mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@40382 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			1881 lines
		
	
	
	
		
			45 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
			
		
		
	
	
			1881 lines
		
	
	
	
		
			45 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
# encoding: utf-8
 | 
						|
#
 | 
						|
# = matrix.rb
 | 
						|
#
 | 
						|
# An implementation of Matrix and Vector classes.
 | 
						|
#
 | 
						|
# See classes Matrix and Vector for documentation.
 | 
						|
#
 | 
						|
# Current Maintainer:: Marc-André Lafortune
 | 
						|
# Original Author:: Keiju ISHITSUKA
 | 
						|
# Original Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly))
 | 
						|
##
 | 
						|
 | 
						|
require "e2mmap.rb"
 | 
						|
 | 
						|
module ExceptionForMatrix # :nodoc:
 | 
						|
  extend Exception2MessageMapper
 | 
						|
  def_e2message(TypeError, "wrong argument type %s (expected %s)")
 | 
						|
  def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)")
 | 
						|
 | 
						|
  def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch")
 | 
						|
  def_exception("ErrNotRegular", "Not Regular Matrix")
 | 
						|
  def_exception("ErrOperationNotDefined", "Operation(%s) can\\'t be defined: %s op %s")
 | 
						|
  def_exception("ErrOperationNotImplemented", "Sorry, Operation(%s) not implemented: %s op %s")
 | 
						|
end
 | 
						|
 | 
						|
#
 | 
						|
# The +Matrix+ class represents a mathematical matrix. It provides methods for creating
 | 
						|
# matrices, operating on them arithmetically and algebraically,
 | 
						|
# and determining their mathematical properties (trace, rank, inverse, determinant).
 | 
						|
#
 | 
						|
# == Method Catalogue
 | 
						|
#
 | 
						|
# To create a matrix:
 | 
						|
# * Matrix[*rows]
 | 
						|
# * Matrix.[](*rows)
 | 
						|
# * Matrix.rows(rows, copy = true)
 | 
						|
# * Matrix.columns(columns)
 | 
						|
# * Matrix.build(row_count, column_count, &block)
 | 
						|
# * Matrix.diagonal(*values)
 | 
						|
# * Matrix.scalar(n, value)
 | 
						|
# * Matrix.identity(n)
 | 
						|
# * Matrix.unit(n)
 | 
						|
# * Matrix.I(n)
 | 
						|
# * Matrix.zero(n)
 | 
						|
# * Matrix.row_vector(row)
 | 
						|
# * Matrix.column_vector(column)
 | 
						|
#
 | 
						|
# To access Matrix elements/columns/rows/submatrices/properties:
 | 
						|
# * #[](i, j)
 | 
						|
# * #row_count (row_size)
 | 
						|
# * #column_count (column_size)
 | 
						|
# * #row(i)
 | 
						|
# * #column(j)
 | 
						|
# * #collect
 | 
						|
# * #map
 | 
						|
# * #each
 | 
						|
# * #each_with_index
 | 
						|
# * #find_index
 | 
						|
# * #minor(*param)
 | 
						|
#
 | 
						|
# Properties of a matrix:
 | 
						|
# * #diagonal?
 | 
						|
# * #empty?
 | 
						|
# * #hermitian?
 | 
						|
# * #lower_triangular?
 | 
						|
# * #normal?
 | 
						|
# * #orthogonal?
 | 
						|
# * #permutation?
 | 
						|
# * #real?
 | 
						|
# * #regular?
 | 
						|
# * #singular?
 | 
						|
# * #square?
 | 
						|
# * #symmetric?
 | 
						|
# * #unitary?
 | 
						|
# * #upper_triangular?
 | 
						|
# * #zero?
 | 
						|
#
 | 
						|
# Matrix arithmetic:
 | 
						|
# * #*(m)
 | 
						|
# * #+(m)
 | 
						|
# * #-(m)
 | 
						|
# * #/(m)
 | 
						|
# * #inverse
 | 
						|
# * #inv
 | 
						|
# * #**
 | 
						|
#
 | 
						|
# Matrix functions:
 | 
						|
# * #determinant
 | 
						|
# * #det
 | 
						|
# * #rank
 | 
						|
# * #round
 | 
						|
# * #trace
 | 
						|
# * #tr
 | 
						|
# * #transpose
 | 
						|
# * #t
 | 
						|
#
 | 
						|
# Matrix decompositions:
 | 
						|
# * #eigen
 | 
						|
# * #eigensystem
 | 
						|
# * #lup
 | 
						|
# * #lup_decomposition
 | 
						|
#
 | 
						|
# Complex arithmetic:
 | 
						|
# * conj
 | 
						|
# * conjugate
 | 
						|
# * imag
 | 
						|
# * imaginary
 | 
						|
# * real
 | 
						|
# * rect
 | 
						|
# * rectangular
 | 
						|
#
 | 
						|
# Conversion to other data types:
 | 
						|
# * #coerce(other)
 | 
						|
# * #row_vectors
 | 
						|
# * #column_vectors
 | 
						|
# * #to_a
 | 
						|
#
 | 
						|
# String representations:
 | 
						|
# * #to_s
 | 
						|
# * #inspect
 | 
						|
#
 | 
						|
class Matrix
 | 
						|
  include Enumerable
 | 
						|
  include ExceptionForMatrix
 | 
						|
  autoload :EigenvalueDecomposition, "matrix/eigenvalue_decomposition"
 | 
						|
  autoload :LUPDecomposition, "matrix/lup_decomposition"
 | 
						|
 | 
						|
  # instance creations
 | 
						|
  private_class_method :new
 | 
						|
  attr_reader :rows
 | 
						|
  protected :rows
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a matrix where each argument is a row.
 | 
						|
  #   Matrix[ [25, 93], [-1, 66] ]
 | 
						|
  #      =>  25 93
 | 
						|
  #          -1 66
 | 
						|
  #
 | 
						|
  def Matrix.[](*rows)
 | 
						|
    rows(rows, false)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a matrix where +rows+ is an array of arrays, each of which is a row
 | 
						|
  # of the matrix.  If the optional argument +copy+ is false, use the given
 | 
						|
  # arrays as the internal structure of the matrix without copying.
 | 
						|
  #   Matrix.rows([[25, 93], [-1, 66]])
 | 
						|
  #      =>  25 93
 | 
						|
  #          -1 66
 | 
						|
  #
 | 
						|
  def Matrix.rows(rows, copy = true)
 | 
						|
    rows = convert_to_array(rows)
 | 
						|
    rows.map! do |row|
 | 
						|
      convert_to_array(row, copy)
 | 
						|
    end
 | 
						|
    size = (rows[0] || []).size
 | 
						|
    rows.each do |row|
 | 
						|
      raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
 | 
						|
    end
 | 
						|
    new rows, size
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a matrix using +columns+ as an array of column vectors.
 | 
						|
  #   Matrix.columns([[25, 93], [-1, 66]])
 | 
						|
  #      =>  25 -1
 | 
						|
  #          93 66
 | 
						|
  #
 | 
						|
  def Matrix.columns(columns)
 | 
						|
    rows(columns, false).transpose
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a matrix of size +row_count+ x +column_count+.
 | 
						|
  # It fills the values by calling the given block,
 | 
						|
  # passing the current row and column.
 | 
						|
  # Returns an enumerator if no block is given.
 | 
						|
  #
 | 
						|
  #   m = Matrix.build(2, 4) {|row, col| col - row }
 | 
						|
  #     => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
 | 
						|
  #   m = Matrix.build(3) { rand }
 | 
						|
  #     => a 3x3 matrix with random elements
 | 
						|
  #
 | 
						|
  def Matrix.build(row_count, column_count = row_count)
 | 
						|
    row_count = CoercionHelper.coerce_to_int(row_count)
 | 
						|
    column_count = CoercionHelper.coerce_to_int(column_count)
 | 
						|
    raise ArgumentError if row_count < 0 || column_count < 0
 | 
						|
    return to_enum :build, row_count, column_count unless block_given?
 | 
						|
    rows = Array.new(row_count) do |i|
 | 
						|
      Array.new(column_count) do |j|
 | 
						|
        yield i, j
 | 
						|
      end
 | 
						|
    end
 | 
						|
    new rows, column_count
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a matrix where the diagonal elements are composed of +values+.
