1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/math.c
zzak c1f176974c * math.c: RDoc formatting of Math core docs with domains and codomains
Patch by @eLobato [Fixes GH-309]


git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@40841 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2013-05-19 22:29:26 +00:00

951 lines
20 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**********************************************************************
math.c -
$Author$
created at: Tue Jan 25 14:12:56 JST 1994
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/ruby.h"
#include "internal.h"
#include <math.h>
#include <errno.h>
#if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun) && \
!defined(signbit)
extern int signbit(double);
#endif
#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
VALUE rb_mMath;
VALUE rb_eMathDomainError;
#define Need_Float(x) do {if (!RB_TYPE_P(x, T_FLOAT)) {(x) = rb_to_float(x);}} while(0)
#define Need_Float2(x,y) do {\
Need_Float(x);\
Need_Float(y);\
} while (0)
#define domain_error(msg) \
rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg)
/*
* call-seq:
* Math.atan2(y, x) -> Float
*
* Computes the arc tangent given +y+ and +x+.
* Returns a Float in the range -PI..PI.
*
* Domain: (INFINITY, INFINITY)
*
* Codomain: [-PI, PI]
*
* Math.atan2(-0.0, -1.0) #=> -3.141592653589793
* Math.atan2(-1.0, -1.0) #=> -2.356194490192345
* Math.atan2(-1.0, 0.0) #=> -1.5707963267948966
* Math.atan2(-1.0, 1.0) #=> -0.7853981633974483
* Math.atan2(-0.0, 1.0) #=> -0.0
* Math.atan2(0.0, 1.0) #=> 0.0
* Math.atan2(1.0, 1.0) #=> 0.7853981633974483
* Math.atan2(1.0, 0.0) #=> 1.5707963267948966
* Math.atan2(1.0, -1.0) #=> 2.356194490192345
* Math.atan2(0.0, -1.0) #=> 3.141592653589793
*
*/
static VALUE
math_atan2(VALUE obj, VALUE y, VALUE x)
{
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
double dx, dy;
Need_Float2(y, x);
dx = RFLOAT_VALUE(x);
dy = RFLOAT_VALUE(y);
if (dx == 0.0 && dy == 0.0) {
if (!signbit(dx))
return DBL2NUM(dy);
if (!signbit(dy))
return DBL2NUM(M_PI);
return DBL2NUM(-M_PI);
}
if (isinf(dx) && isinf(dy)) domain_error("atan2");
return DBL2NUM(atan2(dy, dx));
}
/*
* call-seq:
* Math.cos(x) -> Float
*
* Computes the cosine of +x+ (expressed in radians).
* Returns a Float in the range -1.0..1.0.
*
* Domain: (INFINITY, INFINITY)
*
* Codomain: [-1, 1]
*
* Math.cos(Math::PI) #=> -1.0
*
*/
static VALUE
math_cos(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(cos(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.sin(x) -> Float
*
* Computes the cosine of +x+ (expressed in radians).
* Returns a Float in the range -1.0..1.0.
*
* Domain: (INFINITY, INFINITY)
*
* Codomain: [-1, 1]
*
* Math.sin(Math::PI/2) #=> 1.0
*
*/
static VALUE
math_sin(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(sin(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.tan(x) -> Float
*
* Computes the tangent of +x+ (expressed in radians).
* Returns a Float in the range -1.0..1.0.
*
* Domain: n * (-PI/2, PI/2)
*
* Codomain: (INFINITY, INFINITY)
*
* Math.tan(5 * (Math::PI/2)) #=> 3266247870639074.0
*
*/
static VALUE
math_tan(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(tan(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.acos(x) -> Float
*
* Computes the arc cosine of +x+. Returns 0..PI.
*
* Domain: [-1, 1]
*
* Codomain: [0, PI]
*
* Math.acos(0) == Math::PI/2 #=> true
*
*/
static VALUE
math_acos(VALUE obj, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < -1.0 || 1.0 < d0) domain_error("acos");
d = acos(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.asin(x) -> Float
*
* Computes the arc sine of +x+. Returns -PI/2..PI/2.
*
* Domain: [-1, -1]
*
* Codomain: [-PI/2, PI/2]
*
* Math.asin(1) == Math::PI/2 #=> true
*/
static VALUE
math_asin(VALUE obj, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < -1.0 || 1.0 < d0) domain_error("asin");
d = asin(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.atan(x) -> Float
*
* Computes the arc tangent of +x+. Returns -PI/2..PI/2.
