mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
38f7bb481e
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@65909 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2145 lines
56 KiB
C
2145 lines
56 KiB
C
/**********************************************************************
|
|
|
|
cont.c -
|
|
|
|
$Author$
|
|
created at: Thu May 23 09:03:43 2007
|
|
|
|
Copyright (C) 2007 Koichi Sasada
|
|
|
|
**********************************************************************/
|
|
|
|
#include "internal.h"
|
|
#include "vm_core.h"
|
|
#include "gc.h"
|
|
#include "eval_intern.h"
|
|
#include "mjit.h"
|
|
|
|
/* FIBER_USE_NATIVE enables Fiber performance improvement using system
|
|
* dependent method such as make/setcontext on POSIX system or
|
|
* CreateFiber() API on Windows.
|
|
* This hack make Fiber context switch faster (x2 or more).
|
|
* However, it decrease maximum number of Fiber. For example, on the
|
|
* 32bit POSIX OS, ten or twenty thousands Fiber can be created.
|
|
*
|
|
* Details is reported in the paper "A Fast Fiber Implementation for Ruby 1.9"
|
|
* in Proc. of 51th Programming Symposium, pp.21--28 (2010) (in Japanese).
|
|
*/
|
|
|
|
/*
|
|
Enable FIBER_USE_COROUTINE to make fiber yield/resume much faster by using native assembly implementations.
|
|
|
|
rvm install ruby-head-ioquatix-native-fiber --url https://github.com/ioquatix/ruby --branch native-fiber
|
|
|
|
# Without libcoro
|
|
koyoko% ./build/bin/ruby ./fiber_benchmark.rb 10000 1000
|
|
setup time for 10000 fibers: 0.099961
|
|
execution time for 1000 messages: 19.505909
|
|
|
|
# With libcoro
|
|
koyoko% ./build/bin/ruby ./fiber_benchmark.rb 10000 1000
|
|
setup time for 10000 fibers: 0.099268
|
|
execution time for 1000 messages: 8.491746
|
|
*/
|
|
|
|
#ifdef FIBER_USE_COROUTINE
|
|
#include FIBER_USE_COROUTINE
|
|
#define FIBER_USE_NATIVE 1
|
|
#endif
|
|
|
|
#if !defined(FIBER_USE_NATIVE)
|
|
# if defined(HAVE_GETCONTEXT) && defined(HAVE_SETCONTEXT)
|
|
# if 0
|
|
# elif defined(__NetBSD__)
|
|
/* On our experience, NetBSD doesn't support using setcontext() and pthread
|
|
* simultaneously. This is because pthread_self(), TLS and other information
|
|
* are represented by stack pointer (higher bits of stack pointer).
|
|
* TODO: check such constraint on configure.
|
|
*/
|
|
# define FIBER_USE_NATIVE 0
|
|
# elif defined(__sun)
|
|
/* On Solaris because resuming any Fiber caused SEGV, for some reason.
|
|
*/
|
|
# define FIBER_USE_NATIVE 0
|
|
# elif defined(__ia64)
|
|
/* At least, Linux/ia64's getcontext(3) doesn't save register window.
|
|
*/
|
|
# define FIBER_USE_NATIVE 0
|
|
# elif defined(__GNU__)
|
|
/* GNU/Hurd doesn't fully support getcontext, setcontext, makecontext
|
|
* and swapcontext functions. Disabling their usage till support is
|
|
* implemented. More info at
|
|
* http://darnassus.sceen.net/~hurd-web/open_issues/glibc/#getcontext
|
|
*/
|
|
# define FIBER_USE_NATIVE 0
|
|
# else
|
|
# define FIBER_USE_NATIVE 1
|
|
# endif
|
|
# elif defined(_WIN32)
|
|
# define FIBER_USE_NATIVE 1
|
|
# endif
|
|
#endif
|
|
#if !defined(FIBER_USE_NATIVE)
|
|
#define FIBER_USE_NATIVE 0
|
|
#endif
|
|
|
|
#if FIBER_USE_NATIVE
|
|
#ifndef _WIN32
|
|
#include <unistd.h>
|
|
#include <sys/mman.h>
|
|
#include <ucontext.h>
|
|
#endif
|
|
#define RB_PAGE_SIZE (pagesize)
|
|
#define RB_PAGE_MASK (~(RB_PAGE_SIZE - 1))
|
|
static long pagesize;
|
|
#endif /*FIBER_USE_NATIVE*/
|
|
|
|
#define CAPTURE_JUST_VALID_VM_STACK 1
|
|
|
|
enum context_type {
|
|
CONTINUATION_CONTEXT = 0,
|
|
FIBER_CONTEXT = 1
|
|
};
|
|
|
|
struct cont_saved_vm_stack {
|
|
VALUE *ptr;
|
|
#ifdef CAPTURE_JUST_VALID_VM_STACK
|
|
size_t slen; /* length of stack (head of ec->vm_stack) */
|
|
size_t clen; /* length of control frames (tail of ec->vm_stack) */
|
|
#endif
|
|
};
|
|
|
|
typedef struct rb_context_struct {
|
|
enum context_type type;
|
|
int argc;
|
|
VALUE self;
|
|
VALUE value;
|
|
|
|
struct cont_saved_vm_stack saved_vm_stack;
|
|
|
|
struct {
|
|
VALUE *stack;
|
|
VALUE *stack_src;
|
|
size_t stack_size;
|
|
#ifdef __ia64
|
|
VALUE *register_stack;
|
|
VALUE *register_stack_src;
|
|
int register_stack_size;
|
|
#endif
|
|
} machine;
|
|
rb_execution_context_t saved_ec;
|
|
rb_jmpbuf_t jmpbuf;
|
|
rb_ensure_entry_t *ensure_array;
|
|
/* Pointer to MJIT info about the continuation. */
|
|
struct mjit_cont *mjit_cont;
|
|
} rb_context_t;
|
|
|
|
|
|
/*
|
|
* Fiber status:
|
|
* [Fiber.new] ------> FIBER_CREATED
|
|
* | [Fiber#resume]
|
|
* v
|
|
* +--> FIBER_RESUMED ----+
|
|
* [Fiber#resume] | | [Fiber.yield] |
|
|
* | v |
|
|
* +-- FIBER_SUSPENDED | [Terminate]
|
|
* |
|
|
* FIBER_TERMINATED <-+
|
|
*/
|
|
enum fiber_status {
|
|
FIBER_CREATED,
|
|
FIBER_RESUMED,
|
|
FIBER_SUSPENDED,
|
|
FIBER_TERMINATED
|
|
};
|
|
|
|
#define FIBER_CREATED_P(fib) ((fib)->status == FIBER_CREATED)
|
|
#define FIBER_RESUMED_P(fib) ((fib)->status == FIBER_RESUMED)
|
|
#define FIBER_SUSPENDED_P(fib) ((fib)->status == FIBER_SUSPENDED)
|
|
#define FIBER_TERMINATED_P(fib) ((fib)->status == FIBER_TERMINATED)
|
|
#define FIBER_RUNNABLE_P(fib) (FIBER_CREATED_P(fib) || FIBER_SUSPENDED_P(fib))
|
|
|
|
#if FIBER_USE_NATIVE && !defined(FIBER_USE_COROUTINE) && !defined(_WIN32)
|
|
static inline int
|
|
fiber_context_create(ucontext_t *context, void (*func)(), void *arg, void *ptr, size_t size)
|
|
{
|
|
if (getcontext(context) < 0) return -1;
|
|
/*
|
|
* getcontext() may fail by some reasons:
|
|
* 1. SELinux policy banned one of "rt_sigprocmask",
|
|
* "sigprocmask" or "swapcontext";
|
|
* 2. libseccomp (aka. syscall filter) banned one of them.
|
|
*/
|
|
context->uc_link = NULL;
|
|
context->uc_stack.ss_sp = ptr;
|
|
context->uc_stack.ss_size = size;
|
|
makecontext(context, func, 0);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
struct rb_fiber_struct {
|
|
rb_context_t cont;
|
|
VALUE first_proc;
|
|
struct rb_fiber_struct *prev;
|
|
BITFIELD(enum fiber_status, status, 2);
|
|
/* If a fiber invokes "transfer",
|
|
* then this fiber can't "resume" any more after that.
|
|
* You shouldn't mix "transfer" and "resume".
|
|
*/
|
|
unsigned int transferred : 1;
|
|
|
|
#if FIBER_USE_NATIVE
|
|
#if defined(FIBER_USE_COROUTINE)
|
|
#define FIBER_ALLOCATE_STACK
|
|
coroutine_context context;
|
|
void *ss_sp;
|
|
size_t ss_size;
|
|
#elif defined(_WIN32)
|
|
void *fib_handle;
|
|
#else
|
|
#define FIBER_ALLOCATE_STACK
|
|
ucontext_t context;
|
|
/* Because context.uc_stack.ss_sp and context.uc_stack.ss_size
|
|
* are not necessarily valid after makecontext() or swapcontext(),
|
|
* they are saved in these variables for later use.
|
|
*/
|
|
void *ss_sp;
|
|
size_t ss_size;
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
#ifdef FIBER_ALLOCATE_STACK
|
|
#define MAX_MACHINE_STACK_CACHE 10
|
|
static int machine_stack_cache_index = 0;
|
|
typedef struct machine_stack_cache_struct {
|
|
void *ptr;
|
|
size_t size;
|
|
} machine_stack_cache_t;
|
|
static machine_stack_cache_t machine_stack_cache[MAX_MACHINE_STACK_CACHE];
|
|
static machine_stack_cache_t terminated_machine_stack;
|
|
#endif
|
|
|
|
static const char *
|
|
fiber_status_name(enum fiber_status s)
|
|
{
|
|
switch (s) {
|
|
case FIBER_CREATED: return "created";
|
|
case FIBER_RESUMED: return "resumed";
|
|
case FIBER_SUSPENDED: return "suspended";
|
|
case FIBER_TERMINATED: return "terminated";
|
|
}
|
|
VM_UNREACHABLE(fiber_status_name);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
fiber_verify(const rb_fiber_t *fib)
|
|
{
|
|
#if VM_CHECK_MODE > 0
|
|
VM_ASSERT(fib->cont.saved_ec.fiber_ptr == fib);
|
|
|
|
switch (fib->status) {
|
|
case FIBER_RESUMED:
|
|
VM_ASSERT(fib->cont.saved_ec.vm_stack != NULL);
|
|
break;
|
|
case FIBER_SUSPENDED:
|
|
VM_ASSERT(fib->cont.saved_ec.vm_stack != NULL);
|
|
break;
|
|
case FIBER_CREATED:
|
|
case FIBER_TERMINATED:
|
|
/* TODO */
|
|
break;
|
|
default:
|
|
VM_UNREACHABLE(fiber_verify);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if VM_CHECK_MODE > 0
|
|
void
|
|
rb_ec_verify(const rb_execution_context_t *ec)
|
|
{
|
|
/* TODO */
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
fiber_status_set(rb_fiber_t *fib, enum fiber_status s)
|
|
{
|
|
if (0) fprintf(stderr, "fib: %p, status: %s -> %s\n", (void *)fib, fiber_status_name(fib->status), fiber_status_name(s));
|
|
VM_ASSERT(!FIBER_TERMINATED_P(fib));
|
|
VM_ASSERT(fib->status != s);
|
|
fiber_verify(fib);
|
|
fib->status = s;
|
|
}
|
|
|
|
void
|
|
rb_ec_set_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size)
|
|
{
|
|
ec->vm_stack = stack;
|
|
ec->vm_stack_size = size;
|
|
}
|
|
|
|
static inline void
|
|
ec_switch(rb_thread_t *th, rb_fiber_t *fib)
|
|
{
|
|
rb_execution_context_t *ec = &fib->cont.saved_ec;
|
|
|
|
ruby_current_execution_context_ptr = th->ec = ec;
|
|
|
|
/*
|
|
* timer-thread may set trap interrupt on previous th->ec at any time;
|
|
* ensure we do not delay (or lose) the trap interrupt handling.
