
 | |
| {
 | |
|     VALUE klass = class_alloc(T_ICLASS, rb_cClass);
 | |
| 
 | |
|     if (BUILTIN_TYPE(module) == T_ICLASS) {
 | |
| 	module = RBASIC(module)->klass;
 | |
|     }
 | |
|     if (!RCLASS_IV_TBL(module)) {
 | |
| 	RCLASS_IV_TBL(module) = st_init_numtable();
 | |
|     }
 | |
|     if (!RCLASS_CONST_TBL(module)) {
 | |
| 	RCLASS_CONST_TBL(module) = rb_id_table_create(0);
 | |
|     }
 | |
|     RCLASS_IV_TBL(klass) = RCLASS_IV_TBL(module);
 | |
|     RCLASS_CONST_TBL(klass) = RCLASS_CONST_TBL(module);
 | |
| 
 | |
|     RCLASS_M_TBL(OBJ_WB_UNPROTECT(klass)) =
 | |
|       RCLASS_M_TBL(OBJ_WB_UNPROTECT(RCLASS_ORIGIN(module))); /* TODO: unprotected? */
 | |
| 
 | |
|     RCLASS_SET_SUPER(klass, super);
 | |
|     if (RB_TYPE_P(module, T_ICLASS)) {
 | |
| 	RBASIC_SET_CLASS(klass, RBASIC(module)->klass);
 | |
|     }
 | |
|     else {
 | |
| 	RBASIC_SET_CLASS(klass, module);
 | |
|     }
 | |
|     OBJ_INFECT(klass, module);
 | |
|     OBJ_INFECT(klass, super);
 | |
| 
 | |
|     return (VALUE)klass;
 | |
| }
 | |
| 
 | |
| static int include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super);
 | |
| 
 | |
| static void
 | |
| ensure_includable(VALUE klass, VALUE module)
 | |
| {
 | |
|     rb_class_modify_check(klass);
 | |
|     Check_Type(module, T_MODULE);
 | |
|     if (!NIL_P(rb_refinement_module_get_refined_class(module))) {
 | |
| 	rb_raise(rb_eArgError, "refinement module is not allowed");
 | |
|     }
 | |
|     OBJ_INFECT(klass, module);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_include_module(VALUE klass, VALUE module)
 | |
| {
 | |
|     int changed = 0;
 | |
| 
 | |
|     ensure_includable(klass, module);
 | |
| 
 | |
|     changed = include_modules_at(klass, RCLASS_ORIGIN(klass), module, TRUE);
 | |
|     if (changed < 0)
 | |
| 	rb_raise(rb_eArgError, "cyclic include detected");
 | |
| }
 | |
| 
 | |
| static enum rb_id_table_iterator_result
 | |
| add_refined_method_entry_i(ID key, VALUE value, void *data)
 | |
| {
 | |
|     rb_add_refined_method_entry((VALUE)data, key);
 | |
|     return ID_TABLE_CONTINUE;
 | |
| }
 | |
| 
 | |
| static int
 | |
| include_modules_at(const VALUE klass, VALUE c, VALUE module, int search_super)
 | |
| {
 | |
|     VALUE p, iclass;
 | |
|     int method_changed = 0, constant_changed = 0;
 | |
|     struct rb_id_table *const klass_m_tbl = RCLASS_M_TBL(RCLASS_ORIGIN(klass));
 | |
| 
 | |
|     while (module) {
 | |
| 	int superclass_seen = FALSE;
 | |
| 	struct rb_id_table *tbl;
 | |
| 
 | |
| 	if (RCLASS_ORIGIN(module) != module)
 | |
| 	    goto skip;
 | |
| 	if (klass_m_tbl && klass_m_tbl == RCLASS_M_TBL(module))
 | |
| 	    return -1;
 | |
| 	/* ignore if the module included already in superclasses */
 | |
| 	for (p = RCLASS_SUPER(klass); p; p = RCLASS_SUPER(p)) {
 | |
| 	    int type = BUILTIN_TYPE(p);
 | |
| 	    if (type == T_ICLASS) {
 | |
| 		if (RCLASS_M_TBL(p) == RCLASS_M_TBL(module)) {
 | |
| 		    if (!superclass_seen) {
 | |
| 			c = p;  /* move insertion point */
 | |
| 		    }
 | |
| 		    goto skip;
 | |
| 		}
 | |
| 	    }
 | |
| 	    else if (type == T_CLASS) {
 | |
| 		if (!search_super) break;
 | |
| 		superclass_seen = TRUE;
 | |
| 	    }
 | |
| 	}
 | |
| 	iclass = rb_include_class_new(module, RCLASS_SUPER(c));
 | |
| 	c = RCLASS_SET_SUPER(c, iclass);
 | |
| 
 | |
| 	{
 | |
| 	    VALUE m = module;
 | |
| 	    if (BUILTIN_TYPE(m) == T_ICLASS) m = RBASIC(m)->klass;
 | |
| 	    rb_module_add_to_subclasses_list(m, iclass);
 | |
| 	}
 | |
| 
 | |
| 	if (FL_TEST(klass, RMODULE_IS_REFINEMENT)) {
 | |
| 	    VALUE refined_class =
 | |
| 		rb_refinement_module_get_refined_class(klass);
 | |
| 
 | |
| 	    rb_id_table_foreach(RMODULE_M_TBL(module), add_refined_method_entry_i, (void *)refined_class);
 | |
| 	    FL_SET(c, RMODULE_INCLUDED_INTO_REFINEMENT);
 | |
| 	}
 | |
| 
 | |
| 	tbl = RMODULE_M_TBL(module);
 | |
| 	if (tbl && rb_id_table_size(tbl)) method_changed = 1;
 | |
| 
 | |
| 	tbl = RMODULE_CONST_TBL(module);
 | |
| 	if (tbl && rb_id_table_size(tbl)) constant_changed = 1;
 | |
|       skip:
 | |
| 	module = RCLASS_SUPER(module);
 | |
|     }
 | |
| 
 | |
|     if (method_changed) rb_clear_method_cache_by_class(klass);
 | |
|     if (constant_changed) rb_clear_constant_cache();
 | |
| 
 | |
|     return method_changed;
 | |
| }
 | |
| 
 | |
| static enum rb_id_table_iterator_result
 | |
| move_refined_method(ID key, VALUE value, void *data)
 | |
| {
 | |
|     rb_method_entry_t *me = (rb_method_entry_t *) value;
 | |
|     VALUE klass = (VALUE)data;
 | |
|     struct rb_id_table *tbl = RCLASS_M_TBL(klass);
 | |
| 
 | |
|     if (me->def->type == VM_METHOD_TYPE_REFINED) {
 | |
| 	if (me->def->body.refined.orig_me) {
 | |
| 	    const rb_method_entry_t *orig_me = me->def->body.refined.orig_me, *new_me;
 | |
| 	    RB_OBJ_WRITE(me, &me->def->body.refined.orig_me, NULL);
 | |
| 	    new_me = rb_method_entry_clone(me);
 | |
| 	    rb_id_table_insert(tbl, key, (VALUE)new_me);
 | |
| 	    RB_OBJ_WRITTEN(klass, Qundef, new_me);
 | |
| 	    rb_method_entry_copy(me, orig_me);
 | |
| 	    return ID_TABLE_CONTINUE;
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_id_table_insert(tbl, key, (VALUE)me);
 | |
| 	    return ID_TABLE_DELETE;
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	return ID_TABLE_CONTINUE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_prepend_module(VALUE klass, VALUE module)
 | |
| {
 | |
|     VALUE origin;
 | |
|     int changed = 0;
 | |
| 
 | |
|     ensure_includable(klass, module);
 | |
| 
 | |
|     origin = RCLASS_ORIGIN(klass);
 | |
|     if (origin == klass) {
 | |
| 	origin = class_alloc(T_ICLASS, klass);
 | |
| 	OBJ_WB_UNPROTECT(origin); /* TODO: conservative shading. Need more survey. */
 | |
| 	RCLASS_SET_SUPER(origin, RCLASS_SUPER(klass));
 | |
| 	RCLASS_SET_SUPER(klass, origin);
 | |
| 	RCLASS_SET_ORIGIN(klass, origin);
 | |
| 	RCLASS_M_TBL(origin) = RCLASS_M_TBL(klass);
 | |
| 	RCLASS_M_TBL_INIT(klass);
 | |
| 	rb_id_table_foreach(RCLASS_M_TBL(origin), move_refined_method, (void *)klass);
 | |
|     }
 | |
|     changed = include_modules_at(klass, klass, module, FALSE);
 | |
|     if (changed < 0)
 | |
| 	rb_raise(rb_eArgError, "cyclic prepend detected");
 | |
|     if (changed) {
 | |
| 	rb_vm_check_redefinition_by_prepend(klass);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     mod.included_modules -> array
 | |
|  *
 | |
|  *  Returns the list of modules included in <i>mod</i>.
