mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 aaab3b1de9
			
		
	
	
		aaab3b1de9
		
	
	
	
	
		
			
			Previously, the result was incorrect: 4.remainder(-Float::INFINITY) Before: => NaN After: => 4 4.2.remainder(-Float::INFINITY) Before: => NaN After: => 4.2 Fixes [Bug #6120]
		
			
				
	
	
		
			5592 lines
		
	
	
	
		
			128 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5592 lines
		
	
	
	
		
			128 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   numeric.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Fri Aug 13 18:33:09 JST 1993
 | |
| 
 | |
|   Copyright (C) 1993-2007 Yukihiro Matsumoto
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| #include "ruby/internal/config.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <ctype.h>
 | |
| #include <math.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| #ifdef HAVE_FLOAT_H
 | |
| #include <float.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_IEEEFP_H
 | |
| #include <ieeefp.h>
 | |
| #endif
 | |
| 
 | |
| #include "id.h"
 | |
| #include "internal.h"
 | |
| #include "internal/array.h"
 | |
| #include "internal/compilers.h"
 | |
| #include "internal/complex.h"
 | |
| #include "internal/enumerator.h"
 | |
| #include "internal/gc.h"
 | |
| #include "internal/hash.h"
 | |
| #include "internal/numeric.h"
 | |
| #include "internal/object.h"
 | |
| #include "internal/rational.h"
 | |
| #include "internal/util.h"
 | |
| #include "internal/variable.h"
 | |
| #include "ruby/encoding.h"
 | |
| #include "ruby/util.h"
 | |
| #include "builtin.h"
 | |
| 
 | |
| /* use IEEE 64bit values if not defined */
 | |
| #ifndef FLT_RADIX
 | |
| #define FLT_RADIX 2
 | |
| #endif
 | |
| #ifndef DBL_MIN
 | |
| #define DBL_MIN 2.2250738585072014e-308
 | |
| #endif
 | |
| #ifndef DBL_MAX
 | |
| #define DBL_MAX 1.7976931348623157e+308
 | |
| #endif
 | |
| #ifndef DBL_MIN_EXP
 | |
| #define DBL_MIN_EXP (-1021)
 | |
| #endif
 | |
| #ifndef DBL_MAX_EXP
 | |
| #define DBL_MAX_EXP 1024
 | |
| #endif
 | |
| #ifndef DBL_MIN_10_EXP
 | |
| #define DBL_MIN_10_EXP (-307)
 | |
| #endif
 | |
| #ifndef DBL_MAX_10_EXP
 | |
| #define DBL_MAX_10_EXP 308
 | |
| #endif
 | |
| #ifndef DBL_DIG
 | |
| #define DBL_DIG 15
 | |
| #endif
 | |
| #ifndef DBL_MANT_DIG
 | |
| #define DBL_MANT_DIG 53
 | |
| #endif
 | |
| #ifndef DBL_EPSILON
 | |
| #define DBL_EPSILON 2.2204460492503131e-16
 | |
| #endif
 | |
| 
 | |
| #ifndef USE_RB_INFINITY
 | |
| #elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
 | |
| const union bytesequence4_or_float rb_infinity = {{0x00, 0x00, 0x80, 0x7f}};
 | |
| #else
 | |
| const union bytesequence4_or_float rb_infinity = {{0x7f, 0x80, 0x00, 0x00}};
 | |
| #endif
 | |
| 
 | |
| #ifndef USE_RB_NAN
 | |
| #elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
 | |
| const union bytesequence4_or_float rb_nan = {{0x00, 0x00, 0xc0, 0x7f}};
 | |
| #else
 | |
| const union bytesequence4_or_float rb_nan = {{0x7f, 0xc0, 0x00, 0x00}};
 | |
| #endif
 | |
| 
 | |
| #ifndef HAVE_ROUND
 | |
| double
 | |
| round(double x)
 | |
| {
 | |
|     double f;
 | |
| 
 | |
|     if (x > 0.0) {
 | |
| 	f = floor(x);
 | |
| 	x = f + (x - f >= 0.5);
 | |
|     }
 | |
|     else if (x < 0.0) {
 | |
| 	f = ceil(x);
 | |
| 	x = f - (f - x >= 0.5);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static double
 | |
| round_half_up(double x, double s)
 | |
| {
 | |
|     double f, xs = x * s;
 | |
| 
 | |
|     f = round(xs);
 | |
|     if (s == 1.0) return f;
 | |
|     if (x > 0) {
 | |
| 	if ((double)((f + 0.5) / s) <= x) f += 1;
 | |
| 	x = f;
 | |
|     }
 | |
|     else {
 | |
| 	if ((double)((f - 0.5) / s) >= x) f -= 1;
 | |
| 	x = f;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static double
 | |
| round_half_down(double x, double s)
 | |
| {
 | |
|     double f, xs = x * s;
 | |
| 
 | |
|     f = round(xs);
 | |
|     if (x > 0) {
 | |
| 	if ((double)((f - 0.5) / s) >= x) f -= 1;
 | |
| 	x = f;
 | |
|     }
 | |
|     else {
 | |
| 	if ((double)((f + 0.5) / s) <= x) f += 1;
 | |
| 	x = f;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static double
 | |
| round_half_even(double x, double s)
 | |
| {
 | |
|     double f, d, xs = x * s;
 | |
| 
 | |
|     if (x > 0.0) {
 | |
| 	f = floor(xs);
 | |
| 	d = xs - f;
 | |
| 	if (d > 0.5)
 | |
| 	    d = 1.0;
 | |
| 	else if (d == 0.5 || ((double)((f + 0.5) / s) <= x))
 | |
| 	    d = fmod(f, 2.0);
 | |
| 	else
 | |
| 	    d = 0.0;
 | |
| 	x = f + d;
 | |
|     }
 | |
|     else if (x < 0.0) {
 | |
| 	f = ceil(xs);
 | |
| 	d = f - xs;
 | |
| 	if (d > 0.5)
 | |
| 	    d = 1.0;
 | |
| 	else if (d == 0.5 || ((double)((f - 0.5) / s) >= x))
 | |
| 	    d = fmod(-f, 2.0);
 | |
| 	else
 | |
| 	    d = 0.0;
 | |
| 	x = f - d;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static VALUE fix_lshift(long, unsigned long);
 | |
| static VALUE fix_rshift(long, unsigned long);
 | |
| static VALUE int_pow(long x, unsigned long y);
 | |
| static VALUE rb_int_floor(VALUE num, int ndigits);
 | |
| static VALUE rb_int_ceil(VALUE num, int ndigits);
 | |
| static VALUE flo_to_i(VALUE num);
 | |
| static int float_round_overflow(int ndigits, int binexp);
 | |
| static int float_round_underflow(int ndigits, int binexp);
 | |
| 
 | |
| static ID id_coerce;
 | |
| #define id_div idDiv
 | |
| #define id_divmod idDivmod
 | |
| #define id_to_i idTo_i
 | |
| #define id_eq  idEq
 | |
| #define id_cmp idCmp
 | |
| 
 | |
| VALUE rb_cNumeric;
 | |
| VALUE rb_cFloat;
 | |
| VALUE rb_cInteger;
 | |
| 
 | |
| VALUE rb_eZeroDivError;
 | |
| VALUE rb_eFloatDomainError;
 | |
| 
 | |
| static ID id_to, id_by;
 | |
| 
 | |
| void
 | |
| rb_num_zerodiv(void)
 | |
| {
 | |
|     rb_raise(rb_eZeroDivError, "divided by 0");
 | |
| }
 | |
| 
 | |
| enum ruby_num_rounding_mode
 | |
| rb_num_get_rounding_option(VALUE opts)
 | |
| {
 | |
|     static ID round_kwds[1];
 | |
|     VALUE rounding;
 | |
|     VALUE str;
 | |
|     const char *s;
 | |
| 
 | |
|     if (!NIL_P(opts)) {
 | |
| 	if (!round_kwds[0]) {
 | |
| 	    round_kwds[0] = rb_intern_const("half");
 | |
| 	}
 | |
| 	if (!rb_get_kwargs(opts, round_kwds, 0, 1, &rounding)) goto noopt;
 | |
| 	if (SYMBOL_P(rounding)) {
 | |
| 	    str = rb_sym2str(rounding);
 | |
| 	}
 | |
| 	else if (NIL_P(rounding)) {
 | |
| 	    goto noopt;
 | |
| 	}
 | |
| 	else if (!RB_TYPE_P(str = rounding, T_STRING)) {
 | |
| 	    str = rb_check_string_type(rounding);
 | |
| 	    if (NIL_P(str)) goto invalid;
 | |
| 	}
 | |
|         rb_must_asciicompat(str);
 | |
| 	s = RSTRING_PTR(str);
 | |
| 	switch (RSTRING_LEN(str)) {
 | |
| 	  case 2:
 | |
| 	    if (rb_memcicmp(s, "up", 2) == 0)
 | |
| 		return RUBY_NUM_ROUND_HALF_UP;
 | |
| 	    break;
 | |
| 	  case 4:
 | |
| 	    if (rb_memcicmp(s, "even", 4) == 0)
 | |
| 		return RUBY_NUM_ROUND_HALF_EVEN;
 | |
| 	    if (strncasecmp(s, "down", 4) == 0)
 | |
| 		return RUBY_NUM_ROUND_HALF_DOWN;
 | |
| 	    break;
 | |
| 	}
 | |
|       invalid:
 | |
| 	rb_raise(rb_eArgError, "invalid rounding mode: % "PRIsVALUE, rounding);
 | |
|     }
 | |
|   noopt:
 | |
|     return RUBY_NUM_ROUND_DEFAULT;
 | |
| }
 | |
| 
 | |
| /* experimental API */
 | |
| int
 | |
| rb_num_to_uint(VALUE val, unsigned int *ret)
 | |
| {
 | |
| #define NUMERR_TYPE     1
 | |
| #define NUMERR_NEGATIVE 2
 | |
| #define NUMERR_TOOLARGE 3
 | |
|     if (FIXNUM_P(val)) {
 | |
| 	long v = FIX2LONG(val);
 | |
| #if SIZEOF_INT < SIZEOF_LONG
 | |
| 	if (v > (long)UINT_MAX) return NUMERR_TOOLARGE;
 | |
| #endif
 | |
| 	if (v < 0) return NUMERR_NEGATIVE;
 | |
| 	*ret = (unsigned int)v;
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     if (RB_TYPE_P(val, T_BIGNUM)) {
 | |
| 	if (BIGNUM_NEGATIVE_P(val)) return NUMERR_NEGATIVE;
 | |
| #if SIZEOF_INT < SIZEOF_LONG
 | |
| 	/* long is 64bit */
 | |
| 	return NUMERR_TOOLARGE;
 | |
| #else
 | |
| 	/* long is 32bit */
 | |
| 	if (rb_absint_size(val, NULL) > sizeof(int)) return NUMERR_TOOLARGE;
 | |
| 	*ret = (unsigned int)rb_big2ulong((VALUE)val);
 | |
| 	return 0;
 | |
| #endif
 | |
|     }
 | |
|     return NUMERR_TYPE;
 | |
| }
 | |
| 
 | |
| #define method_basic_p(klass) rb_method_basic_definition_p(klass, mid)
 | |
| 
 | |
| static inline int
 | |
| int_pos_p(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	return FIXNUM_POSITIVE_P(num);
 | |
|     }
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	return BIGNUM_POSITIVE_P(num);
 | |
|     }
 | |
|     rb_raise(rb_eTypeError, "not an Integer");
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| int_neg_p(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	return FIXNUM_NEGATIVE_P(num);
 | |
|     }
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	return BIGNUM_NEGATIVE_P(num);
 | |
|     }
 | |
|     rb_raise(rb_eTypeError, "not an Integer");
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_int_positive_p(VALUE num)
 | |
| {
 | |
|     return int_pos_p(num);
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_int_negative_p(VALUE num)
 | |
| {
 | |
|     return int_neg_p(num);
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_num_negative_p(VALUE num)
 | |
| {
 | |
|     return rb_num_negative_int_p(num);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| num_funcall_op_0(VALUE x, VALUE arg, int recursive)
 | |
| {
 | |
|     ID func = (ID)arg;
 | |
|     if (recursive) {
 | |
| 	const char *name = rb_id2name(func);
 | |
| 	if (ISALNUM(name[0])) {
 | |
| 	    rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE,
 | |
| 			  x, ID2SYM(func));
 | |
| 	}
 | |
| 	else if (name[0] && name[1] == '@' && !name[2]) {
 | |
| 	    rb_name_error(func, "%c%"PRIsVALUE,
 | |
| 			  name[0], x);
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE,
 | |
| 			  ID2SYM(func), x);
 | |
| 	}
 | |
|     }
 | |
|     return rb_funcallv(x, func, 0, 0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| num_funcall0(VALUE x, ID func)
 | |
| {
 | |
|     return rb_exec_recursive(num_funcall_op_0, x, (VALUE)func);
 | |
| }
 | |
| 
 | |
| NORETURN(static void num_funcall_op_1_recursion(VALUE x, ID func, VALUE y));
 | |
| 
 | |
| static void
 | |
| num_funcall_op_1_recursion(VALUE x, ID func, VALUE y)
 | |
| {
 | |
|     const char *name = rb_id2name(func);
 | |
|     if (ISALNUM(name[0])) {
 | |
| 	rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE"(%"PRIsVALUE")",
 | |
| 		      x, ID2SYM(func), y);
 | |
|     }
 | |
|     else {
 | |
| 	rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE"%"PRIsVALUE,
 | |
| 		      x, ID2SYM(func), y);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| num_funcall_op_1(VALUE y, VALUE arg, int recursive)
 | |
| {
 | |
|     ID func = (ID)((VALUE *)arg)[0];
 | |
|     VALUE x = ((VALUE *)arg)[1];
 | |
|     if (recursive) {
 | |
| 	num_funcall_op_1_recursion(x, func, y);
 | |
|     }
 | |
|     return rb_funcall(x, func, 1, y);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| num_funcall1(VALUE x, ID func, VALUE y)
 | |
| {
 | |
|     VALUE args[2];
 | |
|     args[0] = (VALUE)func;
 | |
|     args[1] = x;
 | |
|     return rb_exec_recursive_paired(num_funcall_op_1, y, x, (VALUE)args);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.coerce(numeric)  ->  array
 | |
|  *
 | |
|  *  If +numeric+ is the same type as +num+, returns an array
 | |
|  *  <code>[numeric, num]</code>. Otherwise, returns an array with both
 | |
|  *  +numeric+ and +num+ represented as Float objects.
 | |
|  *
 | |
|  *  This coercion mechanism is used by Ruby to handle mixed-type numeric
 | |
|  *  operations: it is intended to find a compatible common type between the two
 | |
|  *  operands of the operator.
 | |
|  *
 | |
|  *     1.coerce(2.5)   #=> [2.5, 1.0]
 | |
|  *     1.2.coerce(3)   #=> [3.0, 1.2]
 | |
|  *     1.coerce(2)     #=> [2, 1]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_coerce(VALUE x, VALUE y)
 | |
| {
 | |
|     if (CLASS_OF(x) == CLASS_OF(y))
 | |
| 	return rb_assoc_new(y, x);
 | |
|     x = rb_Float(x);
 | |
|     y = rb_Float(y);
 | |
|     return rb_assoc_new(y, x);
 | |
| }
 | |
| 
 | |
| NORETURN(static void coerce_failed(VALUE x, VALUE y));
 | |
| static void
 | |
| coerce_failed(VALUE x, VALUE y)
 | |
| {
 | |
|     if (SPECIAL_CONST_P(y) || SYMBOL_P(y) || RB_FLOAT_TYPE_P(y)) {
 | |
| 	y = rb_inspect(y);
 | |
|     }
 | |
|     else {
 | |
| 	y = rb_obj_class(y);
 | |
|     }
 | |
|     rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
 | |
| 	     y, rb_obj_class(x));
 | |
| }
 | |
| 
 | |
| static int
 | |
| do_coerce(VALUE *x, VALUE *y, int err)
 | |
| {
 | |
|     VALUE ary = rb_check_funcall(*y, id_coerce, 1, x);
 | |
|     if (ary == Qundef) {
 | |
| 	if (err) {
 | |
| 	    coerce_failed(*x, *y);
 | |
| 	}
 | |
| 	return FALSE;
 | |
|     }
 | |
|     if (!err && NIL_P(ary)) {
 | |
| 	return FALSE;
 | |
|     }
 | |
|     if (!RB_TYPE_P(ary, T_ARRAY) || RARRAY_LEN(ary) != 2) {
 | |
| 	rb_raise(rb_eTypeError, "coerce must return [x, y]");
 | |
|     }
 | |
| 
 | |
|     *x = RARRAY_AREF(ary, 0);
 | |
|     *y = RARRAY_AREF(ary, 1);
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_num_coerce_bin(VALUE x, VALUE y, ID func)
 | |
| {
 | |
|     do_coerce(&x, &y, TRUE);
 | |
|     return rb_funcall(x, func, 1, y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_num_coerce_cmp(VALUE x, VALUE y, ID func)
 | |
| {
 | |
|     if (do_coerce(&x, &y, FALSE))
 | |
| 	return rb_funcall(x, func, 1, y);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ensure_cmp(VALUE c, VALUE x, VALUE y)
 | |
| {
 | |
|     if (NIL_P(c)) rb_cmperr(x, y);
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_num_coerce_relop(VALUE x, VALUE y, ID func)
 | |
| {
 | |
|     VALUE x0 = x, y0 = y;
 | |
| 
 | |
|     if (!do_coerce(&x, &y, FALSE)) {
 | |
| 	rb_cmperr(x0, y0);
 | |
| 	UNREACHABLE_RETURN(Qnil);
 | |
|     }
 | |
|     return ensure_cmp(rb_funcall(x, func, 1, y), x0, y0);
 | |
| }
 | |
| 
 | |
| NORETURN(static VALUE num_sadded(VALUE x, VALUE name));
 | |
| 
 | |
| /*
 | |
|  * :nodoc:
 | |
|  *
 | |
|  * Trap attempts to add methods to Numeric objects. Always raises a TypeError.
 | |
|  *
 | |
|  * Numerics should be values; singleton_methods should not be added to them.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_sadded(VALUE x, VALUE name)
 | |
| {
 | |
|     ID mid = rb_to_id(name);
 | |
|     /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
 | |
|     rb_remove_method_id(rb_singleton_class(x), mid);
 | |
|     rb_raise(rb_eTypeError,
 | |
| 	     "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
 | |
| 	     rb_id2str(mid),
 | |
| 	     rb_obj_class(x));
 | |
| 
 | |
|     UNREACHABLE_RETURN(Qnil);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.clone(freeze: true)  ->  num
 | |
|  *
 | |
|  *  Returns the receiver.  +freeze+ cannot be +false+.
 | |
|  */
 | |
| static VALUE
 | |
| num_clone(int argc, VALUE *argv, VALUE x)
 | |
| {
 | |
|     return rb_immutable_obj_clone(argc, argv, x);
 | |
| }
 | |
| #else
 | |
| # define num_clone rb_immutable_obj_clone
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.dup  ->  num
 | |
|  *
 | |
|  *  Returns the receiver.
 | |
|  */
 | |
| static VALUE
 | |
| num_dup(VALUE x)
 | |
| {
 | |
|     return x;
 | |
| }
 | |
| #else
 | |
| # define num_dup num_uplus
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     +num  ->  num
 | |
|  *
 | |
|  *  Unary Plus---Returns the receiver.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_uplus(VALUE num)
 | |
| {
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.i  ->  Complex(0, num)
 | |
|  *
 | |
|  *  Returns the corresponding imaginary number.
 | |
|  *  Not available for complex numbers.
 | |
|  *
 | |
|  *     -42.i  #=> (0-42i)
 | |
|  *     2.0.i  #=> (0+2.0i)
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_imaginary(VALUE num)
 | |
| {
 | |
|     return rb_complex_new(INT2FIX(0), num);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     -num  ->  numeric
 | |
|  *
 | |
|  *  Unary Minus---Returns the receiver, negated.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_uminus(VALUE num)
 | |
| {
 | |
|     VALUE zero;
 | |
| 
 | |
|     zero = INT2FIX(0);
 | |
|     do_coerce(&zero, &num, TRUE);
 | |
| 
 | |
|     return num_funcall1(zero, '-', num);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.fdiv(numeric)  ->  float
 | |
|  *
 | |
|  *  Returns float division.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_fdiv(VALUE x, VALUE y)
 | |
| {
 | |
|     return rb_funcall(rb_Float(x), '/', 1, y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.div(numeric)  ->  integer
 | |
|  *
 | |
|  *  Uses +/+ to perform division, then converts the result to an integer.
 | |
|  *  Numeric does not define the +/+ operator; this is left to subclasses.
 | |
|  *
 | |
|  *  Equivalent to <code>num.divmod(numeric)[0]</code>.
 | |
|  *
 | |
|  *  See Numeric#divmod.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_div(VALUE x, VALUE y)
 | |
| {
 | |
|     if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
 | |
|     return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.modulo(numeric)  ->  real
 | |
|  *
 | |
|  *  <code>x.modulo(y)</code> means <code>x-y*(x/y).floor</code>.
 | |
|  *
 | |
|  *  Equivalent to <code>num.divmod(numeric)[1]</code>.
 | |
|  *
 | |
|  *  See Numeric#divmod.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_modulo(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE q = num_funcall1(x, id_div, y);
 | |
|     return rb_funcall(x, '-', 1,
 | |
| 		      rb_funcall(y, '*', 1, q));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.remainder(numeric)  ->  real
 | |
|  *
 | |
|  *  <code>x.remainder(y)</code> means <code>x-y*(x/y).truncate</code>.
 | |
|  *
 | |
|  *  See Numeric#divmod.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_remainder(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z = num_funcall1(x, '%', y);
 | |
| 
 | |
|     if ((!rb_equal(z, INT2FIX(0))) &&
 | |
| 	((rb_num_negative_int_p(x) &&
 | |
| 	  rb_num_positive_int_p(y)) ||
 | |
| 	 (rb_num_positive_int_p(x) &&
 | |
| 	  rb_num_negative_int_p(y)))) {
 | |
|         if (RB_TYPE_P(y, T_FLOAT)) {
 | |
|             if (isinf(RFLOAT_VALUE(y))) {
 | |
|                 return x;
 | |
|             }
 | |
|         }
 | |
| 	return rb_funcall(z, '-', 1, y);
 | |
|     }
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.divmod(numeric)  ->  array
 | |
|  *
 | |
|  *  Returns an array containing the quotient and modulus obtained by dividing
 | |
|  *  +num+ by +numeric+.
 | |
|  *
 | |
|  *  If <code>q, r = x.divmod(y)</code>, then
 | |
|  *
 | |
|  *      q = floor(x/y)
 | |
|  *      x = q*y + r
 | |
|  *
 | |
|  *  The quotient is rounded toward negative infinity, as shown in the
 | |
|  *  following table:
 | |
|  *
 | |
|  *     a    |  b  |  a.divmod(b)  |   a/b   | a.modulo(b) | a.remainder(b)
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *     13   |  4  |   3,    1     |   3     |    1        |     1
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *     13   | -4  |  -4,   -3     |  -4     |   -3        |     1
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *    -13   |  4  |  -4,    3     |  -4     |    3        |    -1
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *    -13   | -4  |   3,   -1     |   3     |   -1        |    -1
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *     11.5 |  4  |   2,    3.5   |   2.875 |    3.5      |     3.5
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *     11.5 | -4  |  -3,   -0.5   |  -2.875 |   -0.5      |     3.5
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *    -11.5 |  4  |  -3,    0.5   |  -2.875 |    0.5      |    -3.5
 | |
|  *    ------+-----+---------------+---------+-------------+---------------
 | |
|  *    -11.5 | -4  |   2,   -3.5   |   2.875 |   -3.5      |    -3.5
 | |
|  *
 | |
|  *
 | |
|  *  Examples
 | |
|  *
 | |
|  *     11.divmod(3)        #=> [3, 2]
 | |
|  *     11.divmod(-3)       #=> [-4, -1]
 | |
|  *     11.divmod(3.5)      #=> [3, 0.5]
 | |
|  *     (-11).divmod(3.5)   #=> [-4, 3.0]
 | |
|  *     11.5.divmod(3.5)    #=> [3, 1.0]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_divmod(VALUE x, VALUE y)
 | |
| {
 | |
|     return rb_assoc_new(num_div(x, y), num_modulo(x, y));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.abs        ->  numeric
 | |
|  *     num.magnitude  ->  numeric
 | |
|  *
 | |
|  *  Returns the absolute value of +num+.