 | 
						|
  #   Matrix.diagonal(9, 5, -3)
 | 
						|
  #     =>  9  0  0
 | 
						|
  #         0  5  0
 | 
						|
  #         0  0 -3
 | 
						|
  #
 | 
						|
  def Matrix.diagonal(*values)
 | 
						|
    size = values.size
 | 
						|
    rows = Array.new(size) {|j|
 | 
						|
      row = Array.new(size, 0)
 | 
						|
      row[j] = values[j]
 | 
						|
      row
 | 
						|
    }
 | 
						|
    new rows
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates an +n+ by +n+ diagonal matrix where each diagonal element is
 | 
						|
  # +value+.
 | 
						|
  #   Matrix.scalar(2, 5)
 | 
						|
  #     => 5 0
 | 
						|
  #        0 5
 | 
						|
  #
 | 
						|
  def Matrix.scalar(n, value)
 | 
						|
    diagonal(*Array.new(n, value))
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates an +n+ by +n+ identity matrix.
 | 
						|
  #   Matrix.identity(2)
 | 
						|
  #     => 1 0
 | 
						|
  #        0 1
 | 
						|
  #
 | 
						|
  def Matrix.identity(n)
 | 
						|
    scalar(n, 1)
 | 
						|
  end
 | 
						|
  class << Matrix
 | 
						|
    alias unit identity
 | 
						|
    alias I identity
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a zero matrix.
 | 
						|
  #   Matrix.zero(2)
 | 
						|
  #     => 0 0
 | 
						|
  #        0 0
 | 
						|
  #
 | 
						|
  def Matrix.zero(row_count, column_count = row_count)
 | 
						|
    rows = Array.new(row_count){Array.new(column_count, 0)}
 | 
						|
    new rows, column_count
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a single-row matrix where the values of that row are as given in
 | 
						|
  # +row+.
 | 
						|
  #   Matrix.row_vector([4,5,6])
 | 
						|
  #     => 4 5 6
 | 
						|
  #
 | 
						|
  def Matrix.row_vector(row)
 | 
						|
    row = convert_to_array(row)
 | 
						|
    new [row]
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a single-column matrix where the values of that column are as given
 | 
						|
  # in +column+.
 | 
						|
  #   Matrix.column_vector([4,5,6])
 | 
						|
  #     => 4
 | 
						|
  #        5
 | 
						|
  #        6
 | 
						|
  #
 | 
						|
  def Matrix.column_vector(column)
 | 
						|
    column = convert_to_array(column)
 | 
						|
    new [column].transpose, 1
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a empty matrix of +row_count+ x +column_count+.
 | 
						|
  # At least one of +row_count+ or +column_count+ must be 0.
 | 
						|
  #
 | 
						|
  #   m = Matrix.empty(2, 0)
 | 
						|
  #   m == Matrix[ [], [] ]
 | 
						|
  #     => true
 | 
						|
  #   n = Matrix.empty(0, 3)
 | 
						|
  #   n == Matrix.columns([ [], [], [] ])
 | 
						|
  #     => true
 | 
						|
  #   m * n
 | 
						|
  #     => Matrix[[0, 0, 0], [0, 0, 0]]
 | 
						|
  #
 | 
						|
  def Matrix.empty(row_count = 0, column_count = 0)
 | 
						|
    raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
 | 
						|
    raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0
 | 
						|
 | 
						|
    new([[]]*row_count, column_count)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Matrix.new is private; use Matrix.rows, columns, [], etc... to create.
 | 
						|
  #
 | 
						|
  def initialize(rows, column_count = rows[0].size)
 | 
						|
    # No checking is done at this point. rows must be an Array of Arrays.
 | 
						|
    # column_count must be the size of the first row, if there is one,
 | 
						|
    # otherwise it *must* be specified and can be any integer >= 0
 | 
						|
    @rows = rows
 | 
						|
    @column_count = column_count
 | 
						|
  end
 | 
						|
 | 
						|
  def new_matrix(rows, column_count = rows[0].size) # :nodoc:
 | 
						|
    self.class.send(:new, rows, column_count) # bypass privacy of Matrix.new
 | 
						|
  end
 | 
						|
  private :new_matrix
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns element (+i+,+j+) of the matrix.  That is: row +i+, column +j+.
 | 
						|
  #
 | 
						|
  def [](i, j)
 | 
						|
    @rows.fetch(i){return nil}[j]
 | 
						|
  end
 | 
						|
  alias element []
 | 
						|
  alias component []
 | 
						|
 | 
						|
  def []=(i, j, v)
 | 
						|
    @rows[i][j] = v
 | 
						|
  end
 | 
						|
  alias set_element []=
 | 
						|
  alias set_component []=
 | 
						|
  private :[]=, :set_element, :set_component
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the number of rows.
 | 
						|
  #
 | 
						|
  def row_count
 | 
						|
    @rows.size
 | 
						|
  end
 | 
						|
 | 
						|
  alias_method :row_size, :row_count
 | 
						|
  #
 | 
						|
  # Returns the number of columns.
 | 
						|
  #
 | 
						|
  attr_reader :column_count
 | 
						|
  alias_method :column_size, :column_count
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
 | 
						|
  # an array).  When a block is given, the elements of that vector are iterated.
 | 
						|
  #
 | 
						|
  def row(i, &block) # :yield: e
 | 
						|
    if block_given?
 | 
						|
      @rows.fetch(i){return self}.each(&block)
 | 
						|
      self
 | 
						|
    else
 | 
						|
      Vector.elements(@rows.fetch(i){return nil})
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns column vector number +j+ of the matrix as a Vector (starting at 0
 | 
						|
  # like an array).  When a block is given, the elements of that vector are
 | 
						|
  # iterated.
 | 
						|
  #
 | 
						|
  def column(j) # :yield: e
 | 
						|
    if block_given?
 | 
						|
      return self if j >= column_count || j < -column_count
 | 
						|
      row_count.times do |i|
 | 
						|
        yield @rows[i][j]
 | 
						|
      end
 | 
						|
      self
 | 
						|
    else
 | 
						|
      return nil if j >= column_count || j < -column_count
 | 
						|
      col = Array.new(row_count) {|i|
 | 
						|
        @rows[i][j]
 | 
						|
      }
 | 
						|
      Vector.elements(col, false)
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns a matrix that is the result of iteration of the given block over all
 | 
						|
  # elements of the matrix.
 | 
						|
  #   Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
 | 
						|
  #     => 1  4
 | 
						|
  #        9 16
 | 
						|
  #
 | 
						|
  def collect(&block) # :yield: e
 | 
						|
    return to_enum(:collect) unless block_given?
 | 
						|
    rows = @rows.collect{|row| row.collect(&block)}
 | 
						|
    new_matrix rows, column_count
 | 
						|
  end
 | 
						|
  alias map collect
 | 
						|
 | 
						|
  #
 | 
						|
  # Yields all elements of the matrix, starting with those of the first row,
 | 
						|
  # or returns an Enumerator is no block given.
 | 
						|
  # Elements can be restricted by passing an argument:
 | 
						|
  # * :all (default): yields all elements
 | 
						|
  # * :diagonal: yields only elements on the diagonal
 | 
						|
  # * :off_diagonal: yields all elements except on the diagonal
 | 
						|
  # * :lower: yields only elements on or below the diagonal
 | 
						|
  # * :strict_lower: yields only elements below the diagonal
 | 
						|
  # * :strict_upper: yields only elements above the diagonal
 | 
						|
  # * :upper: yields only elements on or above the diagonal
 | 
						|
  #
 | 
						|
  #   Matrix[ [1,2], [3,4] ].each { |e| puts e }
 | 
						|
  #     # => prints the numbers 1 to 4
 | 
						|
  #   Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
 | 
						|
  #
 | 
						|
  def each(which = :all) # :yield: e
 | 
						|
    return to_enum :each, which unless block_given?