 | |
|  *
 | |
|  *     module Mixin
 | |
|  *     end
 | |
|  *
 | |
|  *     module Outer
 | |
|  *       include Mixin
 | |
|  *     end
 | |
|  *
 | |
|  *     Mixin.included_modules   #=> []
 | |
|  *     Outer.included_modules   #=> [Mixin]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_mod_included_modules(VALUE mod)
 | |
| {
 | |
|     VALUE ary = rb_ary_new();
 | |
|     VALUE p;
 | |
|     VALUE origin = RCLASS_ORIGIN(mod);
 | |
| 
 | |
|     for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
 | |
| 	if (p != origin && BUILTIN_TYPE(p) == T_ICLASS) {
 | |
| 	    VALUE m = RBASIC(p)->klass;
 | |
| 	    if (RB_TYPE_P(m, T_MODULE))
 | |
| 		rb_ary_push(ary, m);
 | |
| 	}
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     mod.include?(module)    -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if <i>module</i> is included in
 | |
|  *  <i>mod</i> or one of <i>mod</i>'s ancestors.
 | |
|  *
 | |
|  *     module A
 | |
|  *     end
 | |
|  *     class B
 | |
|  *       include A
 | |
|  *     end
 | |
|  *     class C < B
 | |
|  *     end
 | |
|  *     B.include?(A)   #=> true
 | |
|  *     C.include?(A)   #=> true
 | |
|  *     A.include?(A)   #=> false
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_mod_include_p(VALUE mod, VALUE mod2)
 | |
| {
 | |
|     VALUE p;
 | |
| 
 | |
|     Check_Type(mod2, T_MODULE);
 | |
|     for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
 | |
| 	if (BUILTIN_TYPE(p) == T_ICLASS) {
 | |
| 	    if (RBASIC(p)->klass == mod2) return Qtrue;
 | |
| 	}
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     mod.ancestors -> array
 | |
|  *
 | |
|  *  Returns a list of modules included/prepended in <i>mod</i>
 | |
|  *  (including <i>mod</i> itself).
 | |
|  *
 | |
|  *     module Mod
 | |
|  *       include Math
 | |
|  *       include Comparable
 | |
|  *       prepend Enumerable
 | |
|  *     end
 | |
|  *
 | |
|  *     Mod.ancestors        #=> [Enumerable, Mod, Comparable, Math]
 | |
|  *     Math.ancestors       #=> [Math]
 | |
|  *     Enumerable.ancestors #=> [Enumerable]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_mod_ancestors(VALUE mod)
 | |
| {
 | |
|     VALUE p, ary = rb_ary_new();
 | |
| 
 | |
|     for (p = mod; p; p = RCLASS_SUPER(p)) {
 | |
| 	if (BUILTIN_TYPE(p) == T_ICLASS) {
 | |
| 	    rb_ary_push(ary, RBASIC(p)->klass);
 | |
| 	}
 | |
| 	else if (p == RCLASS_ORIGIN(p)) {
 | |
| 	    rb_ary_push(ary, p);
 | |
| 	}
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ins_methods_push(st_data_t name, st_data_t ary)
 | |
| {
 | |
|     rb_ary_push((VALUE)ary, ID2SYM((ID)name));
 | |
| }
 | |
| 
 | |
| static int
 | |
| ins_methods_i(st_data_t name, st_data_t type, st_data_t ary)
 | |
| {
 | |
|     switch ((rb_method_visibility_t)type) {
 | |
|       case METHOD_VISI_UNDEF:
 | |
|       case METHOD_VISI_PRIVATE:
 | |
| 	break;
 | |
|       default: /* everything but private */
 | |
| 	ins_methods_push(name, ary);
 | |
| 	break;
 | |
|     }
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ins_methods_prot_i(st_data_t name, st_data_t type, st_data_t ary)
 | |
| {
 | |
|     if ((rb_method_visibility_t)type == METHOD_VISI_PROTECTED) {
 | |
| 	ins_methods_push(name, ary);
 | |
|     }
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ins_methods_priv_i(st_data_t name, st_data_t type, st_data_t ary)
 | |
| {
 | |
|     if ((rb_method_visibility_t)type == METHOD_VISI_PRIVATE) {
 | |
| 	ins_methods_push(name, ary);
 | |
|     }
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ins_methods_pub_i(st_data_t name, st_data_t type, st_data_t ary)
 | |
| {
 | |
|     if ((rb_method_visibility_t)type == METHOD_VISI_PUBLIC) {
 | |
| 	ins_methods_push(name, ary);
 | |
|     }
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| struct method_entry_arg {
 | |
|     st_table *list;
 | |
|     int recur;
 | |
| };
 | |
| 
 | |
| static enum rb_id_table_iterator_result
 | |
| method_entry_i(ID key, VALUE value, void *data)
 | |
| {
 | |
|     const rb_method_entry_t *me = (const rb_method_entry_t *)value;
 | |
|     struct method_entry_arg *arg = (struct method_entry_arg *)data;
 | |
|     rb_method_visibility_t type;
 | |
| 
 | |
|     if (me->def->type == VM_METHOD_TYPE_REFINED) {
 | |
| 	VALUE owner = me->owner;
 | |
| 	me = rb_resolve_refined_method(Qnil, me);
 | |
| 	if (!me) return ID_TABLE_CONTINUE;
 | |
| 	if (!arg->recur && me->owner != owner) return ID_TABLE_CONTINUE;
 | |
|     }
 | |
|     if (!st_lookup(arg->list, key, 0)) {
 | |
| 	if (UNDEFINED_METHOD_ENTRY_P(me)) {
 | |
| 	    type = METHOD_VISI_UNDEF; /* none */
 | |
| 	}
 | |
| 	else {
 | |
| 	    type = METHOD_ENTRY_VISI(me);
 | |
| 	}
 | |
| 	st_add_direct(arg->list, key, (st_data_t)type);
 | |
|     }
 | |
|     return ID_TABLE_CONTINUE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| add_instance_method_list(VALUE mod, struct method_entry_arg *me_arg)
 | |
| {
 | |