 | |
|  *
 | |
|  *     12.abs         #=> 12
 | |
|  *     (-34.56).abs   #=> 34.56
 | |
|  *     -34.56.abs     #=> 34.56
 | |
|  *
 | |
|  *  Numeric#magnitude is an alias for Numeric#abs.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_abs(VALUE num)
 | |
| {
 | |
|     if (rb_num_negative_int_p(num)) {
 | |
| 	return num_funcall0(num, idUMinus);
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.zero?  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ if +num+ has a zero value.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_zero_p(VALUE num)
 | |
| {
 | |
|     if (rb_equal(num, INT2FIX(0))) {
 | |
|         return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_zero_p(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	if (FIXNUM_ZERO_P(num)) {
 | |
| 	    return Qtrue;
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
|         assert(RB_TYPE_P(num, T_BIGNUM));
 | |
| 	if (rb_bigzero_p(num)) {
 | |
| 	    /* this should not happen usually */
 | |
| 	    return Qtrue;
 | |
| 	}
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_zero_p(VALUE num)
 | |
| {
 | |
|     return int_zero_p(num);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.nonzero?  ->  self or nil
 | |
|  *
 | |
|  *  Returns +self+ if +num+ is not zero, +nil+ otherwise.
 | |
|  *
 | |
|  *  This behavior is useful when chaining comparisons:
 | |
|  *
 | |
|  *     a = %w( z Bb bB bb BB a aA Aa AA A )
 | |
|  *     b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
 | |
|  *     b   #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_nonzero_p(VALUE num)
 | |
| {
 | |
|     if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
 | |
| 	return Qnil;
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.to_int  ->  integer
 | |
|  *
 | |
|  *  Invokes the child class's +to_i+ method to convert +num+ to an integer.
 | |
|  *
 | |
|  *      1.0.class          #=> Float
 | |
|  *      1.0.to_int.class   #=> Integer
 | |
|  *      1.0.to_i.class     #=> Integer
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_to_int(VALUE num)
 | |
| {
 | |
|     return num_funcall0(num, id_to_i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.positive?  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ if +num+ is greater than 0.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_positive_p(VALUE num)
 | |
| {
 | |
|     const ID mid = '>';
 | |
| 
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	if (method_basic_p(rb_cInteger))
 | |
| 	    return (SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0) ? Qtrue : Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	if (method_basic_p(rb_cInteger))
 | |
| 	    return BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num) ? Qtrue : Qfalse;
 | |
|     }
 | |
|     return rb_num_compare_with_zero(num, mid);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.negative?  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ if +num+ is less than 0.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_negative_p(VALUE num)
 | |
| {
 | |
|     return rb_num_negative_int_p(num) ? Qtrue : Qfalse;
 | |
| }
 | |
| 
 | |
| 
 | |
| /********************************************************************
 | |
|  *
 | |
|  * Document-class: Float
 | |
|  *
 | |
|  *  Float objects represent inexact real numbers using the native
 | |
|  *  architecture's double-precision floating point representation.
 | |
|  *
 | |
|  *  Floating point has a different arithmetic and is an inexact number.
 | |
|  *  So you should know its esoteric system. See following:
 | |
|  *
 | |
|  *  - https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
 | |
|  *  - https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise
 | |
|  *  - https://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_float_new_in_heap(double d)
 | |
| {
 | |
|     NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0));
 | |
| 
 | |
|     flt->float_value = d;
 | |
|     OBJ_FREEZE((VALUE)flt);
 | |
|     return (VALUE)flt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.to_s  ->  string
 | |
|  *
 | |
|  *  Returns a string containing a representation of +self+.
 | |
|  *  As well as a fixed or exponential form of the +float+,
 | |
|  *  the call may return +NaN+, +Infinity+, and +-Infinity+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_to_s(VALUE flt)
 | |
| {
 | |
|     enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
 | |
|     enum {float_dig = DBL_DIG+1};
 | |
|     char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
 | |
|     double value = RFLOAT_VALUE(flt);
 | |
|     VALUE s;
 | |
|     char *p, *e;
 | |
|     int sign, decpt, digs;
 | |
| 
 | |
|     if (isinf(value)) {
 | |
| 	static const char minf[] = "-Infinity";
 | |
| 	const int pos = (value > 0); /* skip "-" */
 | |
| 	return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
 | |
|     }
 | |
|     else if (isnan(value))
 | |
| 	return rb_usascii_str_new2("NaN");
 | |
| 
 | |
|     p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
 | |
|     s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
 | |
|     if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
 | |
|     memcpy(buf, p, digs);
 | |
|     xfree(p);
 | |
|     if (decpt > 0) {
 | |
| 	if (decpt < digs) {
 | |
| 	    memmove(buf + decpt + 1, buf + decpt, digs - decpt);
 | |
| 	    buf[decpt] = '.';
 | |
| 	    rb_str_cat(s, buf, digs + 1);
 | |
| 	}
 | |
| 	else if (decpt <= DBL_DIG) {
 | |
| 	    long len;
 | |
| 	    char *ptr;
 | |
| 	    rb_str_cat(s, buf, digs);
 | |
| 	    rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
 | |
| 	    ptr = RSTRING_PTR(s) + len;
 | |
| 	    if (decpt > digs) {
 | |
| 		memset(ptr, '0', decpt - digs);
 | |
| 		ptr += decpt - digs;
 | |
| 	    }
 | |
| 	    memcpy(ptr, ".0", 2);
 | |
| 	}
 | |
| 	else {
 | |
| 	    goto exp;
 | |
| 	}
 | |
|     }
 | |
|     else if (decpt > -4) {
 | |
| 	long len;
 | |
| 	char *ptr;
 | |
| 	rb_str_cat(s, "0.", 2);
 | |
| 	rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
 | |
| 	ptr = RSTRING_PTR(s);
 | |
| 	memset(ptr += len, '0', -decpt);
 | |
| 	memcpy(ptr -= decpt, buf, digs);
 | |
|     }
 | |
|     else {
 | |
|         goto exp;
 | |
|     }
 | |
|     return s;
 | |
| 
 | |
|   exp:
 | |
|     if (digs > 1) {
 | |
|         memmove(buf + 2, buf + 1, digs - 1);
 | |
|     }
 | |
|     else {
 | |
|         buf[2] = '0';
 | |
|         digs++;
 | |
|     }
 | |
|     buf[1] = '.';
 | |
|     rb_str_cat(s, buf, digs + 1);
 | |
|     rb_str_catf(s, "e%+03d", decpt - 1);
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.coerce(numeric)  ->  array
 | |
|  *
 | |
|  *  Returns an array with both +numeric+ and +float+ represented as Float
 | |
|  *  objects.
 | |
|  *
 | |
|  *  This is achieved by converting +numeric+ to a Float.
 | |
|  *
 | |
|  *     1.2.coerce(3)       #=> [3.0, 1.2]
 | |
|  *     2.5.coerce(1.1)     #=> [1.1, 2.5]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_coerce(VALUE x, VALUE y)
 | |
| {
 | |
|     return rb_assoc_new(rb_Float(y), x);
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_float_uminus(VALUE flt)
 | |
| {
 | |
|     return DBL2NUM(-RFLOAT_VALUE(flt));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float + other  ->  float
 | |
|  *
 | |
|  * Returns a new Float which is the sum of +float+ and +other+.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_float_plus(VALUE x, VALUE y)
 | |
| {
 | |
|     if (RB_TYPE_P(y, T_FIXNUM)) {
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '+');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float - other  ->  float
 | |
|  *
 | |
|  * Returns a new Float which is the difference of +float+ and +other+.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_float_minus(VALUE x, VALUE y)
 | |
| {
 | |
|     if (RB_TYPE_P(y, T_FIXNUM)) {
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '-');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float * other  ->  float
 | |
|  *
 | |
|  * Returns a new Float which is the product of +float+ and +other+.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_float_mul(VALUE x, VALUE y)
 | |
| {
 | |
|     if (RB_TYPE_P(y, T_FIXNUM)) {
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '*');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static double
 | |
| double_div_double(double x, double y)
 | |
| {
 | |
|     if (LIKELY(y != 0.0)) {
 | |
|         return x / y;
 | |
|     }
 | |
|     else if (x == 0.0) {
 | |
|         return nan("");
 | |
|     }
 | |
|     else {
 | |
|         double z = signbit(y) ? -1.0 : 1.0;
 | |
|         return x * z * HUGE_VAL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_flo_div_flo(VALUE x, VALUE y)
 | |
| {
 | |
|     double num = RFLOAT_VALUE(x);
 | |
|     double den = RFLOAT_VALUE(y);
 | |
|     double ret = double_div_double(num, den);
 | |
|     return DBL2NUM(ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float / other  ->  float
 | |
|  *
 | |
|  * Returns a new Float which is the result of dividing +float+ by +other+.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_float_div(VALUE x, VALUE y)
 | |
| {
 | |
|     double num = RFLOAT_VALUE(x);
 | |
|     double den;
 | |
|     double ret;
 | |
| 
 | |
|     if (RB_TYPE_P(y, T_FIXNUM)) {
 | |
|         den = FIX2LONG(y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
|         den = rb_big2dbl(y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
|         den = RFLOAT_VALUE(y);
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '/');
 | |
|     }
 | |
| 
 | |
|     ret = double_div_double(num, den);
 | |
|     return DBL2NUM(ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.fdiv(numeric)  ->  float
 | |
|  *     float.quo(numeric)   ->  float
 | |
|  *
 | |
|  *  Returns <code>float / numeric</code>, same as Float#/.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_quo(VALUE x, VALUE y)
 | |
| {
 | |
|     return num_funcall1(x, '/', y);
 | |
| }
 | |
| 
 | |
| static void
 | |
| flodivmod(double x, double y, double *divp, double *modp)
 | |
| {
 | |
|     double div, mod;
 | |
| 
 | |
|     if (isnan(y)) {
 | |
| 	/* y is NaN so all results are NaN */
 | |
| 	if (modp) *modp = y;
 | |
| 	if (divp) *divp = y;
 | |
| 	return;
 | |
|     }
 | |
|     if (y == 0.0) rb_num_zerodiv();
 | |
|     if ((x == 0.0) || (isinf(y) && !isinf(x)))
 | |
|         mod = x;
 | |
|     else {
 | |
| #ifdef HAVE_FMOD
 | |
| 	mod = fmod(x, y);
 | |
| #else
 | |
| 	double z;
 | |
| 
 | |
| 	modf(x/y, &z);
 | |
| 	mod = x - z * y;
 | |
| #endif
 | |
|     }
 | |
|     if (isinf(x) && !isinf(y))
 | |
| 	div = x;
 | |
|     else {
 | |
| 	div = (x - mod) / y;
 | |
|         if (modp && divp) div = round(div);
 | |
|     }
 | |
|     if (y*mod < 0) {
 | |
|         mod += y;
 | |
|         div -= 1.0;
 | |
|     }
 | |
|     if (modp) *modp = mod;
 | |
|     if (divp) *divp = div;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the modulo of division of x by y.
 | |
|  * An error will be raised if y == 0.
 | |
|  */
 | |
| 
 | |
| MJIT_FUNC_EXPORTED double
 | |
| ruby_float_mod(double x, double y)
 | |
| {
 | |
|     double mod;
 | |
|     flodivmod(x, y, 0, &mod);
 | |
|     return mod;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float % other        ->  float
 | |
|  *     float.modulo(other)  ->  float
 | |
|  *
 | |
|  *  Returns the modulo after division of +float+ by +other+.
 | |
|  *
 | |
|  *     6543.21.modulo(137)      #=> 104.21000000000004
 | |
|  *     6543.21.modulo(137.24)   #=> 92.92999999999961
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_mod(VALUE x, VALUE y)
 | |
| {
 | |
|     double fy;
 | |
| 
 | |
|     if (RB_TYPE_P(y, T_FIXNUM)) {
 | |
| 	fy = (double)FIX2LONG(y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	fy = rb_big2dbl(y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	fy = RFLOAT_VALUE(y);
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '%');
 | |
|     }
 | |
|     return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| dbl2ival(double d)
 | |
| {
 | |
|     if (FIXABLE(d)) {
 | |
| 	return LONG2FIX((long)d);
 | |
|     }
 | |
|     return rb_dbl2big(d);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.divmod(numeric)  ->  array
 | |
|  *
 | |
|  *  See Numeric#divmod.
 | |
|  *
 | |
|  *     42.0.divmod(6)   #=> [7, 0.0]
 | |
|  *     42.0.divmod(5)   #=> [8, 2.0]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_divmod(VALUE x, VALUE y)
 | |
| {
 | |
|     double fy, div, mod;
 | |
|     volatile VALUE a, b;
 | |
| 
 | |
|     if (RB_TYPE_P(y, T_FIXNUM)) {
 | |
| 	fy = (double)FIX2LONG(y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	fy = rb_big2dbl(y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	fy = RFLOAT_VALUE(y);
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, id_divmod);
 | |
|     }
 | |
|     flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
 | |
|     a = dbl2ival(div);
 | |
|     b = DBL2NUM(mod);
 | |
|     return rb_assoc_new(a, b);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    float ** other  ->  float
 | |
|  *
 | |
|  * Raises +float+ to the power of +other+.
 | |
|  *
 | |
|  *    2.0**3   #=> 8.0
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_float_pow(VALUE x, VALUE y)
 | |
| {
 | |
|     double dx, dy;
 | |
|     if (y == INT2FIX(2)) {
 | |
| 	dx = RFLOAT_VALUE(x);
 | |
|         return DBL2NUM(dx * dx);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FIXNUM)) {
 | |
| 	dx = RFLOAT_VALUE(x);
 | |
| 	dy = (double)FIX2LONG(y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	dx = RFLOAT_VALUE(x);
 | |
| 	dy = rb_big2dbl(y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	dx = RFLOAT_VALUE(x);
 | |
| 	dy = RFLOAT_VALUE(y);
 | |
| 	if (dx < 0 && dy != round(dy))
 | |
|             return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, idPow);
 | |
|     }
 | |
|     return DBL2NUM(pow(dx, dy));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.eql?(numeric)  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ if +num+ and +numeric+ are the same type and have equal
 | |
|  *  values.  Contrast this with Numeric#==, which performs type conversions.
 | |
|  *
 | |
|  *     1 == 1.0        #=> true
 | |
|  *     1.eql?(1.0)     #=> false
 | |
|  *     1.0.eql?(1.0)   #=> true
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_eql(VALUE x, VALUE y)
 | |
| {
 | |
|     if (TYPE(x) != TYPE(y)) return Qfalse;
 | |
| 
 | |
|     if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_eql(x, y);
 | |
|     }
 | |
| 
 | |
|     return rb_equal(x, y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     number <=> other  ->  0 or nil
 | |
|  *
 | |
|  *  Returns zero if +number+ equals +other+, otherwise returns +nil+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     if (x == y) return INT2FIX(0);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| num_equal(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE result;
 | |
|     if (x == y) return Qtrue;
 | |
|     result = num_funcall1(y, id_eq, x);
 | |
|     if (RTEST(result)) return Qtrue;
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float == obj  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ only if +obj+ has the same value as +float+.
 | |
|  *  Contrast this with Float#eql?, which requires +obj+ to be a Float.
 | |
|  *
 | |
|  *     1.0 == 1   #=> true
 | |
|  *
 | |
|  *  The result of <code>NaN == NaN</code> is undefined,
 | |
|  *  so an implementation-dependent value is returned.
 | |
|  */
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_float_equal(VALUE x, VALUE y)
 | |
| {
 | |
|     volatile double a, b;
 | |
| 
 | |
|     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 | |
|         return rb_integer_float_eq(y, x);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	b = RFLOAT_VALUE(y);
 | |
| #if MSC_VERSION_BEFORE(1300)
 | |
| 	if (isnan(b)) return Qfalse;
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
| 	return num_equal(x, y);
 | |
|     }
 | |
|     a = RFLOAT_VALUE(x);
 | |
| #if MSC_VERSION_BEFORE(1300)
 | |
|     if (isnan(a)) return Qfalse;
 | |
| #endif
 | |
|     return (a == b)?Qtrue:Qfalse;
 | |
| }
 | |
| 
 | |
| #define flo_eq rb_float_equal
 | |
| static VALUE rb_dbl_hash(double d);
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    float.hash  ->  integer
 | |
|  *
 | |
|  * Returns a hash code for this float.
 | |
|  *
 | |
|  * See also Object#hash.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_hash(VALUE num)
 | |
| {
 | |
|     return rb_dbl_hash(RFLOAT_VALUE(num));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_dbl_hash(double d)
 | |
| {
 | |
|     return ST2FIX(rb_dbl_long_hash(d));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_dbl_cmp(double a, double b)
 | |
| {
 | |
|     if (isnan(a) || isnan(b)) return Qnil;
 | |
|     if (a == b) return INT2FIX(0);
 | |
|     if (a > b) return INT2FIX(1);
 | |
|     if (a < b) return INT2FIX(-1);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float <=> real  ->  -1, 0, +1, or nil
 | |
|  *
 | |
|  *  Returns -1, 0, or +1 depending on whether +float+ is
 | |
|  *  less than, equal to, or greater than +real+.
 | |
|  *  This is the basis for the tests in the Comparable module.
 | |
|  *
 | |
|  *  The result of <code>NaN <=> NaN</code> is undefined,
 | |
|  *  so an implementation-dependent value is returned.
 | |
|  *
 | |
|  *  +nil+ is returned if the two values are incomparable.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     double a, b;
 | |
|     VALUE i;
 | |
| 
 | |
|     a = RFLOAT_VALUE(x);
 | |
|     if (isnan(a)) return Qnil;
 | |
|     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 | |
|         VALUE rel = rb_integer_float_cmp(y, x);
 | |
|         if (FIXNUM_P(rel))
 | |
|             return LONG2FIX(-FIX2LONG(rel));
 | |
|         return rel;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	b = RFLOAT_VALUE(y);
 | |
|     }
 | |
|     else {
 | |
| 	if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
 | |
| 	    if (RTEST(i)) {
 | |
| 		int j = rb_cmpint(i, x, y);
 | |
| 		j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
 | |
| 		return INT2FIX(j);
 | |
| 	    }
 | |
| 	    if (a > 0.0) return INT2FIX(1);
 | |
| 	    return INT2FIX(-1);
 | |
| 	}
 | |
| 	return rb_num_coerce_cmp(x, y, id_cmp);
 | |
|     }
 | |
|     return rb_dbl_cmp(a, b);
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED int
 | |
| rb_float_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     return NUM2INT(ensure_cmp(flo_cmp(x, y), x, y));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float > real  ->  true or false
 | |
|  *
 | |
|  * Returns +true+ if +float+ is greater than +real+.
 | |
|  *
 | |
|  * The result of <code>NaN > NaN</code> is undefined,
 | |
|  * so an implementation-dependent value is returned.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_float_gt(VALUE x, VALUE y)
 | |
| {
 | |
|     double a, b;
 | |
| 
 | |
|     a = RFLOAT_VALUE(x);
 | |
|     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 | |
|         VALUE rel = rb_integer_float_cmp(y, x);
 | |
|         if (FIXNUM_P(rel))
 | |
|             return -FIX2LONG(rel) > 0 ? Qtrue : Qfalse;
 | |
|         return Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	b = RFLOAT_VALUE(y);
 | |
| #if MSC_VERSION_BEFORE(1300)
 | |
| 	if (isnan(b)) return Qfalse;
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_relop(x, y, '>');
 | |
|     }
 | |
| #if MSC_VERSION_BEFORE(1300)
 | |
|     if (isnan(a)) return Qfalse;
 | |
| #endif
 | |
|     return (a > b)?Qtrue:Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float >= real  ->  true or false
 | |
|  *
 | |
|  * Returns +true+ if +float+ is greater than or equal to +real+.
 | |
|  *
 | |
|  * The result of <code>NaN >= NaN</code> is undefined,
 | |
|  * so an implementation-dependent value is returned.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_ge(VALUE x, VALUE y)
 | |
| {
 | |
|     double a, b;
 | |
| 
 | |
|     a = RFLOAT_VALUE(x);
 | |
|     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 | |
|         VALUE rel = rb_integer_float_cmp(y, x);
 | |
|         if (FIXNUM_P(rel))
 | |
|             return -FIX2LONG(rel) >= 0 ? Qtrue : Qfalse;
 | |
|         return Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	b = RFLOAT_VALUE(y);
