1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/sprintf.c
nobu f2980e3e20 encoding.h: constify rb_encoding
* include/ruby/encoding.h: constify `rb_encoding` itself, not only
  arguments.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@46322 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2014-06-02 20:23:47 +00:00

1296 lines
37 KiB
C

/**********************************************************************
sprintf.c -
$Author$
created at: Fri Oct 15 10:39:26 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/re.h"
#include "ruby/encoding.h"
#include "internal.h"
#include <math.h>
#include <stdarg.h>
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#define BIT_DIGITS(N) (((N)*146)/485 + 1) /* log2(10) =~ 146/485 */
extern const char ruby_digitmap[];
static void fmt_setup(char*,size_t,int,int,int,int);
static char
sign_bits(int base, const char *p)
{
char c = '.';
switch (base) {
case 16:
if (*p == 'X') c = 'F';
else c = 'f';
break;
case 8:
c = '7'; break;
case 2:
c = '1'; break;
}
return c;
}
#define FNONE 0
#define FSHARP 1
#define FMINUS 2
#define FPLUS 4
#define FZERO 8
#define FSPACE 16
#define FWIDTH 32
#define FPREC 64
#define FPREC0 128
#define CHECK(l) do {\
int cr = ENC_CODERANGE(result);\
while (blen + (l) >= bsiz) {\
bsiz*=2;\
}\
rb_str_resize(result, bsiz);\
ENC_CODERANGE_SET(result, cr);\
buf = RSTRING_PTR(result);\
} while (0)
#define PUSH(s, l) do { \
CHECK(l);\
memcpy(&buf[blen], (s), (l));\
blen += (l);\
} while (0)
#define FILL(c, l) do { \
CHECK(l);\
memset(&buf[blen], (c), (l));\
blen += (l);\
} while (0)
#define GETARG() (nextvalue != Qundef ? nextvalue : \
posarg == -1 ? \
(rb_raise(rb_eArgError, "unnumbered(%d) mixed with numbered", nextarg), 0) : \
posarg == -2 ? \
(rb_raise(rb_eArgError, "unnumbered(%d) mixed with named", nextarg), 0) : \
(posarg = nextarg++, GETNTHARG(posarg)))
#define GETPOSARG(n) (posarg > 0 ? \
(rb_raise(rb_eArgError, "numbered(%d) after unnumbered(%d)", (n), posarg), 0) : \
posarg == -2 ? \
(rb_raise(rb_eArgError, "numbered(%d) after named", (n)), 0) : \
(((n) < 1) ? (rb_raise(rb_eArgError, "invalid index - %d$", (n)), 0) : \
(posarg = -1, GETNTHARG(n))))
#define GETNTHARG(nth) \
(((nth) >= argc) ? (rb_raise(rb_eArgError, "too few arguments"), 0) : argv[(nth)])
#define GETNAMEARG(id, name, len, enc) ( \
posarg > 0 ? \
(rb_enc_raise((enc), rb_eArgError, "named%.*s after unnumbered(%d)", (len), (name), posarg), 0) : \
posarg == -1 ? \
(rb_enc_raise((enc), rb_eArgError, "named%.*s after numbered", (len), (name)), 0) : \
(posarg = -2, rb_hash_lookup2(get_hash(&hash, argc, argv), (id), Qundef)))
#define GETNUM(n, val) \
for (; p < end && rb_enc_isdigit(*p, enc); p++) { \
int next_n = (n); \
if (MUL_OVERFLOW_INT_P(10, next_n)) \
rb_raise(rb_eArgError, #val " too big"); \
next_n *= 10; \
if (INT_MAX - (*p - '0') < next_n) \
rb_raise(rb_eArgError, #val " too big"); \
next_n += *p - '0'; \
(n) = next_n; \
} \
if (p >= end) { \
rb_raise(rb_eArgError, "malformed format string - %%*[0-9]"); \
}
#define GETASTER(val) do { \
t = p++; \
n = 0; \
GETNUM(n, (val)); \
if (*p == '$') { \
tmp = GETPOSARG(n); \
} \
else { \
tmp = GETARG(); \
p = t; \
} \
(val) = NUM2INT(tmp); \
} while (0)
static VALUE
get_hash(volatile VALUE *hash, int argc, const VALUE *argv)
{
VALUE tmp;
if (*hash != Qundef) return *hash;
if (argc != 2) {
rb_raise(rb_eArgError, "one hash required");
}
tmp = rb_check_hash_type(argv[1]);
if (NIL_P(tmp)) {
rb_raise(rb_eArgError, "one hash required");
}
return (*hash = tmp);
}
/*
* call-seq:
* format(format_string [, arguments...] ) -> string
* sprintf(format_string [, arguments...] ) -> string
*
* Returns the string resulting from applying <i>format_string</i> to
* any additional arguments. Within the format string, any characters
* other than format sequences are copied to the result.
*
* The syntax of a format sequence is follows.