 | 
						|
    last = column_count - 1
 | 
						|
    case which
 | 
						|
    when :all
 | 
						|
      block = Proc.new
 | 
						|
      @rows.each do |row|
 | 
						|
        row.each(&block)
 | 
						|
      end
 | 
						|
    when :diagonal
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        yield row.fetch(row_index){return self}
 | 
						|
      end
 | 
						|
    when :off_diagonal
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        column_count.times do |col_index|
 | 
						|
          yield row[col_index] unless row_index == col_index
 | 
						|
        end
 | 
						|
      end
 | 
						|
    when :lower
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        0.upto([row_index, last].min) do |col_index|
 | 
						|
          yield row[col_index]
 | 
						|
        end
 | 
						|
      end
 | 
						|
    when :strict_lower
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        [row_index, column_count].min.times do |col_index|
 | 
						|
          yield row[col_index]
 | 
						|
        end
 | 
						|
      end
 | 
						|
    when :strict_upper
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        (row_index+1).upto(last) do |col_index|
 | 
						|
          yield row[col_index]
 | 
						|
        end
 | 
						|
      end
 | 
						|
    when :upper
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        row_index.upto(last) do |col_index|
 | 
						|
          yield row[col_index]
 | 
						|
        end
 | 
						|
      end
 | 
						|
    else
 | 
						|
      raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
 | 
						|
    end
 | 
						|
    self
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Same as #each, but the row index and column index in addition to the element
 | 
						|
  #
 | 
						|
  #   Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
 | 
						|
  #     puts "#{e} at #{row}, #{col}"
 | 
						|
  #   end
 | 
						|
  #     # => Prints:
 | 
						|
  #     #    1 at 0, 0
 | 
						|
  #     #    2 at 0, 1
 | 
						|
  #     #    3 at 1, 0
 | 
						|
  #     #    4 at 1, 1
 | 
						|
  #
 | 
						|
  def each_with_index(which = :all) # :yield: e, row, column
 | 
						|
    return to_enum :each_with_index, which unless block_given?
 | 
						|
    last = column_count - 1
 | 
						|
    case which
 | 
						|
    when :all
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        row.each_with_index do |e, col_index|
 | 
						|
          yield e, row_index, col_index
 | 
						|
        end
 | 
						|
      end
 | 
						|
    when :diagonal
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        yield row.fetch(row_index){return self}, row_index, row_index
 | 
						|
      end
 | 
						|
    when :off_diagonal
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        column_count.times do |col_index|
 | 
						|
          yield row[col_index], row_index, col_index unless row_index == col_index
 | 
						|
        end
 | 
						|
      end
 | 
						|
    when :lower
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        0.upto([row_index, last].min) do |col_index|
 | 
						|
          yield row[col_index], row_index, col_index
 | 
						|
        end
 | 
						|
      end
 | 
						|
    when :strict_lower
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        [row_index, column_count].min.times do |col_index|
 | 
						|
          yield row[col_index], row_index, col_index
 | 
						|
        end
 | 
						|
      end
 | 
						|
    when :strict_upper
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        (row_index+1).upto(last) do |col_index|
 | 
						|
          yield row[col_index], row_index, col_index
 | 
						|
        end
 | 
						|
      end
 | 
						|
    when :upper
 | 
						|
      @rows.each_with_index do |row, row_index|
 | 
						|
        row_index.upto(last) do |col_index|
 | 
						|
          yield row[col_index], row_index, col_index
 | 
						|
        end
 | 
						|
      end
 | 
						|
    else
 | 
						|
      raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
 | 
						|
    end
 | 
						|
    self
 | 
						|
  end
 | 
						|
 | 
						|
  SELECTORS = {all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
 | 
						|
  #
 | 
						|
  # :call-seq:
 | 
						|
  #   index(value, selector = :all) -> [row, column]
 | 
						|
  #   index(selector = :all){ block } -> [row, column]
 | 
						|
  #   index(selector = :all) -> an_enumerator
 | 
						|
  #
 | 
						|
  # The index method is specialized to return the index as [row, column]
 | 
						|
  # It also accepts an optional +selector+ argument, see #each for details.
 | 
						|
  #
 | 
						|
  #   Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
 | 
						|
  #   Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
 | 
						|
  #
 | 
						|
  def index(*args)
 | 
						|
    raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
 | 
						|
    which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
 | 
						|
    return to_enum :find_index, which, *args unless block_given? || args.size == 1
 | 
						|
    if args.size == 1
 | 
						|
      value = args.first
 | 
						|
      each_with_index(which) do |e, row_index, col_index|
 | 
						|
        return row_index, col_index if e == value
 | 
						|
      end
 | 
						|
    else
 | 
						|
      each_with_index(which) do |e, row_index, col_index|
 | 
						|
        return row_index, col_index if yield e
 | 
						|
      end
 | 
						|
    end
 | 
						|
    nil
 | 
						|
  end
 | 
						|
  alias_method :find_index, :index
 | 
						|
  #
 | 
						|
  # Returns a section of the matrix.  The parameters are either:
 | 
						|
  # *  start_row, nrows, start_col, ncols; OR
 | 
						|
  # *  row_range, col_range
 | 
						|
  #
 | 
						|
  #   Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
 | 
						|
  #     => 9 0 0
 | 
						|
  #        0 5 0
 | 
						|
  #
 | 
						|
  # Like Array#[], negative indices count backward from the end of the
 | 
						|
  # row or column (-1 is the last element). Returns nil if the starting
 | 
						|
  # row or column is greater than row_count or column_count respectively.
 | 
						|
  #
 | 
						|
  def minor(*param)
 | 
						|
    case param.size
 | 
						|
    when 2
 | 
						|
      row_range, col_range = param
 | 
						|
      from_row = row_range.first
 | 
						|
      from_row += row_count if from_row < 0
 | 
						|
      to_row = row_range.end
 | 
						|
      to_row += row_count if to_row < 0
 | 
						|
      to_row += 1 unless row_range.exclude_end?
 | 
						|
      size_row = to_row - from_row
 | 
						|
 | 
						|
      from_col = col_range.first
 | 
						|
      from_col += column_count if from_col < 0
 | 
						|
      to_col = col_range.end
 | 
						|
      to_col += column_count if to_col < 0
 | 
						|
      to_col += 1 unless col_range.exclude_end?
 | 
						|
      size_col = to_col - from_col
 | 
						|
    when 4
 | 
						|
      from_row, size_row, from_col, size_col = param
 | 
						|
      return nil if size_row < 0 || size_col < 0
 | 
						|
      from_row += row_count if from_row < 0
 | 
						|
      from_col += column_count if from_col < 0
 | 
						|
    else
 | 
						|
      raise ArgumentError, param.inspect
 | 
						|
    end
 | 
						|
 | 
						|
    return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
 | 
						|
    rows = @rows[from_row, size_row].collect{|row|
 | 
						|
      row[from_col, size_col]
 | 
						|
    }
 | 
						|
    new_matrix rows, [column_count - from_col, size_col].min
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is a diagonal matrix.
 | 
						|
  # Raises an error if matrix is not square.
 | 
						|
  #
 | 
						|
  def diagonal?
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless square?
 | 
						|
    each(:off_diagonal).all?(&:zero?)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ if this is an empty matrix, i.e. if the number of rows
 | 
						|
  # or the number of columns is 0.
 | 
						|
  #
 | 
						|
  def empty?
 | 
						|
    column_count == 0 || row_count == 0
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is an hermitian matrix.
 | 
						|
  # Raises an error if matrix is not square.
 | 
						|
  #
 | 
						|
  def hermitian?
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless square?
 | 
						|
    each_with_index(:upper).all? do |e, row, col|
 | 
						|
      e == rows[col][row].conj
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is a lower triangular matrix.
 | 
						|
  #
 | 
						|
  def lower_triangular?
 | 
						|
    each(:strict_upper).all?(&:zero?)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is a normal matrix.
 | 
						|
  # Raises an error if matrix is not square.
 | 
						|
  #
 | 
						|
  def normal?
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless square?
 | 
						|
    rows.each_with_index do |row_i, i|
 | 
						|
      rows.each_with_index do |row_j, j|
 | 
						|
        s = 0
 | 
						|
        rows.each_with_index do |row_k, k|
 | 
						|
          s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
 | 
						|
        end
 | 
						|
        return false unless s == 0
 | 
						|
      end
 | 
						|
    end
 | 
						|
    true
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is an orthogonal matrix
 | 
						|
  # Raises an error if matrix is not square.
 | 
						|
  #
 | 
						|
  def orthogonal?
