1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/ext/openssl/ossl_pkey_rsa.c
rhe c9dc0164b8 import Ruby/OpenSSL 2.0.0.beta.1
* NEWS, {ext,test,sample}/openssl: Import Ruby/OpenSSL 2.0.0.beta.1.
  ext/openssl is now converted into a default gem. The full commit
  history since r55538 can be found at:
  https://github.com/ruby/openssl/compare/08e1881f5663...v2.0.0.beta.1
  [Feature #9612]

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@56027 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2016-08-29 05:47:09 +00:00

768 lines
19 KiB
C

/*
* 'OpenSSL for Ruby' project
* Copyright (C) 2001-2002 Michal Rokos <m.rokos@sh.cvut.cz>
* All rights reserved.
*/
/*
* This program is licensed under the same licence as Ruby.
* (See the file 'LICENCE'.)
*/
#include "ossl.h"
#if !defined(OPENSSL_NO_RSA)
#define GetPKeyRSA(obj, pkey) do { \
GetPKey((obj), (pkey)); \
if (EVP_PKEY_base_id(pkey) != EVP_PKEY_RSA) { /* PARANOIA? */ \
ossl_raise(rb_eRuntimeError, "THIS IS NOT A RSA!") ; \
} \
} while (0)
#define GetRSA(obj, rsa) do { \
EVP_PKEY *_pkey; \
GetPKeyRSA((obj), _pkey); \
(rsa) = EVP_PKEY_get0_RSA(_pkey); \
} while (0)
static inline int
RSA_HAS_PRIVATE(RSA *rsa)
{
const BIGNUM *p, *q;
RSA_get0_factors(rsa, &p, &q);
return p && q; /* d? why? */
}
static inline int
RSA_PRIVATE(VALUE obj, RSA *rsa)
{
return RSA_HAS_PRIVATE(rsa) || OSSL_PKEY_IS_PRIVATE(obj);
}
/*
* Classes
*/
VALUE cRSA;
VALUE eRSAError;
/*
* Public
*/
static VALUE
rsa_instance(VALUE klass, RSA *rsa)
{
EVP_PKEY *pkey;
VALUE obj;
if (!rsa) {
return Qfalse;
}
obj = NewPKey(klass);
if (!(pkey = EVP_PKEY_new())) {
return Qfalse;
}
if (!EVP_PKEY_assign_RSA(pkey, rsa)) {
EVP_PKEY_free(pkey);
return Qfalse;
}
SetPKey(obj, pkey);
return obj;
}
VALUE
ossl_rsa_new(EVP_PKEY *pkey)
{
VALUE obj;
if (!pkey) {
obj = rsa_instance(cRSA, RSA_new());
}
else {
obj = NewPKey(cRSA);
if (EVP_PKEY_base_id(pkey) != EVP_PKEY_RSA) {
ossl_raise(rb_eTypeError, "Not a RSA key!");
}
SetPKey(obj, pkey);
}
if (obj == Qfalse) {
ossl_raise(eRSAError, NULL);
}
return obj;
}
/*
* Private
*/
struct rsa_blocking_gen_arg {
RSA *rsa;
BIGNUM *e;
int size;
BN_GENCB *cb;
int result;
};
static void *
rsa_blocking_gen(void *arg)
{
struct rsa_blocking_gen_arg *gen = (struct rsa_blocking_gen_arg *)arg;
gen->result = RSA_generate_key_ex(gen->rsa, gen->size, gen->e, gen->cb);
return 0;
}
static RSA *
rsa_generate(int size, unsigned long exp)
{
int i;
struct ossl_generate_cb_arg cb_arg = { 0 };
struct rsa_blocking_gen_arg gen_arg;
RSA *rsa = RSA_new();
BIGNUM *e = BN_new();
BN_GENCB *cb = BN_GENCB_new();
if (!rsa || !e || !cb) {
RSA_free(rsa);
BN_free(e);
BN_GENCB_free(cb);
return NULL;
}
for (i = 0; i < (int)sizeof(exp) * 8; ++i) {
if (exp & (1UL << i)) {
if (BN_set_bit(e, i) == 0) {
BN_free(e);
RSA_free(rsa);
BN_GENCB_free(cb);
return NULL;
}
}
}
if (rb_block_given_p())
cb_arg.yield = 1;
BN_GENCB_set(cb, ossl_generate_cb_2, &cb_arg);
gen_arg.rsa = rsa;
gen_arg.e = e;
gen_arg.size = size;
gen_arg.cb = cb;
if (cb_arg.yield == 1) {
/* we cannot release GVL when callback proc is supplied */
rsa_blocking_gen(&gen_arg);
} else {
/* there's a chance to unblock */
rb_thread_call_without_gvl(rsa_blocking_gen, &gen_arg, ossl_generate_cb_stop, &cb_arg);
}
BN_GENCB_free(cb);
BN_free(e);
if (!gen_arg.result) {
RSA_free(rsa);
if (cb_arg.state) {
/* must clear OpenSSL error stack */
ossl_clear_error();
rb_jump_tag(cb_arg.state);
}
return NULL;
}
return rsa;
}
/*
* call-seq:
* RSA.generate(size) => RSA instance
* RSA.generate(size, exponent) => RSA instance
*
* Generates an RSA keypair. +size+ is an integer representing the desired key
* size. Keys smaller than 1024 should be considered insecure. +exponent+ is
* an odd number normally 3, 17, or 65537.