|     struct rb_id_table *m_tbl = RCLASS_M_TBL(mod);
 | |
|     if (!m_tbl) return;
 | |
|     rb_id_table_foreach(m_tbl, method_entry_i, me_arg);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| particular_class_p(VALUE mod)
 | |
| {
 | |
|     if (!mod) return false;
 | |
|     if (FL_TEST(mod, FL_SINGLETON)) return true;
 | |
|     if (BUILTIN_TYPE(mod) == T_ICLASS) return true;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| class_instance_method_list(int argc, const VALUE *argv, VALUE mod, int obj, int (*func) (st_data_t, st_data_t, st_data_t))
 | |
| {
 | |
|     VALUE ary;
 | |
|     int recur = TRUE, prepended = 0;
 | |
|     struct method_entry_arg me_arg;
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]);
 | |
| 
 | |
|     me_arg.list = st_init_numtable();
 | |
|     me_arg.recur = recur;
 | |
| 
 | |
|     if (obj) {
 | |
|         for (; particular_class_p(mod); mod = RCLASS_SUPER(mod)) {
 | |
|             add_instance_method_list(mod, &me_arg);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!recur && RCLASS_ORIGIN(mod) != mod) {
 | |
| 	mod = RCLASS_ORIGIN(mod);
 | |
| 	prepended = 1;
 | |
|     }
 | |
| 
 | |
|     for (; mod; mod = RCLASS_SUPER(mod)) {
 | |
|         add_instance_method_list(mod, &me_arg);
 | |
| 	if (BUILTIN_TYPE(mod) == T_ICLASS && !prepended) continue;
 | |
| 	if (!recur) break;
 | |
|     }
 | |
|     ary = rb_ary_new();
 | |
|     st_foreach(me_arg.list, func, ary);
 | |
|     st_free_table(me_arg.list);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     mod.instance_methods(include_super=true)   -> array
 | |
|  *
 | |
|  *  Returns an array containing the names of the public and protected instance
 | |
|  *  methods in the receiver. For a module, these are the public and protected methods;
 | |
|  *  for a class, they are the instance (not singleton) methods. If the optional
 | |
|  *  parameter is <code>false</code>, the methods of any ancestors are not included.
 | |
|  *
 | |
|  *     module A
 | |
|  *       def method1()  end
 | |
|  *     end
 | |
|  *     class B
 | |
|  *       include A
 | |
|  *       def method2()  end
 | |
|  *     end
 | |
|  *     class C < B
 | |
|  *       def method3()  end
 | |
|  *     end
 | |
|  *
 | |
|  *     A.instance_methods(false)                   #=> [:method1]
 | |
|  *     B.instance_methods(false)                   #=> [:method2]
 | |
|  *     B.instance_methods(true).include?(:method1) #=> true
 | |
|  *     C.instance_methods(false)                   #=> [:method3]
 | |
|  *     C.instance_methods.include?(:method2)       #=> true
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
 | |
| {
 | |
|     return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     mod.protected_instance_methods(include_super=true)   -> array
 | |
|  *
 | |
|  *  Returns a list of the protected instance methods defined in
 | |
|  *  <i>mod</i>. If the optional parameter is <code>false</code>, the
 | |
|  *  methods of any ancestors are not included.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
 | |
| {
 | |
|     return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     mod.private_instance_methods(include_super=true)    -> array
 | |
|  *
 | |
|  *  Returns a list of the private instance methods defined in
 | |
|  *  <i>mod</i>. If the optional parameter is <code>false</code>, the
 | |
|  *  methods of any ancestors are not included.
 | |
|  *
 | |
|  *     module Mod
 | |
|  *       def method1()  end
 | |
|  *       private :method1
 | |
|  *       def method2()  end
 | |
|  *     end
 | |
|  *     Mod.instance_methods           #=> [:method2]
 | |
|  *     Mod.private_instance_methods   #=> [:method1]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
 | |
| {
 | |
|     return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     mod.public_instance_methods(include_super=true)   -> array
 | |
|  *
 | |
|  *  Returns a list of the public instance methods defined in <i>mod</i>.
 | |
|  *  If the optional parameter is <code>false</code>, the methods of
 | |
|  *  any ancestors are not included.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
 | |
| {
 | |
|     return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     obj.methods(regular=true)    -> array
 | |
|  *
 | |
|  *  Returns a list of the names of public and protected methods of
 | |
|  *  <i>obj</i>. This will include all the methods accessible in
 | |
|  *  <i>obj</i>'s ancestors.
 | |
|  *  If the optional parameter is <code>false</code>, it
 | |
|  *  returns an array of <i>obj</i>'s public and protected singleton methods,
 | |
|  *  the array will not include methods in modules included in <i>obj</i>.
 | |
|  *
 | |
|  *     class Klass
 | |
|  *       def klass_method()
 | |
|  *       end
 | |
|  *     end
 | |
|  *     k = Klass.new
 | |
|  *     k.methods[0..9]    #=> [:klass_method, :nil?, :===,
 | |
|  *                        #    :==~, :!, :eql?