|
|
*/
|
|
if (th->vm->main_thread == th && rb_signal_buff_size() > 0) {
|
|
RUBY_VM_SET_TRAP_INTERRUPT(ec);
|
|
}
|
|
|
|
VM_ASSERT(ec->fiber_ptr->cont.self == 0 || ec->vm_stack != NULL);
|
|
}
|
|
|
|
static const rb_data_type_t cont_data_type, fiber_data_type;
|
|
static VALUE rb_cContinuation;
|
|
static VALUE rb_cFiber;
|
|
static VALUE rb_eFiberError;
|
|
|
|
static rb_context_t *
|
|
cont_ptr(VALUE obj)
|
|
{
|
|
rb_context_t *cont;
|
|
|
|
TypedData_Get_Struct(obj, rb_context_t, &cont_data_type, cont);
|
|
|
|
return cont;
|
|
}
|
|
|
|
static rb_fiber_t *
|
|
fiber_ptr(VALUE obj)
|
|
{
|
|
rb_fiber_t *fib;
|
|
|
|
TypedData_Get_Struct(obj, rb_fiber_t, &fiber_data_type, fib);
|
|
if (!fib) rb_raise(rb_eFiberError, "uninitialized fiber");
|
|
|
|
return fib;
|
|
}
|
|
|
|
NOINLINE(static VALUE cont_capture(volatile int *volatile stat));
|
|
|
|
#define THREAD_MUST_BE_RUNNING(th) do { \
|
|
if (!(th)->ec->tag) rb_raise(rb_eThreadError, "not running thread"); \
|
|
} while (0)
|
|
|
|
static VALUE
|
|
cont_thread_value(const rb_context_t *cont)
|
|
{
|
|
return cont->saved_ec.thread_ptr->self;
|
|
}
|
|
|
|
static void
|
|
cont_mark(void *ptr)
|
|
{
|
|
rb_context_t *cont = ptr;
|
|
|
|
RUBY_MARK_ENTER("cont");
|
|
rb_gc_mark(cont->value);
|
|
|
|
rb_execution_context_mark(&cont->saved_ec);
|
|
rb_gc_mark(cont_thread_value(cont));
|
|
|
|
if (cont->saved_vm_stack.ptr) {
|
|
#ifdef CAPTURE_JUST_VALID_VM_STACK
|
|
rb_gc_mark_locations(cont->saved_vm_stack.ptr,
|
|
cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
|
|
#else
|
|
rb_gc_mark_locations(cont->saved_vm_stack.ptr,
|
|
cont->saved_vm_stack.ptr, cont->saved_ec.stack_size);
|
|
#endif
|
|
}
|
|
|
|
if (cont->machine.stack) {
|
|
if (cont->type == CONTINUATION_CONTEXT) {
|
|
/* cont */
|
|
rb_gc_mark_locations(cont->machine.stack,
|
|
cont->machine.stack + cont->machine.stack_size);
|
|
}
|
|
else {
|
|
/* fiber */
|
|
const rb_fiber_t *fib = (rb_fiber_t*)cont;
|
|
|
|
if (!FIBER_TERMINATED_P(fib)) {
|
|
rb_gc_mark_locations(cont->machine.stack,
|
|
cont->machine.stack + cont->machine.stack_size);
|
|
}
|
|
}
|
|
}
|
|
#ifdef __ia64
|
|
if (cont->machine.register_stack) {
|
|
rb_gc_mark_locations(cont->machine.register_stack,
|
|
cont->machine.register_stack + cont->machine.register_stack_size);
|
|
}
|
|
#endif
|
|
|
|
RUBY_MARK_LEAVE("cont");
|
|
}
|
|
|
|
static int
|
|
fiber_is_root_p(const rb_fiber_t *fib)
|
|
{
|
|
return fib == fib->cont.saved_ec.thread_ptr->root_fiber;
|
|
}
|
|
|
|
static void
|
|
cont_free(void *ptr)
|
|
{
|
|
rb_context_t *cont = ptr;
|
|
|
|
RUBY_FREE_ENTER("cont");
|
|
ruby_xfree(cont->saved_ec.vm_stack);
|
|
|
|
#if FIBER_USE_NATIVE
|
|
if (cont->type == CONTINUATION_CONTEXT) {
|
|
/* cont */
|
|
ruby_xfree(cont->ensure_array);
|
|
RUBY_FREE_UNLESS_NULL(cont->machine.stack);
|
|
}
|
|
else {
|
|
/* fiber */
|
|
rb_fiber_t *fib = (rb_fiber_t*)cont;
|
|
#if defined(FIBER_USE_COROUTINE)
|
|
coroutine_destroy(&fib->context);
|
|
if (fib->ss_sp != NULL) {
|
|
if (fiber_is_root_p(fib)) {
|
|
rb_bug("Illegal root fiber parameter");
|
|
}
|
|
#ifdef _WIN32
|
|
VirtualFree((void*)fib->ss_sp, 0, MEM_RELEASE);
|
|
#else
|
|
munmap((void*)fib->ss_sp, fib->ss_size);
|
|
#endif
|
|
fib->ss_sp = NULL;
|
|
}
|
|
#elif defined(_WIN32)
|
|
if (!fiber_is_root_p(fib)) {
|
|
/* don't delete root fiber handle */
|
|
if (fib->fib_handle) {
|
|
DeleteFiber(fib->fib_handle);
|
|
}
|
|
}
|
|
#else /* not WIN32 */
|
|
/* fib->ss_sp == NULL is possible for root fiber */
|
|
if (fib->ss_sp != NULL) {
|
|
munmap((void*)fib->ss_sp, fib->ss_size);
|
|
}
|
|
#endif
|
|
}
|
|
#else /* not FIBER_USE_NATIVE */
|
|
ruby_xfree(cont->ensure_array);
|
|
RUBY_FREE_UNLESS_NULL(cont->machine.stack);
|
|
#endif
|
|
#ifdef __ia64
|
|
RUBY_FREE_UNLESS_NULL(cont->machine.register_stack);
|
|
#endif
|
|
RUBY_FREE_UNLESS_NULL(cont->saved_vm_stack.ptr);
|
|
|
|
if (mjit_enabled && cont->mjit_cont != NULL) {
|
|
mjit_cont_free(cont->mjit_cont);
|
|
}
|
|
/* free rb_cont_t or rb_fiber_t */
|
|
ruby_xfree(ptr);
|
|
RUBY_FREE_LEAVE("cont");
|
|
}
|
|
|
|
static size_t
|
|
cont_memsize(const void *ptr)
|
|
{
|
|
const rb_context_t *cont = ptr;
|
|
size_t size = 0;
|
|
|
|
size = sizeof(*cont);
|
|
if (cont->saved_vm_stack.ptr) {
|
|
#ifdef CAPTURE_JUST_VALID_VM_STACK
|
|
size_t n = (cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
|
|
#else
|
|
size_t n = cont->saved_ec.vm_stack_size;
|
|
#endif
|
|
size += n * sizeof(*cont->saved_vm_stack.ptr);
|
|
}
|
|
|
|
if (cont->machine.stack) {
|
|
size += cont->machine.stack_size * sizeof(*cont->machine.stack);
|
|
}
|
|
#ifdef __ia64
|
|
if (cont->machine.register_stack) {
|
|
size += cont->machine.register_stack_size * sizeof(*cont->machine.register_stack);
|
|
}
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
void
|
|
rb_fiber_mark_self(const rb_fiber_t *fib)
|
|
{
|
|
if (fib->cont.self) {
|
|
rb_gc_mark(fib->cont.self);
|
|
}
|
|
else {
|
|
rb_execution_context_mark(&fib->cont.saved_ec);
|
|
}
|
|
}
|
|
|
|
static void
|
|
fiber_mark(void *ptr)
|
|
{
|
|
rb_fiber_t *fib = ptr;
|
|
RUBY_MARK_ENTER("cont");
|
|
fiber_verify(fib);
|
|
rb_gc_mark(fib->first_proc);
|
|
if (fib->prev) rb_fiber_mark_self(fib->prev);
|
|
|
|
#if !FIBER_USE_NATIVE
|
|
if (fib->status == FIBER_TERMINATED) {
|
|
/* FIBER_TERMINATED fiber should not mark machine stack */
|
|
if (fib->cont.saved_ec.machine.stack_end != NULL) {
|
|
fib->cont.saved_ec.machine.stack_end = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
cont_mark(&fib->cont);
|
|
RUBY_MARK_LEAVE("cont");
|
|
}
|
|
|
|
static void
|
|
fiber_free(void *ptr)
|
|
{
|
|
rb_fiber_t *fib = ptr;
|
|
RUBY_FREE_ENTER("fiber");
|
|
|
|
if (fib->cont.saved_ec.local_storage) {
|
|
st_free_table(fib->cont.saved_ec.local_storage);
|
|
}
|
|
|
|
cont_free(&fib->cont);
|
|
RUBY_FREE_LEAVE("fiber");
|
|
}
|
|
|
|
static size_t
|
|
fiber_memsize(const void *ptr)
|
|
{
|
|
const rb_fiber_t *fib = ptr;
|
|
size_t size = sizeof(*fib);
|
|
const rb_execution_context_t *saved_ec = &fib->cont.saved_ec;
|
|
const rb_thread_t *th = rb_ec_thread_ptr(saved_ec);
|
|
|
|
/*
|
|
* vm.c::thread_memsize already counts th->ec->local_storage
|
|
*/
|
|
if (saved_ec->local_storage && fib != th->root_fiber) {
|
|
size += st_memsize(saved_ec->local_storage);
|
|
}
|
|
size += cont_memsize(&fib->cont);
|
|
return size;
|
|
}
|
|
|
|
VALUE
|
|
rb_obj_is_fiber(VALUE obj)
|
|
{
|
|
if (rb_typeddata_is_kind_of(obj, &fiber_data_type)) {
|
|
return Qtrue;
|
|
}
|
|
else {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
|
|
static void
|
|
cont_save_machine_stack(rb_thread_t *th, rb_context_t *cont)
|
|
{
|
|
size_t size;
|
|
|
|
SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
|
|
#ifdef __ia64
|
|
th->ec->machine.register_stack_end = rb_ia64_bsp();
|
|
#endif
|
|
|
|
if (th->ec->machine.stack_start > th->ec->machine.stack_end) {
|
|
size = cont->machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
|
|
cont->machine.stack_src = th->ec->machine.stack_end;
|
|
}
|
|
else {
|
|
size = cont->machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
|
|
cont->machine.stack_src = th->ec->machine.stack_start;
|
|
}
|
|
|
|
if (cont->machine.stack) {
|
|
REALLOC_N(cont->machine.stack, VALUE, size);
|
|
}
|
|
else {
|
|
cont->machine.stack = ALLOC_N(VALUE, size);
|
|
}
|
|
|
|
FLUSH_REGISTER_WINDOWS;
|
|
MEMCPY(cont->machine.stack, cont->machine.stack_src, VALUE, size);
|
|
|
|
#ifdef __ia64
|
|
rb_ia64_flushrs();
|
|