*/
static VALUE
ossl_rsa_s_generate(int argc, VALUE *argv, VALUE klass)
{
/* why does this method exist? why can't initialize take an optional exponent? */
RSA *rsa;
VALUE size, exp;
VALUE obj;
rb_scan_args(argc, argv, "11", &size, &exp);
rsa = rsa_generate(NUM2INT(size), NIL_P(exp) ? RSA_F4 : NUM2ULONG(exp)); /* err handled by rsa_instance */
obj = rsa_instance(klass, rsa);
if (obj == Qfalse) {
RSA_free(rsa);
ossl_raise(eRSAError, NULL);
}
return obj;
}
/*
* call-seq:
* RSA.new(key_size) => RSA instance
* RSA.new(encoded_key) => RSA instance
* RSA.new(encoded_key, pass_phrase) => RSA instance
*
* Generates or loads an RSA keypair. If an integer +key_size+ is given it
* represents the desired key size. Keys less than 1024 bits should be
* considered insecure.
*
* A key can instead be loaded from an +encoded_key+ which must be PEM or DER
* encoded. A +pass_phrase+ can be used to decrypt the key. If none is given
* OpenSSL will prompt for the pass phrase.
*
* = Examples
*
* OpenSSL::PKey::RSA.new 2048
* OpenSSL::PKey::RSA.new File.read 'rsa.pem'
* OpenSSL::PKey::RSA.new File.read('rsa.pem'), 'my pass phrase'
*/
static VALUE
ossl_rsa_initialize(int argc, VALUE *argv, VALUE self)
{
EVP_PKEY *pkey;
RSA *rsa;
BIO *in;
VALUE arg, pass;
GetPKey(self, pkey);
if(rb_scan_args(argc, argv, "02", &arg, &pass) == 0) {
rsa = RSA_new();
}
else if (RB_INTEGER_TYPE_P(arg)) {
rsa = rsa_generate(NUM2INT(arg), NIL_P(pass) ? RSA_F4 : NUM2ULONG(pass));
if (!rsa) ossl_raise(eRSAError, NULL);
}
else {
pass = ossl_pem_passwd_value(pass);
arg = ossl_to_der_if_possible(arg);
in = ossl_obj2bio(arg);
rsa = PEM_read_bio_RSAPrivateKey(in, NULL, ossl_pem_passwd_cb, (void *)pass);
if (!rsa) {
OSSL_BIO_reset(in);
rsa = PEM_read_bio_RSA_PUBKEY(in, NULL, NULL, NULL);
}
if (!rsa) {
OSSL_BIO_reset(in);
rsa = d2i_RSAPrivateKey_bio(in, NULL);
}
if (!rsa) {
OSSL_BIO_reset(in);
rsa = d2i_RSA_PUBKEY_bio(in, NULL);
}
if (!rsa) {
OSSL_BIO_reset(in);
rsa = PEM_read_bio_RSAPublicKey(in, NULL, NULL, NULL);
}
if (!rsa) {
OSSL_BIO_reset(in);
rsa = d2i_RSAPublicKey_bio(in, NULL);
}
BIO_free(in);
if (!rsa) {
ossl_raise(eRSAError, "Neither PUB key nor PRIV key");
}
}
if (!EVP_PKEY_assign_RSA(pkey, rsa)) {
RSA_free(rsa);
ossl_raise(eRSAError, NULL);
}
return self;
}
static VALUE
ossl_rsa_initialize_copy(VALUE self, VALUE other)
{
EVP_PKEY *pkey;
RSA *rsa, *rsa_new;
GetPKey(self, pkey);
if (EVP_PKEY_base_id(pkey) != EVP_PKEY_NONE)
ossl_raise(eRSAError, "RSA already initialized");
GetRSA(other, rsa);
rsa_new = ASN1_dup((i2d_of_void *)i2d_RSAPrivateKey, (d2i_of_void *)d2i_RSAPrivateKey, (char *)rsa);
if (!rsa_new)
ossl_raise(eRSAError, "ASN1_dup");
EVP_PKEY_assign_RSA(pkey, rsa_new);
return self;
}
/*
* call-seq:
* rsa.public? => true
*
* The return value is always true since every private key is also a public
* key.