*
* Domain: (INFINITY, INFINITY)
*
* Codomain: (-PI/2, PI/2)
*
* Math.atan(0) #=> 0.0
*/
static VALUE
math_atan(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(atan(RFLOAT_VALUE(x)));
}
#ifndef HAVE_COSH
double
cosh(double x)
{
return (exp(x) + exp(-x)) / 2;
}
#endif
/*
* call-seq:
* Math.cosh(x) -> Float
*
* Computes the hyperbolic cosine of +x+ (expressed in radians).
*
* Domain: (INFINITY, INFINITY)
*
* Codomain: [1, INFINITY)
*
* Math.cosh(0) #=> 1.0
*
*/
static VALUE
math_cosh(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(cosh(RFLOAT_VALUE(x)));
}
#ifndef HAVE_SINH
double
sinh(double x)
{
return (exp(x) - exp(-x)) / 2;
}
#endif
/*
* call-seq:
* Math.sinh(x) -> Float
*
* Computes the hyperbolic sine of +x+ (expressed in radians).
*
* Domain: (INFINITY, INFINITY)
*
* Codomain: (INFINITY, INFINITY)
*
* Math.sinh(0) #=> 0.0
*
*/
static VALUE
math_sinh(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(sinh(RFLOAT_VALUE(x)));
}
#ifndef HAVE_TANH
double
tanh(double x)
{
return sinh(x) / cosh(x);
}
#endif
/*
* call-seq:
* Math.tanh(x) -> Float
*
* Computes the hyperbolic tangent of +x+ (expressed in radians).
*
* Domain: (INFINITY, INFINITY)
*
* Codomain: (1, 1)
*
* Math.tanh(0) #=> 0.0
*
*/
static VALUE
math_tanh(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(tanh(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.acosh(x) -> Float
*
* Computes the inverse hyperbolic cosine of +x+.
*
* Domain: [1, INFINITY)
*
* Codomain: [0, INFINITY)
*
* Math.acosh(1) #=> 0.0
*
*/
static VALUE
math_acosh(VALUE obj, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < 1.0) domain_error("acosh");
d = acosh(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.asinh(x) -> Float
*
* Computes the inverse hyperbolic sine of +x+.
*
* Domain: (-INFINITY, INFINITY)
*
* Codomain: (-INFINITY, INFINITY)
*
* Math.asinh(1) #=> 0.881373587019543
*
*/
static VALUE
math_asinh(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(asinh(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.atanh(x) -> Float
*
* Computes the inverse hyperbolic tangent of +x+.
*
* Domain: (-1, 1)
*
* Codomain: (-INFINITY, INFINITY)
*
* Math.atanh(1) #=> Infinity
*
*/
static VALUE
math_atanh(VALUE obj, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < -1.0 || +1.0 < d0) domain_error("atanh");
/* check for pole error */
if (d0 == -1.0) return DBL2NUM(-INFINITY);
if (d0 == +1.0) return DBL2NUM(+INFINITY);
d = atanh(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.exp(x) -> Float
*
* Returns e**x.
*
* Domain: (-INFINITY, INFINITY)
*
* Codomain: (0, INFINITY)
*
* Math.exp(0) #=> 1.0
* Math.exp(1) #=> 2.718281828459045
* Math.exp(1.5) #=> 4.4816890703380645
*
*/
static VALUE
math_exp(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(exp(RFLOAT_VALUE(x)));
}
#if defined __CYGWIN__
# include <cygwin/version.h>
# if CYGWIN_VERSION_DLL_MAJOR < 1005
# define nan(x) nan()
# endif
# define log(x) ((x) < 0.0 ? nan("") : log(x))
# define log10(x) ((x) < 0.0 ? nan("") : log10(x))
#endif
/*
* call-seq:
* Math.log(x) -> Float
* Math.log(num, base) -> Float
*
* Returns the natural logarithm of +x+.
* If additional second argument is given, it will be the base
* of logarithm.
*
* Domain: (0, INFINITY)
*
* Codomain: (-INFINITY, INFINITY)
*
* Math.log(1) #=> 0.0
* Math.log(Math::E) #=> 1.0
* Math.log(Math::E**3) #=> 3.0
* Math.log(12,3) #=> 2.2618595071429146
*
*/
static VALUE
math_log(int argc, VALUE *argv)
{
VALUE x, base;
double d0, d;
rb_scan_args(argc, argv, "11", &x, &base);
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < 0.0) domain_error("log");
/* check for pole error */
if (d0 == 0.0) return DBL2NUM(-INFINITY);
d = log(d0);
if (argc == 2) {
Need_Float(base);
d /= log(RFLOAT_VALUE(base));
}
return DBL2NUM(d);
}
#ifndef log2
#ifndef HAVE_LOG2
double
log2(double x)
{
return log10(x)/log10(2.0);
}
#else
extern double log2(double);
#endif
#endif
/*
* call-seq:
* Math.log2(x) -> Float
*
* Returns the base 2 logarithm of +x+.