size = cont->machine.register_stack_size = th->ec->machine.register_stack_end - th->ec->machine.register_stack_start;
|
|
cont->machine.register_stack_src = th->ec->machine.register_stack_start;
|
|
if (cont->machine.register_stack) {
|
|
REALLOC_N(cont->machine.register_stack, VALUE, size);
|
|
}
|
|
else {
|
|
cont->machine.register_stack = ALLOC_N(VALUE, size);
|
|
}
|
|
|
|
MEMCPY(cont->machine.register_stack, cont->machine.register_stack_src, VALUE, size);
|
|
#endif
|
|
}
|
|
|
|
static const rb_data_type_t cont_data_type = {
|
|
"continuation",
|
|
{cont_mark, cont_free, cont_memsize,},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
static inline void
|
|
cont_save_thread(rb_context_t *cont, rb_thread_t *th)
|
|
{
|
|
rb_execution_context_t *sec = &cont->saved_ec;
|
|
|
|
VM_ASSERT(th->status == THREAD_RUNNABLE);
|
|
|
|
/* save thread context */
|
|
*sec = *th->ec;
|
|
|
|
/* saved_ec->machine.stack_end should be NULL */
|
|
/* because it may happen GC afterward */
|
|
sec->machine.stack_end = NULL;
|
|
|
|
#ifdef __ia64
|
|
sec->machine.register_stack_start = NULL;
|
|
sec->machine.register_stack_end = NULL;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
cont_init(rb_context_t *cont, rb_thread_t *th)
|
|
{
|
|
/* save thread context */
|
|
cont_save_thread(cont, th);
|
|
cont->saved_ec.thread_ptr = th;
|
|
cont->saved_ec.local_storage = NULL;
|
|
cont->saved_ec.local_storage_recursive_hash = Qnil;
|
|
cont->saved_ec.local_storage_recursive_hash_for_trace = Qnil;
|
|
if (mjit_enabled) {
|
|
cont->mjit_cont = mjit_cont_new(&cont->saved_ec);
|
|
}
|
|
}
|
|
|
|
static rb_context_t *
|
|
cont_new(VALUE klass)
|
|
{
|
|
rb_context_t *cont;
|
|
volatile VALUE contval;
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
THREAD_MUST_BE_RUNNING(th);
|
|
contval = TypedData_Make_Struct(klass, rb_context_t, &cont_data_type, cont);
|
|
cont->self = contval;
|
|
cont_init(cont, th);
|
|
return cont;
|
|
}
|
|
|
|
#if 0
|
|
void
|
|
show_vm_stack(const rb_execution_context_t *ec)
|
|
{
|
|
VALUE *p = ec->vm_stack;
|
|
while (p < ec->cfp->sp) {
|
|
fprintf(stderr, "%3d ", (int)(p - ec->vm_stack));
|
|
rb_obj_info_dump(*p);
|
|
p++;
|
|
}
|
|
}
|
|
|
|
void
|
|
show_vm_pcs(const rb_control_frame_t *cfp,
|
|
const rb_control_frame_t *end_of_cfp)
|
|
{
|
|
int i=0;
|
|
while (cfp != end_of_cfp) {
|
|
int pc = 0;
|
|
if (cfp->iseq) {
|
|
pc = cfp->pc - cfp->iseq->body->iseq_encoded;
|
|
}
|
|
fprintf(stderr, "%2d pc: %d\n", i++, pc);
|
|
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
|
|
}
|
|
}
|
|
#endif
|
|
COMPILER_WARNING_PUSH
|
|
#ifdef __clang__
|
|
COMPILER_WARNING_IGNORED(-Wduplicate-decl-specifier)
|
|
#endif
|
|
static VALUE
|
|
cont_capture(volatile int *volatile stat)
|
|
{
|
|
rb_context_t *volatile cont;
|
|
rb_thread_t *th = GET_THREAD();
|
|
volatile VALUE contval;
|
|
const rb_execution_context_t *ec = th->ec;
|
|
|
|
THREAD_MUST_BE_RUNNING(th);
|
|
rb_vm_stack_to_heap(th->ec);
|
|
cont = cont_new(rb_cContinuation);
|
|
contval = cont->self;
|
|
|
|
#ifdef CAPTURE_JUST_VALID_VM_STACK
|
|
cont->saved_vm_stack.slen = ec->cfp->sp - ec->vm_stack;
|
|
cont->saved_vm_stack.clen = ec->vm_stack + ec->vm_stack_size - (VALUE*)ec->cfp;
|
|
cont->saved_vm_stack.ptr = ALLOC_N(VALUE, cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
|
|
MEMCPY(cont->saved_vm_stack.ptr,
|
|
ec->vm_stack,
|
|
VALUE, cont->saved_vm_stack.slen);
|
|
MEMCPY(cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
|
|
(VALUE*)ec->cfp,
|
|
VALUE,
|
|
cont->saved_vm_stack.clen);
|
|
#else
|
|
cont->saved_vm_stack.ptr = ALLOC_N(VALUE, ec->vm_stack_size);
|
|
MEMCPY(cont->saved_vm_stack.ptr, ec->vm_stack, VALUE, ec->vm_stack_size);
|
|
#endif
|
|
rb_ec_set_vm_stack(&cont->saved_ec, NULL, 0);
|
|
cont_save_machine_stack(th, cont);
|
|
|
|
/* backup ensure_list to array for search in another context */
|
|
{
|
|
rb_ensure_list_t *p;
|
|
int size = 0;
|
|
rb_ensure_entry_t *entry;
|
|
for (p=th->ec->ensure_list; p; p=p->next)
|
|
size++;
|
|
entry = cont->ensure_array = ALLOC_N(rb_ensure_entry_t,size+1);
|
|
for (p=th->ec->ensure_list; p; p=p->next) {
|
|
if (!p->entry.marker)
|
|
p->entry.marker = rb_ary_tmp_new(0); /* dummy object */
|
|
*entry++ = p->entry;
|
|
}
|
|
entry->marker = 0;
|
|
}
|
|
|
|
if (ruby_setjmp(cont->jmpbuf)) {
|
|
VALUE value;
|
|
|
|
VAR_INITIALIZED(cont);
|
|
value = cont->value;
|
|
if (cont->argc == -1) rb_exc_raise(value);
|
|
cont->value = Qnil;
|
|
*stat = 1;
|
|
return value;
|
|
}
|
|
else {
|
|
*stat = 0;
|
|
return contval;
|
|
}
|
|
}
|
|
COMPILER_WARNING_POP
|
|
|
|
static inline void
|
|
fiber_restore_thread(rb_thread_t *th, rb_fiber_t *fib)
|
|
{
|
|
ec_switch(th, fib);
|
|
VM_ASSERT(th->ec->fiber_ptr == fib);
|
|
}
|
|
|
|
static inline void
|
|
cont_restore_thread(rb_context_t *cont)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
/* restore thread context */
|
|
if (cont->type == CONTINUATION_CONTEXT) {
|
|
/* continuation */
|
|
rb_execution_context_t *sec = &cont->saved_ec;
|
|
rb_fiber_t *fib = NULL;
|
|
|
|
if (sec->fiber_ptr != NULL) {
|
|
fib = sec->fiber_ptr;
|
|
}
|
|
else if (th->root_fiber) {
|
|
fib = th->root_fiber;
|
|
}
|
|
|
|
if (fib && th->ec != &fib->cont.saved_ec) {
|
|
ec_switch(th, fib);
|
|
}
|
|
|
|
/* copy vm stack */
|
|
#ifdef CAPTURE_JUST_VALID_VM_STACK
|
|
MEMCPY(th->ec->vm_stack,
|
|
cont->saved_vm_stack.ptr,
|
|
VALUE, cont->saved_vm_stack.slen);
|
|
MEMCPY(th->ec->vm_stack + th->ec->vm_stack_size - cont->saved_vm_stack.clen,
|
|
cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
|
|
VALUE, cont->saved_vm_stack.clen);
|
|
#else
|
|
MEMCPY(th->ec->vm_stack, cont->saved_vm_stack.ptr, VALUE, sec->vm_stack_size);
|
|
#endif
|
|
/* other members of ec */
|
|
|
|
th->ec->cfp = sec->cfp;
|
|
th->ec->raised_flag = sec->raised_flag;
|
|
th->ec->tag = sec->tag;
|
|
th->ec->protect_tag = sec->protect_tag;
|
|
th->ec->root_lep = sec->root_lep;
|
|
th->ec->root_svar = sec->root_svar;
|
|
th->ec->ensure_list = sec->ensure_list;
|
|
th->ec->errinfo = sec->errinfo;
|
|
|
|
/* trace on -> trace off */
|
|
if (th->ec->trace_arg != NULL && sec->trace_arg == NULL) {
|
|
GET_VM()->trace_running--;
|
|
}
|
|
/* trace off -> trace on */
|
|
else if (th->ec->trace_arg == NULL && sec->trace_arg != NULL) {
|
|
GET_VM()->trace_running++;
|
|
}
|
|
th->ec->trace_arg = sec->trace_arg;
|
|
|
|
VM_ASSERT(th->ec->vm_stack != NULL);
|
|
}
|
|
else {
|
|
/* fiber */
|
|
fiber_restore_thread(th, (rb_fiber_t*)cont);
|
|
}
|
|
}
|
|
|
|
#if FIBER_USE_NATIVE
|
|
#if defined(FIBER_USE_COROUTINE)
|
|
static COROUTINE
|
|
fiber_entry(coroutine_context * from, coroutine_context * to)
|
|
{
|
|
rb_fiber_start();
|
|
}
|
|
#elif defined(_WIN32)
|
|
static void
|
|
fiber_set_stack_location(void)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
VALUE *ptr;
|
|
|
|
SET_MACHINE_STACK_END(&ptr);
|
|
th->ec->machine.stack_start = (void*)(((VALUE)ptr & RB_PAGE_MASK) + STACK_UPPER((void *)&ptr, 0, RB_PAGE_SIZE));
|
|
}
|
|
|
|
NORETURN(static VOID CALLBACK fiber_entry(void *arg));
|
|
static VOID CALLBACK
|
|
fiber_entry(void *arg)
|
|
{
|
|
fiber_set_stack_location();
|
|
rb_fiber_start();
|
|
}
|
|
#else
|
|
NORETURN(static void fiber_entry(void *arg));
|
|
static void
|
|
fiber_entry(void *arg)
|
|
{
|
|
rb_fiber_start();
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef FIBER_ALLOCATE_STACK
|
|
/*
|
|
* FreeBSD require a first (i.e. addr) argument of mmap(2) is not NULL
|
|
* if MAP_STACK is passed.