 | |
|  *                        #    :hash, :<=>, :class, :singleton_class]
 | |
|  *     k.methods.length   #=> 56
 | |
|  *
 | |
|  *     k.methods(false)   #=> []
 | |
|  *     def k.singleton_method; end
 | |
|  *     k.methods(false)   #=> [:singleton_method]
 | |
|  *
 | |
|  *     module M123; def m123; end end
 | |
|  *     k.extend M123
 | |
|  *     k.methods(false)   #=> [:singleton_method]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_obj_methods(int argc, const VALUE *argv, VALUE obj)
 | |
| {
 | |
|     rb_check_arity(argc, 0, 1);
 | |
|     if (argc > 0 && !RTEST(argv[0])) {
 | |
| 	return rb_obj_singleton_methods(argc, argv, obj);
 | |
|     }
 | |
|     return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     obj.protected_methods(all=true)   -> array
 | |
|  *
 | |
|  *  Returns the list of protected methods accessible to <i>obj</i>. If
 | |
|  *  the <i>all</i> parameter is set to <code>false</code>, only those methods
 | |
|  *  in the receiver will be listed.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_obj_protected_methods(int argc, const VALUE *argv, VALUE obj)
 | |
| {
 | |
|     return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_prot_i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     obj.private_methods(all=true)   -> array
 | |
|  *
 | |
|  *  Returns the list of private methods accessible to <i>obj</i>. If
 | |
|  *  the <i>all</i> parameter is set to <code>false</code>, only those methods
 | |
|  *  in the receiver will be listed.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_obj_private_methods(int argc, const VALUE *argv, VALUE obj)
 | |
| {
 | |
|     return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_priv_i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     obj.public_methods(all=true)   -> array
 | |
|  *
 | |
|  *  Returns the list of public methods accessible to <i>obj</i>. If
 | |
|  *  the <i>all</i> parameter is set to <code>false</code>, only those methods
 | |
|  *  in the receiver will be listed.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_obj_public_methods(int argc, const VALUE *argv, VALUE obj)
 | |
| {
 | |
|     return class_instance_method_list(argc, argv, CLASS_OF(obj), 1, ins_methods_pub_i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     obj.singleton_methods(all=true)    -> array
 | |
|  *
 | |
|  *  Returns an array of the names of singleton methods for <i>obj</i>.
 | |
|  *  If the optional <i>all</i> parameter is true, the list will include
 | |
|  *  methods in modules included in <i>obj</i>.
 | |
|  *  Only public and protected singleton methods are returned.
 | |
|  *
 | |
|  *     module Other
 | |
|  *       def three() end
 | |
|  *     end
 | |
|  *
 | |
|  *     class Single
 | |
|  *       def Single.four() end
 | |
|  *     end
 | |
|  *
 | |
|  *     a = Single.new
 | |
|  *
 | |
|  *     def a.one()
 | |
|  *     end
 | |
|  *
 | |
|  *     class << a
 | |
|  *       include Other
 | |
|  *       def two()
 | |
|  *       end
 | |
|  *     end
 | |
|  *
 | |
|  *     Single.singleton_methods    #=> [:four]
 | |
|  *     a.singleton_methods(false)  #=> [:two, :one]
 | |
|  *     a.singleton_methods         #=> [:two, :one, :three]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_obj_singleton_methods(int argc, const VALUE *argv, VALUE obj)
 | |
| {
 | |
|     VALUE ary, klass, origin;
 | |
|     struct method_entry_arg me_arg;
 | |
|     struct rb_id_table *mtbl;
 | |
|     int recur = TRUE;
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1)) recur = RTEST(argv[0]);
 | |
|     if (RB_TYPE_P(obj, T_CLASS) && FL_TEST(obj, FL_SINGLETON)) {
 | |
|         rb_singleton_class(obj);
 | |
|     }
 | |
|     klass = CLASS_OF(obj);
 | |
|     origin = RCLASS_ORIGIN(klass);
 | |
|     me_arg.list = st_init_numtable();
 | |
|     me_arg.recur = recur;
 | |
|     if (klass && FL_TEST(klass, FL_SINGLETON)) {
 | |
| 	if ((mtbl = RCLASS_M_TBL(origin)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
 | |
| 	klass = RCLASS_SUPER(klass);
 | |
|     }
 | |
|     if (recur) {
 | |
| 	while (klass && (FL_TEST(klass, FL_SINGLETON) || RB_TYPE_P(klass, T_ICLASS))) {
 | |
| 	    if (klass != origin && (mtbl = RCLASS_M_TBL(klass)) != 0) rb_id_table_foreach(mtbl, method_entry_i, &me_arg);
 | |
| 	    klass = RCLASS_SUPER(klass);
 | |
| 	}
 | |
|     }
 | |
|     ary = rb_ary_new();
 | |
|     st_foreach(me_arg.list, ins_methods_i, ary);
 | |
|     st_free_table(me_arg.list);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * \}
 | |
|  */
 | |
| /*!
 | |
|  * \defgroup defmethod Defining methods
 | |
|  * There are some APIs to define a method from C.
 | |
|  * These API takes a C function as a method body.
 | |
|  *
 | |
|  * \par Method body functions
 | |
|  * Method body functions must return a VALUE and
 | |
|  * can be one of the following form:
 | |
|  * <dl>
 | |
|  * <dt>Fixed number of parameters</dt>
 | |
|  * <dd>
 | |
|  *     This form is a normal C function, excepting it takes
 | |
|  *     a receiver object as the first argument.
 | |
|  *
 | |
|  *     \code
 | |
|  *     static VALUE my_method(VALUE self, VALUE x, VALUE y);
 | |
|  *     \endcode
 | |
|  * </dd>
 | |
|  * <dt>argc and argv style</dt>
 | |
|  * <dd>
 | |
|  *     This form takes three parameters: \a argc, \a argv and \a self.
 | |
|  *     \a self is the receiver. \a argc is the number of arguments.
 | |
|  *     \a argv is a pointer to an array of the arguments.
 | |
|  *
 | |
|  *     \code
 | |
|  *     static VALUE my_method(int argc, VALUE *argv, VALUE self);
 | |
|  *     \endcode
 | |
|  * </dd>
 | |
|  * <dt>Ruby array style</dt>
 | |
|  * <dd>
 | |
|  *     This form takes two parameters: self and args.
 | |
|  *     \a self is the receiver. \a args is an Array object which
 | |
|  *     contains the arguments.
 | |
|  *
 | |
|  *     \code
 | |
|  *     static VALUE my_method(VALUE self, VALUE args);
 | |
|  *     \endcode
 | |
|  * </dd>
 | |
|  *
 | |
|  * \par Number of parameters
 | |
|  * Method defining APIs takes the number of parameters which the
 | |
|  * method will takes. This number is called \a argc.