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless square?
 | 
						|
    rows.each_with_index do |row, i|
 | 
						|
      column_count.times do |j|
 | 
						|
        s = 0
 | 
						|
        row_count.times do |k|
 | 
						|
          s += row[k] * rows[k][j]
 | 
						|
        end
 | 
						|
        return false unless s == (i == j ? 1 : 0)
 | 
						|
      end
 | 
						|
    end
 | 
						|
    true
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is a permutation matrix
 | 
						|
  # Raises an error if matrix is not square.
 | 
						|
  #
 | 
						|
  def permutation?
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless square?
 | 
						|
    cols = Array.new(column_count)
 | 
						|
    rows.each_with_index do |row, i|
 | 
						|
      found = false
 | 
						|
      row.each_with_index do |e, j|
 | 
						|
        if e == 1
 | 
						|
          return false if found || cols[j]
 | 
						|
          found = cols[j] = true
 | 
						|
        elsif e != 0
 | 
						|
          return false
 | 
						|
        end
 | 
						|
      end
 | 
						|
      return false unless found
 | 
						|
    end
 | 
						|
    true
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ if all entries of the matrix are real.
 | 
						|
  #
 | 
						|
  def real?
 | 
						|
    all?(&:real?)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ if this is a regular (i.e. non-singular) matrix.
 | 
						|
  #
 | 
						|
  def regular?
 | 
						|
    not singular?
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is a singular matrix.
 | 
						|
  #
 | 
						|
  def singular?
 | 
						|
    determinant == 0
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is a square matrix.
 | 
						|
  #
 | 
						|
  def square?
 | 
						|
    column_count == row_count
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is a symmetric matrix.
 | 
						|
  # Raises an error if matrix is not square.
 | 
						|
  #
 | 
						|
  def symmetric?
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless square?
 | 
						|
    each_with_index(:strict_upper) do |e, row, col|
 | 
						|
      return false if e != rows[col][row]
 | 
						|
    end
 | 
						|
    true
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is a unitary matrix
 | 
						|
  # Raises an error if matrix is not square.
 | 
						|
  #
 | 
						|
  def unitary?
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless square?
 | 
						|
    rows.each_with_index do |row, i|
 | 
						|
      column_count.times do |j|
 | 
						|
        s = 0
 | 
						|
        row_count.times do |k|
 | 
						|
          s += row[k].conj * rows[k][j]
 | 
						|
        end
 | 
						|
        return false unless s == (i == j ? 1 : 0)
 | 
						|
      end
 | 
						|
    end
 | 
						|
    true
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is an upper triangular matrix.
 | 
						|
  #
 | 
						|
  def upper_triangular?
 | 
						|
    each(:strict_lower).all?(&:zero?)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ is this is a matrix with only zero elements
 | 
						|
  #
 | 
						|
  def zero?
 | 
						|
    all?(&:zero?)
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ if and only if the two matrices contain equal elements.
 | 
						|
  #
 | 
						|
  def ==(other)
 | 
						|
    return false unless Matrix === other &&
 | 
						|
                        column_count == other.column_count # necessary for empty matrices
 | 
						|
    rows == other.rows
 | 
						|
  end
 | 
						|
 | 
						|
  def eql?(other)
 | 
						|
    return false unless Matrix === other &&
 | 
						|
                        column_count == other.column_count # necessary for empty matrices
 | 
						|
    rows.eql? other.rows
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns a clone of the matrix, so that the contents of each do not reference
 | 
						|
  # identical objects.
 | 
						|
  # There should be no good reason to do this since Matrices are immutable.
 | 
						|
  #
 | 
						|
  def clone
 | 
						|
    new_matrix @rows.map(&:dup), column_count
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns a hash-code for the matrix.
 | 
						|
  #
 | 
						|
  def hash
 | 
						|
    @rows.hash
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Matrix multiplication.
 | 
						|
  #   Matrix[[2,4], [6,8]] * Matrix.identity(2)
 | 
						|
  #     => 2 4
 | 
						|
  #        6 8
 | 
						|
  #
 | 
						|
  def *(m) # m is matrix or vector or number
 | 
						|
    case(m)
 | 
						|
    when Numeric
 | 
						|
      rows = @rows.collect {|row|
 | 
						|
        row.collect {|e| e * m }
 | 
						|
      }
 | 
						|
      return new_matrix rows, column_count
 | 
						|
    when Vector
 | 
						|
      m = self.class.column_vector(m)
 | 
						|
      r = self * m
 | 
						|
      return r.column(0)
 | 
						|
    when Matrix
 | 
						|
      Matrix.Raise ErrDimensionMismatch if column_count != m.row_count
 | 
						|
 | 
						|
      rows = Array.new(row_count) {|i|
 | 
						|
        Array.new(m.column_count) {|j|
 | 
						|
          (0 ... column_count).inject(0) do |vij, k|
 | 
						|
            vij + self[i, k] * m[k, j]
 | 
						|
          end
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return new_matrix rows, m.column_count
 | 
						|
    else
 | 
						|
      return apply_through_coercion(m, __method__)
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Matrix addition.
 | 
						|
  #   Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
 | 
						|
  #     =>  6  0
 | 
						|
  #        -4 12
 | 
						|
  #
 | 
						|
  def +(m)
 | 
						|
    case m
 | 
						|
    when Numeric
 | 
						|
      Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class
 | 
						|
    when Vector
 | 
						|
      m = self.class.column_vector(m)
 | 
						|
    when Matrix
 | 
						|
    else
 | 
						|
      return apply_through_coercion(m, __method__)
 | 
						|
    end
 | 
						|
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count and column_count == m.column_count
 | 
						|
 | 
						|
    rows = Array.new(row_count) {|i|
 | 
						|
      Array.new(column_count) {|j|
 | 
						|
        self[i, j] + m[i, j]
 | 
						|
      }
 | 
						|
    }
 | 
						|
    new_matrix rows, column_count
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Matrix subtraction.
 | 
						|
  #   Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
 | 
						|
  #     => -8  2
 | 
						|
  #         8  1
 | 
						|
  #
 | 
						|
  def -(m)
 | 
						|
    case m
 | 
						|
    when Numeric
 | 
						|
      Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class
 | 
						|
    when Vector
 | 
						|
      m = self.class.column_vector(m)
 | 
						|
    when Matrix
 | 
						|
    else
 | 
						|
      return apply_through_coercion(m, __method__)
 | 
						|
    end
 | 
						|
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count and column_count == m.column_count
 | 
						|
 | 
						|
    rows = Array.new(row_count) {|i|
 | 
						|
      Array.new(column_count) {|j|
 | 
						|
        self[i, j] - m[i, j]
 | 
						|
      }
 | 
						|
    }
 | 
						|
    new_matrix rows, column_count
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Matrix division (multiplication by the inverse).
 | 
						|
  #   Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
 | 
						|
  #     => -7  1
 | 
						|
  #        -3 -6
 | 
						|
  #
 | 
						|
  def /(other)
 | 
						|
    case other
 | 
						|
    when Numeric
 | 
						|
      rows = @rows.collect {|row|
 | 
						|
        row.collect {|e| e / other }
 | 
						|
      }
 | 
						|
      return new_matrix rows, column_count
 | 
						|
    when Matrix
 | 
						|
      return self * other.inverse
 | 
						|
    else
 | 
						|
      return apply_through_coercion(other, __method__)
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the inverse of the matrix.
 | 
						|
  #   Matrix[[-1, -1], [0, -1]].inverse
 | 
						|
  #     => -1  1
 | 
						|
  #         0 -1
 | 
						|
  #
 | 
						|
  def inverse
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless square?