 | |
| #if MSC_VERSION_BEFORE(1300)
 | |
| 	if (isnan(b)) return Qfalse;
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_relop(x, y, idGE);
 | |
|     }
 | |
| #if MSC_VERSION_BEFORE(1300)
 | |
|     if (isnan(a)) return Qfalse;
 | |
| #endif
 | |
|     return (a >= b)?Qtrue:Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float < real  ->  true or false
 | |
|  *
 | |
|  * Returns +true+ if +float+ is less than +real+.
 | |
|  *
 | |
|  * The result of <code>NaN < NaN</code> is undefined,
 | |
|  * so an implementation-dependent value is returned.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_lt(VALUE x, VALUE y)
 | |
| {
 | |
|     double a, b;
 | |
| 
 | |
|     a = RFLOAT_VALUE(x);
 | |
|     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 | |
|         VALUE rel = rb_integer_float_cmp(y, x);
 | |
|         if (FIXNUM_P(rel))
 | |
|             return -FIX2LONG(rel) < 0 ? Qtrue : Qfalse;
 | |
|         return Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	b = RFLOAT_VALUE(y);
 | |
| #if MSC_VERSION_BEFORE(1300)
 | |
| 	if (isnan(b)) return Qfalse;
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_relop(x, y, '<');
 | |
|     }
 | |
| #if MSC_VERSION_BEFORE(1300)
 | |
|     if (isnan(a)) return Qfalse;
 | |
| #endif
 | |
|     return (a < b)?Qtrue:Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   float <= real  ->  true or false
 | |
|  *
 | |
|  * Returns +true+ if +float+ is less than or equal to +real+.
 | |
|  *
 | |
|  * The result of <code>NaN <= NaN</code> is undefined,
 | |
|  * so an implementation-dependent value is returned.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_le(VALUE x, VALUE y)
 | |
| {
 | |
|     double a, b;
 | |
| 
 | |
|     a = RFLOAT_VALUE(x);
 | |
|     if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 | |
|         VALUE rel = rb_integer_float_cmp(y, x);
 | |
|         if (FIXNUM_P(rel))
 | |
|             return -FIX2LONG(rel) <= 0 ? Qtrue : Qfalse;
 | |
|         return Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	b = RFLOAT_VALUE(y);
 | |
| #if MSC_VERSION_BEFORE(1300)
 | |
| 	if (isnan(b)) return Qfalse;
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_relop(x, y, idLE);
 | |
|     }
 | |
| #if MSC_VERSION_BEFORE(1300)
 | |
|     if (isnan(a)) return Qfalse;
 | |
| #endif
 | |
|     return (a <= b)?Qtrue:Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.eql?(obj)  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ only if +obj+ is a Float with the same value as +float+.
 | |
|  *  Contrast this with Float#==, which performs type conversions.
 | |
|  *
 | |
|  *     1.0.eql?(1)   #=> false
 | |
|  *
 | |
|  *  The result of <code>NaN.eql?(NaN)</code> is undefined,
 | |
|  *  so an implementation-dependent value is returned.
 | |
|  */
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_float_eql(VALUE x, VALUE y)
 | |
| {
 | |
|     if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	double a = RFLOAT_VALUE(x);
 | |
| 	double b = RFLOAT_VALUE(y);
 | |
| #if MSC_VERSION_BEFORE(1300)
 | |
| 	if (isnan(a) || isnan(b)) return Qfalse;
 | |
| #endif
 | |
| 	if (a == b)
 | |
| 	    return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| #define flo_eql rb_float_eql
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_float_abs(VALUE flt)
 | |
| {
 | |
|     double val = fabs(RFLOAT_VALUE(flt));
 | |
|     return DBL2NUM(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.nan?  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ if +float+ is an invalid IEEE floating point number.
 | |
|  *
 | |
|  *     a = -1.0      #=> -1.0
 | |
|  *     a.nan?        #=> false
 | |
|  *     a = 0.0/0.0   #=> NaN
 | |
|  *     a.nan?        #=> true
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_is_nan_p(VALUE num)
 | |
| {
 | |
|     double value = RFLOAT_VALUE(num);
 | |
| 
 | |
|     return isnan(value) ? Qtrue : Qfalse;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.infinite?  ->  -1, 1, or nil
 | |
|  *
 | |
|  *  Returns +nil+, -1, or 1 depending on whether the value is
 | |
|  *  finite, <code>-Infinity</code>, or <code>+Infinity</code>.
 | |
|  *
 | |
|  *     (0.0).infinite?        #=> nil
 | |
|  *     (-1.0/0.0).infinite?   #=> -1
 | |
|  *     (+1.0/0.0).infinite?   #=> 1
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_flo_is_infinite_p(VALUE num)
 | |
| {
 | |
|     double value = RFLOAT_VALUE(num);
 | |
| 
 | |
|     if (isinf(value)) {
 | |
| 	return INT2FIX( value < 0 ? -1 : 1 );
 | |
|     }
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.finite?  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ if +float+ is a valid IEEE floating point number,
 | |
|  *  i.e. it is not infinite and Float#nan? is +false+.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_flo_is_finite_p(VALUE num)
 | |
| {
 | |
|     double value = RFLOAT_VALUE(num);
 | |
| 
 | |
| #ifdef HAVE_ISFINITE
 | |
|     if (!isfinite(value))
 | |
| 	return Qfalse;
 | |
| #else
 | |
|     if (isinf(value) || isnan(value))
 | |
| 	return Qfalse;
 | |
| #endif
 | |
| 
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| flo_nextafter(VALUE flo, double value)
 | |
| {
 | |
|     double x, y;
 | |
|     x = NUM2DBL(flo);
 | |
|     y = nextafter(x, value);
 | |
|     return DBL2NUM(y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.next_float  ->  float
 | |
|  *
 | |
|  *  Returns the next representable floating point number.
 | |
|  *
 | |
|  *  Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.
 | |
|  *
 | |
|  *  Float::NAN.next_float is Float::NAN.
 | |
|  *
 | |
|  *  For example:
 | |
|  *
 | |
|  *    0.01.next_float    #=> 0.010000000000000002
 | |
|  *    1.0.next_float     #=> 1.0000000000000002
 | |
|  *    100.0.next_float   #=> 100.00000000000001
 | |
|  *
 | |
|  *    0.01.next_float - 0.01     #=> 1.734723475976807e-18
 | |
|  *    1.0.next_float - 1.0       #=> 2.220446049250313e-16
 | |
|  *    100.0.next_float - 100.0   #=> 1.4210854715202004e-14
 | |
|  *
 | |
|  *    f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
 | |
|  *    #=> 0x1.47ae147ae147bp-7 0.01
 | |
|  *    #   0x1.47ae147ae147cp-7 0.010000000000000002
 | |
|  *    #   0x1.47ae147ae147dp-7 0.010000000000000004
 | |
|  *    #   0x1.47ae147ae147ep-7 0.010000000000000005
 | |
|  *    #   0x1.47ae147ae147fp-7 0.010000000000000007
 | |
|  *    #   0x1.47ae147ae148p-7  0.010000000000000009
 | |
|  *    #   0x1.47ae147ae1481p-7 0.01000000000000001
 | |
|  *    #   0x1.47ae147ae1482p-7 0.010000000000000012
 | |
|  *    #   0x1.47ae147ae1483p-7 0.010000000000000014
 | |
|  *    #   0x1.47ae147ae1484p-7 0.010000000000000016
 | |
|  *    #   0x1.47ae147ae1485p-7 0.010000000000000018
 | |
|  *    #   0x1.47ae147ae1486p-7 0.01000000000000002
 | |
|  *    #   0x1.47ae147ae1487p-7 0.010000000000000021
 | |
|  *    #   0x1.47ae147ae1488p-7 0.010000000000000023
 | |
|  *    #   0x1.47ae147ae1489p-7 0.010000000000000024
 | |
|  *    #   0x1.47ae147ae148ap-7 0.010000000000000026
 | |
|  *    #   0x1.47ae147ae148bp-7 0.010000000000000028
 | |
|  *    #   0x1.47ae147ae148cp-7 0.01000000000000003
 | |
|  *    #   0x1.47ae147ae148dp-7 0.010000000000000031
 | |
|  *    #   0x1.47ae147ae148ep-7 0.010000000000000033
 | |
|  *
 | |
|  *    f = 0.0
 | |
|  *    100.times { f += 0.1 }
 | |
|  *    f                           #=> 9.99999999999998       # should be 10.0 in the ideal world.
 | |
|  *    10-f                        #=> 1.9539925233402755e-14 # the floating point error.
 | |
|  *    10.0.next_float-10          #=> 1.7763568394002505e-15 # 1 ulp (unit in the last place).
 | |
|  *    (10-f)/(10.0.next_float-10) #=> 11.0                   # the error is 11 ulp.
 | |
|  *    (10-f)/(10*Float::EPSILON)  #=> 8.8                    # approximation of the above.
 | |
|  *    "%a" % 10                   #=> "0x1.4p+3"
 | |
|  *    "%a" % f                    #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.
 | |
|  */
 | |
| static VALUE
 | |
| flo_next_float(VALUE vx)
 | |
| {
 | |
|     return flo_nextafter(vx, HUGE_VAL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.prev_float  ->  float
 | |
|  *
 | |
|  *  Returns the previous representable floating point number.
 | |
|  *
 | |
|  *  (-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.
 | |
|  *
 | |
|  *  Float::NAN.prev_float is Float::NAN.
 | |
|  *
 | |
|  *  For example:
 | |
|  *
 | |
|  *    0.01.prev_float    #=> 0.009999999999999998
 | |
|  *    1.0.prev_float     #=> 0.9999999999999999
 | |
|  *    100.0.prev_float   #=> 99.99999999999999
 | |
|  *
 | |
|  *    0.01 - 0.01.prev_float     #=> 1.734723475976807e-18
 | |
|  *    1.0 - 1.0.prev_float       #=> 1.1102230246251565e-16
 | |
|  *    100.0 - 100.0.prev_float   #=> 1.4210854715202004e-14
 | |
|  *
 | |
|  *    f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
 | |
|  *    #=> 0x1.47ae147ae147bp-7 0.01
 | |
|  *    #   0x1.47ae147ae147ap-7 0.009999999999999998
 | |
|  *    #   0x1.47ae147ae1479p-7 0.009999999999999997
 | |
|  *    #   0x1.47ae147ae1478p-7 0.009999999999999995
 | |
|  *    #   0x1.47ae147ae1477p-7 0.009999999999999993
 | |
|  *    #   0x1.47ae147ae1476p-7 0.009999999999999992
 | |
|  *    #   0x1.47ae147ae1475p-7 0.00999999999999999
 | |
|  *    #   0x1.47ae147ae1474p-7 0.009999999999999988
 | |
|  *    #   0x1.47ae147ae1473p-7 0.009999999999999986
 | |
|  *    #   0x1.47ae147ae1472p-7 0.009999999999999985
 | |
|  *    #   0x1.47ae147ae1471p-7 0.009999999999999983
 | |
|  *    #   0x1.47ae147ae147p-7  0.009999999999999981
 | |
|  *    #   0x1.47ae147ae146fp-7 0.00999999999999998
 | |
|  *    #   0x1.47ae147ae146ep-7 0.009999999999999978
 | |
|  *    #   0x1.47ae147ae146dp-7 0.009999999999999976
 | |
|  *    #   0x1.47ae147ae146cp-7 0.009999999999999974
 | |
|  *    #   0x1.47ae147ae146bp-7 0.009999999999999972
 | |
|  *    #   0x1.47ae147ae146ap-7 0.00999999999999997
 | |
|  *    #   0x1.47ae147ae1469p-7 0.009999999999999969
 | |
|  *    #   0x1.47ae147ae1468p-7 0.009999999999999967
 | |
|  */
 | |
| static VALUE
 | |
| flo_prev_float(VALUE vx)
 | |
| {
 | |
|     return flo_nextafter(vx, -HUGE_VAL);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_float_floor(VALUE num, int ndigits)
 | |
| {
 | |
|     double number, f;
 | |
|     number = RFLOAT_VALUE(num);
 | |
|     if (number == 0.0) {
 | |
| 	return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
 | |
|     }
 | |
|     if (ndigits > 0) {
 | |
| 	int binexp;
 | |
| 	frexp(number, &binexp);
 | |
| 	if (float_round_overflow(ndigits, binexp)) return num;
 | |
| 	if (number > 0.0 && float_round_underflow(ndigits, binexp))
 | |
| 	    return DBL2NUM(0.0);
 | |
| 	f = pow(10, ndigits);
 | |
| 	f = floor(number * f) / f;
 | |
| 	return DBL2NUM(f);
 | |
|     }
 | |
|     else {
 | |
| 	num = dbl2ival(floor(number));
 | |
| 	if (ndigits < 0) num = rb_int_floor(num, ndigits);
 | |
| 	return num;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.floor([ndigits])  ->  integer or float
 | |
|  *
 | |
|  *  Returns the largest number less than or equal to +float+ with
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  When the precision is negative, the returned value is an integer
 | |
|  *  with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  *  Returns a floating point number when +ndigits+ is positive,
 | |
|  *  otherwise returns an integer.
 | |
|  *
 | |
|  *     1.2.floor      #=> 1
 | |
|  *     2.0.floor      #=> 2
 | |
|  *     (-1.2).floor   #=> -2
 | |
|  *     (-2.0).floor   #=> -2
 | |
|  *
 | |
|  *     1.234567.floor(2)   #=> 1.23
 | |
|  *     1.234567.floor(3)   #=> 1.234
 | |
|  *     1.234567.floor(4)   #=> 1.2345
 | |
|  *     1.234567.floor(5)   #=> 1.23456
 | |
|  *
 | |
|  *     34567.89.floor(-5)  #=> 0
 | |
|  *     34567.89.floor(-4)  #=> 30000
 | |
|  *     34567.89.floor(-3)  #=> 34000
 | |
|  *     34567.89.floor(-2)  #=> 34500
 | |
|  *     34567.89.floor(-1)  #=> 34560
 | |
|  *     34567.89.floor(0)   #=> 34567
 | |
|  *     34567.89.floor(1)   #=> 34567.8
 | |
|  *     34567.89.floor(2)   #=> 34567.89
 | |
|  *     34567.89.floor(3)   #=> 34567.89
 | |
|  *
 | |
|  *  Note that the limited precision of floating point arithmetic
 | |
|  *  might lead to surprising results:
 | |
|  *
 | |
|  *     (0.3 / 0.1).floor  #=> 2 (!)
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_floor(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     int ndigits = 0;
 | |
|     if (rb_check_arity(argc, 0, 1)) {
 | |
| 	ndigits = NUM2INT(argv[0]);
 | |
|     }
 | |
|     return rb_float_floor(num, ndigits);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.ceil([ndigits])  ->  integer or float
 | |
|  *
 | |
|  *  Returns the smallest number greater than or equal to +float+ with
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  When the precision is negative, the returned value is an integer
 | |
|  *  with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  *  Returns a floating point number when +ndigits+ is positive,
 | |
|  *  otherwise returns an integer.
 | |
|  *
 | |
|  *     1.2.ceil      #=> 2
 | |
|  *     2.0.ceil      #=> 2
 | |
|  *     (-1.2).ceil   #=> -1
 | |
|  *     (-2.0).ceil   #=> -2
 | |
|  *
 | |
|  *     1.234567.ceil(2)   #=> 1.24
 | |
|  *     1.234567.ceil(3)   #=> 1.235
 | |
|  *     1.234567.ceil(4)   #=> 1.2346
 | |
|  *     1.234567.ceil(5)   #=> 1.23457
 | |
|  *
 | |
|  *     34567.89.ceil(-5)  #=> 100000
 | |
|  *     34567.89.ceil(-4)  #=> 40000
 | |
|  *     34567.89.ceil(-3)  #=> 35000
 | |
|  *     34567.89.ceil(-2)  #=> 34600
 | |
|  *     34567.89.ceil(-1)  #=> 34570
 | |
|  *     34567.89.ceil(0)   #=> 34568
 | |
|  *     34567.89.ceil(1)   #=> 34567.9
 | |
|  *     34567.89.ceil(2)   #=> 34567.89
 | |
|  *     34567.89.ceil(3)   #=> 34567.89
 | |
|  *
 | |
|  *  Note that the limited precision of floating point arithmetic
 | |
|  *  might lead to surprising results:
 | |
|  *
 | |
|  *     (2.1 / 0.7).ceil  #=> 4 (!)
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_ceil(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     int ndigits = 0;
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1)) {
 | |
| 	ndigits = NUM2INT(argv[0]);
 | |
|     }
 | |
|     return rb_float_ceil(num, ndigits);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_float_ceil(VALUE num, int ndigits)
 | |
| {
 | |
|     double number, f;
 | |
| 
 | |
|     number = RFLOAT_VALUE(num);
 | |
|     if (number == 0.0) {
 | |
| 	return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
 | |
|     }
 | |
|     if (ndigits > 0) {
 | |
| 	int binexp;
 | |
| 	frexp(number, &binexp);
 | |
| 	if (float_round_overflow(ndigits, binexp)) return num;
 | |
| 	if (number < 0.0 && float_round_underflow(ndigits, binexp))
 | |
| 	    return DBL2NUM(0.0);
 | |
| 	f = pow(10, ndigits);
 | |
| 	f = ceil(number * f) / f;
 | |
| 	return DBL2NUM(f);
 | |
|     }
 | |
|     else {
 | |
| 	num = dbl2ival(ceil(number));
 | |
| 	if (ndigits < 0) num = rb_int_ceil(num, ndigits);
 | |
| 	return num;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int
 | |
| int_round_zero_p(VALUE num, int ndigits)
 | |
| {
 | |
|     long bytes;
 | |
|     /* If 10**N / 2 > num, then return 0 */
 | |
|     /* We have log_256(10) > 0.415241 and log_256(1/2) = -0.125, so */
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	bytes = sizeof(long);
 | |
|     }
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	bytes = rb_big_size(num);
 | |
|     }
 | |
|     else {
 | |
| 	bytes = NUM2LONG(rb_funcall(num, idSize, 0));
 | |
|     }
 | |
|     return (-0.415241 * ndigits - 0.125 > bytes);
 | |
| }
 | |
| 
 | |
| static SIGNED_VALUE
 | |
| int_round_half_even(SIGNED_VALUE x, SIGNED_VALUE y)
 | |
| {
 | |
|     SIGNED_VALUE z = +(x + y / 2) / y;
 | |
|     if ((z * y - x) * 2 == y) {
 | |
| 	z &= ~1;
 | |
|     }
 | |
|     return z * y;
 | |
| }
 | |
| 
 | |
| static SIGNED_VALUE
 | |
| int_round_half_up(SIGNED_VALUE x, SIGNED_VALUE y)
 | |
| {
 | |
|     return (x + y / 2) / y * y;
 | |
| }
 | |
| 
 | |
| static SIGNED_VALUE
 | |
| int_round_half_down(SIGNED_VALUE x, SIGNED_VALUE y)
 | |
| {
 | |
|     return (x + y / 2 - 1) / y * y;
 | |
| }
 | |
| 
 | |
| static int
 | |
| int_half_p_half_even(VALUE num, VALUE n, VALUE f)
 | |
| {
 | |
|     return (int)rb_int_odd_p(rb_int_idiv(n, f));
 | |
| }
 | |
| 
 | |
| static int
 | |
| int_half_p_half_up(VALUE num, VALUE n, VALUE f)
 | |
| {
 | |
|     return int_pos_p(num);
 | |
| }
 | |
| 
 | |
| static int
 | |
| int_half_p_half_down(VALUE num, VALUE n, VALUE f)
 | |
| {
 | |
|     return int_neg_p(num);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Assumes num is an Integer, ndigits <= 0
 | |
|  */
 | |
| static VALUE
 | |
| rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode)
 | |
| {
 | |
|     VALUE n, f, h, r;
 | |
| 
 | |
|     if (int_round_zero_p(num, ndigits)) {
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
| 
 | |
|     f = int_pow(10, -ndigits);
 | |
|     if (FIXNUM_P(num) && FIXNUM_P(f)) {
 | |
| 	SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
 | |
| 	int neg = x < 0;
 | |
| 	if (neg) x = -x;
 | |
| 	x = ROUND_CALL(mode, int_round, (x, y));
 | |
| 	if (neg) x = -x;
 | |
| 	return LONG2NUM(x);
 | |
|     }
 | |
|     if (RB_TYPE_P(f, T_FLOAT)) {
 | |
| 	/* then int_pow overflow */
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
|     h = rb_int_idiv(f, INT2FIX(2));
 | |
|     r = rb_int_modulo(num, f);
 | |
|     n = rb_int_minus(num, r);
 | |
|     r = rb_int_cmp(r, h);
 | |
|     if (FIXNUM_POSITIVE_P(r) ||
 | |
| 	(FIXNUM_ZERO_P(r) && ROUND_CALL(mode, int_half_p, (num, n, f)))) {
 | |
| 	n = rb_int_plus(n, f);
 | |
|     }
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_int_floor(VALUE num, int ndigits)
 | |
| {
 | |
|     VALUE f;
 | |
| 
 | |
|     if (int_round_zero_p(num, ndigits))
 | |
| 	return INT2FIX(0);
 | |
|     f = int_pow(10, -ndigits);
 | |
|     if (FIXNUM_P(num) && FIXNUM_P(f)) {
 | |
| 	SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
 | |
| 	int neg = x < 0;
 | |
| 	if (neg) x = -x + y - 1;
 | |
| 	x = x / y * y;
 | |
| 	if (neg) x = -x;
 | |
| 	return LONG2NUM(x);
 | |
|     }
 | |
|     if (RB_TYPE_P(f, T_FLOAT)) {
 | |
| 	/* then int_pow overflow */
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
|     return rb_int_minus(num, rb_int_modulo(num, f));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_int_ceil(VALUE num, int ndigits)
 | |
| {
 | |
|     VALUE f;
 | |
| 
 | |
|     if (int_round_zero_p(num, ndigits))
 | |
| 	return INT2FIX(0);
 | |
|     f = int_pow(10, -ndigits);
 | |
|     if (FIXNUM_P(num) && FIXNUM_P(f)) {
 | |
| 	SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
 | |
| 	int neg = x < 0;
 | |
| 	if (neg) x = -x;
 | |
| 	else x += y - 1;
 | |
| 	x = (x / y) * y;
 | |
| 	if (neg) x = -x;
 | |
| 	return LONG2NUM(x);
 | |
|     }
 | |
|     if (RB_TYPE_P(f, T_FLOAT)) {
 | |
| 	/* then int_pow overflow */
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
|     return rb_int_plus(num, rb_int_minus(f, rb_int_modulo(num, f)));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_truncate(VALUE num, int ndigits)
 | |
| {
 | |
|     VALUE f;
 | |
|     VALUE m;
 | |
| 
 | |
|     if (int_round_zero_p(num, ndigits))
 | |
| 	return INT2FIX(0);
 | |
|     f = int_pow(10, -ndigits);
 | |
|     if (FIXNUM_P(num) && FIXNUM_P(f)) {
 | |
| 	SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
 | |
| 	int neg = x < 0;
 | |
| 	if (neg) x = -x;
 | |
| 	x = x / y * y;
 | |
| 	if (neg) x = -x;
 | |
| 	return LONG2NUM(x);
 | |
|     }
 | |
|     if (RB_TYPE_P(f, T_FLOAT)) {
 | |
| 	/* then int_pow overflow */
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
|     m = rb_int_modulo(num, f);
 | |
|     if (int_neg_p(num)) {
 | |
| 	return rb_int_plus(num, rb_int_minus(f, m));
 | |
|     }
 | |
|     else {
 | |
| 	return rb_int_minus(num, m);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.round([ndigits] [, half: mode])  ->  integer or float
 | |
|  *
 | |
|  *  Returns +float+ rounded to the nearest value with
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  When the precision is negative, the returned value is an integer
 | |
|  *  with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  *  Returns a floating point number when +ndigits+ is positive,
 | |
|  *  otherwise returns an integer.
 | |
|  *
 | |