 | |
|  * \a argc can be:
 | |
|  * <dl>
 | |
|  * <dt>zero or positive number</dt>
 | |
|  * <dd>This means the method body function takes a fixed number of parameters</dd>
 | |
|  * <dt>-1</dt>
 | |
|  * <dd>This means the method body function is "argc and argv" style.</dd>
 | |
|  * <dt>-2</dt>
 | |
|  * <dd>This means the method body function is "self and args" style.</dd>
 | |
|  * </dl>
 | |
|  * \{
 | |
|  */
 | |
| 
 | |
| #ifdef rb_define_method_id
 | |
| #undef rb_define_method_id
 | |
| #endif
 | |
| void
 | |
| rb_define_method_id(VALUE klass, ID mid, VALUE (*func)(ANYARGS), int argc)
 | |
| {
 | |
|     rb_add_method_cfunc(klass, mid, func, argc, METHOD_VISI_PUBLIC);
 | |
| }
 | |
| 
 | |
| #ifdef rb_define_method
 | |
| #undef rb_define_method
 | |
| #endif
 | |
| void
 | |
| rb_define_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
 | |
| {
 | |
|     rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PUBLIC);
 | |
| }
 | |
| 
 | |
| #ifdef rb_define_protected_method
 | |
| #undef rb_define_protected_method
 | |
| #endif
 | |
| void
 | |
| rb_define_protected_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
 | |
| {
 | |
|     rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PROTECTED);
 | |
| }
 | |
| 
 | |
| #ifdef rb_define_private_method
 | |
| #undef rb_define_private_method
 | |
| #endif
 | |
| void
 | |
| rb_define_private_method(VALUE klass, const char *name, VALUE (*func)(ANYARGS), int argc)
 | |
| {
 | |
|     rb_add_method_cfunc(klass, rb_intern(name), func, argc, METHOD_VISI_PRIVATE);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_undef_method(VALUE klass, const char *name)
 | |
| {
 | |
|     rb_add_method(klass, rb_intern(name), VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_UNDEF);
 | |
| }
 | |
| 
 | |
| static enum rb_id_table_iterator_result
 | |
| undef_method_i(ID name, VALUE value, void *data)
 | |
| {
 | |
|     VALUE klass = (VALUE)data;
 | |
|     rb_add_method(klass, name, VM_METHOD_TYPE_UNDEF, 0, METHOD_VISI_UNDEF);
 | |
|     return ID_TABLE_CONTINUE;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_undef_methods_from(VALUE klass, VALUE super)
 | |
| {
 | |
|     struct rb_id_table *mtbl = RCLASS_M_TBL(super);
 | |
|     if (mtbl) {
 | |
| 	rb_id_table_foreach(mtbl, undef_method_i, (void *)klass);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * \}
 | |
|  */
 | |
| /*!
 | |
|  * \addtogroup class
 | |
|  * \{
 | |
|  */
 | |
| 
 | |
| #define SPECIAL_SINGLETON(x,c) do {\
 | |
|     if (obj == (x)) {\
 | |
| 	return (c);\
 | |
|     }\
 | |
| } while (0)
 | |
| 
 | |
| static inline VALUE
 | |
| special_singleton_class_of(VALUE obj)
 | |
| {
 | |
|     SPECIAL_SINGLETON(Qnil, rb_cNilClass);
 | |
|     SPECIAL_SINGLETON(Qfalse, rb_cFalseClass);
 | |
|     SPECIAL_SINGLETON(Qtrue, rb_cTrueClass);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_special_singleton_class(VALUE obj)
 | |
| {
 | |
|     return special_singleton_class_of(obj);
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * \internal
 | |
|  * Returns the singleton class of \a obj. Creates it if necessary.
 | |
|  *
 | |
|  * \note DO NOT expose the returned singleton class to
 | |
|  *       outside of class.c.
 | |
|  *       Use \ref rb_singleton_class instead for
 | |
|  *       consistency of the metaclass hierarchy.
 | |
|  */
 | |
| static VALUE
 | |
| singleton_class_of(VALUE obj)
 | |
| {
 | |
|     VALUE klass;
 | |
| 
 | |
|     if (FIXNUM_P(obj) || FLONUM_P(obj) || STATIC_SYM_P(obj)) {
 | |
|       no_singleton:
 | |
| 	rb_raise(rb_eTypeError, "can't define singleton");
 | |
|     }
 | |
|     if (SPECIAL_CONST_P(obj)) {
 | |
| 	klass = special_singleton_class_of(obj);
 | |
| 	if (NIL_P(klass))
 | |
| 	    rb_bug("unknown immediate %p", (void *)obj);
 | |
| 	return klass;
 | |
|     }
 | |
|     else {
 | |
| 	switch (BUILTIN_TYPE(obj)) {
 | |
| 	  case T_FLOAT: case T_BIGNUM: case T_SYMBOL:
 | |
| 	    goto no_singleton;
 | |
| 	  case T_STRING:
 | |
| 	    if (FL_TEST_RAW(obj, RSTRING_FSTR)) goto no_singleton;
 | |
| 	    break;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     klass = RBASIC(obj)->klass;
 | |
|     if (!(FL_TEST(klass, FL_SINGLETON) &&
 | |
| 	  rb_ivar_get(klass, id_attached) == obj)) {
 | |
| 	rb_serial_t serial = RCLASS_SERIAL(klass);
 | |
| 	klass = rb_make_metaclass(obj, klass);
 | |
| 	RCLASS_SERIAL(klass) = serial;
 | |
|     }
 | |
| 
 | |
|     if (OBJ_TAINTED(obj)) {
 | |
| 	OBJ_TAINT(klass);
 | |
|     }
 | |
|     else {
 | |
| 	FL_UNSET(klass, FL_TAINT);
 | |
|     }
 | |
|     RB_FL_SET_RAW(klass, RB_OBJ_FROZEN_RAW(obj));
 | |
| 
 | |
|     return klass;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_freeze_singleton_class(VALUE x)
 | |
| {
 | |
|     /* should not propagate to meta-meta-class, and so on */
 | |
|     if (!(RBASIC(x)->flags & FL_SINGLETON)) {
 | |
| 	VALUE klass = RBASIC_CLASS(x);
 | |
| 	if (klass && (klass = RCLASS_ORIGIN(klass)) != 0 &&
 | |
| 	    FL_TEST(klass, (FL_SINGLETON|FL_FREEZE)) == FL_SINGLETON) {
 | |
| 	    OBJ_FREEZE_RAW(klass);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * Returns the singleton class of \a obj, or nil if obj is not a
 | |
|  * singleton object.
 | |
|  *
 | |
|  * \param obj an arbitrary object.
 | |
|  * \return the singleton class or nil.
 | |
|  */
 | |
| VALUE
 | |
| rb_singleton_class_get(VALUE obj)
 | |
| {
 | |
|     VALUE klass;
 | |
| 
 | |
|     if (SPECIAL_CONST_P(obj)) {
 | |
| 	return rb_special_singleton_class(obj);
 | |
|     }
 | |
|     klass = RBASIC(obj)->klass;
 | |
|     if (!FL_TEST(klass, FL_SINGLETON)) return Qnil;
 | |
|     if (rb_ivar_get(klass, id_attached) != obj) return Qnil;
 | |
|     return klass;
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * Returns the singleton class of \a obj. Creates it if necessary.
 | |
|  *
 | |
|  * \param obj an arbitrary object.
 | |
|  * \throw TypeError if \a obj is a Integer or a Symbol.
 | |
|  * \return the singleton class.
 | |
|  *
 | |
|  * \post \a obj has its own singleton class.