 | 
						|
    self.class.I(row_count).send(:inverse_from, self)
 | 
						|
  end
 | 
						|
  alias inv inverse
 | 
						|
 | 
						|
  def inverse_from(src) # :nodoc:
 | 
						|
    last = row_count - 1
 | 
						|
    a = src.to_a
 | 
						|
 | 
						|
    0.upto(last) do |k|
 | 
						|
      i = k
 | 
						|
      akk = a[k][k].abs
 | 
						|
      (k+1).upto(last) do |j|
 | 
						|
        v = a[j][k].abs
 | 
						|
        if v > akk
 | 
						|
          i = j
 | 
						|
          akk = v
 | 
						|
        end
 | 
						|
      end
 | 
						|
      Matrix.Raise ErrNotRegular if akk == 0
 | 
						|
      if i != k
 | 
						|
        a[i], a[k] = a[k], a[i]
 | 
						|
        @rows[i], @rows[k] = @rows[k], @rows[i]
 | 
						|
      end
 | 
						|
      akk = a[k][k]
 | 
						|
 | 
						|
      0.upto(last) do |ii|
 | 
						|
        next if ii == k
 | 
						|
        q = a[ii][k].quo(akk)
 | 
						|
        a[ii][k] = 0
 | 
						|
 | 
						|
        (k + 1).upto(last) do |j|
 | 
						|
          a[ii][j] -= a[k][j] * q
 | 
						|
        end
 | 
						|
        0.upto(last) do |j|
 | 
						|
          @rows[ii][j] -= @rows[k][j] * q
 | 
						|
        end
 | 
						|
      end
 | 
						|
 | 
						|
      (k+1).upto(last) do |j|
 | 
						|
        a[k][j] = a[k][j].quo(akk)
 | 
						|
      end
 | 
						|
      0.upto(last) do |j|
 | 
						|
        @rows[k][j] = @rows[k][j].quo(akk)
 | 
						|
      end
 | 
						|
    end
 | 
						|
    self
 | 
						|
  end
 | 
						|
  private :inverse_from
 | 
						|
 | 
						|
  #
 | 
						|
  # Matrix exponentiation.
 | 
						|
  # Equivalent to multiplying the matrix by itself N times.
 | 
						|
  # Non integer exponents will be handled by diagonalizing the matrix.
 | 
						|
  #
 | 
						|
  #   Matrix[[7,6], [3,9]] ** 2
 | 
						|
  #     => 67 96
 | 
						|
  #        48 99
 | 
						|
  #
 | 
						|
  def ** (other)
 | 
						|
    case other
 | 
						|
    when Integer
 | 
						|
      x = self
 | 
						|
      if other <= 0
 | 
						|
        x = self.inverse
 | 
						|
        return self.class.identity(self.column_count) if other == 0
 | 
						|
        other = -other
 | 
						|
      end
 | 
						|
      z = nil
 | 
						|
      loop do
 | 
						|
        z = z ? z * x : x if other[0] == 1
 | 
						|
        return z if (other >>= 1).zero?
 | 
						|
        x *= x
 | 
						|
      end
 | 
						|
    when Numeric
 | 
						|
      v, d, v_inv = eigensystem
 | 
						|
      v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv
 | 
						|
    else
 | 
						|
      Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the determinant of the matrix.
 | 
						|
  #
 | 
						|
  # Beware that using Float values can yield erroneous results
 | 
						|
  # because of their lack of precision.
 | 
						|
  # Consider using exact types like Rational or BigDecimal instead.
 | 
						|
  #
 | 
						|
  #   Matrix[[7,6], [3,9]].determinant
 | 
						|
  #     => 45
 | 
						|
  #
 | 
						|
  def determinant
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless square?
 | 
						|
    m = @rows
 | 
						|
    case row_count
 | 
						|
      # Up to 4x4, give result using Laplacian expansion by minors.
 | 
						|
      # This will typically be faster, as well as giving good results
 | 
						|
      # in case of Floats
 | 
						|
    when 0
 | 
						|
      +1
 | 
						|
    when 1
 | 
						|
      + m[0][0]
 | 
						|
    when 2
 | 
						|
      + m[0][0] * m[1][1] - m[0][1] * m[1][0]
 | 
						|
    when 3
 | 
						|
      m0, m1, m2 = m
 | 
						|
      + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
 | 
						|
      - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
 | 
						|
      + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
 | 
						|
    when 4
 | 
						|
      m0, m1, m2, m3 = m
 | 
						|
      + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
 | 
						|
      - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
 | 
						|
      + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
 | 
						|
      - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
 | 
						|
      + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
 | 
						|
      - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
 | 
						|
      + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
 | 
						|
      - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
 | 
						|
      + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
 | 
						|
      - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
 | 
						|
      + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
 | 
						|
      - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
 | 
						|
    else
 | 
						|
      # For bigger matrices, use an efficient and general algorithm.
 | 
						|
      # Currently, we use the Gauss-Bareiss algorithm
 | 
						|
      determinant_bareiss
 | 
						|
    end
 | 
						|
  end
 | 
						|
  alias_method :det, :determinant
 | 
						|
 | 
						|
  #
 | 
						|
  # Private. Use Matrix#determinant
 | 
						|
  #
 | 
						|
  # Returns the determinant of the matrix, using
 | 
						|
  # Bareiss' multistep integer-preserving gaussian elimination.
 | 
						|
  # It has the same computational cost order O(n^3) as standard Gaussian elimination.
 | 
						|
  # Intermediate results are fraction free and of lower complexity.
 | 
						|
  # A matrix of Integers will have thus intermediate results that are also Integers,
 | 
						|
  # with smaller bignums (if any), while a matrix of Float will usually have
 | 
						|
  # intermediate results with better precision.
 | 
						|
  #
 | 
						|
  def determinant_bareiss
 | 
						|
    size = row_count
 | 
						|
    last = size - 1
 | 
						|
    a = to_a
 | 
						|
    no_pivot = Proc.new{ return 0 }
 | 
						|
    sign = +1
 | 
						|
    pivot = 1
 | 
						|
    size.times do |k|
 | 
						|
      previous_pivot = pivot
 | 
						|
      if (pivot = a[k][k]) == 0
 | 
						|
        switch = (k+1 ... size).find(no_pivot) {|row|
 | 
						|
          a[row][k] != 0
 | 
						|
        }
 | 
						|
        a[switch], a[k] = a[k], a[switch]
 | 
						|
        pivot = a[k][k]
 | 
						|
        sign = -sign
 | 
						|
      end
 | 
						|
      (k+1).upto(last) do |i|
 | 
						|
        ai = a[i]
 | 
						|
        (k+1).upto(last) do |j|
 | 
						|
          ai[j] =  (pivot * ai[j] - ai[k] * a[k][j]) / previous_pivot
 | 
						|
        end
 | 
						|
      end
 | 
						|
    end
 | 
						|
    sign * pivot
 | 
						|
  end
 | 
						|
  private :determinant_bareiss
 | 
						|
 | 
						|
  #
 | 
						|
  # deprecated; use Matrix#determinant
 | 
						|
  #
 | 
						|
  def determinant_e
 | 
						|
    warn "#{caller(1)[0]}: warning: Matrix#determinant_e is deprecated; use #determinant"
 | 
						|
    determinant
 | 
						|
  end
 | 
						|
  alias det_e determinant_e
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the rank of the matrix.
 | 
						|
  # Beware that using Float values can yield erroneous results
 | 
						|
  # because of their lack of precision.
 | 
						|
  # Consider using exact types like Rational or BigDecimal instead.
 | 
						|
  #
 | 
						|
  #   Matrix[[7,6], [3,9]].rank
 | 
						|
  #     => 2
 | 
						|
  #
 | 
						|
  def rank
 | 
						|
    # We currently use Bareiss' multistep integer-preserving gaussian elimination
 | 
						|
    # (see comments on determinant)
 | 
						|
    a = to_a
 | 
						|
    last_column = column_count - 1
 | 
						|
    last_row = row_count - 1
 | 
						|
    pivot_row = 0
 | 
						|
    previous_pivot = 1
 | 
						|
    0.upto(last_column) do |k|
 | 
						|
      switch_row = (pivot_row .. last_row).find {|row|
 | 
						|
        a[row][k] != 0
 | 
						|
      }
 | 
						|
      if switch_row
 | 
						|
        a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
 | 
						|
        pivot = a[pivot_row][k]
 | 
						|
        (pivot_row+1).upto(last_row) do |i|
 | 
						|
           ai = a[i]
 | 
						|
           (k+1).upto(last_column) do |j|
 | 
						|
             ai[j] =  (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
 | 
						|
           end
 | 
						|
         end
 | 
						|
        pivot_row += 1
 | 
						|
        previous_pivot = pivot
 | 
						|
      end
 | 
						|
    end
 | 
						|
    pivot_row
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # deprecated; use Matrix#rank
 | 
						|
  #
 | 
						|
  def rank_e
 | 
						|
    warn "#{caller(1)[0]}: warning: Matrix#rank_e is deprecated; use #rank"
 | 
						|
    rank
 | 
						|
  end
 | 
						|
 | 
						|
  # Returns a matrix with entries rounded to the given precision
 | 
						|
  # (see Float#round)
 | 
						|
  #
 | 
						|
  def round(ndigits=0)
 | 
						|
    map{|e| e.round(ndigits)}
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the trace (sum of diagonal elements) of the matrix.