*
* %[flags][width][.precision]type
*
* A format
* sequence consists of a percent sign, followed by optional flags,
* width, and precision indicators, then terminated with a field type
* character. The field type controls how the corresponding
* <code>sprintf</code> argument is to be interpreted, while the flags
* modify that interpretation.
*
* The field type characters are:
*
* Field | Integer Format
* ------+--------------------------------------------------------------
* b | Convert argument as a binary number.
* | Negative numbers will be displayed as a two's complement
* | prefixed with `..1'.
* B | Equivalent to `b', but uses an uppercase 0B for prefix
* | in the alternative format by #.
* d | Convert argument as a decimal number.
* i | Identical to `d'.
* o | Convert argument as an octal number.
* | Negative numbers will be displayed as a two's complement
* | prefixed with `..7'.
* u | Identical to `d'.
* x | Convert argument as a hexadecimal number.
* | Negative numbers will be displayed as a two's complement
* | prefixed with `..f' (representing an infinite string of
* | leading 'ff's).
* X | Equivalent to `x', but uses uppercase letters.
*
* Field | Float Format
* ------+--------------------------------------------------------------
* e | Convert floating point argument into exponential notation
* | with one digit before the decimal point as [-]d.dddddde[+-]dd.
* | The precision specifies the number of digits after the decimal
* | point (defaulting to six).
* E | Equivalent to `e', but uses an uppercase E to indicate
* | the exponent.
* f | Convert floating point argument as [-]ddd.dddddd,
* | where the precision specifies the number of digits after
* | the decimal point.
* g | Convert a floating point number using exponential form
* | if the exponent is less than -4 or greater than or
* | equal to the precision, or in dd.dddd form otherwise.
* | The precision specifies the number of significant digits.
* G | Equivalent to `g', but use an uppercase `E' in exponent form.
* a | Convert floating point argument as [-]0xh.hhhhp[+-]dd,
* | which is consisted from optional sign, "0x", fraction part
* | as hexadecimal, "p", and exponential part as decimal.
* A | Equivalent to `a', but use uppercase `X' and `P'.
*
* Field | Other Format
* ------+--------------------------------------------------------------
* c | Argument is the numeric code for a single character or
* | a single character string itself.
* p | The valuing of argument.inspect.
* s | Argument is a string to be substituted. If the format
* | sequence contains a precision, at most that many characters
* | will be copied.
* % | A percent sign itself will be displayed. No argument taken.
*
* The flags modifies the behavior of the formats.
* The flag characters are:
*
* Flag | Applies to | Meaning
* ---------+---------------+-----------------------------------------
* space | bBdiouxX | Leave a space at the start of
* | aAeEfgG | non-negative numbers.
* | (numeric fmt) | For `o', `x', `X', `b' and `B', use
* | | a minus sign with absolute value for
* | | negative values.
* ---------+---------------+-----------------------------------------
* (digit)$ | all | Specifies the absolute argument number
* | | for this field. Absolute and relative
* | | argument numbers cannot be mixed in a
* | | sprintf string.
* ---------+---------------+-----------------------------------------
* # | bBoxX | Use an alternative format.
* | aAeEfgG | For the conversions `o', increase the precision
* | | until the first digit will be `0' if
* | | it is not formatted as complements.
* | | For the conversions `x', `X', `b' and `B'
* | | on non-zero, prefix the result with ``0x'',
* | | ``0X'', ``0b'' and ``0B'', respectively.
* | | For `a', `A', `e', `E', `f', `g', and 'G',
* | | force a decimal point to be added,
* | | even if no digits follow.
* | | For `g' and 'G', do not remove trailing zeros.
* ---------+---------------+-----------------------------------------
* + | bBdiouxX | Add a leading plus sign to non-negative
* | aAeEfgG | numbers.
* | (numeric fmt) | For `o', `x', `X', `b' and `B', use
* | | a minus sign with absolute value for
* | | negative values.
* ---------+---------------+-----------------------------------------
* - | all | Left-justify the result of this conversion.
* ---------+---------------+-----------------------------------------
* 0 (zero) | bBdiouxX | Pad with zeros, not spaces.
* | aAeEfgG | For `o', `x', `X', `b' and `B', radix-1
* | (numeric fmt) | is used for negative numbers formatted as
* | | complements.
* ---------+---------------+-----------------------------------------
* * | all | Use the next argument as the field width.
* | | If negative, left-justify the result. If the
* | | asterisk is followed by a number and a dollar
* | | sign, use the indicated argument as the width.
*
* Examples of flags:
*
* # `+' and space flag specifies the sign of non-negative numbers.
* sprintf("%d", 123) #=> "123"
* sprintf("%+d", 123) #=> "+123"
* sprintf("% d", 123) #=> " 123"
*
* # `#' flag for `o' increases number of digits to show `0'.
* # `+' and space flag changes format of negative numbers.
* sprintf("%o", 123) #=> "173"
* sprintf("%#o", 123) #=> "0173"
* sprintf("%+o", -123) #=> "-173"
* sprintf("%o", -123) #=> "..7605"
* sprintf("%#o", -123) #=> "..7605"
*
* # `#' flag for `x' add a prefix `0x' for non-zero numbers.