 | |
|  * \post if \a obj is a class,
 | |
|  *       the returned singleton class also has its own
 | |
|  *       singleton class in order to keep consistency of the
 | |
|  *       inheritance structure of metaclasses.
 | |
|  * \note a new singleton class will be created
 | |
|  *       if \a obj does not have it.
 | |
|  * \note the singleton classes for nil, true and false are:
 | |
|  *       NilClass, TrueClass and FalseClass.
 | |
|  */
 | |
| VALUE
 | |
| rb_singleton_class(VALUE obj)
 | |
| {
 | |
|     VALUE klass = singleton_class_of(obj);
 | |
| 
 | |
|     /* ensures an exposed class belongs to its own eigenclass */
 | |
|     if (RB_TYPE_P(obj, T_CLASS)) (void)ENSURE_EIGENCLASS(klass);
 | |
| 
 | |
|     return klass;
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * \}
 | |
|  */
 | |
| 
 | |
| /*!
 | |
|  * \addtogroup defmethod
 | |
|  * \{
 | |
|  */
 | |
| 
 | |
| #ifdef rb_define_singleton_method
 | |
| #undef rb_define_singleton_method
 | |
| #endif
 | |
| /*!
 | |
|  * Defines a singleton method for \a obj.
 | |
|  * \param obj    an arbitrary object
 | |
|  * \param name   name of the singleton method
 | |
|  * \param func   the method body
 | |
|  * \param argc   the number of parameters, or -1 or -2. see \ref defmethod.
 | |
|  */
 | |
| void
 | |
| rb_define_singleton_method(VALUE obj, const char *name, VALUE (*func)(ANYARGS), int argc)
 | |
| {
 | |
|     rb_define_method(singleton_class_of(obj), name, func, argc);
 | |
| }
 | |
| 
 | |
| #ifdef rb_define_module_function
 | |
| #undef rb_define_module_function
 | |
| #endif
 | |
| /*!
 | |
|  * Defines a module function for \a module.
 | |
|  * \param module  an module or a class.
 | |
|  * \param name    name of the function
 | |
|  * \param func    the method body
 | |
|  * \param argc    the number of parameters, or -1 or -2. see \ref defmethod.
 | |
|  */
 | |
| void
 | |
| rb_define_module_function(VALUE module, const char *name, VALUE (*func)(ANYARGS), int argc)
 | |
| {
 | |
|     rb_define_private_method(module, name, func, argc);
 | |
|     rb_define_singleton_method(module, name, func, argc);
 | |
| }
 | |
| 
 | |
| #ifdef rb_define_global_function
 | |
| #undef rb_define_global_function
 | |
| #endif
 | |
| /*!
 | |
|  * Defines a global function
 | |
|  * \param name    name of the function
 | |
|  * \param func    the method body
 | |
|  * \param argc    the number of parameters, or -1 or -2. see \ref defmethod.
 | |
|  */
 | |
| void
 | |
| rb_define_global_function(const char *name, VALUE (*func)(ANYARGS), int argc)
 | |
| {
 | |
|     rb_define_module_function(rb_mKernel, name, func, argc);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * Defines an alias of a method.
 | |
|  * \param klass  the class which the original method belongs to
 | |
|  * \param name1  a new name for the method
 | |
|  * \param name2  the original name of the method
 | |
|  */
 | |
| void
 | |
| rb_define_alias(VALUE klass, const char *name1, const char *name2)
 | |
| {
 | |
|     rb_alias(klass, rb_intern(name1), rb_intern(name2));
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * Defines (a) public accessor method(s) for an attribute.
 | |
|  * \param klass  the class which the attribute will belongs to
 | |
|  * \param name   name of the attribute
 | |
|  * \param read   a getter method for the attribute will be defined if \a read is non-zero.
 | |
|  * \param write  a setter method for the attribute will be defined if \a write is non-zero.
 | |
|  */
 | |
| void
 | |
| rb_define_attr(VALUE klass, const char *name, int read, int write)
 | |
| {
 | |
|     rb_attr(klass, rb_intern(name), read, write, FALSE);
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_keyword_error_new(const char *error, VALUE keys)
 | |
| {
 | |
|     long i = 0, len = RARRAY_LEN(keys);
 | |
|     VALUE error_message = rb_sprintf("%s keyword%.*s", error, len > 1, "s");
 | |
| 
 | |
|     if (len > 0) {
 | |
| 	rb_str_cat_cstr(error_message, ": ");
 | |
| 	while (1) {
 | |
|             const VALUE k = RARRAY_AREF(keys, i);
 | |
| 	    rb_str_append(error_message, rb_inspect(k));
 | |
| 	    if (++i >= len) break;
 | |
| 	    rb_str_cat_cstr(error_message, ", ");
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return rb_exc_new_str(rb_eArgError, error_message);
 | |
| }
 | |
| 
 | |
| NORETURN(static void rb_keyword_error(const char *error, VALUE keys));
 | |
| static void
 | |
| rb_keyword_error(const char *error, VALUE keys)
 | |
| {
 | |
|     rb_exc_raise(rb_keyword_error_new(error, keys));
 | |
| }
 | |
| 
 | |
| NORETURN(static void unknown_keyword_error(VALUE hash, const ID *table, int keywords));
 | |
| static void
 | |
| unknown_keyword_error(VALUE hash, const ID *table, int keywords)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < keywords; i++) {
 | |
| 	st_data_t key = ID2SYM(table[i]);
 | |
|         rb_hash_stlike_delete(hash, &key, NULL);
 | |
|     }
 | |
|     rb_keyword_error("unknown", rb_hash_keys(hash));
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| separate_symbol(st_data_t key, st_data_t value, st_data_t arg)
 | |
| {
 | |
|     VALUE *kwdhash = (VALUE *)arg;
 | |
|     if (!SYMBOL_P(key)) kwdhash++;
 | |
|     if (!*kwdhash) *kwdhash = rb_hash_new();
 | |
|     rb_hash_aset(*kwdhash, (VALUE)key, (VALUE)value);
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_extract_keywords(VALUE *orighash)
 | |
| {