|
|
* http://www.FreeBSD.org/cgi/query-pr.cgi?pr=158755
|
|
*/
|
|
#if defined(MAP_STACK) && !defined(__FreeBSD__) && !defined(__FreeBSD_kernel__)
|
|
#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON | MAP_STACK)
|
|
#else
|
|
#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON)
|
|
#endif
|
|
|
|
#define ERRNOMSG strerror(errno)
|
|
|
|
static char*
|
|
fiber_machine_stack_alloc(size_t size)
|
|
{
|
|
char *ptr;
|
|
#ifdef _WIN32
|
|
DWORD old_protect;
|
|
#endif
|
|
|
|
if (machine_stack_cache_index > 0) {
|
|
if (machine_stack_cache[machine_stack_cache_index - 1].size == (size / sizeof(VALUE))) {
|
|
ptr = machine_stack_cache[machine_stack_cache_index - 1].ptr;
|
|
machine_stack_cache_index--;
|
|
machine_stack_cache[machine_stack_cache_index].ptr = NULL;
|
|
machine_stack_cache[machine_stack_cache_index].size = 0;
|
|
} else {
|
|
/* TODO handle multiple machine stack size */
|
|
rb_bug("machine_stack_cache size is not canonicalized");
|
|
}
|
|
} else {
|
|
#ifdef _WIN32
|
|
ptr = VirtualAlloc(0, size, MEM_COMMIT, PAGE_READWRITE);
|
|
|
|
if (!ptr) {
|
|
rb_raise(rb_eFiberError, "can't allocate machine stack to fiber: %s", ERRNOMSG);
|
|
}
|
|
|
|
if (!VirtualProtect(ptr, RB_PAGE_SIZE, PAGE_READWRITE | PAGE_GUARD, &old_protect)) {
|
|
rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
|
|
}
|
|
#else
|
|
void *page;
|
|
STACK_GROW_DIR_DETECTION;
|
|
|
|
errno = 0;
|
|
ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, FIBER_STACK_FLAGS, -1, 0);
|
|
if (ptr == MAP_FAILED) {
|
|
rb_raise(rb_eFiberError, "can't alloc machine stack to fiber: %s", ERRNOMSG);
|
|
}
|
|
|
|
/* guard page setup */
|
|
page = ptr + STACK_DIR_UPPER(size - RB_PAGE_SIZE, 0);
|
|
if (mprotect(page, RB_PAGE_SIZE, PROT_NONE) < 0) {
|
|
rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
#endif
|
|
|
|
#if FIBER_USE_NATIVE
|
|
static void
|
|
fiber_initialize_machine_stack_context(rb_fiber_t *fib, size_t size)
|
|
{
|
|
rb_execution_context_t *sec = &fib->cont.saved_ec;
|
|
|
|
#if defined(FIBER_USE_COROUTINE)
|
|
char *ptr;
|
|
STACK_GROW_DIR_DETECTION;
|
|
|
|
ptr = fiber_machine_stack_alloc(size);
|
|
fib->ss_sp = ptr;
|
|
fib->ss_size = size;
|
|
coroutine_initialize(&fib->context, fiber_entry, ptr+size, size);
|
|
sec->machine.stack_start = (VALUE*)(ptr + STACK_DIR_UPPER(0, size));
|
|
sec->machine.stack_maxsize = size - RB_PAGE_SIZE;
|
|
#elif defined(_WIN32)
|
|
# if defined(_MSC_VER) && _MSC_VER <= 1200
|
|
# define CreateFiberEx(cs, stacksize, flags, entry, param) \
|
|
CreateFiber((stacksize), (entry), (param))
|
|
# endif
|
|
fib->fib_handle = CreateFiberEx(size - 1, size, 0, fiber_entry, NULL);
|
|
if (!fib->fib_handle) {
|
|
/* try to release unnecessary fibers & retry to create */
|
|
rb_gc();
|
|
fib->fib_handle = CreateFiberEx(size - 1, size, 0, fiber_entry, NULL);
|
|
if (!fib->fib_handle) {
|
|
rb_raise(rb_eFiberError, "can't create fiber");
|
|
}
|
|
}
|
|
sec->machine.stack_maxsize = size;
|
|
#else /* not WIN32 */
|
|
char *ptr;
|
|
STACK_GROW_DIR_DETECTION;
|
|
|
|
ptr = fiber_machine_stack_alloc(size);
|
|
fib->ss_sp = ptr;
|
|
fib->ss_size = size;
|
|
if (fiber_context_create(&fib->context, fiber_entry, NULL, fib->ss_sp, fib->ss_size)) {
|
|
rb_raise(rb_eFiberError, "can't get context for creating fiber: %s", ERRNOMSG);
|
|
}
|
|
sec->machine.stack_start = (VALUE*)(ptr + STACK_DIR_UPPER(0, size));
|
|
sec->machine.stack_maxsize = size - RB_PAGE_SIZE;
|
|
#endif
|
|
#ifdef __ia64
|
|
sth->machine.register_stack_maxsize = sth->machine.stack_maxsize;
|
|
#endif
|
|
}
|
|
|
|
NOINLINE(static void fiber_setcontext(rb_fiber_t *newfib, rb_fiber_t *oldfib));
|
|
|
|
static void
|
|
fiber_setcontext(rb_fiber_t *newfib, rb_fiber_t *oldfib)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
/* save oldfib's machine stack / TODO: is it needed? */
|
|
if (!FIBER_TERMINATED_P(oldfib)) {
|
|
STACK_GROW_DIR_DETECTION;
|
|
SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
|
|
if (STACK_DIR_UPPER(0, 1)) {
|
|
oldfib->cont.machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
|
|
oldfib->cont.machine.stack = th->ec->machine.stack_end;
|
|
}
|
|
else {
|
|
oldfib->cont.machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
|
|
oldfib->cont.machine.stack = th->ec->machine.stack_start;
|
|
}
|
|
}
|
|
|
|
/* exchange machine_stack_start between oldfib and newfib */
|
|
oldfib->cont.saved_ec.machine.stack_start = th->ec->machine.stack_start;
|
|
|
|
/* oldfib->machine.stack_end should be NULL */
|
|
oldfib->cont.saved_ec.machine.stack_end = NULL;
|
|
|
|
/* restore thread context */
|
|
fiber_restore_thread(th, newfib);
|
|
|
|
/* swap machine context */
|
|
#if defined(FIBER_USE_COROUTINE)
|
|
coroutine_transfer(&oldfib->context, &newfib->context);
|
|
#elif defined(_WIN32)
|
|
SwitchToFiber(newfib->fib_handle);
|
|
#else
|
|
if (!newfib->context.uc_stack.ss_sp && th->root_fiber != newfib) {
|
|
rb_bug("non_root_fiber->context.uc_stac.ss_sp should not be NULL");
|
|
}
|
|
swapcontext(&oldfib->context, &newfib->context);
|
|
#endif
|
|
}
|
|
#endif /* FIBER_USE_NATIVE */
|
|
|
|
NOINLINE(NORETURN(static void cont_restore_1(rb_context_t *)));
|
|
|
|
static void
|
|
cont_restore_1(rb_context_t *cont)
|
|
{
|
|
cont_restore_thread(cont);
|
|
|
|
/* restore machine stack */
|
|
#ifdef _M_AMD64
|
|
{
|
|
/* workaround for x64 SEH */
|
|
jmp_buf buf;
|
|
setjmp(buf);
|
|
((_JUMP_BUFFER*)(&cont->jmpbuf))->Frame =
|
|
((_JUMP_BUFFER*)(&buf))->Frame;
|
|
}
|
|
#endif
|
|
if (cont->machine.stack_src) {
|
|
FLUSH_REGISTER_WINDOWS;
|
|
MEMCPY(cont->machine.stack_src, cont->machine.stack,
|
|
VALUE, cont->machine.stack_size);
|
|
}
|
|
|
|
#ifdef __ia64
|
|
if (cont->machine.register_stack_src) {
|
|
MEMCPY(cont->machine.register_stack_src, cont->machine.register_stack,
|
|
VALUE, cont->machine.register_stack_size);
|
|
}
|
|
#endif
|
|
|
|
ruby_longjmp(cont->jmpbuf, 1);
|
|
}
|
|
|
|
NORETURN(NOINLINE(static void cont_restore_0(rb_context_t *, VALUE *)));
|
|
|
|
#ifdef __ia64
|
|
#define C(a) rse_##a##0, rse_##a##1, rse_##a##2, rse_##a##3, rse_##a##4
|
|
#define E(a) rse_##a##0= rse_##a##1= rse_##a##2= rse_##a##3= rse_##a##4
|
|
static volatile int C(a), C(b), C(c), C(d), C(e);
|
|
static volatile int C(f), C(g), C(h), C(i), C(j);
|
|
static volatile int C(k), C(l), C(m), C(n), C(o);
|
|
static volatile int C(p), C(q), C(r), C(s), C(t);
|
|
#if 0
|
|
{/* the above lines make cc-mode.el confused so much */}
|
|
#endif
|
|
int rb_dummy_false = 0;
|
|
NORETURN(NOINLINE(static void register_stack_extend(rb_context_t *, VALUE *, VALUE *)));
|
|
static void
|
|
register_stack_extend(rb_context_t *cont, VALUE *vp, VALUE *curr_bsp)
|
|
{
|
|
if (rb_dummy_false) {
|
|
/* use registers as much as possible */
|
|
E(a) = E(b) = E(c) = E(d) = E(e) =
|
|
E(f) = E(g) = E(h) = E(i) = E(j) =
|
|
E(k) = E(l) = E(m) = E(n) = E(o) =
|
|
E(p) = E(q) = E(r) = E(s) = E(t) = 0;
|
|
E(a) = E(b) = E(c) = E(d) = E(e) =
|
|
E(f) = E(g) = E(h) = E(i) = E(j) =