 | 
						|
  #   Matrix[[7,6], [3,9]].trace
 | 
						|
  #     => 16
 | 
						|
  #
 | 
						|
  def trace
 | 
						|
    Matrix.Raise ErrDimensionMismatch unless square?
 | 
						|
    (0...column_count).inject(0) do |tr, i|
 | 
						|
      tr + @rows[i][i]
 | 
						|
    end
 | 
						|
  end
 | 
						|
  alias tr trace
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the transpose of the matrix.
 | 
						|
  #   Matrix[[1,2], [3,4], [5,6]]
 | 
						|
  #     => 1 2
 | 
						|
  #        3 4
 | 
						|
  #        5 6
 | 
						|
  #   Matrix[[1,2], [3,4], [5,6]].transpose
 | 
						|
  #     => 1 3 5
 | 
						|
  #        2 4 6
 | 
						|
  #
 | 
						|
  def transpose
 | 
						|
    return self.class.empty(column_count, 0) if row_count.zero?
 | 
						|
    new_matrix @rows.transpose, row_count
 | 
						|
  end
 | 
						|
  alias t transpose
 | 
						|
 | 
						|
  #--
 | 
						|
  # DECOMPOSITIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the Eigensystem of the matrix; see +EigenvalueDecomposition+.
 | 
						|
  #   m = Matrix[[1, 2], [3, 4]]
 | 
						|
  #   v, d, v_inv = m.eigensystem
 | 
						|
  #   d.diagonal? # => true
 | 
						|
  #   v.inv == v_inv # => true
 | 
						|
  #   (v * d * v_inv).round(5) == m # => true
 | 
						|
  #
 | 
						|
  def eigensystem
 | 
						|
    EigenvalueDecomposition.new(self)
 | 
						|
  end
 | 
						|
  alias eigen eigensystem
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the LUP decomposition of the matrix; see +LUPDecomposition+.
 | 
						|
  #   a = Matrix[[1, 2], [3, 4]]
 | 
						|
  #   l, u, p = a.lup
 | 
						|
  #   l.lower_triangular? # => true
 | 
						|
  #   u.upper_triangular? # => true
 | 
						|
  #   p.permutation?      # => true
 | 
						|
  #   l * u == p * a      # => true
 | 
						|
  #   a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
 | 
						|
  #
 | 
						|
  def lup
 | 
						|
    LUPDecomposition.new(self)
 | 
						|
  end
 | 
						|
  alias lup_decomposition lup
 | 
						|
 | 
						|
  #--
 | 
						|
  # COMPLEX ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the conjugate of the matrix.
 | 
						|
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
 | 
						|
  #     => 1+2i   i  0
 | 
						|
  #           1   2  3
 | 
						|
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
 | 
						|
  #     => 1-2i  -i  0
 | 
						|
  #           1   2  3
 | 
						|
  #
 | 
						|
  def conjugate
 | 
						|
    collect(&:conjugate)
 | 
						|
  end
 | 
						|
  alias conj conjugate
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the imaginary part of the matrix.
 | 
						|
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
 | 
						|
  #     => 1+2i  i  0
 | 
						|
  #           1  2  3
 | 
						|
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
 | 
						|
  #     =>   2i  i  0
 | 
						|
  #           0  0  0
 | 
						|
  #
 | 
						|
  def imaginary
 | 
						|
    collect(&:imaginary)
 | 
						|
  end
 | 
						|
  alias imag imaginary
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the real part of the matrix.
 | 
						|
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
 | 
						|
  #     => 1+2i  i  0
 | 
						|
  #           1  2  3
 | 
						|
  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
 | 
						|
  #     =>    1  0  0
 | 
						|
  #           1  2  3
 | 
						|
  #
 | 
						|
  def real
 | 
						|
    collect(&:real)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns an array containing matrices corresponding to the real and imaginary
 | 
						|
  # parts of the matrix
 | 
						|
  #
 | 
						|
  # m.rect == [m.real, m.imag]  # ==> true for all matrices m
 | 
						|
  #
 | 
						|
  def rect
 | 
						|
    [real, imag]
 | 
						|
  end
 | 
						|
  alias rectangular rect
 | 
						|
 | 
						|
  #--
 | 
						|
  # CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # The coerce method provides support for Ruby type coercion.
 | 
						|
  # This coercion mechanism is used by Ruby to handle mixed-type
 | 
						|
  # numeric operations: it is intended to find a compatible common
 | 
						|
  # type between the two operands of the operator.
 | 
						|
  # See also Numeric#coerce.
 | 
						|
  #
 | 
						|
  def coerce(other)
 | 
						|
    case other
 | 
						|
    when Numeric
 | 
						|
      return Scalar.new(other), self
 | 
						|
    else
 | 
						|
      raise TypeError, "#{self.class} can't be coerced into #{other.class}"
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns an array of the row vectors of the matrix.  See Vector.
 | 
						|
  #
 | 
						|
  def row_vectors
 | 
						|
    Array.new(row_count) {|i|
 | 
						|
      row(i)
 | 
						|
    }
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns an array of the column vectors of the matrix.  See Vector.
 | 
						|
  #
 | 
						|
  def column_vectors
 | 
						|
    Array.new(column_count) {|i|
 | 
						|
      column(i)
 | 
						|
    }
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns an array of arrays that describe the rows of the matrix.
 | 
						|
  #
 | 
						|
  def to_a
 | 
						|
    @rows.collect(&:dup)
 | 
						|
  end
 | 
						|
 | 
						|
  def elements_to_f
 | 
						|
    warn "#{caller(1)[0]}: warning: Matrix#elements_to_f is deprecated, use map(&:to_f)"
 | 
						|
    map(&:to_f)
 | 
						|
  end
 | 
						|
 | 
						|
  def elements_to_i
 | 
						|
    warn "#{caller(1)[0]}: warning: Matrix#elements_to_i is deprecated, use map(&:to_i)"
 | 
						|
    map(&:to_i)
 | 
						|
  end
 | 
						|
 | 
						|
  def elements_to_r
 | 
						|
    warn "#{caller(1)[0]}: warning: Matrix#elements_to_r is deprecated, use map(&:to_r)"
 | 
						|
    map(&:to_r)
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Overrides Object#to_s
 | 
						|
  #
 | 
						|
  def to_s
 | 
						|
    if empty?
 | 
						|
      "#{self.class}.empty(#{row_count}, #{column_count})"
 | 
						|
    else
 | 
						|
      "#{self.class}[" + @rows.collect{|row|
 | 
						|
        "[" + row.collect{|e| e.to_s}.join(", ") + "]"
 | 
						|
      }.join(", ")+"]"
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Overrides Object#inspect
 | 
						|
  #
 | 
						|
  def inspect
 | 
						|
    if empty?
 | 
						|
      "#{self.class}.empty(#{row_count}, #{column_count})"
 | 
						|
    else
 | 
						|
      "#{self.class}#{@rows.inspect}"
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  # Private helper modules
 | 
						|
 | 
						|
  module ConversionHelper # :nodoc:
 | 
						|
    #
 | 
						|
    # Converts the obj to an Array. If copy is set to true
 | 
						|
    # a copy of obj will be made if necessary.
 | 
						|
    #
 | 
						|
    def convert_to_array(obj, copy = false) # :nodoc:
 | 
						|
      case obj
 | 
						|
      when Array
 | 
						|
        copy ? obj.dup : obj
 | 
						|
      when Vector
 | 
						|
        obj.to_a
 | 
						|
      else
 | 
						|
        begin
 | 
						|
          converted = obj.to_ary
 | 
						|
        rescue Exception => e
 | 
						|
          raise TypeError, "can't convert #{obj.class} into an Array (#{e.message})"
 | 
						|
        end
 | 
						|
        raise TypeError, "#{obj.class}#to_ary should return an Array" unless converted.is_a? Array
 | 
						|
        converted
 | 
						|
      end
 | 
						|
    end
 | 
						|
    private :convert_to_array
 | 
						|
  end
 | 
						|
 | 
						|
  extend ConversionHelper
 | 
						|
 | 
						|
  module CoercionHelper # :nodoc:
 | 
						|
    #
 | 
						|
    # Applies the operator +oper+ with argument +obj+
 | 
						|
    # through coercion of +obj+
 | 
						|
    #
 | 
						|
    def apply_through_coercion(obj, oper)
 | 
						|
      coercion = obj.coerce(self)
 | 
						|
      raise TypeError unless coercion.is_a?(Array) && coercion.length == 2
 | 
						|
      coercion[0].public_send(oper, coercion[1])
 | 
						|
    rescue
 | 
						|
      raise TypeError, "#{obj.inspect} can't be coerced into #{self.class}"