 | |
|     VALUE parthash[2] = {0, 0};
 | |
|     VALUE hash = *orighash;
 | |
| 
 | |
|     if (RHASH_EMPTY_P(hash)) {
 | |
| 	*orighash = 0;
 | |
| 	return hash;
 | |
|     }
 | |
|     rb_hash_foreach(hash, separate_symbol, (st_data_t)&parthash);
 | |
|     *orighash = parthash[1];
 | |
|     if (parthash[1] && RBASIC_CLASS(hash) != rb_cHash) {
 | |
|         RBASIC_SET_CLASS(parthash[1], RBASIC_CLASS(hash));
 | |
|     }
 | |
|     return parthash[0];
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_get_kwargs(VALUE keyword_hash, const ID *table, int required, int optional, VALUE *values)
 | |
| {
 | |
|     int i = 0, j;
 | |
|     int rest = 0;
 | |
|     VALUE missing = Qnil;
 | |
|     st_data_t key;
 | |
| 
 | |
| #define extract_kwarg(keyword, val) \
 | |
|     (key = (st_data_t)(keyword), values ? \
 | |
|      (rb_hash_stlike_delete(keyword_hash, &key, &(val)) || ((val) = Qundef, 0)) : \
 | |
|      rb_hash_stlike_lookup(keyword_hash, key, NULL))
 | |
| 
 | |
|     if (NIL_P(keyword_hash)) keyword_hash = 0;
 | |
| 
 | |
|     if (optional < 0) {
 | |
| 	rest = 1;
 | |
| 	optional = -1-optional;
 | |
|     }
 | |
|     if (required) {
 | |
| 	for (; i < required; i++) {
 | |
| 	    VALUE keyword = ID2SYM(table[i]);
 | |
| 	    if (keyword_hash) {
 | |
|                 if (extract_kwarg(keyword, values[i])) {
 | |
| 		    continue;
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (NIL_P(missing)) missing = rb_ary_tmp_new(1);
 | |
| 	    rb_ary_push(missing, keyword);
 | |
| 	}
 | |
| 	if (!NIL_P(missing)) {
 | |
| 	    rb_keyword_error("missing", missing);
 | |
| 	}
 | |
|     }
 | |
|     j = i;
 | |
|     if (optional && keyword_hash) {
 | |
| 	for (i = 0; i < optional; i++) {
 | |
|             if (extract_kwarg(ID2SYM(table[required+i]), values[required+i])) {
 | |
| 		j++;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     if (!rest && keyword_hash) {
 | |
| 	if (RHASH_SIZE(keyword_hash) > (unsigned int)(values ? 0 : j)) {
 | |
| 	    unknown_keyword_error(keyword_hash, table, required+optional);
 | |
| 	}
 | |
|     }
 | |
|     if (values && !keyword_hash) {
 | |
|         for (i = 0; i < required + optional; i++) {
 | |
|             values[i] = Qundef;
 | |
|         }
 | |
|     }
 | |
|     return j;
 | |
| #undef extract_kwarg
 | |
| }
 | |
| 
 | |
| struct rb_scan_args_t {
 | |
|     int argc;
 | |
|     const VALUE *argv;
 | |
|     va_list vargs;
 | |
|     int f_var;
 | |
|     int f_hash;
 | |
|     int f_block;
 | |
|     int n_lead;
 | |
|     int n_opt;
 | |
|     int n_trail;
 | |
|     int n_mand;
 | |
|     int argi;
 | |
|     int last_idx;
 | |
|     VALUE hash;
 | |
|     VALUE last_hash;
 | |
|     VALUE *tmp_buffer;
 | |
| };
 | |
| 
 | |
| static void
 | |
| rb_scan_args_parse(int kw_flag, int argc, const VALUE *argv, const char *fmt, struct rb_scan_args_t *arg)
 | |
| {
 | |
|     const char *p = fmt;
 | |
|     VALUE *tmp_buffer = arg->tmp_buffer;
 | |
|     int keyword_given = 0;
 | |
|     int empty_keyword_given = 0;
 | |
|     int last_hash_keyword = 0;
 | |
| 
 | |
|     memset(arg, 0, sizeof(*arg));
 | |
|     arg->last_idx = -1;
 | |
|     arg->hash = Qnil;
 | |
| 
 | |
|     switch (kw_flag) {
 | |
|       case RB_SCAN_ARGS_PASS_CALLED_KEYWORDS:
 | |
|         if (!(keyword_given = rb_keyword_given_p())) {
 | |
|             empty_keyword_given = rb_empty_keyword_given_p();
 | |
|         }
 | |
|         break;
 | |
|       case RB_SCAN_ARGS_KEYWORDS:
 | |
|         keyword_given = 1;
 | |
|         break;
 | |
|       case RB_SCAN_ARGS_EMPTY_KEYWORDS:
 | |
|         empty_keyword_given = 1;
 | |
|         break;
 | |
|       case RB_SCAN_ARGS_LAST_HASH_KEYWORDS:
 | |
|         last_hash_keyword = 1;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (ISDIGIT(*p)) {
 | |
|         arg->n_lead = *p - '0';
 | |
| 	p++;
 | |
| 	if (ISDIGIT(*p)) {
 | |
|             arg->n_opt = *p - '0';
 | |
| 	    p++;
 | |
| 	}
 | |
|     }
 | |
|     if (*p == '*') {
 | |
|         arg->f_var = 1;
 | |
| 	p++;
 | |
|     }
 | |
|     if (ISDIGIT(*p)) {
 | |
|         arg->n_trail = *p - '0';
 | |
| 	p++;
 | |
|     }
 | |
|     if (*p == ':') {
 | |
|         arg->f_hash = 1;
 | |
| 	p++;
 | |
|     }
 | |
|     if (*p == '&') {
 | |
|         arg->f_block = 1;
 | |
| 	p++;
 | |
|     }
 | |
|     if (*p != '\0') {
 | |
| 	rb_fatal("bad scan arg format: %s", fmt);
 | |
|     }
 | |
|     arg->n_mand = arg->n_lead + arg->n_trail;
 | |
| 
 | |
|     /* capture an option hash - phase 1: pop */
 | |
|     /* Ignore final positional hash if empty keywords given */
 | |
|     if (argc > 0 && !(arg->f_hash && empty_keyword_given)) {
 | |
|         VALUE last = argv[argc - 1];
 | |
| 
 | |
|         if (arg->f_hash && arg->n_mand < argc) {
 | |
|             if (keyword_given) {
 | |
|                 if (!RB_TYPE_P(last, T_HASH)) {
 | |
|                     rb_warn("Keyword flag set when calling rb_scan_args, but last entry is not a hash");
 | |
|                 }
 | |
|                 else {
 | |
|                     arg->hash = last;
 | |
|                 }
 | |
|             }
 | |
|             else if (NIL_P(last)) {
 | |
|                 /* For backwards compatibility, nil is taken as an empty
 | |
|                    option hash only if it is not ambiguous; i.e. '*' is
 | |
|                    not specified and arguments are given more than sufficient.