* # `+' and space flag disables complements for negative numbers.
* sprintf("%x", 123) #=> "7b"
* sprintf("%#x", 123) #=> "0x7b"
* sprintf("%+x", -123) #=> "-7b"
* sprintf("%x", -123) #=> "..f85"
* sprintf("%#x", -123) #=> "0x..f85"
* sprintf("%#x", 0) #=> "0"
*
* # `#' for `X' uses the prefix `0X'.
* sprintf("%X", 123) #=> "7B"
* sprintf("%#X", 123) #=> "0X7B"
*
* # `#' flag for `b' add a prefix `0b' for non-zero numbers.
* # `+' and space flag disables complements for negative numbers.
* sprintf("%b", 123) #=> "1111011"
* sprintf("%#b", 123) #=> "0b1111011"
* sprintf("%+b", -123) #=> "-1111011"
* sprintf("%b", -123) #=> "..10000101"
* sprintf("%#b", -123) #=> "0b..10000101"
* sprintf("%#b", 0) #=> "0"
*
* # `#' for `B' uses the prefix `0B'.
* sprintf("%B", 123) #=> "1111011"
* sprintf("%#B", 123) #=> "0B1111011"
*
* # `#' for `e' forces to show the decimal point.
* sprintf("%.0e", 1) #=> "1e+00"
* sprintf("%#.0e", 1) #=> "1.e+00"
*
* # `#' for `f' forces to show the decimal point.
* sprintf("%.0f", 1234) #=> "1234"
* sprintf("%#.0f", 1234) #=> "1234."
*
* # `#' for `g' forces to show the decimal point.
* # It also disables stripping lowest zeros.
* sprintf("%g", 123.4) #=> "123.4"
* sprintf("%#g", 123.4) #=> "123.400"
* sprintf("%g", 123456) #=> "123456"
* sprintf("%#g", 123456) #=> "123456."
*
* The field width is an optional integer, followed optionally by a
* period and a precision. The width specifies the minimum number of
* characters that will be written to the result for this field.
*
* Examples of width:
*
* # padding is done by spaces, width=20
* # 0 or radix-1. <------------------>
* sprintf("%20d", 123) #=> " 123"
* sprintf("%+20d", 123) #=> " +123"
* sprintf("%020d", 123) #=> "00000000000000000123"
* sprintf("%+020d", 123) #=> "+0000000000000000123"
* sprintf("% 020d", 123) #=> " 0000000000000000123"
* sprintf("%-20d", 123) #=> "123 "
* sprintf("%-+20d", 123) #=> "+123 "
* sprintf("%- 20d", 123) #=> " 123 "
* sprintf("%020x", -123) #=> "..ffffffffffffffff85"
*
* For
* numeric fields, the precision controls the number of decimal places
* displayed. For string fields, the precision determines the maximum
* number of characters to be copied from the string. (Thus, the format
* sequence <code>%10.10s</code> will always contribute exactly ten
* characters to the result.)
*
* Examples of precisions:
*
* # precision for `d', 'o', 'x' and 'b' is
* # minimum number of digits <------>
* sprintf("%20.8d", 123) #=> " 00000123"
* sprintf("%20.8o", 123) #=> " 00000173"
* sprintf("%20.8x", 123) #=> " 0000007b"
* sprintf("%20.8b", 123) #=> " 01111011"
* sprintf("%20.8d", -123) #=> " -00000123"
* sprintf("%20.8o", -123) #=> " ..777605"
* sprintf("%20.8x", -123) #=> " ..ffff85"
* sprintf("%20.8b", -11) #=> " ..110101"
*
* # "0x" and "0b" for `#x' and `#b' is not counted for
* # precision but "0" for `#o' is counted. <------>
* sprintf("%#20.8d", 123) #=> " 00000123"
* sprintf("%#20.8o", 123) #=> " 00000173"
* sprintf("%#20.8x", 123) #=> " 0x0000007b"
* sprintf("%#20.8b", 123) #=> " 0b01111011"
* sprintf("%#20.8d", -123) #=> " -00000123"
* sprintf("%#20.8o", -123) #=> " ..777605"
* sprintf("%#20.8x", -123) #=> " 0x..ffff85"
* sprintf("%#20.8b", -11) #=> " 0b..110101"
*
* # precision for `e' is number of
* # digits after the decimal point <------>
* sprintf("%20.8e", 1234.56789) #=> " 1.23456789e+03"
*
* # precision for `f' is number of
* # digits after the decimal point <------>
* sprintf("%20.8f", 1234.56789) #=> " 1234.56789000"
*
* # precision for `g' is number of
* # significant digits <------->
* sprintf("%20.8g", 1234.56789) #=> " 1234.5679"
*
* # <------->
* sprintf("%20.8g", 123456789) #=> " 1.2345679e+08"
*
* # precision for `s' is
* # maximum number of characters <------>
* sprintf("%20.8s", "string test") #=> " string t"
*
* Examples:
*
* sprintf("%d %04x", 123, 123) #=> "123 007b"
* sprintf("%08b '%4s'", 123, 123) #=> "01111011 ' 123'"
* sprintf("%1$*2$s %2$d %1$s", "hello", 8) #=> " hello 8 hello"
* sprintf("%1$*2$s %2$d", "hello", -8) #=> "hello -8"
* sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) #=> "+1.23: 1.23:1.23"
* sprintf("%u", -123) #=> "-123"
*
* For more complex formatting, Ruby supports a reference by name.