*
* Domain: (0, INFINITY)
*
* Codomain: (-INFINITY, INFINITY)
*
* Math.log2(1) #=> 0.0
* Math.log2(2) #=> 1.0
* Math.log2(32768) #=> 15.0
* Math.log2(65536) #=> 16.0
*
*/
static VALUE
math_log2(VALUE obj, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < 0.0) domain_error("log2");
/* check for pole error */
if (d0 == 0.0) return DBL2NUM(-INFINITY);
d = log2(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.log10(x) -> Float
*
* Returns the base 10 logarithm of +x+.
*
* Domain: (0, INFINITY)
*
* Codomain: (-INFINITY, INFINITY)
*
* Math.log10(1) #=> 0.0
* Math.log10(10) #=> 1.0
* Math.log10(10**100) #=> 100.0
*
*/
static VALUE
math_log10(VALUE obj, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < 0.0) domain_error("log10");
/* check for pole error */
if (d0 == 0.0) return DBL2NUM(-INFINITY);
d = log10(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.sqrt(x) -> Float
*
* Returns the non-negative square root of +x+.
*
* Domain: [0, INFINITY)
*
* Codomain:[0, INFINITY)
*
* 0.upto(10) {|x|
* p [x, Math.sqrt(x), Math.sqrt(x)**2]
* }
* #=> [0, 0.0, 0.0]
* # [1, 1.0, 1.0]
* # [2, 1.4142135623731, 2.0]
* # [3, 1.73205080756888, 3.0]
* # [4, 2.0, 4.0]
* # [5, 2.23606797749979, 5.0]
* # [6, 2.44948974278318, 6.0]
* # [7, 2.64575131106459, 7.0]
* # [8, 2.82842712474619, 8.0]
* # [9, 3.0, 9.0]
* # [10, 3.16227766016838, 10.0]
*/
static VALUE
math_sqrt(VALUE obj, VALUE x)
{
double d0, d;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (d0 < 0.0) domain_error("sqrt");
if (d0 == 0.0) return DBL2NUM(0.0);
d = sqrt(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.cbrt(x) -> Float
*
* Returns the cube root of +x+.
*
* Domain: [0, INFINITY)
*
* Codomain:[0, INFINITY)
*
* -9.upto(9) {|x|
* p [x, Math.cbrt(x), Math.cbrt(x)**3]
* }
* #=> [-9, -2.0800838230519, -9.0]
* # [-8, -2.0, -8.0]
* # [-7, -1.91293118277239, -7.0]
* # [-6, -1.81712059283214, -6.0]
* # [-5, -1.7099759466767, -5.0]
* # [-4, -1.5874010519682, -4.0]
* # [-3, -1.44224957030741, -3.0]
* # [-2, -1.25992104989487, -2.0]
* # [-1, -1.0, -1.0]
* # [0, 0.0, 0.0]
* # [1, 1.0, 1.0]
* # [2, 1.25992104989487, 2.0]
* # [3, 1.44224957030741, 3.0]
* # [4, 1.5874010519682, 4.0]
* # [5, 1.7099759466767, 5.0]
* # [6, 1.81712059283214, 6.0]
* # [7, 1.91293118277239, 7.0]
* # [8, 2.0, 8.0]
* # [9, 2.0800838230519, 9.0]
*
*/
static VALUE
math_cbrt(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(cbrt(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.frexp(x) -> [fraction, exponent]
*
* Returns a two-element array containing the normalized fraction (a Float)
* and exponent (a Fixnum) of +x+.
*
* fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
* fraction * 2**exponent #=> 1234.0
*/
static VALUE
math_frexp(VALUE obj, VALUE x)
{
double d;
int exp;
Need_Float(x);
d = frexp(RFLOAT_VALUE(x), &exp);
return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}
/*
* call-seq:
* Math.ldexp(fraction, exponent) -> float
*
* Returns the value of +fraction+*(2**+exponent+).
*
* fraction, exponent = Math.frexp(1234)
* Math.ldexp(fraction, exponent) #=> 1234.0
*/
static VALUE
math_ldexp(VALUE obj, VALUE x, VALUE n)
{
Need_Float(x);
return DBL2NUM(ldexp(RFLOAT_VALUE(x), NUM2INT(n)));
}
/*
* call-seq:
* Math.hypot(x, y) -> Float
*
* Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with
* sides +x+ and +y+.