 | 
						|
    end
 | 
						|
    private :apply_through_coercion
 | 
						|
 | 
						|
    #
 | 
						|
    # Helper method to coerce a value into a specific class.
 | 
						|
    # Raises a TypeError if the coercion fails or the returned value
 | 
						|
    # is not of the right class.
 | 
						|
    # (from Rubinius)
 | 
						|
    #
 | 
						|
    def self.coerce_to(obj, cls, meth) # :nodoc:
 | 
						|
      return obj if obj.kind_of?(cls)
 | 
						|
 | 
						|
      begin
 | 
						|
        ret = obj.__send__(meth)
 | 
						|
      rescue Exception => e
 | 
						|
        raise TypeError, "Coercion error: #{obj.inspect}.#{meth} => #{cls} failed:\n" \
 | 
						|
                         "(#{e.message})"
 | 
						|
      end
 | 
						|
      raise TypeError, "Coercion error: obj.#{meth} did NOT return a #{cls} (was #{ret.class})" unless ret.kind_of? cls
 | 
						|
      ret
 | 
						|
    end
 | 
						|
 | 
						|
    def self.coerce_to_int(obj)
 | 
						|
      coerce_to(obj, Integer, :to_int)
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  include CoercionHelper
 | 
						|
 | 
						|
  # Private CLASS
 | 
						|
 | 
						|
  class Scalar < Numeric # :nodoc:
 | 
						|
    include ExceptionForMatrix
 | 
						|
    include CoercionHelper
 | 
						|
 | 
						|
    def initialize(value)
 | 
						|
      @value = value
 | 
						|
    end
 | 
						|
 | 
						|
    # ARITHMETIC
 | 
						|
    def +(other)
 | 
						|
      case other
 | 
						|
      when Numeric
 | 
						|
        Scalar.new(@value + other)
 | 
						|
      when Vector, Matrix
 | 
						|
        Scalar.Raise ErrOperationNotDefined, "+", @value.class, other.class
 | 
						|
      else
 | 
						|
        apply_through_coercion(other, __method__)
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    def -(other)
 | 
						|
      case other
 | 
						|
      when Numeric
 | 
						|
        Scalar.new(@value - other)
 | 
						|
      when Vector, Matrix
 | 
						|
        Scalar.Raise ErrOperationNotDefined, "-", @value.class, other.class
 | 
						|
      else
 | 
						|
        apply_through_coercion(other, __method__)
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    def *(other)
 | 
						|
      case other
 | 
						|
      when Numeric
 | 
						|
        Scalar.new(@value * other)
 | 
						|
      when Vector, Matrix
 | 
						|
        other.collect{|e| @value * e}
 | 
						|
      else
 | 
						|
        apply_through_coercion(other, __method__)
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    def / (other)
 | 
						|
      case other
 | 
						|
      when Numeric
 | 
						|
        Scalar.new(@value / other)
 | 
						|
      when Vector
 | 
						|
        Scalar.Raise ErrOperationNotDefined, "/", @value.class, other.class
 | 
						|
      when Matrix
 | 
						|
        self * other.inverse
 | 
						|
      else
 | 
						|
        apply_through_coercion(other, __method__)
 | 
						|
      end
 | 
						|
    end
 | 
						|
 | 
						|
    def ** (other)
 | 
						|
      case other
 | 
						|
      when Numeric
 | 
						|
        Scalar.new(@value ** other)
 | 
						|
      when Vector
 | 
						|
        Scalar.Raise ErrOperationNotDefined, "**", @value.class, other.class
 | 
						|
      when Matrix
 | 
						|
        #other.powered_by(self)
 | 
						|
        Scalar.Raise ErrOperationNotImplemented, "**", @value.class, other.class
 | 
						|
      else
 | 
						|
        apply_through_coercion(other, __method__)
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
end
 | 
						|
 | 
						|
 | 
						|
#
 | 
						|
# The +Vector+ class represents a mathematical vector, which is useful in its own right, and
 | 
						|
# also constitutes a row or column of a Matrix.
 | 
						|
#
 | 
						|
# == Method Catalogue
 | 
						|
#
 | 
						|
# To create a Vector:
 | 
						|
# * Vector.[](*array)
 | 
						|
# * Vector.elements(array, copy = true)
 | 
						|
#
 | 
						|
# To access elements:
 | 
						|
# * #[](i)
 | 
						|
#
 | 
						|
# To enumerate the elements:
 | 
						|
# * #each2(v)
 | 
						|
# * #collect2(v)
 | 
						|
#
 | 
						|
# Vector arithmetic:
 | 
						|
# * #*(x) "is matrix or number"
 | 
						|
# * #+(v)
 | 
						|
# * #-(v)
 | 
						|
#
 | 
						|
# Vector functions:
 | 
						|
# * #inner_product(v)
 | 
						|
# * #cross_product(v)
 | 
						|
# * #collect
 | 
						|
# * #magnitude
 | 
						|
# * #map
 | 
						|
# * #map2(v)
 | 
						|
# * #norm
 | 
						|
# * #normalize
 | 
						|
# * #r
 | 
						|
# * #size
 | 
						|
#
 | 
						|
# Conversion to other data types:
 | 
						|
# * #covector
 | 
						|
# * #to_a
 | 
						|
# * #coerce(other)
 | 
						|
#
 | 
						|
# String representations:
 | 
						|
# * #to_s
 | 
						|
# * #inspect
 | 
						|
#
 | 
						|
class Vector
 | 
						|
  include ExceptionForMatrix
 | 
						|
  include Enumerable
 | 
						|
  include Matrix::CoercionHelper
 | 
						|
  extend Matrix::ConversionHelper
 | 
						|
  #INSTANCE CREATION
 | 
						|
 | 
						|
  private_class_method :new
 | 
						|
  attr_reader :elements
 | 
						|
  protected :elements
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a Vector from a list of elements.
 | 
						|
  #   Vector[7, 4, ...]
 | 
						|
  #
 | 
						|
  def Vector.[](*array)
 | 
						|
    new convert_to_array(array, false)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a vector from an Array.  The optional second argument specifies
 | 
						|
  # whether the array itself or a copy is used internally.
 | 
						|
  #
 | 
						|
  def Vector.elements(array, copy = true)
 | 
						|
    new convert_to_array(array, copy)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Vector.new is private; use Vector[] or Vector.elements to create.
 | 
						|
  #
 | 
						|
  def initialize(array)
 | 
						|
    # No checking is done at this point.
 | 
						|
    @elements = array
 | 
						|
  end
 | 
						|
 | 
						|
  # ACCESSING
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns element number +i+ (starting at zero) of the vector.
 | 
						|
  #
 | 
						|
  def [](i)
 | 
						|
    @elements[i]
 | 
						|
  end
 | 
						|
  alias element []
 | 
						|
  alias component []
 | 
						|
 | 
						|
  def []=(i, v)
 | 
						|
    @elements[i]= v
 | 
						|
  end
 | 
						|
  alias set_element []=
 | 
						|
  alias set_component []=
 | 
						|
  private :[]=, :set_element, :set_component
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the number of elements in the vector.
 | 
						|
  #
 | 
						|
  def size
 | 
						|
    @elements.size
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Iterate over the elements of this vector
 | 
						|
  #
 | 
						|
  def each(&block)
 | 
						|
    return to_enum(:each) unless block_given?
 | 
						|
    @elements.each(&block)
 | 
						|
    self
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Iterate over the elements of this vector and +v+ in conjunction.
 | 
						|
  #
 | 
						|
  def each2(v) # :yield: e1, e2
 | 
						|
    raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
 | 
						|
    Vector.Raise ErrDimensionMismatch if size != v.size
 | 
						|
    return to_enum(:each2, v) unless block_given?