|  *     1.4.round      #=> 1
 | |
|  *     1.5.round      #=> 2
 | |
|  *     1.6.round      #=> 2
 | |
|  *     (-1.5).round   #=> -2
 | |
|  *
 | |
|  *     1.234567.round(2)   #=> 1.23
 | |
|  *     1.234567.round(3)   #=> 1.235
 | |
|  *     1.234567.round(4)   #=> 1.2346
 | |
|  *     1.234567.round(5)   #=> 1.23457
 | |
|  *
 | |
|  *     34567.89.round(-5)  #=> 0
 | |
|  *     34567.89.round(-4)  #=> 30000
 | |
|  *     34567.89.round(-3)  #=> 35000
 | |
|  *     34567.89.round(-2)  #=> 34600
 | |
|  *     34567.89.round(-1)  #=> 34570
 | |
|  *     34567.89.round(0)   #=> 34568
 | |
|  *     34567.89.round(1)   #=> 34567.9
 | |
|  *     34567.89.round(2)   #=> 34567.89
 | |
|  *     34567.89.round(3)   #=> 34567.89
 | |
|  *
 | |
|  *  If the optional +half+ keyword argument is given,
 | |
|  *  numbers that are half-way between two possible rounded values
 | |
|  *  will be rounded according to the specified tie-breaking +mode+:
 | |
|  *
 | |
|  *  * <code>:up</code> or +nil+: round half away from zero (default)
 | |
|  *  * <code>:down</code>: round half toward zero
 | |
|  *  * <code>:even</code>: round half toward the nearest even number
 | |
|  *
 | |
|  *     2.5.round(half: :up)      #=> 3
 | |
|  *     2.5.round(half: :down)    #=> 2
 | |
|  *     2.5.round(half: :even)    #=> 2
 | |
|  *     3.5.round(half: :up)      #=> 4
 | |
|  *     3.5.round(half: :down)    #=> 3
 | |
|  *     3.5.round(half: :even)    #=> 4
 | |
|  *     (-2.5).round(half: :up)   #=> -3
 | |
|  *     (-2.5).round(half: :down) #=> -2
 | |
|  *     (-2.5).round(half: :even) #=> -2
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_round(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     double number, f, x;
 | |
|     VALUE nd, opt;
 | |
|     int ndigits = 0;
 | |
|     enum ruby_num_rounding_mode mode;
 | |
| 
 | |
|     if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
 | |
| 	ndigits = NUM2INT(nd);
 | |
|     }
 | |
|     mode = rb_num_get_rounding_option(opt);
 | |
|     number = RFLOAT_VALUE(num);
 | |
|     if (number == 0.0) {
 | |
| 	return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
 | |
|     }
 | |
|     if (ndigits < 0) {
 | |
| 	return rb_int_round(flo_to_i(num), ndigits, mode);
 | |
|     }
 | |
|     if (ndigits == 0) {
 | |
| 	x = ROUND_CALL(mode, round, (number, 1.0));
 | |
| 	return dbl2ival(x);
 | |
|     }
 | |
|     if (isfinite(number)) {
 | |
| 	int binexp;
 | |
| 	frexp(number, &binexp);
 | |
| 	if (float_round_overflow(ndigits, binexp)) return num;
 | |
| 	if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
 | |
| 	f = pow(10, ndigits);
 | |
| 	x = ROUND_CALL(mode, round, (number, f));
 | |
| 	return DBL2NUM(x / f);
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static int
 | |
| float_round_overflow(int ndigits, int binexp)
 | |
| {
 | |
|     enum {float_dig = DBL_DIG+2};
 | |
| 
 | |
| /* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
 | |
|    i.e. such that  10 ** (exp - 1) <= |number| < 10 ** exp
 | |
|    Recall that up to float_dig digits can be needed to represent a double,
 | |
|    so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
 | |
|    will be an integer and thus the result is the original number.
 | |
|    If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
 | |
|    if ndigits + exp < 0, the result is 0.
 | |
|    We have:
 | |
| 	2 ** (binexp-1) <= |number| < 2 ** binexp
 | |
| 	10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
 | |
| 	If binexp >= 0, and since log_2(10) = 3.322259:
 | |
| 	   10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
 | |
| 	   floor(binexp/4) <= exp <= ceil(binexp/3)
 | |
| 	If binexp <= 0, swap the /4 and the /3
 | |
| 	So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
 | |
| 	If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
 | |
| */
 | |
|     if (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1)) {
 | |
| 	return TRUE;
 | |
|     }
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| static int
 | |
| float_round_underflow(int ndigits, int binexp)
 | |
| {
 | |
|     if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
 | |
| 	return TRUE;
 | |
|     }
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.to_i    ->  integer
 | |
|  *     float.to_int  ->  integer
 | |
|  *
 | |
|  *  Returns the +float+ truncated to an Integer.
 | |
|  *
 | |
|  *     1.2.to_i      #=> 1
 | |
|  *     (-1.2).to_i   #=> -1
 | |
|  *
 | |
|  *  Note that the limited precision of floating point arithmetic
 | |
|  *  might lead to surprising results:
 | |
|  *
 | |
|  *    (0.3 / 0.1).to_i  #=> 2 (!)
 | |
|  *
 | |
|  *  #to_int is an alias for #to_i.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| flo_to_i(VALUE num)
 | |
| {
 | |
|     double f = RFLOAT_VALUE(num);
 | |
| 
 | |
|     if (f > 0.0) f = floor(f);
 | |
|     if (f < 0.0) f = ceil(f);
 | |
| 
 | |
|     return dbl2ival(f);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     float.truncate([ndigits])  ->  integer or float
 | |
|  *
 | |
|  *  Returns +float+ truncated (toward zero) to
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  When the precision is negative, the returned value is an integer
 | |
|  *  with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  *  Returns a floating point number when +ndigits+ is positive,
 | |
|  *  otherwise returns an integer.
 | |
|  *
 | |
|  *     2.8.truncate           #=> 2
 | |
|  *     (-2.8).truncate        #=> -2
 | |
|  *     1.234567.truncate(2)   #=> 1.23
 | |
|  *     34567.89.truncate(-2)  #=> 34500
 | |
|  *
 | |
|  *  Note that the limited precision of floating point arithmetic
 | |
|  *  might lead to surprising results:
 | |
|  *
 | |
|  *     (0.3 / 0.1).truncate  #=> 2 (!)
 | |
|  */
 | |
| static VALUE
 | |
| flo_truncate(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     if (signbit(RFLOAT_VALUE(num)))
 | |
| 	return flo_ceil(argc, argv, num);
 | |
|     else
 | |
| 	return flo_floor(argc, argv, num);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.floor([ndigits])  ->  integer or float
 | |
|  *
 | |
|  *  Returns the largest number less than or equal to +num+ with
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  Numeric implements this by converting its value to a Float and
 | |
|  *  invoking Float#floor.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_floor(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     return flo_floor(argc, argv, rb_Float(num));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.ceil([ndigits])  ->  integer or float
 | |
|  *
 | |
|  *  Returns the smallest number greater than or equal to +num+ with
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  Numeric implements this by converting its value to a Float and
 | |
|  *  invoking Float#ceil.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_ceil(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     return flo_ceil(argc, argv, rb_Float(num));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.round([ndigits])  ->  integer or float
 | |
|  *
 | |
|  *  Returns +num+ rounded to the nearest value with
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  Numeric implements this by converting its value to a Float and
 | |
|  *  invoking Float#round.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_round(int argc, VALUE* argv, VALUE num)
 | |
| {
 | |
|     return flo_round(argc, argv, rb_Float(num));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.truncate([ndigits])  ->  integer or float
 | |
|  *
 | |
|  *  Returns +num+ truncated (toward zero) to
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  Numeric implements this by converting its value to a Float and
 | |
|  *  invoking Float#truncate.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_truncate(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     return flo_truncate(argc, argv, rb_Float(num));
 | |
| }
 | |
| 
 | |
| double
 | |
| ruby_float_step_size(double beg, double end, double unit, int excl)
 | |
| {
 | |
|     const double epsilon = DBL_EPSILON;
 | |
|     double n, err;
 | |
| 
 | |
|     if (unit == 0) {
 | |
|         return HUGE_VAL;
 | |
|     }
 | |
|     n= (end - beg)/unit;
 | |
|     err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon;
 | |
|     if (isinf(unit)) {
 | |
| 	return unit > 0 ? beg <= end : beg >= end;
 | |
|     }
 | |
|     if (err>0.5) err=0.5;
 | |
|     if (excl) {
 | |
| 	if (n<=0) return 0;
 | |
| 	if (n<1)
 | |
| 	    n = 0;
 | |
| 	else
 | |
| 	    n = floor(n - err);
 | |
|     }
 | |
|     else {
 | |
| 	if (n<0) return 0;
 | |
| 	n = floor(n + err);
 | |
|     }
 | |
|     return n+1;
 | |
| }
 | |
| 
 | |
| int
 | |
| ruby_float_step(VALUE from, VALUE to, VALUE step, int excl, int allow_endless)
 | |
| {
 | |
|     if (RB_TYPE_P(from, T_FLOAT) || RB_TYPE_P(to, T_FLOAT) || RB_TYPE_P(step, T_FLOAT)) {
 | |
|         double unit = NUM2DBL(step);
 | |
| 	double beg = NUM2DBL(from);
 | |
|         double end = (allow_endless && NIL_P(to)) ? (unit < 0 ? -1 : 1)*HUGE_VAL : NUM2DBL(to);
 | |
| 	double n = ruby_float_step_size(beg, end, unit, excl);
 | |
| 	long i;
 | |
| 
 | |
| 	if (isinf(unit)) {
 | |
| 	    /* if unit is infinity, i*unit+beg is NaN */
 | |
| 	    if (n) rb_yield(DBL2NUM(beg));
 | |
| 	}
 | |
| 	else if (unit == 0) {
 | |
| 	    VALUE val = DBL2NUM(beg);
 | |
| 	    for (;;)
 | |
| 		rb_yield(val);
 | |
| 	}
 | |
| 	else {
 | |
| 	    for (i=0; i<n; i++) {
 | |
| 		double d = i*unit+beg;
 | |
| 		if (unit >= 0 ? end < d : d < end) d = end;
 | |
| 		rb_yield(DBL2NUM(d));
 | |
| 	    }
 | |
| 	}
 | |
| 	return TRUE;
 | |
|     }
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl)
 | |
| {
 | |
|     if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
 | |
| 	long delta, diff;
 | |
| 
 | |
| 	diff = FIX2LONG(step);
 | |
| 	if (diff == 0) {
 | |
| 	    return DBL2NUM(HUGE_VAL);
 | |
| 	}
 | |
| 	delta = FIX2LONG(to) - FIX2LONG(from);
 | |
| 	if (diff < 0) {
 | |
| 	    diff = -diff;
 | |
| 	    delta = -delta;
 | |
| 	}
 | |
| 	if (excl) {
 | |
| 	    delta--;
 | |
| 	}
 | |
| 	if (delta < 0) {
 | |
| 	    return INT2FIX(0);
 | |
| 	}
 | |
| 	return ULONG2NUM(delta / diff + 1UL);
 | |
|     }
 | |
|     else if (RB_TYPE_P(from, T_FLOAT) || RB_TYPE_P(to, T_FLOAT) || RB_TYPE_P(step, T_FLOAT)) {
 | |
| 	double n = ruby_float_step_size(NUM2DBL(from), NUM2DBL(to), NUM2DBL(step), excl);
 | |
| 
 | |
| 	if (isinf(n)) return DBL2NUM(n);
 | |
| 	if (POSFIXABLE(n)) return LONG2FIX((long)n);
 | |
| 	return rb_dbl2big(n);
 | |
|     }
 | |
|     else {
 | |
| 	VALUE result;
 | |
| 	ID cmp = '>';
 | |
| 	switch (rb_cmpint(rb_num_coerce_cmp(step, INT2FIX(0), id_cmp), step, INT2FIX(0))) {
 | |
| 	  case 0: return DBL2NUM(HUGE_VAL);
 | |
| 	  case -1: cmp = '<'; break;
 | |
| 	}
 | |
| 	if (RTEST(rb_funcall(from, cmp, 1, to))) return INT2FIX(0);
 | |
| 	result = rb_funcall(rb_funcall(to, '-', 1, from), id_div, 1, step);
 | |
| 	if (!excl || RTEST(rb_funcall(rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step)), cmp, 1, to))) {
 | |
| 	    result = rb_funcall(result, '+', 1, INT2FIX(1));
 | |
| 	}
 | |
| 	return result;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int
 | |
| num_step_negative_p(VALUE num)
 | |
| {
 | |
|     const ID mid = '<';
 | |
|     VALUE zero = INT2FIX(0);
 | |
|     VALUE r;
 | |
| 
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	if (method_basic_p(rb_cInteger))
 | |
| 	    return (SIGNED_VALUE)num < 0;
 | |
|     }
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	if (method_basic_p(rb_cInteger))
 | |
| 	    return BIGNUM_NEGATIVE_P(num);
 | |
|     }
 | |
| 
 | |
|     r = rb_check_funcall(num, '>', 1, &zero);
 | |
|     if (r == Qundef) {
 | |
| 	coerce_failed(num, INT2FIX(0));
 | |
|     }
 | |
|     return !RTEST(r);
 | |
| }
 | |
| 
 | |
| static int
 | |
| num_step_extract_args(int argc, const VALUE *argv, VALUE *to, VALUE *step, VALUE *by)
 | |
| {
 | |
|     VALUE hash;
 | |
| 
 | |
|     argc = rb_scan_args(argc, argv, "02:", to, step, &hash);
 | |
|     if (!NIL_P(hash)) {
 | |
| 	ID keys[2];
 | |
| 	VALUE values[2];
 | |
| 	keys[0] = id_to;
 | |
| 	keys[1] = id_by;
 | |
| 	rb_get_kwargs(hash, keys, 0, 2, values);
 | |
| 	if (values[0] != Qundef) {
 | |
| 	    if (argc > 0) rb_raise(rb_eArgError, "to is given twice");
 | |
| 	    *to = values[0];
 | |
| 	}
 | |
| 	if (values[1] != Qundef) {
 | |
| 	    if (argc > 1) rb_raise(rb_eArgError, "step is given twice");
 | |
| 	    *by = values[1];
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return argc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| num_step_check_fix_args(int argc, VALUE *to, VALUE *step, VALUE by, int fix_nil, int allow_zero_step)
 | |
| {
 | |
|     int desc;
 | |
|     if (by != Qundef) {
 | |
|         *step = by;
 | |
|     }
 | |
|     else {
 | |
|         /* compatibility */
 | |
|         if (argc > 1 && NIL_P(*step)) {
 | |
|             rb_raise(rb_eTypeError, "step must be numeric");
 | |
|         }
 | |
|     }
 | |
|     if (!allow_zero_step && rb_equal(*step, INT2FIX(0))) {
 | |
|         rb_raise(rb_eArgError, "step can't be 0");
 | |
|     }
 | |
|     if (NIL_P(*step)) {
 | |
| 	*step = INT2FIX(1);
 | |
|     }
 | |
|     desc = num_step_negative_p(*step);
 | |
|     if (fix_nil && NIL_P(*to)) {
 | |
|         *to = desc ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
 | |
|     }
 | |
|     return desc;
 | |
| }
 | |
| 
 | |
| static int
 | |
| num_step_scan_args(int argc, const VALUE *argv, VALUE *to, VALUE *step, int fix_nil, int allow_zero_step)
 | |
| {
 | |
|     VALUE by = Qundef;
 | |
|     argc = num_step_extract_args(argc, argv, to, step, &by);
 | |
|     return num_step_check_fix_args(argc, to, step, by, fix_nil, allow_zero_step);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| num_step_size(VALUE from, VALUE args, VALUE eobj)
 | |
| {
 | |
|     VALUE to, step;
 | |
|     int argc = args ? RARRAY_LENINT(args) : 0;
 | |
|     const VALUE *argv = args ? RARRAY_CONST_PTR(args) : 0;
 | |
| 
 | |
|     num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
 | |
| 
 | |
|     return ruby_num_interval_step_size(from, to, step, FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.step(by: step, to: limit) {|i| block }   ->  self
 | |
|  *     num.step(by: step, to: limit)                ->  an_enumerator
 | |
|  *     num.step(by: step, to: limit)                ->  an_arithmetic_sequence
 | |
|  *     num.step(limit=nil, step=1) {|i| block }     ->  self
 | |
|  *     num.step(limit=nil, step=1)                  ->  an_enumerator
 | |
|  *     num.step(limit=nil, step=1)                  ->  an_arithmetic_sequence
 | |
|  *
 | |
|  *  Invokes the given block with the sequence of numbers starting at +num+,
 | |
|  *  incremented by +step+ (defaulted to +1+) on each call.
 | |
|  *
 | |
|  *  The loop finishes when the value to be passed to the block is greater than
 | |
|  *  +limit+ (if +step+ is positive) or less than +limit+ (if +step+ is
 | |
|  *  negative), where +limit+ is defaulted to infinity.
 | |
|  *
 | |
|  *  In the recommended keyword argument style, either or both of
 | |
|  *  +step+ and +limit+ (default infinity) can be omitted.  In the
 | |
|  *  fixed position argument style, zero as a step
 | |
|  *  (i.e. <code>num.step(limit, 0)</code>) is not allowed for historical
 | |
|  *  compatibility reasons.
 | |
|  *
 | |
|  *  If all the arguments are integers, the loop operates using an integer
 | |
|  *  counter.
 | |
|  *
 | |
|  *  If any of the arguments are floating point numbers, all are converted
 | |
|  *  to floats, and the loop is executed
 | |
|  *  <i>floor(n + n*Float::EPSILON) + 1</i> times,
 | |
|  *  where <i>n = (limit - num)/step</i>.
 | |
|  *
 | |
|  *  Otherwise, the loop starts at +num+, uses either the
 | |
|  *  less-than (<code><</code>) or greater-than (<code>></code>) operator
 | |
|  *  to compare the counter against +limit+,
 | |
|  *  and increments itself using the <code>+</code> operator.
 | |
|  *
 | |
|  *  If no block is given, an Enumerator is returned instead.
 | |
|  *  Especially, the enumerator is an Enumerator::ArithmeticSequence
 | |
|  *  if both +limit+ and +step+ are kind of Numeric or <code>nil</code>.
 | |
|  *
 | |
|  *  For example:
 | |
|  *
 | |
|  *     p 1.step.take(4)
 | |
|  *     p 10.step(by: -1).take(4)
 | |
|  *     3.step(to: 5) {|i| print i, " " }
 | |
|  *     1.step(10, 2) {|i| print i, " " }
 | |
|  *     Math::E.step(to: Math::PI, by: 0.2) {|f| print f, " " }
 | |
|  *
 | |
|  *  Will produce:
 | |
|  *
 | |
|  *     [1, 2, 3, 4]
 | |
|  *     [10, 9, 8, 7]
 | |
|  *     3 4 5
 | |
|  *     1 3 5 7 9
 | |
|  *     2.718281828459045 2.9182818284590453 3.118281828459045
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| num_step(int argc, VALUE *argv, VALUE from)
 | |
| {
 | |
|     VALUE to, step;
 | |
|     int desc, inf;
 | |
| 
 | |
|     if (!rb_block_given_p()) {
 | |
|         VALUE by = Qundef;
 | |
| 
 | |
|         num_step_extract_args(argc, argv, &to, &step, &by);
 | |
|         if (by != Qundef) {
 | |
|             step = by;
 | |
|         }
 | |
|         if (NIL_P(step)) {
 | |
|             step = INT2FIX(1);
 | |
|         }
 | |
|         else if (rb_equal(step, INT2FIX(0))) {
 | |
|             rb_raise(rb_eArgError, "step can't be 0");
 | |
|         }
 | |
|         if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
 | |
|             rb_obj_is_kind_of(step, rb_cNumeric)) {
 | |
|             return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
 | |
|                                     num_step_size, from, to, step, FALSE);
 | |
|         }
 | |
| 
 | |
|         return SIZED_ENUMERATOR(from, 2, ((VALUE [2]){to, step}), num_step_size);
 | |
|     }
 | |
| 
 | |
|     desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
 | |
|     if (rb_equal(step, INT2FIX(0))) {
 | |
| 	inf = 1;
 | |
|     }
 | |
|     else if (RB_TYPE_P(to, T_FLOAT)) {
 | |
| 	double f = RFLOAT_VALUE(to);
 | |
| 	inf = isinf(f) && (signbit(f) ? desc : !desc);
 | |
|     }
 | |
|     else inf = 0;
 | |
| 
 | |
|     if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
 | |
| 	long i = FIX2LONG(from);
 | |
| 	long diff = FIX2LONG(step);
 | |
| 
 | |
| 	if (inf) {
 | |
| 	    for (;; i += diff)
 | |
| 		rb_yield(LONG2FIX(i));
 | |
| 	}
 | |
| 	else {
 | |
| 	    long end = FIX2LONG(to);
 | |
| 
 | |
| 	    if (desc) {
 | |
| 		for (; i >= end; i += diff)
 | |
| 		    rb_yield(LONG2FIX(i));
 | |
| 	    }
 | |
| 	    else {
 | |
| 		for (; i <= end; i += diff)
 | |
| 		    rb_yield(LONG2FIX(i));
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
 | |
| 	VALUE i = from;
 | |
| 
 | |
| 	if (inf) {
 | |
| 	    for (;; i = rb_funcall(i, '+', 1, step))
 | |
| 		rb_yield(i);
 | |
| 	}
 | |
| 	else {
 | |
| 	    ID cmp = desc ? '<' : '>';
 | |
| 
 | |
| 	    for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
 | |
| 		rb_yield(i);
 | |
| 	}
 | |
|     }
 | |
|     return from;
 | |
| }
 | |
| 
 | |
| static char *
 | |
| out_of_range_float(char (*pbuf)[24], VALUE val)
 | |
| {
 | |
|     char *const buf = *pbuf;
 | |
|     char *s;
 | |
| 
 | |
|     snprintf(buf, sizeof(*pbuf), "%-.10g", RFLOAT_VALUE(val));
 | |
|     if ((s = strchr(buf, ' ')) != 0) *s = '\0';
 | |
|     return buf;
 | |
| }
 | |
| 
 | |
| #define FLOAT_OUT_OF_RANGE(val, type) do { \
 | |
|     char buf[24]; \
 | |
|     rb_raise(rb_eRangeError, "float %s out of range of "type, \
 | |
| 	     out_of_range_float(&buf, (val))); \
 | |
| } while (0)
 | |
| 
 | |
| #define LONG_MIN_MINUS_ONE ((double)LONG_MIN-1)
 | |
| #define LONG_MAX_PLUS_ONE (2*(double)(LONG_MAX/2+1))
 | |
| #define ULONG_MAX_PLUS_ONE (2*(double)(ULONG_MAX/2+1))
 | |
| #define LONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \
 | |
|   (LONG_MIN_MINUS_ONE == (double)LONG_MIN ? \
 | |
|    LONG_MIN <= (n): \
 | |
|    LONG_MIN_MINUS_ONE < (n))
 | |
| 
 | |
| long
 | |
| rb_num2long(VALUE val)
 | |
| {
 | |
|   again:
 | |
|     if (NIL_P(val)) {
 | |
| 	rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
 | |
|     }
 | |
| 
 | |
|     if (FIXNUM_P(val)) return FIX2LONG(val);
 | |
| 
 | |
|     else if (RB_TYPE_P(val, T_FLOAT)) {
 | |
| 	if (RFLOAT_VALUE(val) < LONG_MAX_PLUS_ONE
 | |
| 	    && LONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) {
 | |
| 	    return (long)RFLOAT_VALUE(val);