*/
static VALUE
ossl_rsa_is_public(VALUE self)
{
RSA *rsa;
GetRSA(self, rsa);
/*
* This method should check for n and e. BUG.
*/
(void)rsa;
return Qtrue;
}
/*
* call-seq:
* rsa.private? => true | false
*
* Does this keypair contain a private key?
*/
static VALUE
ossl_rsa_is_private(VALUE self)
{
RSA *rsa;
GetRSA(self, rsa);
return RSA_PRIVATE(self, rsa) ? Qtrue : Qfalse;
}
/*
* call-seq:
* rsa.export([cipher, pass_phrase]) => PEM-format String
* rsa.to_pem([cipher, pass_phrase]) => PEM-format String
* rsa.to_s([cipher, pass_phrase]) => PEM-format String
*
* Outputs this keypair in PEM encoding. If +cipher+ and +pass_phrase+ are
* given they will be used to encrypt the key. +cipher+ must be an
* OpenSSL::Cipher instance.
*/
static VALUE
ossl_rsa_export(int argc, VALUE *argv, VALUE self)
{
RSA *rsa;
BIO *out;
const EVP_CIPHER *ciph = NULL;
VALUE cipher, pass, str;
GetRSA(self, rsa);
rb_scan_args(argc, argv, "02", &cipher, &pass);
if (!NIL_P(cipher)) {
ciph = GetCipherPtr(cipher);
pass = ossl_pem_passwd_value(pass);
}
if (!(out = BIO_new(BIO_s_mem()))) {
ossl_raise(eRSAError, NULL);
}
if (RSA_HAS_PRIVATE(rsa)) {
if (!PEM_write_bio_RSAPrivateKey(out, rsa, ciph, NULL, 0,
ossl_pem_passwd_cb, (void *)pass)) {
BIO_free(out);
ossl_raise(eRSAError, NULL);
}
} else {
if (!PEM_write_bio_RSA_PUBKEY(out, rsa)) {
BIO_free(out);
ossl_raise(eRSAError, NULL);
}
}
str = ossl_membio2str(out);
return str;
}
/*
* call-seq:
* rsa.to_der => DER-format String
*
* Outputs this keypair in DER encoding.
*/
static VALUE
ossl_rsa_to_der(VALUE self)
{
RSA *rsa;
int (*i2d_func)(const RSA *, unsigned char **);
unsigned char *p;
long len;
VALUE str;
GetRSA(self, rsa);
if (RSA_HAS_PRIVATE(rsa))
i2d_func = i2d_RSAPrivateKey;
else
i2d_func = (int (*)(const RSA *, unsigned char **))i2d_RSA_PUBKEY;
if((len = i2d_func(rsa, NULL)) <= 0)
ossl_raise(eRSAError, NULL);
str = rb_str_new(0, len);
p = (unsigned char *)RSTRING_PTR(str);
if(i2d_func(rsa, &p) < 0)
ossl_raise(eRSAError, NULL);
ossl_str_adjust(str, p);
return str;
}
#define ossl_rsa_buf_size(rsa) (RSA_size(rsa)+16)
/*
* call-seq:
* rsa.public_encrypt(string) => String
* rsa.public_encrypt(string, padding) => String
*
* Encrypt +string+ with the public key. +padding+ defaults to PKCS1_PADDING.