* %<name>s style uses format style, but %{name} style doesn't.
*
* Examples:
* sprintf("%<foo>d : %<bar>f", { :foo => 1, :bar => 2 })
* #=> 1 : 2.000000
* sprintf("%{foo}f", { :foo => 1 })
* # => "1f"
*/
VALUE
rb_f_sprintf(int argc, const VALUE *argv)
{
return rb_str_format(argc - 1, argv + 1, GETNTHARG(0));
}
VALUE
rb_str_format(int argc, const VALUE *argv, VALUE fmt)
{
rb_encoding *enc;
const char *p, *end;
char *buf;
long blen, bsiz;
VALUE result;
long scanned = 0;
int coderange = ENC_CODERANGE_7BIT;
int width, prec, flags = FNONE;
int nextarg = 1;
int posarg = 0;
int tainted = 0;
VALUE nextvalue;
VALUE tmp;
VALUE str;
volatile VALUE hash = Qundef;
#define CHECK_FOR_WIDTH(f) \
if ((f) & FWIDTH) { \
rb_raise(rb_eArgError, "width given twice"); \
} \
if ((f) & FPREC0) { \
rb_raise(rb_eArgError, "width after precision"); \
}
#define CHECK_FOR_FLAGS(f) \
if ((f) & FWIDTH) { \
rb_raise(rb_eArgError, "flag after width"); \
} \
if ((f) & FPREC0) { \
rb_raise(rb_eArgError, "flag after precision"); \
}
++argc;
--argv;
if (OBJ_TAINTED(fmt)) tainted = 1;
StringValue(fmt);
enc = rb_enc_get(fmt);
fmt = rb_str_new4(fmt);
p = RSTRING_PTR(fmt);
end = p + RSTRING_LEN(fmt);
blen = 0;
bsiz = 120;
result = rb_str_buf_new(bsiz);
rb_enc_copy(result, fmt);
buf = RSTRING_PTR(result);
memset(buf, 0, bsiz);
ENC_CODERANGE_SET(result, coderange);
for (; p < end; p++) {
const char *t;
int n;
ID id = 0;
for (t = p; t < end && *t != '%'; t++) ;
PUSH(p, t - p);
if (coderange != ENC_CODERANGE_BROKEN && scanned < blen) {
scanned += rb_str_coderange_scan_restartable(buf+scanned, buf+blen, enc, &coderange);
ENC_CODERANGE_SET(result, coderange);
}
if (t >= end) {
/* end of fmt string */
goto sprint_exit;
}
p = t + 1; /* skip `%' */
width = prec = -1;
nextvalue = Qundef;
retry:
switch (*p) {
default:
if (rb_enc_isprint(*p, enc))
rb_raise(rb_eArgError, "malformed format string - %%%c", *p);
else
rb_raise(rb_eArgError, "malformed format string");
break;
case ' ':
CHECK_FOR_FLAGS(flags);
flags |= FSPACE;
p++;
goto retry;
case '#':
CHECK_FOR_FLAGS(flags);
flags |= FSHARP;
p++;
goto retry;
case '+':
CHECK_FOR_FLAGS(flags);
flags |= FPLUS;
p++;
goto retry;
case '-':
CHECK_FOR_FLAGS(flags);
flags |= FMINUS;
p++;
goto retry;
case '0':
CHECK_FOR_FLAGS(flags);
flags |= FZERO;
p++;
goto retry;
case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
n = 0;
GETNUM(n, width);
if (*p == '$') {
if (nextvalue != Qundef) {
rb_raise(rb_eArgError, "value given twice - %d$", n);
}
nextvalue = GETPOSARG(n);
p++;
goto retry;
}
CHECK_FOR_WIDTH(flags);
width = n;
flags |= FWIDTH;
goto retry;
case '<':
case '{':
{
const char *start = p;
char term = (*p == '<') ? '>' : '}';
int len;
for (; p < end && *p != term; ) {
p += rb_enc_mbclen(p, end, enc);
}
if (p >= end) {
rb_raise(rb_eArgError, "malformed name - unmatched parenthesis");
}
#if SIZEOF_INT < SIZEOF_SIZE_T
if ((size_t)(p - start) >= INT_MAX) {
const int message_limit = 20;
len = (int)(rb_enc_right_char_head(start, start + message_limit, p, enc) - start);
rb_enc_raise(enc, rb_eArgError,
"too long name (%"PRIdSIZE" bytes) - %.*s...%c",
(size_t)(p - start - 2), len, start, term);
}
#endif
len = (int)(p - start + 1); /* including parenthesis */
if (id) {
rb_enc_raise(enc, rb_eArgError, "named%.*s after <%s>",
len, start, rb_id2name(id));
}
nextvalue = GETNAMEARG((id = rb_check_id_cstr_without_pindown(start + 1,
len - 2 /* without parenthesis */,