 | |
| 	}
 | |
| 	else {
 | |
| 	    FLOAT_OUT_OF_RANGE(val, "integer");
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_TYPE_P(val, T_BIGNUM)) {
 | |
| 	return rb_big2long(val);
 | |
|     }
 | |
|     else {
 | |
| 	val = rb_to_int(val);
 | |
| 	goto again;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| rb_num2ulong_internal(VALUE val, int *wrap_p)
 | |
| {
 | |
|   again:
 | |
|     if (NIL_P(val)) {
 | |
|        rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
 | |
|     }
 | |
| 
 | |
|     if (FIXNUM_P(val)) {
 | |
|         long l = FIX2LONG(val); /* this is FIX2LONG, intended */
 | |
|         if (wrap_p)
 | |
|             *wrap_p = l < 0;
 | |
|         return (unsigned long)l;
 | |
|     }
 | |
|     else if (RB_TYPE_P(val, T_FLOAT)) {
 | |
| 	double d = RFLOAT_VALUE(val);
 | |
| 	if (d < ULONG_MAX_PLUS_ONE && LONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
 | |
| 	    if (wrap_p)
 | |
| 		*wrap_p = d <= -1.0; /* NUM2ULONG(v) uses v.to_int conceptually.  */
 | |
| 	    if (0 <= d)
 | |
| 		return (unsigned long)d;
 | |
| 	    return (unsigned long)(long)d;
 | |
| 	}
 | |
| 	else {
 | |
| 	    FLOAT_OUT_OF_RANGE(val, "integer");
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_TYPE_P(val, T_BIGNUM)) {
 | |
|         {
 | |
|             unsigned long ul = rb_big2ulong(val);
 | |
|             if (wrap_p)
 | |
|                 *wrap_p = BIGNUM_NEGATIVE_P(val);
 | |
|             return ul;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         val = rb_to_int(val);
 | |
|         goto again;
 | |
|     }
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| rb_num2ulong(VALUE val)
 | |
| {
 | |
|     return rb_num2ulong_internal(val, NULL);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_out_of_int(SIGNED_VALUE num)
 | |
| {
 | |
|     rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'",
 | |
| 	     num, num < 0 ? "small" : "big");
 | |
| }
 | |
| 
 | |
| #if SIZEOF_INT < SIZEOF_LONG
 | |
| static void
 | |
| check_int(long num)
 | |
| {
 | |
|     if ((long)(int)num != num) {
 | |
| 	rb_out_of_int(num);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| check_uint(unsigned long num, int sign)
 | |
| {
 | |
|     if (sign) {
 | |
| 	/* minus */
 | |
| 	if (num < (unsigned long)INT_MIN)
 | |
| 	    rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned int'", (long)num);
 | |
|     }
 | |
|     else {
 | |
| 	/* plus */
 | |
| 	if (UINT_MAX < num)
 | |
| 	    rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned int'", num);
 | |
|     }
 | |
| }
 | |
| 
 | |
| long
 | |
| rb_num2int(VALUE val)
 | |
| {
 | |
|     long num = rb_num2long(val);
 | |
| 
 | |
|     check_int(num);
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| long
 | |
| rb_fix2int(VALUE val)
 | |
| {
 | |
|     long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
 | |
| 
 | |
|     check_int(num);
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| rb_num2uint(VALUE val)
 | |
| {
 | |
|     int wrap;
 | |
|     unsigned long num = rb_num2ulong_internal(val, &wrap);
 | |
| 
 | |
|     check_uint(num, wrap);
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| rb_fix2uint(VALUE val)
 | |
| {
 | |
|     unsigned long num;
 | |
| 
 | |
|     if (!FIXNUM_P(val)) {
 | |
| 	return rb_num2uint(val);
 | |
|     }
 | |
|     num = FIX2ULONG(val);
 | |
| 
 | |
|     check_uint(num, rb_num_negative_int_p(val));
 | |
|     return num;
 | |
| }
 | |
| #else
 | |
| long
 | |
| rb_num2int(VALUE val)
 | |
| {
 | |
|     return rb_num2long(val);
 | |
| }
 | |
| 
 | |
| long
 | |
| rb_fix2int(VALUE val)
 | |
| {
 | |
|     return FIX2INT(val);
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| rb_num2uint(VALUE val)
 | |
| {
 | |
|     return rb_num2ulong(val);
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| rb_fix2uint(VALUE val)
 | |
| {
 | |
|     return RB_FIX2ULONG(val);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| NORETURN(static void rb_out_of_short(SIGNED_VALUE num));
 | |
| static void
 | |
| rb_out_of_short(SIGNED_VALUE num)
 | |
| {
 | |
|     rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `short'",
 | |
| 	     num, num < 0 ? "small" : "big");
 | |
| }
 | |
| 
 | |
| static void
 | |
| check_short(long num)
 | |
| {
 | |
|     if ((long)(short)num != num) {
 | |
| 	rb_out_of_short(num);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| check_ushort(unsigned long num, int sign)
 | |
| {
 | |
|     if (sign) {
 | |
| 	/* minus */
 | |
| 	if (num < (unsigned long)SHRT_MIN)
 | |
| 	    rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned short'", (long)num);
 | |
|     }
 | |
|     else {
 | |
| 	/* plus */
 | |
| 	if (USHRT_MAX < num)
 | |
| 	    rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned short'", num);
 | |
|     }
 | |
| }
 | |
| 
 | |
| short
 | |
| rb_num2short(VALUE val)
 | |
| {
 | |
|     long num = rb_num2long(val);
 | |
| 
 | |
|     check_short(num);
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| short
 | |
| rb_fix2short(VALUE val)
 | |
| {
 | |
|     long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
 | |
| 
 | |
|     check_short(num);
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| unsigned short
 | |
| rb_num2ushort(VALUE val)
 | |
| {
 | |
|     int wrap;
 | |
|     unsigned long num = rb_num2ulong_internal(val, &wrap);
 | |
| 
 | |
|     check_ushort(num, wrap);
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| unsigned short
 | |
| rb_fix2ushort(VALUE val)
 | |
| {
 | |
|     unsigned long num;
 | |
| 
 | |
|     if (!FIXNUM_P(val)) {
 | |
| 	return rb_num2ushort(val);
 | |
|     }
 | |
|     num = FIX2ULONG(val);
 | |
| 
 | |
|     check_ushort(num, rb_num_negative_int_p(val));
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_num2fix(VALUE val)
 | |
| {
 | |
|     long v;
 | |
| 
 | |
|     if (FIXNUM_P(val)) return val;
 | |
| 
 | |
|     v = rb_num2long(val);
 | |
|     if (!FIXABLE(v))
 | |
| 	rb_raise(rb_eRangeError, "integer %ld out of range of fixnum", v);
 | |
|     return LONG2FIX(v);
 | |
| }
 | |
| 
 | |
| #if HAVE_LONG_LONG
 | |
| 
 | |
| #define LLONG_MIN_MINUS_ONE ((double)LLONG_MIN-1)
 | |
| #define LLONG_MAX_PLUS_ONE (2*(double)(LLONG_MAX/2+1))
 | |
| #define ULLONG_MAX_PLUS_ONE (2*(double)(ULLONG_MAX/2+1))
 | |
| #ifndef ULLONG_MAX
 | |
| #define ULLONG_MAX ((unsigned LONG_LONG)LLONG_MAX*2+1)
 | |
| #endif
 | |
| #define LLONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \
 | |
|   (LLONG_MIN_MINUS_ONE == (double)LLONG_MIN ? \
 | |
|    LLONG_MIN <= (n): \
 | |
|    LLONG_MIN_MINUS_ONE < (n))
 | |
| 
 | |
| LONG_LONG
 | |
| rb_num2ll(VALUE val)
 | |
| {
 | |
|     if (NIL_P(val)) {
 | |
| 	rb_raise(rb_eTypeError, "no implicit conversion from nil");
 | |
|     }
 | |
| 
 | |
|     if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val);
 | |
| 
 | |
|     else if (RB_TYPE_P(val, T_FLOAT)) {
 | |
| 	double d = RFLOAT_VALUE(val);
 | |
| 	if (d < LLONG_MAX_PLUS_ONE && (LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d))) {
 | |
| 	    return (LONG_LONG)d;
 | |
| 	}
 | |
| 	else {
 | |
| 	    FLOAT_OUT_OF_RANGE(val, "long long");
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_TYPE_P(val, T_BIGNUM)) {
 | |
| 	return rb_big2ll(val);
 | |
|     }
 | |
|     else if (RB_TYPE_P(val, T_STRING)) {
 | |
| 	rb_raise(rb_eTypeError, "no implicit conversion from string");
 | |
|     }
 | |
|     else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
 | |
| 	rb_raise(rb_eTypeError, "no implicit conversion from boolean");
 | |
|     }
 | |
| 
 | |
|     val = rb_to_int(val);
 | |
|     return NUM2LL(val);
 | |
| }
 | |
| 
 | |
| unsigned LONG_LONG
 | |
| rb_num2ull(VALUE val)
 | |
| {
 | |
|     if (RB_TYPE_P(val, T_NIL)) {
 | |
| 	rb_raise(rb_eTypeError, "no implicit conversion from nil");
 | |
|     }
 | |
|     else if (RB_TYPE_P(val, T_FIXNUM)) {
 | |
| 	return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, intended */
 | |
|     }
 | |
|     else if (RB_TYPE_P(val, T_FLOAT)) {
 | |
| 	double d = RFLOAT_VALUE(val);
 | |
| 	if (d < ULLONG_MAX_PLUS_ONE && LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
 | |
| 	    if (0 <= d)
 | |
| 		return (unsigned LONG_LONG)d;
 | |
| 	    return (unsigned LONG_LONG)(LONG_LONG)d;
 | |
| 	}
 | |
| 	else {
 | |
| 	    FLOAT_OUT_OF_RANGE(val, "unsigned long long");
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_TYPE_P(val, T_BIGNUM)) {
 | |
| 	return rb_big2ull(val);
 | |
|     }
 | |
|     else if (RB_TYPE_P(val, T_STRING)) {
 | |
| 	rb_raise(rb_eTypeError, "no implicit conversion from string");
 | |
|     }
 | |
|     else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
 | |
| 	rb_raise(rb_eTypeError, "no implicit conversion from boolean");
 | |
|     }
 | |
| 
 | |
|     val = rb_to_int(val);
 | |
|     return NUM2ULL(val);
 | |
| }
 | |
| 
 | |
| #endif  /* HAVE_LONG_LONG */
 | |
| 
 | |
| /********************************************************************
 | |
|  *
 | |
|  * Document-class: Integer
 | |
|  *
 | |
|  *  Holds Integer values.  You cannot add a singleton method to an
 | |
|  *  Integer object, any attempt to do so will raise a TypeError.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_int_odd_p(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	if (num & 2) {
 | |
| 	    return Qtrue;
 | |
| 	}
 | |
|         return Qfalse;
 | |
|     }
 | |
|     else {
 | |
|         assert(RB_TYPE_P(num, T_BIGNUM));
 | |
| 	return rb_big_odd_p(num);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_even_p(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	if ((num & 2) == 0) {
 | |
| 	    return Qtrue;
 | |
| 	}
 | |
|         return Qfalse;
 | |
|     }
 | |
|     else {
 | |
|         assert(RB_TYPE_P(num, T_BIGNUM));
 | |
| 	return rb_big_even_p(num);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_even_p(VALUE num)
 | |
| {
 | |
|     return int_even_p(num);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.allbits?(mask)  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ if all bits of <code>+int+ & +mask+</code> are 1.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_allbits_p(VALUE num, VALUE mask)
 | |
| {
 | |
|     mask = rb_to_int(mask);
 | |
|     return rb_int_equal(rb_int_and(num, mask), mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.anybits?(mask)  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ if any bits of <code>+int+ & +mask+</code> are 1.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_anybits_p(VALUE num, VALUE mask)
 | |
| {
 | |
|     mask = rb_to_int(mask);
 | |
|     return int_zero_p(rb_int_and(num, mask)) ? Qfalse : Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.nobits?(mask)  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ if no bits of <code>+int+ & +mask+</code> are 1.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_nobits_p(VALUE num, VALUE mask)
 | |
| {
 | |
|     mask = rb_to_int(mask);
 | |
|     return int_zero_p(rb_int_and(num, mask));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#succ
 | |
|  *  Document-method: Integer#next
 | |
|  *  call-seq:
 | |
|  *     int.next  ->  integer
 | |
|  *     int.succ  ->  integer
 | |
|  *
 | |
|  *  Returns the successor of +int+,
 | |
|  *  i.e. the Integer equal to <code>int+1</code>.
 | |
|  *
 | |
|  *     1.next      #=> 2
 | |
|  *     (-1).next   #=> 0
 | |
|  *     1.succ      #=> 2
 | |
|  *     (-1).succ   #=> 0
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_int_succ(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	long i = FIX2LONG(num) + 1;
 | |
| 	return LONG2NUM(i);
 | |
|     }
 | |
|     if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	return rb_big_plus(num, INT2FIX(1));
 | |
|     }
 | |
|     return num_funcall1(num, '+', INT2FIX(1));
 | |
| }
 | |
| 
 | |
| #define int_succ rb_int_succ
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.pred  ->  integer
 | |
|  *
 | |
|  *  Returns the predecessor of +int+,
 | |
|  *  i.e. the Integer equal to <code>int-1</code>.
 | |
|  *
 | |
|  *     1.pred      #=> 0
 | |
|  *     (-1).pred   #=> -2
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_int_pred(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	long i = FIX2LONG(num) - 1;
 | |
| 	return LONG2NUM(i);
 | |
|     }
 | |
|     if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	return rb_big_minus(num, INT2FIX(1));
 | |
|     }
 | |
|     return num_funcall1(num, '-', INT2FIX(1));
 | |
| }
 | |
| 
 | |
| #define int_pred rb_int_pred
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#chr
 | |
|  *  call-seq:
 | |
|  *     int.chr([encoding])  ->  string
 | |
|  *
 | |
|  *  Returns a string containing the character represented by the +int+'s value
 | |
|  *  according to +encoding+.
 | |
|  *
 | |
|  *     65.chr    #=> "A"
 | |
|  *     230.chr   #=> "\xE6"
 | |
|  *     255.chr(Encoding::UTF_8)   #=> "\u00FF"
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_enc_uint_chr(unsigned int code, rb_encoding *enc)
 | |
| {
 | |
|     int n;
 | |
|     VALUE str;
 | |
|     switch (n = rb_enc_codelen(code, enc)) {
 | |
|       case ONIGERR_INVALID_CODE_POINT_VALUE:
 | |
| 	rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
 | |
| 	break;
 | |
|       case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE:
 | |
|       case 0:
 | |
| 	rb_raise(rb_eRangeError, "%u out of char range", code);
 | |
| 	break;
 | |
|     }
 | |
|     str = rb_enc_str_new(0, n, enc);
 | |
|     rb_enc_mbcput(code, RSTRING_PTR(str), enc);
 | |
|     if (rb_enc_precise_mbclen(RSTRING_PTR(str), RSTRING_END(str), enc) != n) {
 | |
| 	rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
 | |
|     }
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_chr(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     char c;
 | |
|     unsigned int i;
 | |
|     rb_encoding *enc;
 | |
| 
 | |
|     if (rb_num_to_uint(num, &i) == 0) {
 | |
|     }
 | |
|     else if (FIXNUM_P(num)) {
 | |
| 	rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
 | |
|     }
 | |
|     else {
 | |
| 	rb_raise(rb_eRangeError, "bignum out of char range");
 | |
|     }
 | |
| 
 | |
|     switch (argc) {
 | |
|       case 0:
 | |
| 	if (0xff < i) {
 | |
| 	    enc = rb_default_internal_encoding();
 | |
| 	    if (!enc) {
 | |
| 		rb_raise(rb_eRangeError, "%u out of char range", i);
 | |
| 	    }
 | |
| 	    goto decode;
 | |
| 	}
 | |
| 	c = (char)i;
 | |
| 	if (i < 0x80) {
 | |
| 	    return rb_usascii_str_new(&c, 1);
 | |
| 	}
 | |
| 	else {
 | |
| 	    return rb_str_new(&c, 1);
 | |
| 	}
 | |
|       case 1:
 | |
| 	break;
 | |
|       default:
 | |
|         rb_error_arity(argc, 0, 1);
 | |
|     }
 | |
|     enc = rb_to_encoding(argv[0]);
 | |
|     if (!enc) enc = rb_ascii8bit_encoding();
 | |
|   decode:
 | |
|     return rb_enc_uint_chr(i, enc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fixnum
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_uminus(VALUE num)
 | |
| {
 | |
|     return LONG2NUM(-FIX2LONG(num));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_uminus(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	return fix_uminus(num);
 | |
|     }
 | |
|     else {
 | |
|         assert(RB_TYPE_P(num, T_BIGNUM));
 | |
| 	return rb_big_uminus(num);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#to_s
 | |
|  *  call-seq:
 | |
|  *     int.to_s(base=10)  ->  string
 | |
|  *
 | |
|  *  Returns a string containing the place-value representation of +int+
 | |
|  *  with radix +base+ (between 2 and 36).
 | |
|  *
 | |
|  *     12345.to_s       #=> "12345"
 | |
|  *     12345.to_s(2)    #=> "11000000111001"
 | |
|  *     12345.to_s(8)    #=> "30071"
 | |
|  *     12345.to_s(10)   #=> "12345"
 | |
|  *     12345.to_s(16)   #=> "3039"
 | |
|  *     12345.to_s(36)   #=> "9ix"
 | |
|  *     78546939656932.to_s(36)  #=> "rubyrules"
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_fix2str(VALUE x, int base)
 | |
| {
 | |
|     char buf[SIZEOF_VALUE*CHAR_BIT + 1], *const e = buf + sizeof buf, *b = e;
 | |
|     long val = FIX2LONG(x);
 | |
|     unsigned long u;
 | |
|     int neg = 0;
 | |
| 
 | |
|     if (base < 2 || 36 < base) {
 | |
| 	rb_raise(rb_eArgError, "invalid radix %d", base);
 | |
|     }
 | |
| #if SIZEOF_LONG < SIZEOF_VOIDP
 | |
| # if SIZEOF_VOIDP == SIZEOF_LONG_LONG
 | |
|     if ((val >= 0 && (x & 0xFFFFFFFF00000000ull)) ||
 | |
| 	(val < 0 && (x & 0xFFFFFFFF00000000ull) != 0xFFFFFFFF00000000ull)) {
 | |
| 	rb_bug("Unnormalized Fixnum value %p", (void *)x);
 | |
|     }
 | |
| # else
 | |
|     /* should do something like above code, but currently ruby does not know */
 | |
|     /* such platforms */
 | |
| # endif
 | |
| #endif
 | |
|     if (val == 0) {
 | |
| 	return rb_usascii_str_new2("0");
 | |
|     }
 | |
|     if (val < 0) {
 | |
| 	u = 1 + (unsigned long)(-(val + 1)); /* u = -val avoiding overflow */
 | |
| 	neg = 1;
 | |
|     }
 | |
|     else {
 | |
| 	u = val;
 | |
|     }
 | |
|     do {
 | |
| 	*--b = ruby_digitmap[(int)(u % base)];
 | |
|     } while (u /= base);
 | |
|     if (neg) {
 | |
| 	*--b = '-';
 | |
|     }
 | |
| 
 | |
|     return rb_usascii_str_new(b, e - b);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_to_s(int argc, VALUE *argv, VALUE x)
 | |
| {
 | |
|     int base;
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1))
 | |
| 	base = NUM2INT(argv[0]);
 | |
|     else
 | |
| 	base = 10;
 | |
|     return rb_int2str(x, base);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int2str(VALUE x, int base)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return rb_fix2str(x, base);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big2str(x, base);
 | |
|     }
 | |
| 
 | |
|     return rb_any_to_s(x);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#+
 | |
|  * call-seq:
 | |
|  *    int + numeric  ->  numeric_result
 | |
|  *
 | |
|  * Performs addition: the class of the resulting object depends on
 | |
|  * the class of +numeric+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_plus(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	return rb_fix_plus_fix(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return rb_big_plus(y, x);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y));
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_COMPLEX)) {
 | |
| 	return rb_complex_plus(y, x);
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '+');
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_fix_plus(VALUE x, VALUE y)
 | |
| {
 | |
|     return fix_plus(x, y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_plus(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_plus(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_plus(x, y);
 | |
|     }
 | |
|     return rb_num_coerce_bin(x, y, '+');
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#-
 | |
|  * call-seq:
 | |
|  *    int - numeric  ->  numeric_result
 | |
|  *
 | |
|  * Performs subtraction: the class of the resulting object depends on
 | |
|  * the class of +numeric+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_minus(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	return rb_fix_minus_fix(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	x = rb_int2big(FIX2LONG(x));
 | |
| 	return rb_big_minus(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y));
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '-');
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_minus(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_minus(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_minus(x, y);
 | |
|     }
 | |
|     return rb_num_coerce_bin(x, y, '-');
 | |
| }
 | |
| 
 | |
| 
 | |
| #define SQRT_LONG_MAX HALF_LONG_MSB
 | |
| /*tests if N*N would overflow*/
 | |
| #define FIT_SQRT_LONG(n) (((n)<SQRT_LONG_MAX)&&((n)>=-SQRT_LONG_MAX))
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#*
 | |
|  * call-seq:
 | |
|  *    int * numeric  ->  numeric_result
 | |
|  *
 | |
|  * Performs multiplication: the class of the resulting object depends on
 | |
|  * the class of +numeric+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_mul(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	return rb_fix_mul_fix(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	switch (x) {
 | |
| 	  case INT2FIX(0): return x;
 | |
| 	  case INT2FIX(1): return y;
 | |
| 	}
 | |
| 	return rb_big_mul(y, x);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y));