* The encrypted string output can be decrypted using #private_decrypt.
*/
static VALUE
ossl_rsa_public_encrypt(int argc, VALUE *argv, VALUE self)
{
RSA *rsa;
const BIGNUM *rsa_n;
int buf_len, pad;
VALUE str, buffer, padding;
GetRSA(self, rsa);
RSA_get0_key(rsa, &rsa_n, NULL, NULL);
if (!rsa_n)
ossl_raise(eRSAError, "incomplete RSA");
rb_scan_args(argc, argv, "11", &buffer, &padding);
pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
StringValue(buffer);
str = rb_str_new(0, ossl_rsa_buf_size(rsa));
buf_len = RSA_public_encrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
(unsigned char *)RSTRING_PTR(str), rsa, pad);
if (buf_len < 0) ossl_raise(eRSAError, NULL);
rb_str_set_len(str, buf_len);
return str;
}
/*
* call-seq:
* rsa.public_decrypt(string) => String
* rsa.public_decrypt(string, padding) => String
*
* Decrypt +string+, which has been encrypted with the private key, with the
* public key. +padding+ defaults to PKCS1_PADDING.
*/
static VALUE
ossl_rsa_public_decrypt(int argc, VALUE *argv, VALUE self)
{
RSA *rsa;
const BIGNUM *rsa_n;
int buf_len, pad;
VALUE str, buffer, padding;
GetRSA(self, rsa);
RSA_get0_key(rsa, &rsa_n, NULL, NULL);
if (!rsa_n)
ossl_raise(eRSAError, "incomplete RSA");
rb_scan_args(argc, argv, "11", &buffer, &padding);
pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
StringValue(buffer);
str = rb_str_new(0, ossl_rsa_buf_size(rsa));
buf_len = RSA_public_decrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
(unsigned char *)RSTRING_PTR(str), rsa, pad);
if (buf_len < 0) ossl_raise(eRSAError, NULL);
rb_str_set_len(str, buf_len);
return str;
}
/*
* call-seq:
* rsa.private_encrypt(string) => String
* rsa.private_encrypt(string, padding) => String
*
* Encrypt +string+ with the private key. +padding+ defaults to PKCS1_PADDING.
* The encrypted string output can be decrypted using #public_decrypt.
*/
static VALUE
ossl_rsa_private_encrypt(int argc, VALUE *argv, VALUE self)
{
RSA *rsa;
const BIGNUM *rsa_n;
int buf_len, pad;
VALUE str, buffer, padding;
GetRSA(self, rsa);
RSA_get0_key(rsa, &rsa_n, NULL, NULL);
if (!rsa_n)
ossl_raise(eRSAError, "incomplete RSA");
if (!RSA_PRIVATE(self, rsa))
ossl_raise(eRSAError, "private key needed.");
rb_scan_args(argc, argv, "11", &buffer, &padding);
pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
StringValue(buffer);
str = rb_str_new(0, ossl_rsa_buf_size(rsa));
buf_len = RSA_private_encrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
(unsigned char *)RSTRING_PTR(str), rsa, pad);
if (buf_len < 0) ossl_raise(eRSAError, NULL);
rb_str_set_len(str, buf_len);
return str;
}
/*
* call-seq:
* rsa.private_decrypt(string) => String
* rsa.private_decrypt(string, padding) => String
*
* Decrypt +string+, which has been encrypted with the public key, with the
* private key. +padding+ defaults to PKCS1_PADDING.
*/
static VALUE
ossl_rsa_private_decrypt(int argc, VALUE *argv, VALUE self)
{
RSA *rsa;
const BIGNUM *rsa_n;
int buf_len, pad;
VALUE str, buffer, padding;
GetRSA(self, rsa);
RSA_get0_key(rsa, &rsa_n, NULL, NULL);
if (!rsa_n)
ossl_raise(eRSAError, "incomplete RSA");
if (!RSA_PRIVATE(self, rsa))
ossl_raise(eRSAError, "private key needed.");
rb_scan_args(argc, argv, "11", &buffer, &padding);
pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding);
StringValue(buffer);
str = rb_str_new(0, ossl_rsa_buf_size(rsa));
buf_len = RSA_private_decrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer),
(unsigned char *)RSTRING_PTR(str), rsa, pad);
if (buf_len < 0) ossl_raise(eRSAError, NULL);
rb_str_set_len(str, buf_len);
return str;
}
/*
* call-seq:
* rsa.params => hash
*
* THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!