enc),
ID2SYM(id)),
start, len, enc);
if (nextvalue == Qundef) {
rb_enc_raise(enc, rb_eKeyError, "key%.*s not found", len, start);
}
if (term == '}') goto format_s;
p++;
goto retry;
}
case '*':
CHECK_FOR_WIDTH(flags);
flags |= FWIDTH;
GETASTER(width);
if (width < 0) {
flags |= FMINUS;
width = -width;
}
p++;
goto retry;
case '.':
if (flags & FPREC0) {
rb_raise(rb_eArgError, "precision given twice");
}
flags |= FPREC|FPREC0;
prec = 0;
p++;
if (*p == '*') {
GETASTER(prec);
if (prec < 0) { /* ignore negative precision */
flags &= ~FPREC;
}
p++;
goto retry;
}
GETNUM(prec, precision);
goto retry;
case '\n':
case '\0':
p--;
case '%':
if (flags != FNONE) {
rb_raise(rb_eArgError, "invalid format character - %%");
}
PUSH("%", 1);
break;
case 'c':
{
VALUE val = GETARG();
VALUE tmp;
unsigned int c;
int n;
tmp = rb_check_string_type(val);
if (!NIL_P(tmp)) {
if (rb_enc_strlen(RSTRING_PTR(tmp),RSTRING_END(tmp),enc) != 1) {
rb_raise(rb_eArgError, "%%c requires a character");
}
c = rb_enc_codepoint_len(RSTRING_PTR(tmp), RSTRING_END(tmp), &n, enc);
RB_GC_GUARD(tmp);
}
else {
c = NUM2INT(val);
n = rb_enc_codelen(c, enc);
}
if (n <= 0) {
rb_raise(rb_eArgError, "invalid character");
}
if (!(flags & FWIDTH)) {
CHECK(n);
rb_enc_mbcput(c, &buf[blen], enc);
blen += n;
}
else if ((flags & FMINUS)) {
CHECK(n);
rb_enc_mbcput(c, &buf[blen], enc);
blen += n;
FILL(' ', width-1);
}
else {
FILL(' ', width-1);
CHECK(n);
rb_enc_mbcput(c, &buf[blen], enc);
blen += n;
}
}
break;
case 's':
case 'p':
format_s:
{
VALUE arg = GETARG();
long len, slen;
if (*p == 'p') arg = rb_inspect(arg);
str = rb_obj_as_string(arg);
if (OBJ_TAINTED(str)) tainted = 1;
len = RSTRING_LEN(str);
rb_str_set_len(result, blen);
if (coderange != ENC_CODERANGE_BROKEN && scanned < blen) {
int cr = coderange;
scanned += rb_str_coderange_scan_restartable(buf+scanned, buf+blen, enc, &cr);
ENC_CODERANGE_SET(result,
(cr == ENC_CODERANGE_UNKNOWN ?
ENC_CODERANGE_BROKEN : (coderange = cr)));
}
enc = rb_enc_check(result, str);
if (flags&(FPREC|FWIDTH)) {
slen = rb_enc_strlen(RSTRING_PTR(str),RSTRING_END(str),enc);
if (slen < 0) {
rb_raise(rb_eArgError, "invalid mbstring sequence");
}
if ((flags&FPREC) && (prec < slen)) {
char *p = rb_enc_nth(RSTRING_PTR(str), RSTRING_END(str),
prec, enc);
slen = prec;
len = p - RSTRING_PTR(str);
}
/* need to adjust multi-byte string pos */
if ((flags&FWIDTH) && (width > slen)) {
width -= (int)slen;
if (!(flags&FMINUS)) {
CHECK(width);
while (width--) {
buf[blen++] = ' ';
}
}
CHECK(len);
memcpy(&buf[blen], RSTRING_PTR(str), len);
RB_GC_GUARD(str);
blen += len;
if (flags&FMINUS) {
CHECK(width);
while (width--) {
buf[blen++] = ' ';
}
}
rb_enc_associate(result, enc);
break;
}
}
PUSH(RSTRING_PTR(str), len);
RB_GC_GUARD(str);
rb_enc_associate(result, enc);
}
break;
case 'd':
case 'i':
case 'o':
case 'x':
case 'X':
case 'b':
case 'B':
case 'u':
{
volatile VALUE val = GETARG();
int valsign;
char nbuf[64], *s;
const char *prefix = 0;
int sign = 0, dots = 0;
char sc = 0;
long v = 0;
int base, bignum = 0;
int len;
switch (*p) {
case 'd':
case 'i':
case 'u':
sign = 1; break;
case 'o':
case 'x':
case 'X':
case 'b':
case 'B':
if (flags&(FPLUS|FSPACE)) sign = 1;
break;
}
if (flags & FSHARP) {
switch (*p) {
case 'o':
prefix = "0"; break;
case 'x':
prefix = "0x"; break;
case 'X':
prefix = "0X"; break;
case 'b':
prefix = "0b"; break;
case 'B':
prefix = "0B"; break;
}
}
bin_retry:
switch (TYPE(val)) {
case T_FLOAT:
if (FIXABLE(RFLOAT_VALUE(val))) {
val = LONG2FIX((long)RFLOAT_VALUE(val));
goto bin_retry;
}
val = rb_dbl2big(RFLOAT_VALUE(val));
if (FIXNUM_P(val)) goto bin_retry;
bignum = 1;
break;
case T_STRING:
val = rb_str_to_inum(val, 0, TRUE);
goto bin_retry;
case T_BIGNUM:
bignum = 1;
break;
case T_FIXNUM:
v = FIX2LONG(val);
break;
default:
val = rb_Integer(val);
goto bin_retry;
}
switch (*p) {
case 'o':
base = 8; break;
case 'x':
case 'X':
base = 16; break;
case 'b':
case 'B':
base = 2; break;
case 'u':
case 'd':
case 'i':
default:
base = 10; break;
}
if (base != 10) {
int numbits = ffs(base)-1;
size_t abs_nlz_bits;
size_t numdigits = rb_absint_numwords(val, numbits, &abs_nlz_bits);
long i;
if (INT_MAX-1 < numdigits) /* INT_MAX is used because rb_long2int is used later. */
rb_raise(rb_eArgError, "size too big");
if (sign) {
if (numdigits == 0)
numdigits = 1;
tmp = rb_str_new(NULL, numdigits);
valsign = rb_integer_pack(val, RSTRING_PTR(tmp), RSTRING_LEN(tmp),
1, CHAR_BIT-numbits, INTEGER_PACK_BIG_ENDIAN);
for (i = 0; i < RSTRING_LEN(tmp); i++)
RSTRING_PTR(tmp)[i] = ruby_digitmap[((unsigned char *)RSTRING_PTR(tmp))[i]];
s = RSTRING_PTR(tmp);
if (valsign < 0) {
sc = '-';
width--;
}
else if (flags & FPLUS) {
sc = '+';
width--;
}
else if (flags & FSPACE) {
sc = ' ';
width--;
}
}
else {
/* Following conditional "numdigits++" guarantees the
* most significant digit as
* - '1'(bin), '7'(oct) or 'f'(hex) for negative numbers
* - '0' for zero
* - not '0' for positive numbers.
*
* It also guarantees the most significant two
* digits will not be '11'(bin), '77'(oct), 'ff'(hex)
* or '00'. */
if (numdigits == 0 ||
((abs_nlz_bits != (size_t)(numbits-1) ||
!rb_absint_singlebit_p(val)) &&
(!bignum ? v < 0 : BIGNUM_NEGATIVE_P(val))))
numdigits++;
tmp = rb_str_new(NULL, numdigits);
valsign = rb_integer_pack(val, RSTRING_PTR(tmp), RSTRING_LEN(tmp),
1, CHAR_BIT-numbits, INTEGER_PACK_2COMP | INTEGER_PACK_BIG_ENDIAN);
for (i = 0; i < RSTRING_LEN(tmp); i++)
RSTRING_PTR(tmp)[i] = ruby_digitmap[((unsigned char *)RSTRING_PTR(tmp))[i]];
s = RSTRING_PTR(tmp);
dots = valsign < 0;
}
len = rb_long2int(RSTRING_END(tmp) - s);
}
else if (!bignum) {
valsign = 1;
if (v < 0) {
v = -v;
sc = '-';
width--;
valsign = -1;
}
else if (flags & FPLUS) {
sc = '+';
width--;
}
else if (flags & FSPACE) {
sc = ' ';
width--;
}
snprintf(nbuf, sizeof(nbuf), "%ld", v);
s = nbuf;
len = (int)strlen(s);
}
else {
tmp = rb_big2str(val, 10);
s = RSTRING_PTR(tmp);
valsign = 1;
if (s[0] == '-') {
s++;
sc = '-';
width--;
valsign = -1;
}
else if (flags & FPLUS) {
sc = '+';
width--;
}
else if (flags & FSPACE) {
sc = ' ';
width--;
}
len = rb_long2int(RSTRING_END(tmp) - s);
}
if (dots) {
prec -= 2;
width -= 2;
}
if (*p == 'X') {
char *pp = s;
int c;
while ((c = (int)(unsigned char)*pp) != 0) {
*pp = rb_enc_toupper(c, enc);
pp++;
}
}
if (prefix && !prefix[1]) { /* octal */
if (dots) {
prefix = 0;
}
else if (len == 1 && *s == '0') {
len = 0;
if (flags & FPREC) prec--;
}
else if ((flags & FPREC) && (prec > len)) {
prefix = 0;
}
}
else if (len == 1 && *s == '0') {
prefix = 0;
}
if (prefix) {
width -= (int)strlen(prefix);
}
if ((flags & (FZERO|FMINUS|FPREC)) == FZERO) {
prec = width;
width = 0;
}
else {
if (prec < len) {
if (!prefix && prec == 0 && len == 1 && *s == '0') len = 0;
prec = len;
}
width -= prec;
}
if (!(flags&FMINUS)) {
CHECK(width);
while (width-- > 0) {
buf[blen++] = ' ';