 | 
						|
    size.times do |i|
 | 
						|
      yield @elements[i], v[i]
 | 
						|
    end
 | 
						|
    self
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Collects (as in Enumerable#collect) over the elements of this vector and +v+
 | 
						|
  # in conjunction.
 | 
						|
  #
 | 
						|
  def collect2(v) # :yield: e1, e2
 | 
						|
    raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
 | 
						|
    Vector.Raise ErrDimensionMismatch if size != v.size
 | 
						|
    return to_enum(:collect2, v) unless block_given?
 | 
						|
    Array.new(size) do |i|
 | 
						|
      yield @elements[i], v[i]
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns +true+ iff the two vectors have the same elements in the same order.
 | 
						|
  #
 | 
						|
  def ==(other)
 | 
						|
    return false unless Vector === other
 | 
						|
    @elements == other.elements
 | 
						|
  end
 | 
						|
 | 
						|
  def eql?(other)
 | 
						|
    return false unless Vector === other
 | 
						|
    @elements.eql? other.elements
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Return a copy of the vector.
 | 
						|
  #
 | 
						|
  def clone
 | 
						|
    self.class.elements(@elements)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Return a hash-code for the vector.
 | 
						|
  #
 | 
						|
  def hash
 | 
						|
    @elements.hash
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Multiplies the vector by +x+, where +x+ is a number or another vector.
 | 
						|
  #
 | 
						|
  def *(x)
 | 
						|
    case x
 | 
						|
    when Numeric
 | 
						|
      els = @elements.collect{|e| e * x}
 | 
						|
      self.class.elements(els, false)
 | 
						|
    when Matrix
 | 
						|
      Matrix.column_vector(self) * x
 | 
						|
    when Vector
 | 
						|
      Vector.Raise ErrOperationNotDefined, "*", self.class, x.class
 | 
						|
    else
 | 
						|
      apply_through_coercion(x, __method__)
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Vector addition.
 | 
						|
  #
 | 
						|
  def +(v)
 | 
						|
    case v
 | 
						|
    when Vector
 | 
						|
      Vector.Raise ErrDimensionMismatch if size != v.size
 | 
						|
      els = collect2(v) {|v1, v2|
 | 
						|
        v1 + v2
 | 
						|
      }
 | 
						|
      self.class.elements(els, false)
 | 
						|
    when Matrix
 | 
						|
      Matrix.column_vector(self) + v
 | 
						|
    else
 | 
						|
      apply_through_coercion(v, __method__)
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Vector subtraction.
 | 
						|
  #
 | 
						|
  def -(v)
 | 
						|
    case v
 | 
						|
    when Vector
 | 
						|
      Vector.Raise ErrDimensionMismatch if size != v.size
 | 
						|
      els = collect2(v) {|v1, v2|
 | 
						|
        v1 - v2
 | 
						|
      }
 | 
						|
      self.class.elements(els, false)
 | 
						|
    when Matrix
 | 
						|
      Matrix.column_vector(self) - v
 | 
						|
    else
 | 
						|
      apply_through_coercion(v, __method__)
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Vector division.
 | 
						|
  #
 | 
						|
  def /(x)
 | 
						|
    case x
 | 
						|
    when Numeric
 | 
						|
      els = @elements.collect{|e| e / x}
 | 
						|
      self.class.elements(els, false)
 | 
						|
    when Matrix, Vector
 | 
						|
      Vector.Raise ErrOperationNotDefined, "/", self.class, x.class
 | 
						|
    else
 | 
						|
      apply_through_coercion(x, __method__)
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the inner product of this vector with the other.
 | 
						|
  #   Vector[4,7].inner_product Vector[10,1]  => 47
 | 
						|
  #
 | 
						|
  def inner_product(v)
 | 
						|
    Vector.Raise ErrDimensionMismatch if size != v.size
 | 
						|
 | 
						|
    p = 0
 | 
						|
    each2(v) {|v1, v2|
 | 
						|
      p += v1 * v2.conj
 | 
						|
    }
 | 
						|
    p
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the cross product of this vector with the other.
 | 
						|
  #   Vector[1, 0, 0].cross_product Vector[0, 1, 0]   => Vector[0, 0, 1]
 | 
						|
  #
 | 
						|
  def cross_product(v)
 | 
						|
    Vector.Raise ErrDimensionMismatch unless size == v.size && v.size == 3
 | 
						|
    Vector[ v[1]*@elements[2] - v[2]*@elements[1],
 | 
						|
            v[2]*@elements[0] - v[0]*@elements[2],
 | 
						|
            v[0]*@elements[1] - v[1]*@elements[0] ]
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Like Array#collect.
 | 
						|
  #
 | 
						|
  def collect(&block) # :yield: e
 | 
						|
    return to_enum(:collect) unless block_given?
 | 
						|
    els = @elements.collect(&block)
 | 
						|
    self.class.elements(els, false)
 | 
						|
  end
 | 
						|
  alias map collect
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the modulus (Pythagorean distance) of the vector.
 | 
						|
  #   Vector[5,8,2].r => 9.643650761
 | 
						|
  #
 | 
						|
  def magnitude
 | 
						|
    Math.sqrt(@elements.inject(0) {|v, e| v + e.abs2})
 | 
						|
  end
 | 
						|
  alias r magnitude
 | 
						|
  alias norm magnitude
 | 
						|
 | 
						|
  #
 | 
						|
  # Like Vector#collect2, but returns a Vector instead of an Array.
 | 
						|
  #
 | 
						|
  def map2(v, &block) # :yield: e1, e2
 | 
						|
    return to_enum(:map2, v) unless block_given?
 | 
						|
    els = collect2(v, &block)
 | 
						|
    self.class.elements(els, false)
 | 
						|
  end
 | 
						|
 | 
						|
  class ZeroVectorError < StandardError
 | 
						|
  end
 | 
						|
  #
 | 
						|
  # Returns a new vector with the same direction but with norm 1.
 | 
						|
  #   v = Vector[5,8,2].normalize
 | 
						|
  #   # => Vector[0.5184758473652127, 0.8295613557843402, 0.20739033894608505]
 | 
						|
  #   v.norm => 1.0
 | 
						|
  #
 | 
						|
  def normalize
 | 
						|
    n = magnitude
 | 
						|
    raise ZeroVectorError, "Zero vectors can not be normalized" if n == 0
 | 
						|
    self / n
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # CONVERTING
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Creates a single-row matrix from this vector.
 | 
						|
  #
 | 
						|
  def covector
 | 
						|
    Matrix.row_vector(self)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Returns the elements of the vector in an array.
 | 
						|
  #
 | 
						|
  def to_a
 | 
						|
    @elements.dup
 | 
						|
  end
 | 
						|
 | 
						|
  def elements_to_f
 | 
						|
    warn "#{caller(1)[0]}: warning: Vector#elements_to_f is deprecated"
 | 
						|
    map(&:to_f)
 | 
						|
  end
 | 
						|
 | 
						|
  def elements_to_i
 | 
						|
    warn "#{caller(1)[0]}: warning: Vector#elements_to_i is deprecated"
 | 
						|
    map(&:to_i)
 | 
						|
  end
 | 
						|
 | 
						|
  def elements_to_r
 | 
						|
    warn "#{caller(1)[0]}: warning: Vector#elements_to_r is deprecated"
 | 
						|
    map(&:to_r)
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # The coerce method provides support for Ruby type coercion.
 | 
						|
  # This coercion mechanism is used by Ruby to handle mixed-type
 | 
						|
  # numeric operations: it is intended to find a compatible common
 | 
						|
  # type between the two operands of the operator.
 | 
						|
  # See also Numeric#coerce.
 | 
						|
  #
 | 
						|
  def coerce(other)
 | 
						|
    case other
 | 
						|
    when Numeric
 | 
						|
      return Matrix::Scalar.new(other), self
 | 
						|
    else
 | 
						|
      raise TypeError, "#{self.class} can't be coerced into #{other.class}"
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  #--
 | 
						|
  # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | 
						|
  #++
 | 
						|
 | 
						|
  #
 | 
						|
  # Overrides Object#to_s
 | 
						|
  #
 | 
						|
  def to_s
 | 
						|
    "Vector[" + @elements.join(", ") + "]"
 | 
						|
  end
 | 
						|
 | 
						|
  #
 | 
						|
  # Overrides Object#inspect
 | 
						|
  #
 | 
						|
  def inspect
 | 
						|
    "Vector" + @elements.inspect
 | 
						|
  end
 | 
						|
end
 |