*
* Math.hypot(3, 4) #=> 5.0
*/
static VALUE
math_hypot(VALUE obj, VALUE x, VALUE y)
{
Need_Float2(x, y);
return DBL2NUM(hypot(RFLOAT_VALUE(x), RFLOAT_VALUE(y)));
}
/*
* call-seq:
* Math.erf(x) -> Float
*
* Calculates the error function of +x+.
*
* Domain: (-INFINITY, INFINITY)
*
* Codomain: (-1, 1)
*
* Math.erf(0) #=> 0.0
*
*/
static VALUE
math_erf(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(erf(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.erfc(x) -> Float
*
* Calculates the complementary error function of x.
*
* Domain: (-INFINITY, INFINITY)
*
* Codomain: (0, 2)
*
* Math.erfc(0) #=> 1.0
*
*/
static VALUE
math_erfc(VALUE obj, VALUE x)
{
Need_Float(x);
return DBL2NUM(erfc(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.gamma(x) -> Float
*
* Calculates the gamma function of x.
*
* Note that gamma(n) is same as fact(n-1) for integer n > 0.
* However gamma(n) returns float and can be an approximation.
*
* def fact(n) (1..n).inject(1) {|r,i| r*i } end
* 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
* #=> [1, 1.0, 1]
* # [2, 1.0, 1]
* # [3, 2.0, 2]
* # [4, 6.0, 6]
* # [5, 24.0, 24]
* # [6, 120.0, 120]
* # [7, 720.0, 720]
* # [8, 5040.0, 5040]
* # [9, 40320.0, 40320]
* # [10, 362880.0, 362880]
* # [11, 3628800.0, 3628800]
* # [12, 39916800.0, 39916800]
* # [13, 479001600.0, 479001600]
* # [14, 6227020800.0, 6227020800]
* # [15, 87178291200.0, 87178291200]
* # [16, 1307674368000.0, 1307674368000]
* # [17, 20922789888000.0, 20922789888000]
* # [18, 355687428096000.0, 355687428096000]
* # [19, 6.402373705728e+15, 6402373705728000]
* # [20, 1.21645100408832e+17, 121645100408832000]
* # [21, 2.43290200817664e+18, 2432902008176640000]
* # [22, 5.109094217170944e+19, 51090942171709440000]
* # [23, 1.1240007277776077e+21, 1124000727777607680000]
* # [24, 2.5852016738885062e+22, 25852016738884976640000]
* # [25, 6.204484017332391e+23, 620448401733239439360000]
* # [26, 1.5511210043330954e+25, 15511210043330985984000000]
*
*/
static VALUE
math_gamma(VALUE obj, VALUE x)
{
static const double fact_table[] = {
/* fact(0) */ 1.0,
/* fact(1) */ 1.0,
/* fact(2) */ 2.0,
/* fact(3) */ 6.0,
/* fact(4) */ 24.0,
/* fact(5) */ 120.0,
/* fact(6) */ 720.0,
/* fact(7) */ 5040.0,
/* fact(8) */ 40320.0,
/* fact(9) */ 362880.0,
/* fact(10) */ 3628800.0,
/* fact(11) */ 39916800.0,
/* fact(12) */ 479001600.0,
/* fact(13) */ 6227020800.0,
/* fact(14) */ 87178291200.0,
/* fact(15) */ 1307674368000.0,
/* fact(16) */ 20922789888000.0,
/* fact(17) */ 355687428096000.0,
/* fact(18) */ 6402373705728000.0,
/* fact(19) */ 121645100408832000.0,
/* fact(20) */ 2432902008176640000.0,
/* fact(21) */ 51090942171709440000.0,
/* fact(22) */ 1124000727777607680000.0,
/* fact(23)=25852016738884976640000 needs 56bit mantissa which is
* impossible to represent exactly in IEEE 754 double which have
* 53bit mantissa. */
};
double d0, d;
double intpart, fracpart;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (isinf(d0) && signbit(d0)) domain_error("gamma");
fracpart = modf(d0, &intpart);
if (fracpart == 0.0) {
if (intpart < 0) domain_error("gamma");
if (0 < intpart &&
intpart - 1 < (double)numberof(fact_table)) {
return DBL2NUM(fact_table[(int)intpart - 1]);
}
}
d = tgamma(d0);
return DBL2NUM(d);
}
/*
* call-seq:
* Math.lgamma(x) -> [float, -1 or 1]
*
* Calculates the logarithmic gamma of +x+ and the sign of gamma of +x+.