}
}
if (sc) PUSH(&sc, 1);
if (prefix) {
int plen = (int)strlen(prefix);
PUSH(prefix, plen);
}
CHECK(prec - len);
if (dots) PUSH("..", 2);
if (!sign && valsign < 0) {
char c = sign_bits(base, p);
while (len < prec--) {
buf[blen++] = c;
}
}
else if ((flags & (FMINUS|FPREC)) != FMINUS) {
while (len < prec--) {
buf[blen++] = '0';
}
}
PUSH(s, len);
RB_GC_GUARD(tmp);
CHECK(width);
while (width-- > 0) {
buf[blen++] = ' ';
}
}
break;
case 'f':
case 'g':
case 'G':
case 'e':
case 'E':
case 'a':
case 'A':
{
VALUE val = GETARG();
double fval;
int i, need = 6;
char fbuf[32];
fval = RFLOAT_VALUE(rb_Float(val));
if (isnan(fval) || isinf(fval)) {
const char *expr;
if (isnan(fval)) {
expr = "NaN";
}
else {
expr = "Inf";
}
need = (int)strlen(expr);
if ((!isnan(fval) && fval < 0.0) || (flags & FPLUS))
need++;
if ((flags & FWIDTH) && need < width)
need = width;
CHECK(need + 1);
snprintf(&buf[blen], need + 1, "%*s", need, "");
if (flags & FMINUS) {
if (!isnan(fval) && fval < 0.0)
buf[blen++] = '-';
else if (flags & FPLUS)
buf[blen++] = '+';
else if (flags & FSPACE)
blen++;
memcpy(&buf[blen], expr, strlen(expr));
}
else {
if (!isnan(fval) && fval < 0.0)
buf[blen + need - strlen(expr) - 1] = '-';
else if (flags & FPLUS)
buf[blen + need - strlen(expr) - 1] = '+';
else if ((flags & FSPACE) && need > width)
blen++;
memcpy(&buf[blen + need - strlen(expr)], expr,
strlen(expr));
}
blen += strlen(&buf[blen]);
break;
}
fmt_setup(fbuf, sizeof(fbuf), *p, flags, width, prec);
need = 0;
if (*p != 'e' && *p != 'E') {
i = INT_MIN;
frexp(fval, &i);
if (i > 0)
need = BIT_DIGITS(i);
}
need += (flags&FPREC) ? prec : 6;
if ((flags&FWIDTH) && need < width)
need = width;
need += 20;
CHECK(need);
snprintf(&buf[blen], need, fbuf, fval);
blen += strlen(&buf[blen]);
}
break;
}
flags = FNONE;
}
sprint_exit:
RB_GC_GUARD(fmt);
/* XXX - We cannot validate the number of arguments if (digit)$ style used.
*/
if (posarg >= 0 && nextarg < argc) {
const char *mesg = "too many arguments for format string";
if (RTEST(ruby_debug)) rb_raise(rb_eArgError, "%s", mesg);
if (RTEST(ruby_verbose)) rb_warn("%s", mesg);
}
rb_str_resize(result, blen);
if (tainted) OBJ_TAINT(result);
return result;
}
static void
fmt_setup(char *buf, size_t size, int c, int flags, int width, int prec)
{
char *end = buf + size;
*buf++ = '%';
if (flags & FSHARP) *buf++ = '#';
if (flags & FPLUS) *buf++ = '+';
if (flags & FMINUS) *buf++ = '-';
if (flags & FZERO) *buf++ = '0';
if (flags & FSPACE) *buf++ = ' ';
if (flags & FWIDTH) {
snprintf(buf, end - buf, "%d", width);
buf += strlen(buf);
}
if (flags & FPREC) {
snprintf(buf, end - buf, ".%d", prec);
buf += strlen(buf);
}
*buf++ = c;
*buf = '\0';
}
#undef FILE
#define FILE rb_printf_buffer
#define __sbuf rb_printf_sbuf
#define __sFILE rb_printf_sfile
#undef feof
#undef ferror
#undef clearerr
#undef fileno
#if SIZEOF_LONG < SIZEOF_VOIDP
# if SIZEOF_LONG_LONG == SIZEOF_VOIDP
# define _HAVE_SANE_QUAD_
# define _HAVE_LLP64_
# define quad_t LONG_LONG
# define u_quad_t unsigned LONG_LONG
# endif
#elif SIZEOF_LONG != SIZEOF_LONG_LONG && SIZEOF_LONG_LONG == 8
# define _HAVE_SANE_QUAD_
# define quad_t LONG_LONG
# define u_quad_t unsigned LONG_LONG
#endif
#define FLOATING_POINT 1
#define BSD__dtoa ruby_dtoa
#define BSD__hdtoa ruby_hdtoa
#include "vsnprintf.c"
typedef struct {
rb_printf_buffer base;
volatile VALUE value;
} rb_printf_buffer_extra;
static int