|
|
E(k) = E(l) = E(m) = E(n) = E(o) =
|
|
E(p) = E(q) = E(r) = E(s) = E(t) = 0;
|
|
}
|
|
if (curr_bsp < cont->machine.register_stack_src+cont->machine.register_stack_size) {
|
|
register_stack_extend(cont, vp, (VALUE*)rb_ia64_bsp());
|
|
}
|
|
cont_restore_0(cont, vp);
|
|
}
|
|
#undef C
|
|
#undef E
|
|
#endif
|
|
|
|
static void
|
|
cont_restore_0(rb_context_t *cont, VALUE *addr_in_prev_frame)
|
|
{
|
|
if (cont->machine.stack_src) {
|
|
#ifdef HAVE_ALLOCA
|
|
#define STACK_PAD_SIZE 1
|
|
#else
|
|
#define STACK_PAD_SIZE 1024
|
|
#endif
|
|
VALUE space[STACK_PAD_SIZE];
|
|
|
|
#if !STACK_GROW_DIRECTION
|
|
if (addr_in_prev_frame > &space[0]) {
|
|
/* Stack grows downward */
|
|
#endif
|
|
#if STACK_GROW_DIRECTION <= 0
|
|
volatile VALUE *const end = cont->machine.stack_src;
|
|
if (&space[0] > end) {
|
|
# ifdef HAVE_ALLOCA
|
|
volatile VALUE *sp = ALLOCA_N(VALUE, &space[0] - end);
|
|
space[0] = *sp;
|
|
# else
|
|
cont_restore_0(cont, &space[0]);
|
|
# endif
|
|
}
|
|
#endif
|
|
#if !STACK_GROW_DIRECTION
|
|
}
|
|
else {
|
|
/* Stack grows upward */
|
|
#endif
|
|
#if STACK_GROW_DIRECTION >= 0
|
|
volatile VALUE *const end = cont->machine.stack_src + cont->machine.stack_size;
|
|
if (&space[STACK_PAD_SIZE] < end) {
|
|
# ifdef HAVE_ALLOCA
|
|
volatile VALUE *sp = ALLOCA_N(VALUE, end - &space[STACK_PAD_SIZE]);
|
|
space[0] = *sp;
|
|
# else
|
|
cont_restore_0(cont, &space[STACK_PAD_SIZE-1]);
|
|
# endif
|
|
}
|
|
#endif
|
|
#if !STACK_GROW_DIRECTION
|
|
}
|
|
#endif
|
|
}
|
|
cont_restore_1(cont);
|
|
}
|
|
#ifdef __ia64
|
|
#define cont_restore_0(cont, vp) register_stack_extend((cont), (vp), (VALUE*)rb_ia64_bsp())
|
|
#endif
|
|
|
|
/*
|
|
* Document-class: Continuation
|
|
*
|
|
* Continuation objects are generated by Kernel#callcc,
|
|
* after having +require+d <i>continuation</i>. They hold
|
|
* a return address and execution context, allowing a nonlocal return
|
|
* to the end of the <code>callcc</code> block from anywhere within a
|
|
* program. Continuations are somewhat analogous to a structured
|
|
* version of C's <code>setjmp/longjmp</code> (although they contain
|
|
* more state, so you might consider them closer to threads).
|
|
*
|
|
* For instance:
|
|
*
|
|
* require "continuation"
|
|
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
|
|
* callcc{|cc| $cc = cc}
|
|
* puts(message = arr.shift)
|
|
* $cc.call unless message =~ /Max/
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* Freddie
|
|
* Herbie
|
|
* Ron
|
|
* Max
|
|
*
|
|
* Also you can call callcc in other methods:
|
|
*
|
|
* require "continuation"
|
|
*
|
|
* def g
|
|
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
|
|
* cc = callcc { |cc| cc }
|
|
* puts arr.shift
|
|
* return cc, arr.size
|
|
* end
|
|
*
|
|
* def f
|
|
* c, size = g
|
|
* c.call(c) if size > 1
|
|
* end
|
|
*
|
|
* f
|
|
*
|
|
* This (somewhat contrived) example allows the inner loop to abandon
|
|
* processing early:
|
|
*
|
|
* require "continuation"
|
|
* callcc {|cont|
|
|
* for i in 0..4
|
|
* print "\n#{i}: "
|
|
* for j in i*5...(i+1)*5
|
|
* cont.call() if j == 17
|
|
* printf "%3d", j
|
|
* end
|
|
* end
|
|
* }
|
|
* puts
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* 0: 0 1 2 3 4
|
|
* 1: 5 6 7 8 9
|
|
* 2: 10 11 12 13 14
|
|
* 3: 15 16
|
|
*/
|
|
|
|
/*
|
|
* call-seq:
|
|
* callcc {|cont| block } -> obj
|
|
*
|
|
* Generates a Continuation object, which it passes to
|
|
* the associated block. You need to <code>require
|
|
* 'continuation'</code> before using this method. Performing a
|
|
* <em>cont</em><code>.call</code> will cause the #callcc
|
|
* to return (as will falling through the end of the block). The
|
|
* value returned by the #callcc is the value of the
|
|
* block, or the value passed to <em>cont</em><code>.call</code>. See
|
|
* class Continuation for more details. Also see
|
|
* Kernel#throw for an alternative mechanism for
|
|
* unwinding a call stack.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_callcc(VALUE self)
|
|
{
|
|
volatile int called;
|
|
volatile VALUE val = cont_capture(&called);
|
|
|
|
if (called) {
|
|
return val;
|
|
}
|
|
else {
|
|
return rb_yield(val);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
make_passing_arg(int argc, const VALUE *argv)
|
|
{
|
|
switch (argc) {
|
|
case 0:
|
|
return Qnil;
|
|
case 1:
|
|
return argv[0];
|
|
default:
|
|
return rb_ary_new4(argc, argv);
|
|
}
|
|
}
|
|
|
|
/* CAUTION!! : Currently, error in rollback_func is not supported */
|
|
/* same as rb_protect if set rollback_func to NULL */
|
|
void
|
|
ruby_register_rollback_func_for_ensure(VALUE (*ensure_func)(ANYARGS), VALUE (*rollback_func)(ANYARGS))
|
|
{
|
|
st_table **table_p = &GET_VM()->ensure_rollback_table;
|
|
if (UNLIKELY(*table_p == NULL)) {
|
|
*table_p = st_init_numtable();
|
|
}
|
|
st_insert(*table_p, (st_data_t)ensure_func, (st_data_t)rollback_func);
|
|
}
|
|
|
|
static inline VALUE
|
|
lookup_rollback_func(VALUE (*ensure_func)(ANYARGS))
|
|
{
|
|
st_table *table = GET_VM()->ensure_rollback_table;
|
|
st_data_t val;
|
|
if (table && st_lookup(table, (st_data_t)ensure_func, &val))
|
|
return (VALUE) val;
|
|
return Qundef;
|
|
}
|
|
|
|
|
|
static inline void
|
|
rollback_ensure_stack(VALUE self,rb_ensure_list_t *current,rb_ensure_entry_t *target)
|
|
{
|
|
rb_ensure_list_t *p;
|
|
rb_ensure_entry_t *entry;
|
|
size_t i, j;
|
|
size_t cur_size;
|
|
size_t target_size;
|
|
size_t base_point;
|
|
VALUE (*func)(ANYARGS);
|
|
|
|
cur_size = 0;
|
|
for (p=current; p; p=p->next)
|
|
cur_size++;
|
|
target_size = 0;
|
|
for (entry=target; entry->marker; entry++)
|
|
target_size++;
|
|
|
|
/* search common stack point */
|
|
p = current;
|
|
base_point = cur_size;
|
|
while (base_point) {
|
|
if (target_size >= base_point &&
|
|
p->entry.marker == target[target_size - base_point].marker)
|
|
break;
|
|
base_point --;
|
|
p = p->next;
|
|
}
|
|
|
|
/* rollback function check */
|
|
for (i=0; i < target_size - base_point; i++) {
|
|
if (!lookup_rollback_func(target[i].e_proc)) {
|
|
rb_raise(rb_eRuntimeError, "continuation called from out of critical rb_ensure scope");
|
|
}
|
|
}
|
|
/* pop ensure stack */
|
|
while (cur_size > base_point) {
|
|
/* escape from ensure block */
|
|
(*current->entry.e_proc)(current->entry.data2);
|
|
current = current->next;
|
|
cur_size--;
|
|
}
|
|
/* push ensure stack */
|
|
for (j = 0; j < i; j++) {
|
|
func = (VALUE (*)(ANYARGS)) lookup_rollback_func(target[i - j - 1].e_proc);
|
|
if ((VALUE)func != Qundef) {
|
|
(*func)(target[i - j - 1].data2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cont.call(args, ...)
|
|
* cont[args, ...]
|
|
*
|
|
* Invokes the continuation. The program continues from the end of the
|
|
* <code>callcc</code> block. If no arguments are given, the original
|
|
* <code>callcc</code> returns <code>nil</code>. If one argument is
|
|
* given, <code>callcc</code> returns it. Otherwise, an array
|
|
* containing <i>args</i> is returned.