*
* Stores all parameters of key to the hash. The hash has keys 'n', 'e', 'd',
* 'p', 'q', 'dmp1', 'dmq1', 'iqmp'.
*
* Don't use :-)) (It's up to you)
*/
static VALUE
ossl_rsa_get_params(VALUE self)
{
RSA *rsa;
VALUE hash;
const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;
GetRSA(self, rsa);
RSA_get0_key(rsa, &n, &e, &d);
RSA_get0_factors(rsa, &p, &q);
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
hash = rb_hash_new();
rb_hash_aset(hash, rb_str_new2("n"), ossl_bn_new(n));
rb_hash_aset(hash, rb_str_new2("e"), ossl_bn_new(e));
rb_hash_aset(hash, rb_str_new2("d"), ossl_bn_new(d));
rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(p));
rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(q));
rb_hash_aset(hash, rb_str_new2("dmp1"), ossl_bn_new(dmp1));
rb_hash_aset(hash, rb_str_new2("dmq1"), ossl_bn_new(dmq1));
rb_hash_aset(hash, rb_str_new2("iqmp"), ossl_bn_new(iqmp));
return hash;
}
/*
* call-seq:
* rsa.to_text => String
*
* THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!
*
* Dumps all parameters of a keypair to a String
*
* Don't use :-)) (It's up to you)
*/
static VALUE
ossl_rsa_to_text(VALUE self)
{
RSA *rsa;
BIO *out;
VALUE str;
GetRSA(self, rsa);
if (!(out = BIO_new(BIO_s_mem()))) {
ossl_raise(eRSAError, NULL);
}
if (!RSA_print(out, rsa, 0)) { /* offset = 0 */
BIO_free(out);
ossl_raise(eRSAError, NULL);
}
str = ossl_membio2str(out);
return str;
}
/*
* call-seq:
* rsa.public_key -> RSA
*
* Makes new RSA instance containing the public key from the private key.
*/
static VALUE
ossl_rsa_to_public_key(VALUE self)
{
EVP_PKEY *pkey;
RSA *rsa;
VALUE obj;
GetPKeyRSA(self, pkey);
/* err check performed by rsa_instance */
rsa = RSAPublicKey_dup(EVP_PKEY_get0_RSA(pkey));
obj = rsa_instance(CLASS_OF(self), rsa);
if (obj == Qfalse) {
RSA_free(rsa);
ossl_raise(eRSAError, NULL);
}
return obj;
}
/*
* TODO: Test me
static VALUE
ossl_rsa_blinding_on(VALUE self)
{
RSA *rsa;
GetRSA(self, rsa);
if (RSA_blinding_on(rsa, ossl_bn_ctx) != 1) {
ossl_raise(eRSAError, NULL);
}
return self;
}
static VALUE
ossl_rsa_blinding_off(VALUE self)
{
RSA *rsa;
GetRSA(self, rsa);
RSA_blinding_off(rsa);
return self;
}
*/
/*
* Document-method: OpenSSL::PKey::RSA#set_key
* call-seq:
* rsa.set_key(n, e, d) -> self
*
* Sets +n+, +e+, +d+ for the RSA instance.
*/
OSSL_PKEY_BN_DEF3(rsa, RSA, key, n, e, d)
/*
* Document-method: OpenSSL::PKey::RSA#set_factors
* call-seq:
* rsa.set_factors(p, q) -> self
*
* Sets +p+, +q+ for the RSA instance.
*/
OSSL_PKEY_BN_DEF2(rsa, RSA, factors, p, q)
/*
* Document-method: OpenSSL::PKey::RSA#set_crt_params
* call-seq:
* rsa.set_crt_params(dmp1, dmq1, iqmp) -> self
*
* Sets +dmp1+, +dmq1+, +iqmp+ for the RSA instance. They are calculated by
* <tt>d mod (p - 1)</tt>, <tt>d mod (q - 1)</tt> and <tt>q^(-1) mod p</tt>
* respectively.