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_COMPLEX)) {
 | |
| 	return rb_complex_mul(y, x);
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '*');
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_mul(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_mul(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_mul(x, y);
 | |
|     }
 | |
|     return rb_num_coerce_bin(x, y, '*');
 | |
| }
 | |
| 
 | |
| static double
 | |
| fix_fdiv_double(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
|         return double_div_double(FIX2LONG(x), FIX2LONG(y));
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
|         return rb_big_fdiv_double(rb_int2big(FIX2LONG(x)), y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
|         return double_div_double(FIX2LONG(x), RFLOAT_VALUE(y));
 | |
|     }
 | |
|     else {
 | |
|         return NUM2DBL(rb_num_coerce_bin(x, y, idFdiv));
 | |
|     }
 | |
| }
 | |
| 
 | |
| double
 | |
| rb_int_fdiv_double(VALUE x, VALUE y)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(y) && !FIXNUM_ZERO_P(y)) {
 | |
| 	VALUE gcd = rb_gcd(x, y);
 | |
| 	if (!FIXNUM_ZERO_P(gcd)) {
 | |
| 	    x = rb_int_idiv(x, gcd);
 | |
| 	    y = rb_int_idiv(y, gcd);
 | |
| 	}
 | |
|     }
 | |
|     if (FIXNUM_P(x)) {
 | |
|         return fix_fdiv_double(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
|         return rb_big_fdiv_double(x, y);
 | |
|     }
 | |
|     else {
 | |
|         return nan("");
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#fdiv
 | |
|  *  call-seq:
 | |
|  *     int.fdiv(numeric)  ->  float
 | |
|  *
 | |
|  *  Returns the floating point result of dividing +int+ by +numeric+.
 | |
|  *
 | |
|  *     654321.fdiv(13731)      #=> 47.652829364212366
 | |
|  *     654321.fdiv(13731.24)   #=> 47.65199646936475
 | |
|  *     -654321.fdiv(13731)     #=> -47.652829364212366
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_int_fdiv(VALUE x, VALUE y)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(x)) {
 | |
|         return DBL2NUM(rb_int_fdiv_double(x, y));
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#/
 | |
|  * call-seq:
 | |
|  *    int / numeric  ->  numeric_result
 | |
|  *
 | |
|  * Performs division: the class of the resulting object depends on
 | |
|  * the class of +numeric+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_divide(VALUE x, VALUE y, ID op)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
 | |
| 	return rb_fix_div_fix(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	x = rb_int2big(FIX2LONG(x));
 | |
| 	return rb_big_div(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	    if (op == '/') {
 | |
|                 double d = FIX2LONG(x);
 | |
|                 return rb_flo_div_flo(DBL2NUM(d), y);
 | |
| 	    }
 | |
| 	    else {
 | |
|                 VALUE v;
 | |
| 		if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv();
 | |
|                 v = fix_divide(x, y, '/');
 | |
|                 return flo_floor(0, 0, v);
 | |
| 	    }
 | |
|     }
 | |
|     else {
 | |
| 	if (RB_TYPE_P(y, T_RATIONAL) &&
 | |
| 	    op == '/' && FIX2LONG(x) == 1)
 | |
| 	    return rb_rational_reciprocal(y);
 | |
| 	return rb_num_coerce_bin(x, y, op);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| fix_div(VALUE x, VALUE y)
 | |
| {
 | |
|     return fix_divide(x, y, '/');
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_div(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_div(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_div(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#div
 | |
|  * call-seq:
 | |
|  *    int.div(numeric)  ->  integer
 | |
|  *
 | |
|  * Performs integer division: returns the integer result of dividing +int+
 | |
|  * by +numeric+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_idiv(VALUE x, VALUE y)
 | |
| {
 | |
|     return fix_divide(x, y, id_div);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_idiv(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_idiv(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_idiv(x, y);
 | |
|     }
 | |
|     return num_div(x, y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#%
 | |
|  *  Document-method: Integer#modulo
 | |
|  *  call-seq:
 | |
|  *     int % other        ->  real
 | |
|  *     int.modulo(other)  ->  real
 | |
|  *
 | |
|  *  Returns +int+ modulo +other+.
 | |
|  *
 | |
|  *  See Numeric#divmod for more information.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_mod(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
 | |
| 	return rb_fix_mod_fix(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	x = rb_int2big(FIX2LONG(x));
 | |
| 	return rb_big_modulo(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y)));
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '%');
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_modulo(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_mod(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_modulo(x, y);
 | |
|     }
 | |
|     return num_modulo(x, y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     int.remainder(numeric)  ->  real
 | |
|  *
 | |
|  *  Returns the remainder after dividing +int+ by +numeric+.
 | |
|  *
 | |
|  *  <code>x.remainder(y)</code> means <code>x-y*(x/y).truncate</code>.
 | |
|  *
 | |
|  *     5.remainder(3)     #=> 2
 | |
|  *     -5.remainder(3)    #=> -2
 | |
|  *     5.remainder(-3)    #=> 2
 | |
|  *     -5.remainder(-3)   #=> -2
 | |
|  *     5.remainder(1.5)   #=> 0.5
 | |
|  *
 | |
|  *  See Numeric#divmod.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_remainder(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return num_remainder(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_remainder(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#divmod
 | |
|  *  call-seq:
 | |
|  *     int.divmod(numeric)  ->  array
 | |
|  *
 | |
|  *  See Numeric#divmod.
 | |
|  */
 | |
| static VALUE
 | |
| fix_divmod(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	VALUE div, mod;
 | |
| 	if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
 | |
| 	rb_fix_divmod_fix(x, y, &div, &mod);
 | |
| 	return rb_assoc_new(div, mod);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	x = rb_int2big(FIX2LONG(x));
 | |
| 	return rb_big_divmod(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	{
 | |
| 	    double div, mod;
 | |
| 	    volatile VALUE a, b;
 | |
| 
 | |
| 	    flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod);
 | |
| 	    a = dbl2ival(div);
 | |
| 	    b = DBL2NUM(mod);
 | |
| 	    return rb_assoc_new(a, b);
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, id_divmod);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_divmod(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_divmod(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_divmod(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#**
 | |
|  *  call-seq:
 | |
|  *     int ** numeric  ->  numeric_result
 | |
|  *
 | |
|  *  Raises +int+ to the power of +numeric+, which may be negative or
 | |
|  *  fractional.
 | |
|  *  The result may be an Integer, a Float, a Rational, or a complex number.
 | |
|  *
 | |
|  *     2 ** 3        #=> 8
 | |
|  *     2 ** -1       #=> (1/2)
 | |
|  *     2 ** 0.5      #=> 1.4142135623730951
 | |
|  *     (-1) ** 0.5   #=> (0.0+1.0i)
 | |
|  *
 | |
|  *     123456789 ** 2     #=> 15241578750190521
 | |
|  *     123456789 ** 1.2   #=> 5126464716.0993185
 | |
|  *     123456789 ** -2    #=> (1/15241578750190521)
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_pow(long x, unsigned long y)
 | |
| {
 | |
|     int neg = x < 0;
 | |
|     long z = 1;
 | |
| 
 | |
|     if (y == 0) return INT2FIX(1);
 | |
|     if (y == 1) return LONG2NUM(x);
 | |
|     if (neg) x = -x;
 | |
|     if (y & 1)
 | |
| 	z = x;
 | |
|     else
 | |
| 	neg = 0;
 | |
|     y &= ~1;
 | |
|     do {
 | |
| 	while (y % 2 == 0) {
 | |
| 	    if (!FIT_SQRT_LONG(x)) {
 | |
|                 goto bignum;
 | |
| 	    }
 | |
| 	    x = x * x;
 | |
| 	    y >>= 1;
 | |
| 	}
 | |
| 	{
 | |
|             if (MUL_OVERFLOW_FIXNUM_P(x, z)) {
 | |
| 		goto bignum;
 | |
| 	    }
 | |
| 	    z = x * z;
 | |
| 	}
 | |
|     } while (--y);
 | |
|     if (neg) z = -z;
 | |
|     return LONG2NUM(z);
 | |
| 
 | |
|     VALUE v;
 | |
|   bignum:
 | |
|     v = rb_big_pow(rb_int2big(x), LONG2NUM(y));
 | |
|     if (RB_FLOAT_TYPE_P(v)) /* infinity due to overflow */
 | |
|         return v;
 | |
|     if (z != 1) v = rb_big_mul(rb_int2big(neg ? -z : z), v);
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_positive_pow(long x, unsigned long y)
 | |
| {
 | |
|     return int_pow(x, y);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| fix_pow_inverted(VALUE x, VALUE minusb)
 | |
| {
 | |
|     if (x == INT2FIX(0)) {
 | |
|         rb_num_zerodiv();
 | |
|         UNREACHABLE_RETURN(Qundef);
 | |
|     }
 | |
|     else {
 | |
|         VALUE y = rb_int_pow(x, minusb);
 | |
| 
 | |
|         if (RB_FLOAT_TYPE_P(y)) {
 | |
|             double d = pow((double)FIX2LONG(x), RFLOAT_VALUE(y));
 | |
|             return DBL2NUM(1.0 / d);
 | |
|         }
 | |
|         else {
 | |
|             return rb_rational_raw(INT2FIX(1), y);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| fix_pow(VALUE x, VALUE y)
 | |
| {
 | |
|     long a = FIX2LONG(x);
 | |
| 
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long b = FIX2LONG(y);
 | |
| 
 | |
| 	if (a == 1) return INT2FIX(1);
 | |
|         if (a == -1) return INT2FIX(b % 2 ? -1 : 1);
 | |
|         if (b <  0) return fix_pow_inverted(x, fix_uminus(y));
 | |
| 	if (b == 0) return INT2FIX(1);
 | |
| 	if (b == 1) return x;
 | |
| 	if (a == 0) return INT2FIX(0);
 | |
| 	return int_pow(a, b);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	if (a == 1) return INT2FIX(1);
 | |
|         if (a == -1) return INT2FIX(int_even_p(y) ? 1 : -1);
 | |
|         if (BIGNUM_NEGATIVE_P(y)) return fix_pow_inverted(x, rb_big_uminus(y));
 | |
| 	if (a == 0) return INT2FIX(0);
 | |
| 	x = rb_int2big(FIX2LONG(x));
 | |
| 	return rb_big_pow(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	double dy = RFLOAT_VALUE(y);
 | |
| 	if (dy == 0.0) return DBL2NUM(1.0);
 | |
| 	if (a == 0) {
 | |
| 	    return DBL2NUM(dy < 0 ? HUGE_VAL : 0.0);
 | |
| 	}
 | |
| 	if (a == 1) return DBL2NUM(1.0);
 | |
|         if (a < 0 && dy != round(dy))
 | |
|             return rb_dbl_complex_new_polar_pi(pow(-(double)a, dy), dy);
 | |
|         return DBL2NUM(pow((double)a, dy));
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, idPow);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_pow(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_pow(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_pow(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_num_pow(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z = rb_int_pow(x, y);
 | |
|     if (!NIL_P(z)) return z;
 | |
|     if (RB_FLOAT_TYPE_P(x)) return rb_float_pow(x, y);
 | |
|     if (SPECIAL_CONST_P(x)) return Qnil;
 | |
|     switch (BUILTIN_TYPE(x)) {
 | |
|       case T_COMPLEX:
 | |
|         return rb_complex_pow(x, y);
 | |
|       case T_RATIONAL:
 | |
|         return rb_rational_pow(x, y);
 | |
|       default:
 | |
|         break;
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#==
 | |
|  * Document-method: Integer#===
 | |
|  * call-seq:
 | |
|  *    int == other  ->  true or false
 | |
|  *
 | |
|  * Returns +true+ if +int+ equals +other+ numerically.
 | |
|  * Contrast this with Integer#eql?, which requires +other+ to be an Integer.
 | |
|  *
 | |
|  *    1 == 2     #=> false
 | |
|  *    1 == 1.0   #=> true
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_equal(VALUE x, VALUE y)
 | |
| {
 | |
|     if (x == y) return Qtrue;
 | |
|     if (FIXNUM_P(y)) return Qfalse;
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return rb_big_eq(y, x);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
|         return rb_integer_float_eq(x, y);
 | |
|     }
 | |
|     else {
 | |
| 	return num_equal(x, y);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_equal(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_equal(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_eq(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#<=>
 | |
|  *  call-seq:
 | |
|  *     int <=> numeric  ->  -1, 0, +1, or nil
 | |
|  *
 | |
|  *  Comparison---Returns -1, 0, or +1 depending on whether +int+ is
 | |
|  *  less than, equal to, or greater than +numeric+.
 | |
|  *
 | |
|  *  This is the basis for the tests in the Comparable module.
 | |
|  *
 | |
|  *  +nil+ is returned if the two values are incomparable.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     if (x == y) return INT2FIX(0);
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
 | |
| 	return INT2FIX(-1);
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	VALUE cmp = rb_big_cmp(y, x);
 | |
| 	switch (cmp) {
 | |
| 	  case INT2FIX(+1): return INT2FIX(-1);
 | |
| 	  case INT2FIX(-1): return INT2FIX(+1);
 | |
| 	}
 | |
| 	return cmp;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	return rb_integer_float_cmp(x, y);
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_cmp(x, y, id_cmp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_cmp(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_cmp(x, y);
 | |
|     }
 | |
|     else {
 | |
| 	rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#>
 | |
|  * call-seq:
 | |
|  *    int > real  ->  true or false
 | |
|  *
 | |
|  * Returns +true+ if the value of +int+ is greater than that of +real+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_gt(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(x) > FIX2LONG(y)) return Qtrue;
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return rb_big_cmp(y, x) == INT2FIX(-1) ? Qtrue : Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
|         return rb_integer_float_cmp(x, y) == INT2FIX(1) ? Qtrue : Qfalse;
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_relop(x, y, '>');
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_gt(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_gt(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_gt(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#>=
 | |
|  * call-seq:
 | |
|  *    int >= real  ->  true or false
 | |
|  *
 | |
|  * Returns +true+ if the value of +int+ is greater than or equal to that of
 | |
|  * +real+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_ge(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(x) >= FIX2LONG(y)) return Qtrue;
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return rb_big_cmp(y, x) != INT2FIX(+1) ? Qtrue : Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	VALUE rel = rb_integer_float_cmp(x, y);
 | |
| 	return rel == INT2FIX(1) || rel == INT2FIX(0) ? Qtrue : Qfalse;
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_relop(x, y, idGE);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_ge(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_ge(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_ge(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#<
 | |
|  * call-seq:
 | |
|  *    int < real  ->  true or false
 | |
|  *
 | |
|  * Returns +true+ if the value of +int+ is less than that of +real+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_lt(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(x) < FIX2LONG(y)) return Qtrue;
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return rb_big_cmp(y, x) == INT2FIX(+1) ? Qtrue : Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
|         return rb_integer_float_cmp(x, y) == INT2FIX(-1) ? Qtrue : Qfalse;
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_relop(x, y, '<');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_lt(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_lt(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_lt(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#<=
 | |
|  * call-seq:
 | |
|  *    int <= real  ->  true or false
 | |
|  *
 | |
|  * Returns +true+ if the value of +int+ is less than or equal to that of
 | |
|  * +real+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_le(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(x) <= FIX2LONG(y)) return Qtrue;
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return rb_big_cmp(y, x) != INT2FIX(-1) ? Qtrue : Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(y, T_FLOAT)) {
 | |
| 	VALUE rel = rb_integer_float_cmp(x, y);
 | |
| 	return rel == INT2FIX(-1) || rel == INT2FIX(0) ? Qtrue : Qfalse;
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_relop(x, y, idLE);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_le(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_le(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_le(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| fix_comp(VALUE num)
 | |
| {
 | |
|     return ~num | FIXNUM_FLAG;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_comp(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	return fix_comp(num);
 | |
|     }
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	return rb_big_comp(num);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| num_funcall_bit_1(VALUE y, VALUE arg, int recursive)
 | |
| {
 | |
|     ID func = (ID)((VALUE *)arg)[0];
 | |
|     VALUE x = ((VALUE *)arg)[1];
 | |
|     if (recursive) {
 | |
| 	num_funcall_op_1_recursion(x, func, y);
 | |
|     }
 | |
|     return rb_check_funcall(x, func, 1, &y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_num_coerce_bit(VALUE x, VALUE y, ID func)
 | |
| {
 | |
|     VALUE ret, args[3];
 | |
| 
 | |
|     args[0] = (VALUE)func;
 | |
|     args[1] = x;
 | |
|     args[2] = y;
 | |
|     do_coerce(&args[1], &args[2], TRUE);
 | |
|     ret = rb_exec_recursive_paired(num_funcall_bit_1,
 | |
| 				   args[2], args[1], (VALUE)args);
 | |
|     if (ret == Qundef) {
 | |
| 	/* show the original object, not coerced object */
 | |
| 	coerce_failed(x, y);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#&
 | |
|  * call-seq:
 | |
|  *   int & other_int  ->  integer
 | |
|  *
 | |
|  * Bitwise AND.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_and(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long val = FIX2LONG(x) & FIX2LONG(y);
 | |
| 	return LONG2NUM(val);
 | |
|     }
 | |
| 
 | |
|     if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return rb_big_and(y, x);
 | |
|     }
 | |
| 
 | |
|     return rb_num_coerce_bit(x, y, '&');
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_and(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_and(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_and(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#|
 | |
|  * call-seq:
 | |
|  *   int | other_int  ->  integer
 | |
|  *
 | |
|  * Bitwise OR.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_or(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long val = FIX2LONG(x) | FIX2LONG(y);
 | |
| 	return LONG2NUM(val);
 | |
|     }
 | |
| 
 | |
|     if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return rb_big_or(y, x);
 | |
|     }
 | |
| 
 | |
|     return rb_num_coerce_bit(x, y, '|');
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_or(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_or(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_or(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#^
 | |
|  * call-seq:
 | |
|  *   int ^ other_int  ->  integer
 | |
|  *
 | |
|  * Bitwise EXCLUSIVE OR.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_xor(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long val = FIX2LONG(x) ^ FIX2LONG(y);
 | |
| 	return LONG2NUM(val);
 | |
|     }
 | |
| 
 | |
|     if (RB_TYPE_P(y, T_BIGNUM)) {
 | |
| 	return rb_big_xor(y, x);
 | |
|     }
 | |
| 
 | |
|     return rb_num_coerce_bit(x, y, '^');
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_xor(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return fix_xor(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_xor(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#<<
 | |
|  * call-seq:
 | |
|  *   int << count  ->  integer
 | |
|  *
 | |
|  * Returns +int+ shifted left +count+ positions, or right if +count+
 | |
|  * is negative.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_fix_lshift(VALUE x, VALUE y)
 | |