*
* Math.lgamma(x) is same as
* [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
* but avoid overflow by Math.gamma(x) for large x.
*
* Math.lgamma(0) #=> [Infinity, 1]
*
*/
static VALUE
math_lgamma(VALUE obj, VALUE x)
{
double d0, d;
int sign=1;
VALUE v;
Need_Float(x);
d0 = RFLOAT_VALUE(x);
/* check for domain error */
if (isinf(d0)) {
if (signbit(d0)) domain_error("lgamma");
return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1));
}
d = lgamma_r(d0, &sign);
v = DBL2NUM(d);
return rb_assoc_new(v, INT2FIX(sign));
}
#define exp1(n) \
VALUE \
rb_math_##n(VALUE x)\
{\
return math_##n(rb_mMath, x);\
}
#define exp2(n) \
VALUE \
rb_math_##n(VALUE x, VALUE y)\
{\
return math_##n(rb_mMath, x, y);\
}
exp2(atan2)
exp1(cos)
exp1(cosh)
exp1(exp)
exp2(hypot)
VALUE
rb_math_log(int argc, VALUE *argv)
{
return math_log(argc, argv);
}
exp1(sin)
exp1(sinh)
exp1(sqrt)
/*
* Document-class: Math::DomainError
*
* Raised when a mathematical function is evaluated outside of its
* domain of definition.
*
* For example, since +cos+ returns values in the range -1..1,
* its inverse function +acos+ is only defined on that interval:
*
* Math.acos(42)
*
* <em>produces:</em>
*
* Math::DomainError: Numerical argument is out of domain - "acos"
*/
/*
* Document-class: Math
*
* The Math module contains module functions for basic
* trigonometric and transcendental functions. See class
* Float for a list of constants that
* define Ruby's floating point accuracy.
*
* Domains and codomains are given only for real (not complex) numbers.
*/
void
Init_Math(void)
{
rb_mMath = rb_define_module("Math");
rb_eMathDomainError = rb_define_class_under(rb_mMath, "DomainError", rb_eStandardError);
#ifdef M_PI
/* Definition of the mathematical constant PI as a Float number. */
rb_define_const(rb_mMath, "PI", DBL2NUM(M_PI));
#else
rb_define_const(rb_mMath, "PI", DBL2NUM(atan(1.0)*4.0));
#endif
#ifdef M_E
/* Definition of the mathematical constant E (e) as a Float number. */
rb_define_const(rb_mMath, "E", DBL2NUM(M_E));
#else
rb_define_const(rb_mMath, "E", DBL2NUM(exp(1.0)));
#endif
rb_define_module_function(rb_mMath, "atan2", math_atan2, 2);
rb_define_module_function(rb_mMath, "cos", math_cos, 1);
rb_define_module_function(rb_mMath, "sin", math_sin, 1);
rb_define_module_function(rb_mMath, "tan", math_tan, 1);
rb_define_module_function(rb_mMath, "acos", math_acos, 1);
rb_define_module_function(rb_mMath, "asin", math_asin, 1);
rb_define_module_function(rb_mMath, "atan", math_atan, 1);
rb_define_module_function(rb_mMath, "cosh", math_cosh, 1);
rb_define_module_function(rb_mMath, "sinh", math_sinh, 1);
rb_define_module_function(rb_mMath, "tanh", math_tanh, 1);
rb_define_module_function(rb_mMath, "acosh", math_acosh, 1);
rb_define_module_function(rb_mMath, "asinh", math_asinh, 1);
rb_define_module_function(rb_mMath, "atanh", math_atanh, 1);
rb_define_module_function(rb_mMath, "exp", math_exp, 1);
rb_define_module_function(rb_mMath, "log", math_log, -1);
rb_define_module_function(rb_mMath, "log2", math_log2, 1);
rb_define_module_function(rb_mMath, "log10", math_log10, 1);
rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1);
rb_define_module_function(rb_mMath, "cbrt", math_cbrt, 1);
rb_define_module_function(rb_mMath, "frexp", math_frexp, 1);
rb_define_module_function(rb_mMath, "ldexp", math_ldexp, 2);
rb_define_module_function(rb_mMath, "hypot", math_hypot, 2);
rb_define_module_function(rb_mMath, "erf", math_erf, 1);
rb_define_module_function(rb_mMath, "erfc", math_erfc, 1);
rb_define_module_function(rb_mMath, "gamma", math_gamma, 1);
rb_define_module_function(rb_mMath, "lgamma", math_lgamma, 1);
}