 | |
|                    This will be removed in Ruby 3. */
 | |
|                 if (!arg->f_var && arg->n_mand + arg->n_opt < argc) {
 | |
|                     rb_warn("The last argument is nil, treating as empty keywords");
 | |
|                     argc--;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 arg->hash = rb_check_hash_type(last);
 | |
|             }
 | |
| 
 | |
|             /* Ruby 3: Remove if branch, as it will not attempt to split hashes */
 | |
|             if (!NIL_P(arg->hash)) {
 | |
|                 VALUE opts = rb_extract_keywords(&arg->hash);
 | |
| 
 | |
|                 if (!(arg->last_hash = arg->hash)) {
 | |
|                     if (!keyword_given && !last_hash_keyword) {
 | |
|                         /* Warn if treating positional as keyword, as in Ruby 3,
 | |
|                            this will be an error */
 | |
|                         rb_warn("The last argument is used as the keyword parameter");
 | |
|                     }
 | |
|                     argc--;
 | |
|                 }
 | |
|                 else {
 | |
|                     /* Warn if splitting either positional hash to keywords or keywords
 | |
|                        to positional hash, as in Ruby 3, no splitting will be done */
 | |
|                     rb_warn("The last argument is split into positional and keyword parameters");
 | |
|                     arg->last_idx = argc - 1;
 | |
|                 }
 | |
|                 arg->hash = opts ? opts : Qnil;
 | |
|             }
 | |
|         }
 | |
|         else if (arg->f_hash && keyword_given && arg->n_mand == argc) {
 | |
|             /* Warn if treating keywords as positional, as in Ruby 3, this will be an error */
 | |
|             rb_warn("The keyword argument is passed as the last hash parameter");
 | |
|         }
 | |
|     }
 | |
|     if (arg->f_hash && arg->n_mand == argc+1 && empty_keyword_given) {
 | |
|         VALUE *ptr = rb_alloc_tmp_buffer2(tmp_buffer, argc+1, sizeof(VALUE));
 | |
|         memcpy(ptr, argv, sizeof(VALUE)*argc);
 | |
|         ptr[argc] = rb_hash_new();
 | |
|         argc++;
 | |
|         *(&argv) = ptr;
 | |
|         rb_warn("The keyword argument is passed as the last hash parameter");
 | |
|     }
 | |
| 
 | |
|     arg->argc = argc;
 | |
|     arg->argv = argv;
 | |
| }
 | |
| 
 | |
| static int
 | |
| rb_scan_args_assign(struct rb_scan_args_t *arg, va_list vargs)
 | |
| {
 | |
|     int argi = 0;
 | |
|     int i;
 | |
|     VALUE *var;
 | |
| 
 | |
|     if (arg->argc < arg->n_mand) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* capture leading mandatory arguments */
 | |
|     for (i = arg->n_lead; i-- > 0; ) {
 | |
| 	var = va_arg(vargs, VALUE *);
 | |
|         if (var) *var = (argi == arg->last_idx) ? arg->last_hash : arg->argv[argi];
 | |
| 	argi++;
 | |
|     }
 | |
|     /* capture optional arguments */
 | |
|     for (i = arg->n_opt; i-- > 0; ) {
 | |
| 	var = va_arg(vargs, VALUE *);
 | |
|         if (argi < arg->argc - arg->n_trail) {
 | |
|             if (var) *var = (argi == arg->last_idx) ? arg->last_hash : arg->argv[argi];
 | |
| 	    argi++;
 | |
| 	}
 | |
| 	else {
 | |
| 	    if (var) *var = Qnil;
 | |
| 	}
 | |
|     }
 | |
|     /* capture variable length arguments */
 | |
|     if (arg->f_var) {
 | |
|         int n_var = arg->argc - argi - arg->n_trail;
 | |
| 
 | |
| 	var = va_arg(vargs, VALUE *);
 | |
| 	if (0 < n_var) {
 | |
| 	    if (var) {
 | |
|                 int f_last = (arg->last_idx + 1 == arg->argc - arg->n_trail);
 | |
|                 *var = rb_ary_new4(n_var - f_last, &arg->argv[argi]);
 | |
|                 if (f_last) rb_ary_push(*var, arg->last_hash);
 | |
| 	    }
 | |
| 	    argi += n_var;
 | |
| 	}
 | |
| 	else {
 | |
| 	    if (var) *var = rb_ary_new();
 | |
| 	}
 | |
|     }
 | |
|     /* capture trailing mandatory arguments */
 | |
|     for (i = arg->n_trail; i-- > 0; ) {
 | |
| 	var = va_arg(vargs, VALUE *);
 | |
|         if (var) *var = (argi == arg->last_idx) ? arg->last_hash : arg->argv[argi];
 | |
| 	argi++;
 | |
|     }
 | |
|     /* capture an option hash - phase 2: assignment */
 | |
|     if (arg->f_hash) {
 | |
| 	var = va_arg(vargs, VALUE *);
 | |
|         if (var) *var = arg->hash;
 | |
|     }
 | |
|     /* capture iterator block */
 | |
|     if (arg->f_block) {
 | |
| 	var = va_arg(vargs, VALUE *);
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    *var = rb_block_proc();
 | |
| 	}
 | |
| 	else {
 | |
| 	    *var = Qnil;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (argi < arg->argc) return 1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #undef rb_scan_args
 | |
| int
 | |
| rb_scan_args(int argc, const VALUE *argv, const char *fmt, ...)
 | |
| {
 | |
|     int error;
 | |
|     va_list vargs;
 | |
|     VALUE tmp_buffer = 0;
 | |
|     struct rb_scan_args_t arg;
 | |
|     arg.tmp_buffer = &tmp_buffer;
 | |
|     rb_scan_args_parse(RB_SCAN_ARGS_PASS_CALLED_KEYWORDS, argc, argv, fmt, &arg);
 | |
|     va_start(vargs,fmt);
 | |
|     error = rb_scan_args_assign(&arg, vargs);
 | |
|     va_end(vargs);
 | |
|     if (tmp_buffer) {
 | |
|         rb_free_tmp_buffer(&tmp_buffer);
 | |
|     }
 | |
|     if (error) {
 | |
|         rb_error_arity(arg.argc, arg.n_mand, arg.f_var ? UNLIMITED_ARGUMENTS : arg.n_mand + arg.n_opt);
 | |
|     }
 | |
|     return arg.argc;
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_scan_args_kw(int kw_flag, int argc, const VALUE *argv, const char *fmt, ...)
 | |
| {
 | |
|     int error;
 | |
|     va_list vargs;
 | |
|     VALUE tmp_buffer = 0;
 | |
|     struct rb_scan_args_t arg;
 | |
|     arg.tmp_buffer = &tmp_buffer;
 | |
|     rb_scan_args_parse(kw_flag, argc, argv, fmt, &arg);
 | |
|     va_start(vargs,fmt);
 | |
|     error = rb_scan_args_assign(&arg, vargs);
 | |
|     va_end(vargs);
 | |
|     if (tmp_buffer) {
 | |
|         rb_free_tmp_buffer(&tmp_buffer);
 | |
|     }
 | |
|     if (error) {
 | |
|         rb_error_arity(arg.argc, arg.n_mand, arg.f_var ? UNLIMITED_ARGUMENTS : arg.n_mand + arg.n_opt);
 | |
|     }
 | |
|     return arg.argc;
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_class_has_methods(VALUE c)
 | |
| {
 | |
|     return rb_id_table_size(RCLASS_M_TBL(c)) == 0 ? FALSE : TRUE;
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * \}
 | |
|  */
 | 