| {
 | |
|     long val, width;
 | |
| 
 | |
|     val = NUM2LONG(x);
 | |
|     if (!FIXNUM_P(y))
 | |
| 	return rb_big_lshift(rb_int2big(val), y);
 | |
|     width = FIX2LONG(y);
 | |
|     if (width < 0)
 | |
| 	return fix_rshift(val, (unsigned long)-width);
 | |
|     return fix_lshift(val, width);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| fix_lshift(long val, unsigned long width)
 | |
| {
 | |
|     if (width > (SIZEOF_LONG*CHAR_BIT-1)
 | |
| 	|| ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) {
 | |
| 	return rb_big_lshift(rb_int2big(val), ULONG2NUM(width));
 | |
|     }
 | |
|     val = val << width;
 | |
|     return LONG2NUM(val);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_lshift(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return rb_fix_lshift(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_lshift(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#>>
 | |
|  * call-seq:
 | |
|  *   int >> count  ->  integer
 | |
|  *
 | |
|  * Returns +int+ shifted right +count+ positions, or left if +count+
 | |
|  * is negative.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_fix_rshift(VALUE x, VALUE y)
 | |
| {
 | |
|     long i, val;
 | |
| 
 | |
|     val = FIX2LONG(x);
 | |
|     if (!FIXNUM_P(y))
 | |
| 	return rb_big_rshift(rb_int2big(val), y);
 | |
|     i = FIX2LONG(y);
 | |
|     if (i == 0) return x;
 | |
|     if (i < 0)
 | |
| 	return fix_lshift(val, (unsigned long)-i);
 | |
|     return fix_rshift(val, i);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| fix_rshift(long val, unsigned long i)
 | |
| {
 | |
|     if (i >= sizeof(long)*CHAR_BIT-1) {
 | |
| 	if (val < 0) return INT2FIX(-1);
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
|     val = RSHIFT(val, i);
 | |
|     return LONG2FIX(val);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_int_rshift(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return rb_fix_rshift(x, y);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_BIGNUM)) {
 | |
| 	return rb_big_rshift(x, y);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_fix_aref(VALUE fix, VALUE idx)
 | |
| {
 | |
|     long val = FIX2LONG(fix);
 | |
|     long i;
 | |
| 
 | |
|     idx = rb_to_int(idx);
 | |
|     if (!FIXNUM_P(idx)) {
 | |
| 	idx = rb_big_norm(idx);
 | |
| 	if (!FIXNUM_P(idx)) {
 | |
| 	    if (!BIGNUM_SIGN(idx) || val >= 0)
 | |
| 		return INT2FIX(0);
 | |
| 	    return INT2FIX(1);
 | |
| 	}
 | |
|     }
 | |
|     i = FIX2LONG(idx);
 | |
| 
 | |
|     if (i < 0) return INT2FIX(0);
 | |
|     if (SIZEOF_LONG*CHAR_BIT-1 <= i) {
 | |
| 	if (val < 0) return INT2FIX(1);
 | |
| 	return INT2FIX(0);
 | |
|     }
 | |
|     if (val & (1L<<i))
 | |
| 	return INT2FIX(1);
 | |
|     return INT2FIX(0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* copied from "r_less" in range.c */
 | |
| /* compares _a_ and _b_ and returns:
 | |
|  * < 0: a < b
 | |
|  * = 0: a = b
 | |
|  * > 0: a > b or non-comparable
 | |
|  */
 | |
| static int
 | |
| compare_indexes(VALUE a, VALUE b)
 | |
| {
 | |
|     VALUE r = rb_funcall(a, id_cmp, 1, b);
 | |
| 
 | |
|     if (NIL_P(r))
 | |
|         return INT_MAX;
 | |
|     return rb_cmpint(r, a, b);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| generate_mask(VALUE len)
 | |
| {
 | |
|     return rb_int_minus(rb_int_lshift(INT2FIX(1), len), INT2FIX(1));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_aref1(VALUE num, VALUE arg)
 | |
| {
 | |
|     VALUE orig_num = num, beg, end;
 | |
|     int excl;
 | |
| 
 | |
|     if (rb_range_values(arg, &beg, &end, &excl)) {
 | |
|         if (NIL_P(beg)) {
 | |
|             /* beginless range */
 | |
|             if (!RTEST(num_negative_p(end))) {
 | |
|                 if (!excl) end = rb_int_plus(end, INT2FIX(1));
 | |
|                 VALUE mask = generate_mask(end);
 | |
|                 if (RTEST(int_zero_p(rb_int_and(num, mask)))) {
 | |
|                     return INT2FIX(0);
 | |
|                 }
 | |
|                 else {
 | |
|                     rb_raise(rb_eArgError, "The beginless range for Integer#[] results in infinity");
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 return INT2FIX(0);
 | |
|             }
 | |
|         }
 | |
|         num = rb_int_rshift(num, beg);
 | |
| 
 | |
|         int cmp = compare_indexes(beg, end);
 | |
|         if (!NIL_P(end) && cmp < 0) {
 | |
|             VALUE len = rb_int_minus(end, beg);
 | |
|             if (!excl) len = rb_int_plus(len, INT2FIX(1));
 | |
|             VALUE mask = generate_mask(len);
 | |
|             num = rb_int_and(num, mask);
 | |
|         }
 | |
|         else if (cmp == 0) {
 | |
|             if (excl) return INT2FIX(0);
 | |
|             num = orig_num;
 | |
|             arg = beg;
 | |
|             goto one_bit;
 | |
|         }
 | |
|         return num;
 | |
|     }
 | |
| 
 | |
| one_bit:
 | |
|     if (FIXNUM_P(num)) {
 | |
|         return rb_fix_aref(num, arg);
 | |
|     }
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
|         return rb_big_aref(num, arg);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_aref2(VALUE num, VALUE beg, VALUE len)
 | |
| {
 | |
|     num = rb_int_rshift(num, beg);
 | |
|     VALUE mask = generate_mask(len);
 | |
|     num = rb_int_and(num, mask);
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#[]
 | |
|  *  call-seq:
 | |
|  *     int[n]    -> 0, 1
 | |
|  *     int[n, m] -> num
 | |
|  *     int[range] -> num
 | |
|  *
 | |
|  *  Bit Reference---Returns the <code>n</code>th bit in the
 | |
|  *  binary representation of +int+, where <code>int[0]</code>
 | |
|  *  is the least significant bit.
 | |
|  *
 | |
|  *     a = 0b11001100101010
 | |
|  *     30.downto(0) {|n| print a[n] }
 | |
|  *     #=> 0000000000000000011001100101010
 | |
|  *
 | |
|  *     a = 9**15
 | |
|  *     50.downto(0) {|n| print a[n] }
 | |
|  *     #=> 000101110110100000111000011110010100111100010111001
 | |
|  *
 | |
|  *  In principle, <code>n[i]</code> is equivalent to <code>(n >> i) & 1</code>.
 | |
|  *  Thus, any negative index always returns zero:
 | |
|  *
 | |
|  *     p 255[-1] #=> 0
 | |
|  *
 | |
|  *  Range operations <code>n[i, len]</code> and <code>n[i..j]</code>
 | |
|  *  are naturally extended.
 | |
|  *
 | |
|  *  * <code>n[i, len]</code> equals to <code>(n >> i) & ((1 << len) - 1)</code>.
 | |
|  *  * <code>n[i..j]</code> equals to <code>(n >> i) & ((1 << (j - i + 1)) - 1)</code>.
 | |
|  *  * <code>n[i...j]</code> equals to <code>(n >> i) & ((1 << (j - i)) - 1)</code>.
 | |
|  *  * <code>n[i..]</code> equals to <code>(n >> i)</code>.
 | |
|  *  * <code>n[..j]</code> is zero if <code>n & ((1 << (j + 1)) - 1)</code> is zero.  Otherwise, raises an ArgumentError.
 | |
|  *  * <code>n[...j]</code> is zero if <code>n & ((1 << j) - 1)</code> is zero.  Otherwise, raises an ArgumentError.
 | |
|  *
 | |
|  *  Note that range operation may exhaust memory.
 | |
|  *  For example, <code>-1[0, 1000000000000]</code> will raise NoMemoryError.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_aref(int const argc, VALUE * const argv, VALUE const num)
 | |
| {
 | |
|     rb_check_arity(argc, 1, 2);
 | |
|     if (argc == 2) {
 | |
|         return int_aref2(num, argv[0], argv[1]);
 | |
|     }
 | |
|     return int_aref1(num, argv[0]);
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#to_f
 | |
|  *  call-seq:
 | |
|  *     int.to_f  ->  float
 | |
|  *
 | |
|  *  Converts +int+ to a Float.  If +int+ doesn't fit in a Float,
 | |
|  *  the result is infinity.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_to_f(VALUE num)
 | |
| {
 | |
|     double val;
 | |
| 
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	val = (double)FIX2LONG(num);
 | |
|     }
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	val = rb_big2dbl(num);
 | |
|     }
 | |
|     else {
 | |
| 	rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
 | |
|     }
 | |
| 
 | |
|     return DBL2NUM(val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#abs
 | |
|  *  Document-method: Integer#magnitude
 | |
|  *  call-seq:
 | |
|  *     int.abs        ->  integer
 | |
|  *     int.magnitude  ->  integer
 | |
|  *
 | |
|  *  Returns the absolute value of +int+.
 | |
|  *
 | |
|  *     (-12345).abs   #=> 12345
 | |
|  *     -12345.abs     #=> 12345
 | |
|  *     12345.abs      #=> 12345
 | |
|  *
 | |
|  *  Integer#magnitude is an alias for Integer#abs.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_abs(VALUE fix)
 | |
| {
 | |
|     long i = FIX2LONG(fix);
 | |
| 
 | |
|     if (i < 0) i = -i;
 | |
| 
 | |
|     return LONG2NUM(i);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_abs(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	return fix_abs(num);
 | |
|     }
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	return rb_big_abs(num);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#size
 | |
|  *  call-seq:
 | |
|  *     int.size  ->  int
 | |
|  *
 | |
|  *  Returns the number of bytes in the machine representation of +int+
 | |
|  *  (machine dependent).
 | |
|  *
 | |
|  *     1.size               #=> 8
 | |
|  *     -1.size              #=> 8
 | |
|  *     2147483647.size      #=> 8
 | |
|  *     (256**10 - 1).size   #=> 10
 | |
|  *     (256**20 - 1).size   #=> 20
 | |
|  *     (256**40 - 1).size   #=> 40
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fix_size(VALUE fix)
 | |
| {
 | |
|     return INT2FIX(sizeof(long));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_size(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	return fix_size(num);
 | |
|     }
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	return rb_big_size_m(num);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_fix_bit_length(VALUE fix)
 | |
| {
 | |
|     long v = FIX2LONG(fix);
 | |
|     if (v < 0)
 | |
|         v = ~v;
 | |
|     return LONG2FIX(bit_length(v));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int_bit_length(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	return rb_fix_bit_length(num);
 | |
|     }
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM)) {
 | |
| 	return rb_big_bit_length(num);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#digits
 | |
|  *  call-seq:
 | |
|  *     int.digits        ->  array
 | |
|  *     int.digits(base)  ->  array
 | |
|  *
 | |
|  *  Returns the digits of +int+'s place-value representation
 | |
|  *  with radix +base+ (default: 10).
 | |
|  *  The digits are returned as an array with the least significant digit
 | |
|  *  as the first array element.
 | |
|  *
 | |
|  *  +base+ must be greater than or equal to 2.
 | |
|  *
 | |
|  *     12345.digits      #=> [5, 4, 3, 2, 1]
 | |
|  *     12345.digits(7)   #=> [4, 6, 6, 0, 5]
 | |
|  *     12345.digits(100) #=> [45, 23, 1]
 | |
|  *
 | |
|  *     -12345.digits(7)  #=> Math::DomainError
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_fix_digits(VALUE fix, long base)
 | |
| {
 | |
|     VALUE digits;
 | |
|     long x = FIX2LONG(fix);
 | |
| 
 | |
|     assert(x >= 0);
 | |
| 
 | |
|     if (base < 2)
 | |
|         rb_raise(rb_eArgError, "invalid radix %ld", base);
 | |
| 
 | |
|     if (x == 0)
 | |
|         return rb_ary_new_from_args(1, INT2FIX(0));
 | |
| 
 | |
|     digits = rb_ary_new();
 | |
|     while (x > 0) {
 | |
|         long q = x % base;
 | |
|         rb_ary_push(digits, LONG2NUM(q));
 | |
|         x /= base;
 | |
|     }
 | |
| 
 | |
|     return digits;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_int_digits_bigbase(VALUE num, VALUE base)
 | |
| {
 | |
|     VALUE digits;
 | |
| 
 | |
|     assert(!rb_num_negative_p(num));
 | |
| 
 | |
|     if (RB_TYPE_P(base, T_BIGNUM))
 | |
|         base = rb_big_norm(base);
 | |
| 
 | |
|     if (FIXNUM_P(base) && FIX2LONG(base) < 2)
 | |
|         rb_raise(rb_eArgError, "invalid radix %ld", FIX2LONG(base));
 | |
|     else if (RB_TYPE_P(base, T_BIGNUM) && BIGNUM_NEGATIVE_P(base))
 | |
|         rb_raise(rb_eArgError, "negative radix");
 | |
| 
 | |
|     if (FIXNUM_P(base) && FIXNUM_P(num))
 | |
|         return rb_fix_digits(num, FIX2LONG(base));
 | |
| 
 | |
|     if (FIXNUM_P(num))
 | |
|         return rb_ary_new_from_args(1, num);
 | |
| 
 | |
|     digits = rb_ary_new();
 | |
|     while (!FIXNUM_P(num) || FIX2LONG(num) > 0) {
 | |
|         VALUE qr = rb_int_divmod(num, base);
 | |
|         rb_ary_push(digits, RARRAY_AREF(qr, 1));
 | |
|         num = RARRAY_AREF(qr, 0);
 | |
|     }
 | |
| 
 | |
|     return digits;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_int_digits(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     VALUE base_value;
 | |
|     long base;
 | |
| 
 | |
|     if (rb_num_negative_p(num))
 | |
|         rb_raise(rb_eMathDomainError, "out of domain");
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1)) {
 | |
|         base_value = rb_to_int(argv[0]);
 | |
|         if (!RB_INTEGER_TYPE_P(base_value))
 | |
|             rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
 | |
|                      rb_obj_classname(argv[0]));
 | |
|         if (RB_TYPE_P(base_value, T_BIGNUM))
 | |
|             return rb_int_digits_bigbase(num, base_value);
 | |
| 
 | |
|         base = FIX2LONG(base_value);
 | |
|         if (base < 0)
 | |
|             rb_raise(rb_eArgError, "negative radix");
 | |
|         else if (base < 2)
 | |
|             rb_raise(rb_eArgError, "invalid radix %ld", base);
 | |
|     }
 | |
|     else
 | |
|         base = 10;
 | |
| 
 | |
|     if (FIXNUM_P(num))
 | |
|         return rb_fix_digits(num, base);
 | |
|     else if (RB_TYPE_P(num, T_BIGNUM))
 | |
|         return rb_int_digits_bigbase(num, LONG2FIX(base));
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#upto
 | |
|  *  call-seq:
 | |
|  *     int.upto(limit) {|i| block }  ->  self
 | |
|  *     int.upto(limit)               ->  an_enumerator
 | |
|  *
 | |
|  *  Iterates the given block, passing in integer values from +int+ up to and
 | |
|  *  including +limit+.
 | |
|  *
 | |
|  *  If no block is given, an Enumerator is returned instead.
 | |
|  *
 | |
|  *     5.upto(10) {|i| print i, " " }   #=> 5 6 7 8 9 10
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_upto_size(VALUE from, VALUE args, VALUE eobj)
 | |
| {
 | |
|     return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(1), FALSE);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_upto(VALUE from, VALUE to)
 | |
| {
 | |
|     RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
 | |
|     if (FIXNUM_P(from) && FIXNUM_P(to)) {
 | |
| 	long i, end;
 | |
| 
 | |
| 	end = FIX2LONG(to);
 | |
| 	for (i = FIX2LONG(from); i <= end; i++) {
 | |
| 	    rb_yield(LONG2FIX(i));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	VALUE i = from, c;
 | |
| 
 | |
| 	while (!(c = rb_funcall(i, '>', 1, to))) {
 | |
| 	    rb_yield(i);
 | |
| 	    i = rb_funcall(i, '+', 1, INT2FIX(1));
 | |
| 	}
 | |
| 	ensure_cmp(c, i, to);
 | |
|     }
 | |
|     return from;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#downto
 | |
|  *  call-seq:
 | |
|  *     int.downto(limit) {|i| block }  ->  self
 | |
|  *     int.downto(limit)               ->  an_enumerator
 | |
|  *
 | |
|  *  Iterates the given block, passing in decreasing values from +int+ down to
 | |
|  *  and including +limit+.
 | |
|  *
 | |
|  *  If no block is given, an Enumerator is returned instead.
 | |
|  *
 | |
|  *     5.downto(1) { |n| print n, ".. " }
 | |
|  *     puts "Liftoff!"
 | |
|  *     #=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_downto_size(VALUE from, VALUE args, VALUE eobj)
 | |
| {
 | |
|     return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(-1), FALSE);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_downto(VALUE from, VALUE to)
 | |
| {
 | |
|     RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
 | |
|     if (FIXNUM_P(from) && FIXNUM_P(to)) {
 | |
| 	long i, end;
 | |
| 
 | |
| 	end = FIX2LONG(to);
 | |
| 	for (i=FIX2LONG(from); i >= end; i--) {
 | |
| 	    rb_yield(LONG2FIX(i));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	VALUE i = from, c;
 | |
| 
 | |
| 	while (!(c = rb_funcall(i, '<', 1, to))) {
 | |
| 	    rb_yield(i);
 | |
| 	    i = rb_funcall(i, '-', 1, INT2FIX(1));
 | |
| 	}
 | |
| 	if (NIL_P(c)) rb_cmperr(i, to);
 | |
|     }
 | |
|     return from;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#times
 | |
|  *  call-seq:
 | |
|  *     int.times {|i| block }  ->  self
 | |
|  *     int.times               ->  an_enumerator
 | |
|  *
 | |
|  *  Iterates the given block +int+ times, passing in values from zero to
 | |
|  *  <code>int - 1</code>.
 | |
|  *
 | |
|  *  If no block is given, an Enumerator is returned instead.
 | |
|  *
 | |
|  *     5.times {|i| print i, " " }   #=> 0 1 2 3 4
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_dotimes_size(VALUE num, VALUE args, VALUE eobj)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	if (NUM2LONG(num) <= 0) return INT2FIX(0);
 | |
|     }
 | |
|     else {
 | |
| 	if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) return INT2FIX(0);
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_dotimes(VALUE num)
 | |
| {
 | |
|     RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
 | |
| 
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	long i, end;
 | |
| 
 | |
| 	end = FIX2LONG(num);
 | |
| 	for (i=0; i<end; i++) {
 | |
| 	    rb_yield_1(LONG2FIX(i));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	VALUE i = INT2FIX(0);
 | |
| 
 | |
| 	for (;;) {
 | |
| 	    if (!RTEST(rb_funcall(i, '<', 1, num))) break;
 | |
| 	    rb_yield(i);
 | |
| 	    i = rb_funcall(i, '+', 1, INT2FIX(1));
 | |
| 	}
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#round
 | |
|  *  call-seq:
 | |
|  *     int.round([ndigits] [, half: mode])  ->  integer or float
 | |
|  *
 | |
|  *  Returns +int+ rounded to the nearest value with
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  When the precision is negative, the returned value is an integer
 | |
|  *  with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  *  Returns +self+ when +ndigits+ is zero or positive.
 | |
|  *
 | |
|  *     1.round           #=> 1
 | |
|  *     1.round(2)        #=> 1
 | |
|  *     15.round(-1)      #=> 20
 | |
|  *     (-15).round(-1)   #=> -20
 | |
|  *
 | |
|  *  The optional +half+ keyword argument is available
 | |
|  *  similar to Float#round.
 | |
|  *
 | |
|  *     25.round(-1, half: :up)      #=> 30
 | |
|  *     25.round(-1, half: :down)    #=> 20
 | |
|  *     25.round(-1, half: :even)    #=> 20
 | |
|  *     35.round(-1, half: :up)      #=> 40
 | |
|  *     35.round(-1, half: :down)    #=> 30
 | |
|  *     35.round(-1, half: :even)    #=> 40
 | |
|  *     (-25).round(-1, half: :up)   #=> -30
 | |
|  *     (-25).round(-1, half: :down) #=> -20
 | |
|  *     (-25).round(-1, half: :even) #=> -20
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_round(int argc, VALUE* argv, VALUE num)
 | |
| {
 | |
|     int ndigits;
 | |
|     int mode;
 | |
|     VALUE nd, opt;
 | |
| 
 | |
|     if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
 | |
|     ndigits = NUM2INT(nd);
 | |
|     mode = rb_num_get_rounding_option(opt);
 | |
|     if (ndigits >= 0) {
 | |
| 	return num;
 | |
|     }
 | |
|     return rb_int_round(num, ndigits, mode);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#floor
 | |
|  *  call-seq:
 | |
|  *     int.floor([ndigits])  ->  integer or float
 | |
|  *
 | |
|  *  Returns the largest number less than or equal to +int+ with
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  When the precision is negative, the returned value is an integer
 | |
|  *  with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  *  Returns +self+ when +ndigits+ is zero or positive.
 | |
|  *
 | |
|  *     1.floor           #=> 1
 | |
|  *     1.floor(2)        #=> 1
 | |
|  *     18.floor(-1)      #=> 10
 | |
|  *     (-18).floor(-1)   #=> -20
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_floor(int argc, VALUE* argv, VALUE num)
 | |
| {
 | |
|     int ndigits;
 | |
| 
 | |
|     if (!rb_check_arity(argc, 0, 1)) return num;
 | |
|     ndigits = NUM2INT(argv[0]);
 | |
|     if (ndigits >= 0) {
 | |
| 	return num;
 | |
|     }
 | |
|     return rb_int_floor(num, ndigits);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#ceil
 | |
|  *  call-seq:
 | |
|  *     int.ceil([ndigits])  ->  integer or float
 | |