*/
OSSL_PKEY_BN_DEF3(rsa, RSA, crt_params, dmp1, dmq1, iqmp)
/*
* INIT
*/
#define DefRSAConst(x) rb_define_const(cRSA, #x, INT2NUM(RSA_##x))
void
Init_ossl_rsa(void)
{
#if 0
mPKey = rb_define_module_under(mOSSL, "PKey");
cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject);
ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError);
#endif
/* Document-class: OpenSSL::PKey::RSAError
*
* Generic exception that is raised if an operation on an RSA PKey
* fails unexpectedly or in case an instantiation of an instance of RSA
* fails due to non-conformant input data.
*/
eRSAError = rb_define_class_under(mPKey, "RSAError", ePKeyError);
/* Document-class: OpenSSL::PKey::RSA
*
* RSA is an asymmetric public key algorithm that has been formalized in
* RFC 3447. It is in widespread use in public key infrastuctures (PKI)
* where certificates (cf. OpenSSL::X509::Certificate) often are issued
* on the basis of a public/private RSA key pair. RSA is used in a wide
* field of applications such as secure (symmetric) key exchange, e.g.
* when establishing a secure TLS/SSL connection. It is also used in
* various digital signature schemes.
*/
cRSA = rb_define_class_under(mPKey, "RSA", cPKey);
rb_define_singleton_method(cRSA, "generate", ossl_rsa_s_generate, -1);
rb_define_method(cRSA, "initialize", ossl_rsa_initialize, -1);
rb_define_copy_func(cRSA, ossl_rsa_initialize_copy);
rb_define_method(cRSA, "public?", ossl_rsa_is_public, 0);
rb_define_method(cRSA, "private?", ossl_rsa_is_private, 0);
rb_define_method(cRSA, "to_text", ossl_rsa_to_text, 0);
rb_define_method(cRSA, "export", ossl_rsa_export, -1);
rb_define_alias(cRSA, "to_pem", "export");
rb_define_alias(cRSA, "to_s", "export");
rb_define_method(cRSA, "to_der", ossl_rsa_to_der, 0);
rb_define_method(cRSA, "public_key", ossl_rsa_to_public_key, 0);
rb_define_method(cRSA, "public_encrypt", ossl_rsa_public_encrypt, -1);
rb_define_method(cRSA, "public_decrypt", ossl_rsa_public_decrypt, -1);
rb_define_method(cRSA, "private_encrypt", ossl_rsa_private_encrypt, -1);
rb_define_method(cRSA, "private_decrypt", ossl_rsa_private_decrypt, -1);
DEF_OSSL_PKEY_BN(cRSA, rsa, n);
DEF_OSSL_PKEY_BN(cRSA, rsa, e);
DEF_OSSL_PKEY_BN(cRSA, rsa, d);
DEF_OSSL_PKEY_BN(cRSA, rsa, p);
DEF_OSSL_PKEY_BN(cRSA, rsa, q);
DEF_OSSL_PKEY_BN(cRSA, rsa, dmp1);
DEF_OSSL_PKEY_BN(cRSA, rsa, dmq1);
DEF_OSSL_PKEY_BN(cRSA, rsa, iqmp);
rb_define_method(cRSA, "set_key", ossl_rsa_set_key, 3);
rb_define_method(cRSA, "set_factors", ossl_rsa_set_factors, 2);
rb_define_method(cRSA, "set_crt_params", ossl_rsa_set_crt_params, 3);
rb_define_method(cRSA, "params", ossl_rsa_get_params, 0);
DefRSAConst(PKCS1_PADDING);
DefRSAConst(SSLV23_PADDING);
DefRSAConst(NO_PADDING);
DefRSAConst(PKCS1_OAEP_PADDING);
/*
* TODO: Test it
rb_define_method(cRSA, "blinding_on!", ossl_rsa_blinding_on, 0);
rb_define_method(cRSA, "blinding_off!", ossl_rsa_blinding_off, 0);
*/
}
#else /* defined NO_RSA */
void
Init_ossl_rsa(void)
{
}
#endif /* NO_RSA */