|
|
*
|
|
* callcc {|cont| cont.call } #=> nil
|
|
* callcc {|cont| cont.call 1 } #=> 1
|
|
* callcc {|cont| cont.call 1, 2, 3 } #=> [1, 2, 3]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_cont_call(int argc, VALUE *argv, VALUE contval)
|
|
{
|
|
rb_context_t *cont = cont_ptr(contval);
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
if (cont_thread_value(cont) != th->self) {
|
|
rb_raise(rb_eRuntimeError, "continuation called across threads");
|
|
}
|
|
if (cont->saved_ec.protect_tag != th->ec->protect_tag) {
|
|
rb_raise(rb_eRuntimeError, "continuation called across stack rewinding barrier");
|
|
}
|
|
if (cont->saved_ec.fiber_ptr) {
|
|
if (th->ec->fiber_ptr != cont->saved_ec.fiber_ptr) {
|
|
rb_raise(rb_eRuntimeError, "continuation called across fiber");
|
|
}
|
|
}
|
|
rollback_ensure_stack(contval, th->ec->ensure_list, cont->ensure_array);
|
|
|
|
cont->argc = argc;
|
|
cont->value = make_passing_arg(argc, argv);
|
|
|
|
cont_restore_0(cont, &contval);
|
|
return Qnil; /* unreachable */
|
|
}
|
|
|
|
/*********/
|
|
/* fiber */
|
|
/*********/
|
|
|
|
/*
|
|
* Document-class: Fiber
|
|
*
|
|
* Fibers are primitives for implementing light weight cooperative
|
|
* concurrency in Ruby. Basically they are a means of creating code blocks
|
|
* that can be paused and resumed, much like threads. The main difference
|
|
* is that they are never preempted and that the scheduling must be done by
|
|
* the programmer and not the VM.
|
|
*
|
|
* As opposed to other stackless light weight concurrency models, each fiber
|
|
* comes with a stack. This enables the fiber to be paused from deeply
|
|
* nested function calls within the fiber block. See the ruby(1)
|
|
* manpage to configure the size of the fiber stack(s).
|
|
*
|
|
* When a fiber is created it will not run automatically. Rather it must
|
|
* be explicitly asked to run using the <code>Fiber#resume</code> method.
|
|
* The code running inside the fiber can give up control by calling
|
|
* <code>Fiber.yield</code> in which case it yields control back to caller
|
|
* (the caller of the <code>Fiber#resume</code>).
|
|
*
|
|
* Upon yielding or termination the Fiber returns the value of the last
|
|
* executed expression
|
|
*
|
|
* For instance:
|
|
*
|
|
* fiber = Fiber.new do
|
|
* Fiber.yield 1
|
|
* 2
|
|
* end
|
|
*
|
|
* puts fiber.resume
|
|
* puts fiber.resume
|
|
* puts fiber.resume
|
|
*
|
|
* <em>produces</em>
|
|
*
|
|
* 1
|
|
* 2
|
|
* FiberError: dead fiber called
|
|
*
|
|
* The <code>Fiber#resume</code> method accepts an arbitrary number of
|
|
* parameters, if it is the first call to <code>resume</code> then they
|
|
* will be passed as block arguments. Otherwise they will be the return
|
|
* value of the call to <code>Fiber.yield</code>
|
|
*
|
|
* Example:
|
|
*
|
|
* fiber = Fiber.new do |first|
|
|
* second = Fiber.yield first + 2
|
|
* end
|
|
*
|
|
* puts fiber.resume 10
|
|
* puts fiber.resume 14
|
|
* puts fiber.resume 18
|
|
*
|
|
* <em>produces</em>
|
|
*
|
|
* 12
|
|
* 14
|
|
* FiberError: dead fiber called
|
|
*
|
|
*/
|
|
|
|
static const rb_data_type_t fiber_data_type = {
|
|
"fiber",
|
|
{fiber_mark, fiber_free, fiber_memsize,},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
static VALUE
|
|
fiber_alloc(VALUE klass)
|
|
{
|
|
return TypedData_Wrap_Struct(klass, &fiber_data_type, 0);
|
|
}
|
|
|
|
static rb_fiber_t*
|
|
fiber_t_alloc(VALUE fibval)
|
|
{
|
|
rb_fiber_t *fib;
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
if (DATA_PTR(fibval) != 0) {
|
|
rb_raise(rb_eRuntimeError, "cannot initialize twice");
|
|
}
|
|
|
|
THREAD_MUST_BE_RUNNING(th);
|
|
fib = ZALLOC(rb_fiber_t);
|
|
fib->cont.self = fibval;
|
|
fib->cont.type = FIBER_CONTEXT;
|
|
cont_init(&fib->cont, th);
|
|
fib->cont.saved_ec.fiber_ptr = fib;
|
|
fib->prev = NULL;
|
|
|
|
/* fib->status == 0 == CREATED
|
|
* So that we don't need to set status: fiber_status_set(fib, FIBER_CREATED); */
|
|
VM_ASSERT(FIBER_CREATED_P(fib));
|
|
|
|
DATA_PTR(fibval) = fib;
|
|
|
|
return fib;
|
|
}
|
|
|
|
rb_control_frame_t *
|
|
rb_vm_push_frame(rb_execution_context_t *sec,
|
|
const rb_iseq_t *iseq,
|
|
VALUE type,
|
|
VALUE self,
|
|
VALUE specval,
|
|
VALUE cref_or_me,
|
|
const VALUE *pc,
|
|
VALUE *sp,
|
|
int local_size,
|
|
int stack_max);
|
|
|
|
static VALUE
|
|
fiber_init(VALUE fibval, VALUE proc)
|
|
{
|
|
rb_fiber_t *fib = fiber_t_alloc(fibval);
|
|
rb_context_t *cont = &fib->cont;
|
|
rb_execution_context_t *sec = &cont->saved_ec;
|
|
rb_thread_t *cth = GET_THREAD();
|
|
rb_vm_t *vm = cth->vm;
|
|
size_t fib_stack_bytes = vm->default_params.fiber_vm_stack_size;
|
|
size_t thr_stack_bytes = vm->default_params.thread_vm_stack_size;
|
|
VALUE *vm_stack;
|
|
|
|
/* initialize cont */
|
|
cont->saved_vm_stack.ptr = NULL;
|
|
if (fib_stack_bytes == thr_stack_bytes) {
|
|
vm_stack = rb_thread_recycle_stack(fib_stack_bytes / sizeof(VALUE));
|
|
}
|
|
else {
|
|
vm_stack = ruby_xmalloc(fib_stack_bytes);
|
|
}
|
|
rb_ec_set_vm_stack(sec, vm_stack, fib_stack_bytes / sizeof(VALUE));
|
|
sec->cfp = (void *)(sec->vm_stack + sec->vm_stack_size);
|
|
|
|
rb_vm_push_frame(sec,
|
|
NULL,
|
|
VM_FRAME_MAGIC_DUMMY | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH | VM_FRAME_FLAG_CFRAME,
|
|
Qnil, /* self */
|
|
VM_BLOCK_HANDLER_NONE,
|
|
0, /* specval */
|
|
NULL, /* pc */
|
|
sec->vm_stack, /* sp */
|
|
0, /* local_size */
|
|
0);
|
|
|
|
sec->tag = NULL;
|
|
sec->local_storage = NULL;
|
|
sec->local_storage_recursive_hash = Qnil;
|
|
sec->local_storage_recursive_hash_for_trace = Qnil;
|
|
|
|
fib->first_proc = proc;
|
|
|
|
#if !FIBER_USE_NATIVE
|
|
MEMCPY(&cont->jmpbuf, &cth->root_jmpbuf, rb_jmpbuf_t, 1);
|
|
#endif
|
|
|
|
return fibval;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
rb_fiber_init(VALUE fibval)
|
|
{
|
|
return fiber_init(fibval, rb_block_proc());
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_new(VALUE (*func)(ANYARGS), VALUE obj)
|
|
{
|
|
return fiber_init(fiber_alloc(rb_cFiber), rb_proc_new(func, obj));
|
|
}
|
|
|
|
static void rb_fiber_terminate(rb_fiber_t *fib, int need_interrupt);
|
|
|
|
void
|
|
rb_fiber_start(void)
|
|
{
|
|
rb_thread_t * volatile th = GET_THREAD();
|
|
rb_fiber_t *fib = th->ec->fiber_ptr;
|
|
rb_proc_t *proc;
|
|
enum ruby_tag_type state;
|
|
int need_interrupt = TRUE;
|
|
|
|
VM_ASSERT(th->ec == ruby_current_execution_context_ptr);
|
|
VM_ASSERT(FIBER_RESUMED_P(fib));
|
|
|
|
EC_PUSH_TAG(th->ec);
|
|
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
|
|
rb_context_t *cont = &VAR_FROM_MEMORY(fib)->cont;
|
|
int argc;
|
|
const VALUE *argv, args = cont->value;
|
|
GetProcPtr(fib->first_proc, proc);
|
|
argv = (argc = cont->argc) > 1 ? RARRAY_CONST_PTR(args) : &args;
|
|
cont->value = Qnil;
|
|
th->ec->errinfo = Qnil;
|
|
th->ec->root_lep = rb_vm_proc_local_ep(fib->first_proc);
|
|
th->ec->root_svar = Qfalse;
|
|
|
|
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
|
|
cont->value = rb_vm_invoke_proc(th->ec, proc, argc, argv, VM_BLOCK_HANDLER_NONE);
|
|
}
|
|
EC_POP_TAG();
|
|
|
|
if (state) {
|
|
VALUE err = th->ec->errinfo;
|
|
VM_ASSERT(FIBER_RESUMED_P(fib));
|
|
|
|
if (state == TAG_RAISE || state == TAG_FATAL) {
|
|
rb_threadptr_pending_interrupt_enque(th, err);
|
|
}
|
|
else {
|
|
err = rb_vm_make_jump_tag_but_local_jump(state, err);
|
|
if (!NIL_P(err)) {
|
|
rb_threadptr_pending_interrupt_enque(th, err);
|
|
}
|
|
}
|
|
need_interrupt = TRUE;
|
|
}
|
|
|
|
rb_fiber_terminate(fib, need_interrupt);
|
|
VM_UNREACHABLE(rb_fiber_start);
|
|
}
|
|
|
|
static rb_fiber_t *
|
|
root_fiber_alloc(rb_thread_t *th)
|
|
{
|
|
VALUE fibval = fiber_alloc(rb_cFiber);
|
|
rb_fiber_t *fib = th->ec->fiber_ptr;
|
|
|
|
VM_ASSERT(DATA_PTR(fibval) == NULL);
|
|
VM_ASSERT(fib->cont.type == FIBER_CONTEXT);
|
|
VM_ASSERT(fib->status == FIBER_RESUMED);
|
|
|
|
th->root_fiber = fib;
|
|
DATA_PTR(fibval) = fib;
|
|
fib->cont.self = fibval;
|
|
|
|
#if FIBER_USE_NATIVE
|
|
#if defined(FIBER_USE_COROUTINE)
|
|
coroutine_initialize(&fib->context, NULL, NULL, 0);
|
|
#elif defined(_WIN32)
|
|
/* setup fib_handle for root Fiber */
|
|
if (fib->fib_handle == 0) {
|
|
if ((fib->fib_handle = ConvertThreadToFiber(0)) == 0) {
|
|
rb_bug("root_fiber_alloc: ConvertThreadToFiber() failed - %s\n", rb_w32_strerror(-1));
|
|
}
|
|
}
|
|
else {
|
|
rb_bug("root_fiber_alloc: fib_handle is not NULL.");
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
return fib;
|
|
}
|
|
|
|
void
|
|
rb_threadptr_root_fiber_setup(rb_thread_t *th)
|
|
{
|
|