ruby__sfvwrite(register rb_printf_buffer *fp, register struct __suio *uio)
{
struct __siov *iov;
VALUE result = (VALUE)fp->_bf._base;
char *buf = (char*)fp->_p;
size_t len, n;
size_t blen = buf - RSTRING_PTR(result), bsiz = fp->_w;
if (RBASIC(result)->klass) {
rb_raise(rb_eRuntimeError, "rb_vsprintf reentered");
}
if ((len = uio->uio_resid) == 0)
return 0;
CHECK(len);
buf += blen;
fp->_w = bsiz;
for (iov = uio->uio_iov; len > 0; ++iov) {
MEMCPY(buf, iov->iov_base, char, n = iov->iov_len);
buf += n;
len -= n;
}
fp->_p = (unsigned char *)buf;
rb_str_set_len(result, buf - RSTRING_PTR(result));
return 0;
}
static char *
ruby__sfvextra(rb_printf_buffer *fp, size_t valsize, void *valp, long *sz, int sign)
{
VALUE value, result = (VALUE)fp->_bf._base;
rb_encoding *enc;
char *cp;
if (valsize != sizeof(VALUE)) return 0;
value = *(VALUE *)valp;
if (RBASIC(result)->klass) {
rb_raise(rb_eRuntimeError, "rb_vsprintf reentered");
}
if (sign == '+') {
value = rb_inspect(value);
}
else {
value = rb_obj_as_string(value);
if (sign == ' ') value = QUOTE(value);
}
enc = rb_enc_compatible(result, value);
if (enc) {
rb_enc_associate(result, enc);
}
else {
enc = rb_enc_get(result);
value = rb_str_conv_enc_opts(value, rb_enc_get(value), enc,
ECONV_UNDEF_REPLACE|ECONV_INVALID_REPLACE,
Qnil);
*(volatile VALUE *)valp = value;
}
StringValueCStr(value);
RSTRING_GETMEM(value, cp, *sz);
((rb_printf_buffer_extra *)fp)->value = value;
OBJ_INFECT(result, value);
return cp;
}
VALUE
rb_enc_vsprintf(rb_encoding *enc, const char *fmt, va_list ap)
{
rb_printf_buffer_extra buffer;
#define f buffer.base
VALUE result;
f._flags = __SWR | __SSTR;
f._bf._size = 0;
f._w = 120;
result = rb_str_buf_new(f._w);
if (enc) {
if (rb_enc_mbminlen(enc) > 1) {
/* the implementation deeply depends on plain char */
rb_raise(rb_eArgError, "cannot construct wchar_t based encoding string: %s",
rb_enc_name(enc));
}
rb_enc_associate(result, enc);
}
f._bf._base = (unsigned char *)result;
f._p = (unsigned char *)RSTRING_PTR(result);
RBASIC_CLEAR_CLASS(result);
f.vwrite = ruby__sfvwrite;
f.vextra = ruby__sfvextra;
buffer.value = 0;
BSD_vfprintf(&f, fmt, ap);
RBASIC_SET_CLASS_RAW(result, rb_cString);
rb_str_resize(result, (char *)f._p - RSTRING_PTR(result));
#undef f
return result;
}
VALUE
rb_enc_sprintf(rb_encoding *enc, const char *format, ...)
{
VALUE result;
va_list ap;
va_start(ap, format);
result = rb_enc_vsprintf(enc, format, ap);
va_end(ap);
return result;
}
VALUE
rb_vsprintf(const char *fmt, va_list ap)
{
return rb_enc_vsprintf(NULL, fmt, ap);
}
VALUE
rb_sprintf(const char *format, ...)
{
VALUE result;
va_list ap;
va_start(ap, format);
result = rb_vsprintf(format, ap);
va_end(ap);
return result;
}
VALUE
rb_str_vcatf(VALUE str, const char *fmt, va_list ap)
{
rb_printf_buffer_extra buffer;
#define f buffer.base
VALUE klass;
StringValue(str);
rb_str_modify(str);
f._flags = __SWR | __SSTR;
f._bf._size = 0;
f._w = rb_str_capacity(str);
f._bf._base = (unsigned char *)str;
f._p = (unsigned char *)RSTRING_END(str);
klass = RBASIC(str)->klass;
RBASIC_CLEAR_CLASS(str);
f.vwrite = ruby__sfvwrite;
f.vextra = ruby__sfvextra;
buffer.value = 0;
BSD_vfprintf(&f, fmt, ap);
RBASIC_SET_CLASS_RAW(str, klass);
rb_str_resize(str, (char *)f._p - RSTRING_PTR(str));
#undef f
return str;
}
VALUE
rb_str_catf(VALUE str, const char *format, ...)
{
va_list ap;
va_start(ap, format);
str = rb_str_vcatf(str, format, ap);
va_end(ap);
return str;
}