|  *
 | |
|  *  Returns the smallest number greater than or equal to +int+ with
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  When the precision is negative, the returned value is an integer
 | |
|  *  with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  *  Returns +self+ when +ndigits+ is zero or positive.
 | |
|  *
 | |
|  *     1.ceil           #=> 1
 | |
|  *     1.ceil(2)        #=> 1
 | |
|  *     18.ceil(-1)      #=> 20
 | |
|  *     (-18).ceil(-1)   #=> -10
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_ceil(int argc, VALUE* argv, VALUE num)
 | |
| {
 | |
|     int ndigits;
 | |
| 
 | |
|     if (!rb_check_arity(argc, 0, 1)) return num;
 | |
|     ndigits = NUM2INT(argv[0]);
 | |
|     if (ndigits >= 0) {
 | |
| 	return num;
 | |
|     }
 | |
|     return rb_int_ceil(num, ndigits);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer#truncate
 | |
|  *  call-seq:
 | |
|  *     int.truncate([ndigits])  ->  integer or float
 | |
|  *
 | |
|  *  Returns +int+ truncated (toward zero) to
 | |
|  *  a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  *  When the precision is negative, the returned value is an integer
 | |
|  *  with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  *  Returns +self+ when +ndigits+ is zero or positive.
 | |
|  *
 | |
|  *     1.truncate           #=> 1
 | |
|  *     1.truncate(2)        #=> 1
 | |
|  *     18.truncate(-1)      #=> 10
 | |
|  *     (-18).truncate(-1)   #=> -10
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_truncate(int argc, VALUE* argv, VALUE num)
 | |
| {
 | |
|     int ndigits;
 | |
| 
 | |
|     if (!rb_check_arity(argc, 0, 1)) return num;
 | |
|     ndigits = NUM2INT(argv[0]);
 | |
|     if (ndigits >= 0) {
 | |
| 	return num;
 | |
|     }
 | |
|     return rb_int_truncate(num, ndigits);
 | |
| }
 | |
| 
 | |
| #define DEFINE_INT_SQRT(rettype, prefix, argtype) \
 | |
| rettype \
 | |
| prefix##_isqrt(argtype n) \
 | |
| { \
 | |
|     if (!argtype##_IN_DOUBLE_P(n)) { \
 | |
| 	unsigned int b = bit_length(n); \
 | |
| 	argtype t; \
 | |
| 	rettype x = (rettype)(n >> (b/2+1)); \
 | |
| 	x |= ((rettype)1LU << (b-1)/2); \
 | |
| 	while ((t = n/x) < (argtype)x) x = (rettype)((x + t) >> 1); \
 | |
| 	return x; \
 | |
|     } \
 | |
|     return (rettype)sqrt(argtype##_TO_DOUBLE(n)); \
 | |
| }
 | |
| 
 | |
| #if SIZEOF_LONG*CHAR_BIT > DBL_MANT_DIG
 | |
| # define RB_ULONG_IN_DOUBLE_P(n) ((n) < (1UL << DBL_MANT_DIG))
 | |
| #else
 | |
| # define RB_ULONG_IN_DOUBLE_P(n) 1
 | |
| #endif
 | |
| #define RB_ULONG_TO_DOUBLE(n) (double)(n)
 | |
| #define RB_ULONG unsigned long
 | |
| DEFINE_INT_SQRT(unsigned long, rb_ulong, RB_ULONG)
 | |
| 
 | |
| #if 2*SIZEOF_BDIGIT > SIZEOF_LONG
 | |
| # if 2*SIZEOF_BDIGIT*CHAR_BIT > DBL_MANT_DIG
 | |
| #   define BDIGIT_DBL_IN_DOUBLE_P(n) ((n) < ((BDIGIT_DBL)1UL << DBL_MANT_DIG))
 | |
| # else
 | |
| #   define BDIGIT_DBL_IN_DOUBLE_P(n) 1
 | |
| # endif
 | |
| # ifdef ULL_TO_DOUBLE
 | |
| #   define BDIGIT_DBL_TO_DOUBLE(n) ULL_TO_DOUBLE(n)
 | |
| # else
 | |
| #   define BDIGIT_DBL_TO_DOUBLE(n) (double)(n)
 | |
| # endif
 | |
| DEFINE_INT_SQRT(BDIGIT, rb_bdigit_dbl, BDIGIT_DBL)
 | |
| #endif
 | |
| 
 | |
| #define domain_error(msg) \
 | |
|     rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg)
 | |
| 
 | |
| /*
 | |
|  *  Document-method: Integer::sqrt
 | |
|  *  call-seq:
 | |
|  *     Integer.sqrt(n)  ->  integer
 | |
|  *
 | |
|  *  Returns the integer square root of the non-negative integer +n+,
 | |
|  *  i.e. the largest non-negative integer less than or equal to the
 | |
|  *  square root of +n+.
 | |
|  *
 | |
|  *    Integer.sqrt(0)        #=> 0
 | |
|  *    Integer.sqrt(1)        #=> 1
 | |
|  *    Integer.sqrt(24)       #=> 4
 | |
|  *    Integer.sqrt(25)       #=> 5
 | |
|  *    Integer.sqrt(10**400)  #=> 10**200
 | |
|  *
 | |
|  *  Equivalent to <code>Math.sqrt(n).floor</code>, except that
 | |
|  *  the result of the latter code may differ from the true value
 | |
|  *  due to the limited precision of floating point arithmetic.
 | |
|  *
 | |
|  *    Integer.sqrt(10**46)     #=> 100000000000000000000000
 | |
|  *    Math.sqrt(10**46).floor  #=>  99999999999999991611392 (!)
 | |
|  *
 | |
|  *  If +n+ is not an Integer, it is converted to an Integer first.
 | |
|  *  If +n+ is negative, a Math::DomainError is raised.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_int_s_isqrt(VALUE self, VALUE num)
 | |
| {
 | |
|     unsigned long n, sq;
 | |
|     num = rb_to_int(num);
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	if (FIXNUM_NEGATIVE_P(num)) {
 | |
| 	    domain_error("isqrt");
 | |
| 	}
 | |
| 	n = FIX2ULONG(num);
 | |
| 	sq = rb_ulong_isqrt(n);
 | |
| 	return LONG2FIX(sq);
 | |
|     }
 | |
|     else {
 | |
| 	size_t biglen;
 | |
| 	if (RBIGNUM_NEGATIVE_P(num)) {
 | |
| 	    domain_error("isqrt");
 | |
| 	}
 | |
| 	biglen = BIGNUM_LEN(num);
 | |
| 	if (biglen == 0) return INT2FIX(0);
 | |
| #if SIZEOF_BDIGIT <= SIZEOF_LONG
 | |
| 	/* short-circuit */
 | |
| 	if (biglen == 1) {
 | |
| 	    n = BIGNUM_DIGITS(num)[0];
 | |
| 	    sq = rb_ulong_isqrt(n);
 | |
| 	    return ULONG2NUM(sq);
 | |
| 	}
 | |
| #endif
 | |
| 	return rb_big_isqrt(num);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-class: ZeroDivisionError
 | |
|  *
 | |
|  *  Raised when attempting to divide an integer by 0.
 | |
|  *
 | |
|  *     42 / 0   #=> ZeroDivisionError: divided by 0
 | |
|  *
 | |
|  *  Note that only division by an exact 0 will raise the exception:
 | |
|  *
 | |
|  *     42 /  0.0   #=> Float::INFINITY
 | |
|  *     42 / -0.0   #=> -Float::INFINITY
 | |
|  *     0  /  0.0   #=> NaN
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  Document-class: FloatDomainError
 | |
|  *
 | |
|  *  Raised when attempting to convert special float values (in particular
 | |
|  *  +Infinity+ or +NaN+) to numerical classes which don't support them.
 | |
|  *
 | |
|  *     Float::INFINITY.to_r   #=> FloatDomainError: Infinity
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Document-class: Numeric
 | |
|  *
 | |
|  * Numeric is the class from which all higher-level numeric classes should inherit.
 | |
|  *
 | |
|  * Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as
 | |
|  * Integer are implemented as immediates, which means that each Integer is a single immutable
 | |
|  * object which is always passed by value.
 | |
|  *
 | |
|  *   a = 1
 | |
|  *   1.object_id == a.object_id   #=> true
 | |
|  *
 | |
|  * There can only ever be one instance of the integer +1+, for example. Ruby ensures this
 | |
|  * by preventing instantiation. If duplication is attempted, the same instance is returned.
 | |
|  *
 | |
|  *   Integer.new(1)                   #=> NoMethodError: undefined method `new' for Integer:Class
 | |
|  *   1.dup                            #=> 1
 | |
|  *   1.object_id == 1.dup.object_id   #=> true
 | |
|  *
 | |
|  * For this reason, Numeric should be used when defining other numeric classes.
 | |
|  *
 | |
|  * Classes which inherit from Numeric must implement +coerce+, which returns a two-member
 | |
|  * Array containing an object that has been coerced into an instance of the new class
 | |
|  * and +self+ (see #coerce).
 | |
|  *
 | |
|  * Inheriting classes should also implement arithmetic operator methods (<code>+</code>,
 | |
|  * <code>-</code>, <code>*</code> and <code>/</code>) and the <code><=></code> operator (see
 | |
|  * Comparable). These methods may rely on +coerce+ to ensure interoperability with
 | |
|  * instances of other numeric classes.
 | |
|  *
 | |
|  *   class Tally < Numeric
 | |
|  *     def initialize(string)
 | |
|  *       @string = string
 | |
|  *     end
 | |
|  *
 | |
|  *     def to_s
 | |
|  *       @string
 | |
|  *     end
 | |
|  *
 | |
|  *     def to_i
 | |
|  *       @string.size
 | |
|  *     end
 | |
|  *
 | |
|  *     def coerce(other)
 | |
|  *       [self.class.new('|' * other.to_i), self]
 | |
|  *     end
 | |
|  *
 | |
|  *     def <=>(other)
 | |
|  *       to_i <=> other.to_i
 | |
|  *     end
 | |
|  *
 | |
|  *     def +(other)
 | |
|  *       self.class.new('|' * (to_i + other.to_i))
 | |
|  *     end
 | |
|  *
 | |
|  *     def -(other)
 | |
|  *       self.class.new('|' * (to_i - other.to_i))
 | |
|  *     end
 | |
|  *
 | |
|  *     def *(other)
 | |
|  *       self.class.new('|' * (to_i * other.to_i))
 | |
|  *     end
 | |
|  *
 | |
|  *     def /(other)
 | |
|  *       self.class.new('|' * (to_i / other.to_i))
 | |
|  *     end
 | |
|  *   end
 | |
|  *
 | |
|  *   tally = Tally.new('||')
 | |
|  *   puts tally * 2            #=> "||||"
 | |
|  *   puts tally > 1            #=> true
 | |
|  */
 | |
| void
 | |
| Init_Numeric(void)
 | |
| {
 | |
| #ifdef _UNICOSMP
 | |
|     /* Turn off floating point exceptions for divide by zero, etc. */
 | |
|     _set_Creg(0, 0);
 | |
| #endif
 | |
|     id_coerce = rb_intern_const("coerce");
 | |
|     id_to = rb_intern_const("to");
 | |
|     id_by = rb_intern_const("by");
 | |
| 
 | |
|     rb_eZeroDivError = rb_define_class("ZeroDivisionError", rb_eStandardError);
 | |
|     rb_eFloatDomainError = rb_define_class("FloatDomainError", rb_eRangeError);
 | |
|     rb_cNumeric = rb_define_class("Numeric", rb_cObject);
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "singleton_method_added", num_sadded, 1);
 | |
|     rb_include_module(rb_cNumeric, rb_mComparable);
 | |
|     rb_define_method(rb_cNumeric, "coerce", num_coerce, 1);
 | |
|     rb_define_method(rb_cNumeric, "clone", num_clone, -1);
 | |
|     rb_define_method(rb_cNumeric, "dup", num_dup, 0);
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "i", num_imaginary, 0);
 | |
|     rb_define_method(rb_cNumeric, "+@", num_uplus, 0);
 | |
|     rb_define_method(rb_cNumeric, "-@", num_uminus, 0);
 | |
|     rb_define_method(rb_cNumeric, "<=>", num_cmp, 1);
 | |
|     rb_define_method(rb_cNumeric, "eql?", num_eql, 1);
 | |
|     rb_define_method(rb_cNumeric, "fdiv", num_fdiv, 1);
 | |
|     rb_define_method(rb_cNumeric, "div", num_div, 1);
 | |
|     rb_define_method(rb_cNumeric, "divmod", num_divmod, 1);
 | |
|     rb_define_method(rb_cNumeric, "%", num_modulo, 1);
 | |
|     rb_define_method(rb_cNumeric, "modulo", num_modulo, 1);
 | |
|     rb_define_method(rb_cNumeric, "remainder", num_remainder, 1);
 | |
|     rb_define_method(rb_cNumeric, "abs", num_abs, 0);
 | |
|     rb_define_method(rb_cNumeric, "magnitude", num_abs, 0);
 | |
|     rb_define_method(rb_cNumeric, "to_int", num_to_int, 0);
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "zero?", num_zero_p, 0);
 | |
|     rb_define_method(rb_cNumeric, "nonzero?", num_nonzero_p, 0);
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "floor", num_floor, -1);
 | |
|     rb_define_method(rb_cNumeric, "ceil", num_ceil, -1);
 | |
|     rb_define_method(rb_cNumeric, "round", num_round, -1);
 | |
|     rb_define_method(rb_cNumeric, "truncate", num_truncate, -1);
 | |
|     rb_define_method(rb_cNumeric, "step", num_step, -1);
 | |
|     rb_define_method(rb_cNumeric, "positive?", num_positive_p, 0);
 | |
|     rb_define_method(rb_cNumeric, "negative?", num_negative_p, 0);
 | |
| 
 | |
|     rb_cInteger = rb_define_class("Integer", rb_cNumeric);
 | |
|     rb_undef_alloc_func(rb_cInteger);
 | |
|     rb_undef_method(CLASS_OF(rb_cInteger), "new");
 | |
|     rb_define_singleton_method(rb_cInteger, "sqrt", rb_int_s_isqrt, 1);
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "to_s", int_to_s, -1);
 | |
|     rb_define_alias(rb_cInteger, "inspect", "to_s");
 | |
|     rb_define_method(rb_cInteger, "allbits?", int_allbits_p, 1);
 | |
|     rb_define_method(rb_cInteger, "anybits?", int_anybits_p, 1);
 | |
|     rb_define_method(rb_cInteger, "nobits?", int_nobits_p, 1);
 | |
|     rb_define_method(rb_cInteger, "upto", int_upto, 1);
 | |
|     rb_define_method(rb_cInteger, "downto", int_downto, 1);
 | |
|     rb_define_method(rb_cInteger, "times", int_dotimes, 0);
 | |
|     rb_define_method(rb_cInteger, "succ", int_succ, 0);
 | |
|     rb_define_method(rb_cInteger, "next", int_succ, 0);
 | |
|     rb_define_method(rb_cInteger, "pred", int_pred, 0);
 | |
|     rb_define_method(rb_cInteger, "chr", int_chr, -1);
 | |
|     rb_define_method(rb_cInteger, "to_f", int_to_f, 0);
 | |
|     rb_define_method(rb_cInteger, "floor", int_floor, -1);
 | |
|     rb_define_method(rb_cInteger, "ceil", int_ceil, -1);
 | |
|     rb_define_method(rb_cInteger, "truncate", int_truncate, -1);
 | |
|     rb_define_method(rb_cInteger, "round", int_round, -1);
 | |
|     rb_define_method(rb_cInteger, "<=>", rb_int_cmp, 1);
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "+", rb_int_plus, 1);
 | |
|     rb_define_method(rb_cInteger, "-", rb_int_minus, 1);
 | |
|     rb_define_method(rb_cInteger, "*", rb_int_mul, 1);
 | |
|     rb_define_method(rb_cInteger, "/", rb_int_div, 1);
 | |
|     rb_define_method(rb_cInteger, "div", rb_int_idiv, 1);
 | |
|     rb_define_method(rb_cInteger, "%", rb_int_modulo, 1);
 | |
|     rb_define_method(rb_cInteger, "modulo", rb_int_modulo, 1);
 | |
|     rb_define_method(rb_cInteger, "remainder", int_remainder, 1);
 | |
|     rb_define_method(rb_cInteger, "divmod", rb_int_divmod, 1);
 | |
|     rb_define_method(rb_cInteger, "fdiv", rb_int_fdiv, 1);
 | |
|     rb_define_method(rb_cInteger, "**", rb_int_pow, 1);
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "pow", rb_int_powm, -1); /* in bignum.c */
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "===", rb_int_equal, 1);
 | |
|     rb_define_method(rb_cInteger, "==", rb_int_equal, 1);
 | |
|     rb_define_method(rb_cInteger, ">", rb_int_gt, 1);
 | |
|     rb_define_method(rb_cInteger, ">=", rb_int_ge, 1);
 | |
|     rb_define_method(rb_cInteger, "<", int_lt, 1);
 | |
|     rb_define_method(rb_cInteger, "<=", int_le, 1);
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "&", rb_int_and, 1);
 | |
|     rb_define_method(rb_cInteger, "|", int_or,  1);
 | |
|     rb_define_method(rb_cInteger, "^", int_xor, 1);
 | |
|     rb_define_method(rb_cInteger, "[]", int_aref, -1);
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "<<", rb_int_lshift, 1);
 | |
|     rb_define_method(rb_cInteger, ">>", rb_int_rshift, 1);
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "size", int_size, 0);
 | |
|     rb_define_method(rb_cInteger, "digits", rb_int_digits, -1);
 | |
| 
 | |
|     /* An obsolete class, use Integer */
 | |
|     rb_define_const(rb_cObject, "Fixnum", rb_cInteger);
 | |
|     rb_deprecate_constant(rb_cObject, "Fixnum");
 | |
| 
 | |
|     rb_cFloat  = rb_define_class("Float", rb_cNumeric);
 | |
| 
 | |
|     rb_undef_alloc_func(rb_cFloat);
 | |
|     rb_undef_method(CLASS_OF(rb_cFloat), "new");
 | |
| 
 | |
|     /*
 | |
|      *	The base of the floating point, or number of unique digits used to
 | |
|      *	represent the number.
 | |
|      *
 | |
|      *  Usually defaults to 2 on most systems, which would represent a base-10 decimal.
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "RADIX", INT2FIX(FLT_RADIX));
 | |
|     /*
 | |
|      * The number of base digits for the +double+ data type.
 | |
|      *
 | |
|      * Usually defaults to 53.
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "MANT_DIG", INT2FIX(DBL_MANT_DIG));
 | |
|     /*
 | |
|      *	The minimum number of significant decimal digits in a double-precision
 | |
|      *	floating point.
 | |
|      *
 | |
|      *	Usually defaults to 15.
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "DIG", INT2FIX(DBL_DIG));
 | |
|     /*
 | |
|      *	The smallest possible exponent value in a double-precision floating
 | |
|      *	point.
 | |
|      *
 | |
|      *	Usually defaults to -1021.
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "MIN_EXP", INT2FIX(DBL_MIN_EXP));
 | |
|     /*
 | |
|      *	The largest possible exponent value in a double-precision floating
 | |
|      *	point.
 | |
|      *
 | |
|      *	Usually defaults to 1024.
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "MAX_EXP", INT2FIX(DBL_MAX_EXP));
 | |
|     /*
 | |
|      *	The smallest negative exponent in a double-precision floating point
 | |
|      *	where 10 raised to this power minus 1.
 | |
|      *
 | |
|      *	Usually defaults to -307.
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP));
 | |
|     /*
 | |
|      *	The largest positive exponent in a double-precision floating point where
 | |
|      *	10 raised to this power minus 1.
 | |
|      *
 | |
|      *	Usually defaults to 308.
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP));
 | |
|     /*
 | |
|      *	The smallest positive normalized number in a double-precision floating point.
 | |
|      *
 | |
|      *	Usually defaults to 2.2250738585072014e-308.
 | |
|      *
 | |
|      *	If the platform supports denormalized numbers,
 | |
|      *	there are numbers between zero and Float::MIN.
 | |
|      *	0.0.next_float returns the smallest positive floating point number
 | |
|      *	including denormalized numbers.
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "MIN", DBL2NUM(DBL_MIN));
 | |
|     /*
 | |
|      *	The largest possible integer in a double-precision floating point number.
 | |
|      *
 | |
|      *	Usually defaults to 1.7976931348623157e+308.
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "MAX", DBL2NUM(DBL_MAX));
 | |
|     /*
 | |
|      *	The difference between 1 and the smallest double-precision floating
 | |
|      *	point number greater than 1.
 | |
|      *
 | |
|      *	Usually defaults to 2.2204460492503131e-16.
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "EPSILON", DBL2NUM(DBL_EPSILON));
 | |
|     /*
 | |
|      *	An expression representing positive infinity.
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "INFINITY", DBL2NUM(HUGE_VAL));
 | |
|     /*
 | |
|      *	An expression representing a value which is "not a number".
 | |
|      */
 | |
|     rb_define_const(rb_cFloat, "NAN", DBL2NUM(nan("")));
 | |
| 
 | |
|     rb_define_method(rb_cFloat, "to_s", flo_to_s, 0);
 | |
|     rb_define_alias(rb_cFloat, "inspect", "to_s");
 | |
|     rb_define_method(rb_cFloat, "coerce", flo_coerce, 1);
 | |
|     rb_define_method(rb_cFloat, "+", rb_float_plus, 1);
 | |
|     rb_define_method(rb_cFloat, "-", rb_float_minus, 1);
 | |
|     rb_define_method(rb_cFloat, "*", rb_float_mul, 1);
 | |
|     rb_define_method(rb_cFloat, "/", rb_float_div, 1);
 | |
|     rb_define_method(rb_cFloat, "quo", flo_quo, 1);
 | |
|     rb_define_method(rb_cFloat, "fdiv", flo_quo, 1);
 | |
|     rb_define_method(rb_cFloat, "%", flo_mod, 1);
 | |
|     rb_define_method(rb_cFloat, "modulo", flo_mod, 1);
 | |
|     rb_define_method(rb_cFloat, "divmod", flo_divmod, 1);
 | |
|     rb_define_method(rb_cFloat, "**", rb_float_pow, 1);
 | |
|     rb_define_method(rb_cFloat, "==", flo_eq, 1);
 | |
|     rb_define_method(rb_cFloat, "===", flo_eq, 1);
 | |
|     rb_define_method(rb_cFloat, "<=>", flo_cmp, 1);
 | |
|     rb_define_method(rb_cFloat, ">",  rb_float_gt, 1);
 | |
|     rb_define_method(rb_cFloat, ">=", flo_ge, 1);
 | |
|     rb_define_method(rb_cFloat, "<",  flo_lt, 1);
 | |
|     rb_define_method(rb_cFloat, "<=", flo_le, 1);
 | |
|     rb_define_method(rb_cFloat, "eql?", flo_eql, 1);
 | |
|     rb_define_method(rb_cFloat, "hash", flo_hash, 0);
 | |
| 
 | |
|     rb_define_method(rb_cFloat, "to_i", flo_to_i, 0);
 | |
|     rb_define_method(rb_cFloat, "to_int", flo_to_i, 0);
 | |
|     rb_define_method(rb_cFloat, "floor", flo_floor, -1);
 | |
|     rb_define_method(rb_cFloat, "ceil", flo_ceil, -1);
 | |
|     rb_define_method(rb_cFloat, "round", flo_round, -1);
 | |
|     rb_define_method(rb_cFloat, "truncate", flo_truncate, -1);
 | |
| 
 | |
|     rb_define_method(rb_cFloat, "nan?",      flo_is_nan_p, 0);
 | |
|     rb_define_method(rb_cFloat, "infinite?", rb_flo_is_infinite_p, 0);
 | |
|     rb_define_method(rb_cFloat, "finite?",   rb_flo_is_finite_p, 0);
 | |
|     rb_define_method(rb_cFloat, "next_float", flo_next_float, 0);
 | |
|     rb_define_method(rb_cFloat, "prev_float", flo_prev_float, 0);
 | |
| }
 | |
| 
 | |
| #undef rb_float_value
 | |
| double
 | |
| rb_float_value(VALUE v)
 | |
| {
 | |
|     return rb_float_value_inline(v);
 | |
| }
 | |
| 
 | |
| #undef rb_float_new
 | |
| VALUE
 | |
| rb_float_new(double d)
 | |
| {
 | |
|     return rb_float_new_inline(d);
 | |
| }
 | |
| 
 | |
| #include "numeric.rbinc"
 |