rb_fiber_t *fib = ruby_mimmalloc(sizeof(rb_fiber_t));
|
|
MEMZERO(fib, rb_fiber_t, 1);
|
|
fib->cont.type = FIBER_CONTEXT;
|
|
fib->cont.saved_ec.fiber_ptr = fib;
|
|
fib->cont.saved_ec.thread_ptr = th;
|
|
fiber_status_set(fib, FIBER_RESUMED); /* skip CREATED */
|
|
th->ec = &fib->cont.saved_ec;
|
|
|
|
/* NOTE: On WIN32, fib_handle is not allocated yet. */
|
|
}
|
|
|
|
void
|
|
rb_threadptr_root_fiber_release(rb_thread_t *th)
|
|
{
|
|
if (th->root_fiber) {
|
|
/* ignore. A root fiber object will free th->ec */
|
|
}
|
|
else {
|
|
VM_ASSERT(th->ec->fiber_ptr->cont.type == FIBER_CONTEXT);
|
|
VM_ASSERT(th->ec->fiber_ptr->cont.self == 0);
|
|
fiber_free(th->ec->fiber_ptr);
|
|
|
|
if (th->ec == ruby_current_execution_context_ptr) {
|
|
ruby_current_execution_context_ptr = NULL;
|
|
}
|
|
th->ec = NULL;
|
|
}
|
|
}
|
|
|
|
static inline rb_fiber_t*
|
|
fiber_current(void)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
if (ec->fiber_ptr->cont.self == 0) {
|
|
root_fiber_alloc(rb_ec_thread_ptr(ec));
|
|
}
|
|
return ec->fiber_ptr;
|
|
}
|
|
|
|
static inline rb_fiber_t*
|
|
return_fiber(void)
|
|
{
|
|
rb_fiber_t *fib = fiber_current();
|
|
rb_fiber_t *prev = fib->prev;
|
|
|
|
if (!prev) {
|
|
rb_thread_t *th = GET_THREAD();
|
|
rb_fiber_t *root_fiber = th->root_fiber;
|
|
|
|
VM_ASSERT(root_fiber != NULL);
|
|
|
|
if (root_fiber == fib) {
|
|
rb_raise(rb_eFiberError, "can't yield from root fiber");
|
|
}
|
|
return root_fiber;
|
|
}
|
|
else {
|
|
fib->prev = NULL;
|
|
return prev;
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_current(void)
|
|
{
|
|
return fiber_current()->cont.self;
|
|
}
|
|
|
|
static inline VALUE
|
|
fiber_store(rb_fiber_t *next_fib, rb_thread_t *th)
|
|
{
|
|
rb_fiber_t *fib;
|
|
|
|
if (th->ec->fiber_ptr != NULL) {
|
|
fib = th->ec->fiber_ptr;
|
|
}
|
|
else {
|
|
/* create root fiber */
|
|
fib = root_fiber_alloc(th);
|
|
}
|
|
|
|
VM_ASSERT(FIBER_RESUMED_P(fib) || FIBER_TERMINATED_P(fib));
|
|
VM_ASSERT(FIBER_RUNNABLE_P(next_fib));
|
|
|
|
#if FIBER_USE_NATIVE
|
|
if (FIBER_CREATED_P(next_fib)) {
|
|
fiber_initialize_machine_stack_context(next_fib, th->vm->default_params.fiber_machine_stack_size);
|
|
}
|
|
#endif
|
|
|
|
if (FIBER_RESUMED_P(fib)) fiber_status_set(fib, FIBER_SUSPENDED);
|
|
|
|
#if FIBER_USE_NATIVE == 0
|
|
/* should (re-)allocate stack are before fib->status change to pass fiber_verify() */
|
|
cont_save_machine_stack(th, &fib->cont);
|
|
#endif
|
|
|
|
fiber_status_set(next_fib, FIBER_RESUMED);
|
|
|
|
#if FIBER_USE_NATIVE
|
|
fiber_setcontext(next_fib, fib);
|
|
/* restored */
|
|
#ifdef MAX_MACHINE_STACK_CACHE
|
|
if (terminated_machine_stack.ptr) {
|
|
if (machine_stack_cache_index < MAX_MACHINE_STACK_CACHE) {
|
|
machine_stack_cache[machine_stack_cache_index++] = terminated_machine_stack;
|
|
}
|
|
else {
|
|
if (terminated_machine_stack.ptr != fib->cont.machine.stack) {
|
|
#ifdef _WIN32
|
|
VirtualFree(terminated_machine_stack.ptr, 0, MEM_RELEASE);
|
|
#else
|
|
munmap((void*)terminated_machine_stack.ptr, terminated_machine_stack.size * sizeof(VALUE));
|
|
#endif
|
|
}
|
|
else {
|
|
rb_bug("terminated fiber resumed");
|
|
}
|
|
}
|
|
terminated_machine_stack.ptr = NULL;
|
|
terminated_machine_stack.size = 0;
|
|
}
|
|
#endif /* not _WIN32 */
|
|
fib = th->ec->fiber_ptr;
|
|
if (fib->cont.argc == -1) rb_exc_raise(fib->cont.value);
|
|
return fib->cont.value;
|
|
|
|
#else /* FIBER_USE_NATIVE */
|
|
if (ruby_setjmp(fib->cont.jmpbuf)) {
|
|
/* restored */
|
|
fib = th->ec->fiber_ptr;
|
|
if (fib->cont.argc == -1) rb_exc_raise(fib->cont.value);
|
|
if (next_fib->cont.value == Qundef) {
|
|
cont_restore_0(&next_fib->cont, &next_fib->cont.value);
|
|
VM_UNREACHABLE(fiber_store);
|
|
}
|
|
return fib->cont.value;
|
|
}
|
|
else {
|
|
VALUE undef = Qundef;
|
|
cont_restore_0(&next_fib->cont, &undef);
|
|
VM_UNREACHABLE(fiber_store);
|
|
}
|
|
#endif /* FIBER_USE_NATIVE */
|
|
}
|
|
|
|
static inline VALUE
|
|
fiber_switch(rb_fiber_t *fib, int argc, const VALUE *argv, int is_resume)
|
|
{
|
|
VALUE value;
|
|
rb_context_t *cont = &fib->cont;
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
/* make sure the root_fiber object is available */
|
|
if (th->root_fiber == NULL) root_fiber_alloc(th);
|
|
|
|
if (th->ec->fiber_ptr == fib) {
|
|
/* ignore fiber context switch
|
|
* because destination fiber is same as current fiber
|
|
*/
|
|
return make_passing_arg(argc, argv);
|
|
}
|
|
|
|
if (cont_thread_value(cont) != th->self) {
|
|
rb_raise(rb_eFiberError, "fiber called across threads");
|
|
}
|
|
else if (cont->saved_ec.protect_tag != th->ec->protect_tag) {
|
|
rb_raise(rb_eFiberError, "fiber called across stack rewinding barrier");
|
|
}
|
|
else if (FIBER_TERMINATED_P(fib)) {
|
|
value = rb_exc_new2(rb_eFiberError, "dead fiber called");
|
|
|
|
if (!FIBER_TERMINATED_P(th->ec->fiber_ptr)) {
|
|
rb_exc_raise(value);
|
|
VM_UNREACHABLE(fiber_switch);
|
|
}
|
|
else {
|
|
/* th->ec->fiber_ptr is also dead => switch to root fiber */
|
|
/* (this means we're being called from rb_fiber_terminate, */
|
|
/* and the terminated fiber's return_fiber() is already dead) */
|
|
VM_ASSERT(FIBER_SUSPENDED_P(th->root_fiber));
|
|
|
|
cont = &th->root_fiber->cont;
|
|
cont->argc = -1;
|
|
cont->value = value;
|
|
#if FIBER_USE_NATIVE
|
|
fiber_setcontext(th->root_fiber, th->ec->fiber_ptr);
|
|
#else
|
|
cont_restore_0(cont, &value);
|
|
#endif
|
|
VM_UNREACHABLE(fiber_switch);
|
|
}
|
|
}
|
|
|
|
if (is_resume) {
|
|
fib->prev = fiber_current();
|
|
}
|
|
|
|
VM_ASSERT(FIBER_RUNNABLE_P(fib));
|
|
|
|
cont->argc = argc;
|
|
cont->value = make_passing_arg(argc, argv);
|
|
value = fiber_store(fib, th);
|
|
RUBY_VM_CHECK_INTS(th->ec);
|
|
|
|
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
|
|
|
|
return value;
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_transfer(VALUE fibval, int argc, const VALUE *argv)
|
|
{
|
|
return fiber_switch(fiber_ptr(fibval), argc, argv, 0);
|
|
}
|
|
|
|
void
|
|
rb_fiber_close(rb_fiber_t *fib)
|
|
{
|
|
rb_execution_context_t *ec = &fib->cont.saved_ec;
|
|
VALUE *vm_stack = ec->vm_stack;
|
|
size_t stack_bytes = ec->vm_stack_size * sizeof(VALUE);
|
|
|
|
fiber_status_set(fib, FIBER_TERMINATED);
|
|
if (stack_bytes == rb_ec_vm_ptr(ec)->default_params.thread_vm_stack_size) {
|
|
rb_thread_recycle_stack_release(vm_stack);
|
|
}
|
|
else {
|
|
ruby_xfree(vm_stack);
|
|
}
|
|
rb_ec_set_vm_stack(ec, NULL, 0);
|
|
|
|
#if !FIBER_USE_NATIVE
|
|
/* should not mark machine stack any more */
|
|
ec->machine.stack_end = NULL;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
rb_fiber_terminate(rb_fiber_t *fib, int need_interrupt)
|
|
{
|
|
VALUE value = fib->cont.value;
|
|
rb_fiber_t *ret_fib;
|
|
|
|
VM_ASSERT(FIBER_RESUMED_P(fib));
|
|
rb_fiber_close(fib);
|
|
|
|
#if FIBER_USE_NATIVE
|
|
#if defined(FIBER_USE_COROUTINE)
|
|
coroutine_destroy(&fib->context);
|
|
#elif !defined(_WIN32)
|
|
fib->context.uc_stack.ss_sp = NULL;
|
|
#endif
|
|
|
|
#ifdef MAX_MACHINE_STACK_CACHE
|
|
/* Ruby must not switch to other thread until storing terminated_machine_stack */
|
|
terminated_machine_stack.ptr = fib->ss_sp;
|
|
terminated_machine_stack.size = fib->ss_size / sizeof(VALUE);
|
|
fib->ss_sp = NULL;
|
|
fib->cont.machine.stack = NULL;
|
|
fib->cont.machine.stack_size = 0;
|
|
#endif
|
|
#endif
|
|
|
|
ret_fib = return_fiber();
|
|
if (need_interrupt) RUBY_VM_SET_INTERRUPT(&ret_fib->cont.saved_ec);
|
|
fiber_switch(ret_fib, 1, &value, 0);
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_resume(VALUE fibval, int argc, const VALUE *argv)
|
|
{
|
|
rb_fiber_t *fib = fiber_ptr(fibval);
|
|
|
|
if (fib->prev != 0 || fiber_is_root_p(fib)) {
|
|
rb_raise(rb_eFiberError, "double resume");
|
|
}
|
|
if (fib->transferred != 0) {
|
|
rb_raise(rb_eFiberError, "cannot resume transferred Fiber");
|
|
}
|
|
|
|
return fiber_switch(fib, argc, argv, 1);
|
|
}
|
|
|
|
VALUE
|
|
rb_fiber_yield(int argc, const VALUE *argv)
|
|
{
|
|
return fiber_switch(return_fiber(), argc, argv, 0);
|
|
}
|
|
|
|
void
|
|
rb_fiber_reset_root_local_storage(rb_thread_t *th)
|
|
{
|
|
if (th->root_fiber && th->root_fiber != th->ec->fiber_ptr) {
|
|
th->ec->local_storage = th->root_fiber->cont.saved_ec.local_storage;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* fiber.alive? -> true or false
|
|
*
|
|
* Returns true if the fiber can still be resumed (or transferred
|
|
* to). After finishing execution of the fiber block this method will
|
|
* always return false. You need to <code>require 'fiber'</code>
|
|
* before using this method.
|
|
*/
|
|
VALUE
|
|
rb_fiber_alive_p(VALUE fibval)
|
|
{
|
|
return FIBER_TERMINATED_P(fiber_ptr(fibval)) ? Qfalse : Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* fiber.resume(args, ...) -> obj
|
|
*
|
|
* Resumes the fiber from the point at which the last <code>Fiber.yield</code>
|
|
* was called, or starts running it if it is the first call to
|
|
* <code>resume</code>. Arguments passed to resume will be the value of
|
|
* the <code>Fiber.yield</code> expression or will be passed as block
|
|
* parameters to the fiber's block if this is the first <code>resume</code>.
|
|
*
|
|
* Alternatively, when resume is called it evaluates to the arguments passed
|
|
* to the next <code>Fiber.yield</code> statement inside the fiber's block
|
|
* or to the block value if it runs to completion without any
|
|
* <code>Fiber.yield</code>
|
|
*/
|
|
static VALUE
|
|
rb_fiber_m_resume(int argc, VALUE *argv, VALUE fib)
|
|
{
|
|
return rb_fiber_resume(fib, argc, argv);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* fiber.transfer(args, ...) -> obj
|
|
*
|
|
* Transfer control to another fiber, resuming it from where it last
|
|
* stopped or starting it if it was not resumed before. The calling
|
|
* fiber will be suspended much like in a call to
|
|
* <code>Fiber.yield</code>. You need to <code>require 'fiber'</code>
|
|
* before using this method.
|
|
*
|
|
* The fiber which receives the transfer call is treats it much like
|
|
* a resume call. Arguments passed to transfer are treated like those
|
|
* passed to resume.
|
|
*
|
|
* You cannot resume a fiber that transferred control to another one.
|
|
* This will cause a double resume error. You need to transfer control
|
|
* back to this fiber before it can yield and resume.
|
|
*
|
|
* Example:
|
|
*
|
|
* fiber1 = Fiber.new do
|
|
* puts "In Fiber 1"
|
|
* Fiber.yield
|
|
* end
|
|
*
|
|
* fiber2 = Fiber.new do
|
|
* puts "In Fiber 2"
|
|
* fiber1.transfer
|
|
* puts "Never see this message"
|
|
* end
|
|
*
|
|
* fiber3 = Fiber.new do
|
|
* puts "In Fiber 3"
|
|
* end
|
|
*
|
|
* fiber2.resume
|
|
* fiber3.resume
|
|
*
|
|
* <em>produces</em>
|
|
*
|
|
* In fiber 2
|
|
* In fiber 1
|
|
* In fiber 3
|
|
*
|
|
*/
|
|
static VALUE
|
|
rb_fiber_m_transfer(int argc, VALUE *argv, VALUE fibval)
|
|
{
|
|
rb_fiber_t *fib = fiber_ptr(fibval);
|
|
fib->transferred = 1;
|
|
return fiber_switch(fib, argc, argv, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Fiber.yield(args, ...) -> obj
|
|
*
|
|
* Yields control back to the context that resumed the fiber, passing
|
|
* along any arguments that were passed to it. The fiber will resume
|
|
* processing at this point when <code>resume</code> is called next.
|
|
* Any arguments passed to the next <code>resume</code> will be the
|
|
* value that this <code>Fiber.yield</code> expression evaluates to.
|
|
*/
|
|
static VALUE
|
|
rb_fiber_s_yield(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
return rb_fiber_yield(argc, argv);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Fiber.current() -> fiber
|
|
*
|
|
* Returns the current fiber. You need to <code>require 'fiber'</code>
|
|
* before using this method. If you are not running in the context of
|
|
* a fiber this method will return the root fiber.
|
|
*/
|
|
static VALUE
|
|
rb_fiber_s_current(VALUE klass)
|
|
{
|
|
return rb_fiber_current();
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* fiber.to_s -> string
|
|
*
|
|
* Returns fiber information string.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
fiber_to_s(VALUE fibval)
|
|
{
|
|
const rb_fiber_t *fib = fiber_ptr(fibval);
|
|
const rb_proc_t *proc;
|
|
char status_info[0x10];
|
|
|
|
snprintf(status_info, 0x10, " (%s)", fiber_status_name(fib->status));
|
|
if (!rb_obj_is_proc(fib->first_proc)) {
|
|
VALUE str = rb_any_to_s(fibval);
|
|
strlcat(status_info, ">", sizeof(status_info));
|
|
rb_str_set_len(str, RSTRING_LEN(str)-1);
|
|
rb_str_cat_cstr(str, status_info);
|
|
return str;
|
|
}
|
|
GetProcPtr(fib->first_proc, proc);
|
|
return rb_block_to_s(fibval, &proc->block, status_info);
|
|
}
|
|
|
|
#ifdef HAVE_WORKING_FORK
|
|
void
|
|
rb_fiber_atfork(rb_thread_t *th)
|
|
{
|
|
if (th->root_fiber) {
|
|
if (&th->root_fiber->cont.saved_ec != th->ec) {
|
|
th->root_fiber = th->ec->fiber_ptr;
|
|
}
|
|
th->root_fiber->prev = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Document-class: FiberError
|
|
*
|
|
* Raised when an invalid operation is attempted on a Fiber, in
|
|
* particular when attempting to call/resume a dead fiber,
|
|
* attempting to yield from the root fiber, or calling a fiber across
|
|
* threads.
|
|
*
|
|
* fiber = Fiber.new{}
|
|
* fiber.resume #=> nil
|
|
* fiber.resume #=> FiberError: dead fiber called
|
|
*/
|
|
|
|
void
|
|
Init_Cont(void)
|
|
{
|
|
#if FIBER_USE_NATIVE
|
|
rb_thread_t *th = GET_THREAD();
|
|
|
|
#ifdef _WIN32
|
|
SYSTEM_INFO info;
|
|
GetSystemInfo(&info);
|
|
pagesize = info.dwPageSize;
|
|
#else /* not WIN32 */
|
|
pagesize = sysconf(_SC_PAGESIZE);
|
|
#endif
|
|
SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
|
|
#endif
|
|
|
|
rb_cFiber = rb_define_class("Fiber", rb_cObject);
|
|
rb_define_alloc_func(rb_cFiber, fiber_alloc);
|
|
rb_eFiberError = rb_define_class("FiberError", rb_eStandardError);
|
|
rb_define_singleton_method(rb_cFiber, "yield", rb_fiber_s_yield, -1);
|
|
rb_define_method(rb_cFiber, "initialize", rb_fiber_init, 0);
|
|
rb_define_method(rb_cFiber, "resume", rb_fiber_m_resume, -1);
|
|
rb_define_method(rb_cFiber, "to_s", fiber_to_s, 0);
|
|
rb_define_alias(rb_cFiber, "inspect", "to_s");
|
|
}
|
|
|
|
RUBY_SYMBOL_EXPORT_BEGIN
|
|
|
|
void
|
|
ruby_Init_Continuation_body(void)
|
|
{
|
|
rb_cContinuation = rb_define_class("Continuation", rb_cObject);
|
|
rb_undef_alloc_func(rb_cContinuation);
|
|
rb_undef_method(CLASS_OF(rb_cContinuation), "new");
|
|
rb_define_method(rb_cContinuation, "call", rb_cont_call, -1);
|
|
rb_define_method(rb_cContinuation, "[]", rb_cont_call, -1);
|
|
rb_define_global_function("callcc", rb_callcc, 0);
|
|
}
|
|
|
|
void
|
|
ruby_Init_Fiber_as_Coroutine(void)
|
|
{
|
|
rb_define_method(rb_cFiber, "transfer", rb_fiber_m_transfer, -1);
|
|
rb_define_method(rb_cFiber, "alive?", rb_fiber_alive_p, 0);
|
|
rb_define_singleton_method(rb_cFiber, "current", rb_fiber_s_current, 0);
|
|
}
|
|
|
|
RUBY_SYMBOL_EXPORT_END
|