mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	timer_posix mode is managed by timer_posix.state. This patch adds some debug code for the transition of the state.
		
			
				
	
	
		
			2273 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2273 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* -*-c-*- */
 | 
						|
/**********************************************************************
 | 
						|
 | 
						|
  thread_pthread.c -
 | 
						|
 | 
						|
  $Author$
 | 
						|
 | 
						|
  Copyright (C) 2004-2007 Koichi Sasada
 | 
						|
 | 
						|
**********************************************************************/
 | 
						|
 | 
						|
#ifdef THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION
 | 
						|
 | 
						|
#include "gc.h"
 | 
						|
#include "mjit.h"
 | 
						|
 | 
						|
#ifdef HAVE_SYS_RESOURCE_H
 | 
						|
#include <sys/resource.h>
 | 
						|
#endif
 | 
						|
#ifdef HAVE_THR_STKSEGMENT
 | 
						|
#include <thread.h>
 | 
						|
#endif
 | 
						|
#if HAVE_FCNTL_H
 | 
						|
#include <fcntl.h>
 | 
						|
#elif HAVE_SYS_FCNTL_H
 | 
						|
#include <sys/fcntl.h>
 | 
						|
#endif
 | 
						|
#ifdef HAVE_SYS_PRCTL_H
 | 
						|
#include <sys/prctl.h>
 | 
						|
#endif
 | 
						|
#if defined(HAVE_SYS_TIME_H)
 | 
						|
#include <sys/time.h>
 | 
						|
#endif
 | 
						|
#if defined(__HAIKU__)
 | 
						|
#include <kernel/OS.h>
 | 
						|
#endif
 | 
						|
#include <time.h>
 | 
						|
#include <signal.h>
 | 
						|
 | 
						|
#if defined(HAVE_SYS_EVENTFD_H) && defined(HAVE_EVENTFD)
 | 
						|
#  define USE_EVENTFD (1)
 | 
						|
#  include <sys/eventfd.h>
 | 
						|
#else
 | 
						|
#  define USE_EVENTFD (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(SIGVTALRM) && !defined(__CYGWIN__) && !defined(__EMSCRIPTEN__)
 | 
						|
#  define USE_UBF_LIST 1
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * UBF_TIMER and ubf_list both use SIGVTALRM.
 | 
						|
 *
 | 
						|
 * UBF_TIMER has NOTHING to do with thread timeslices (TIMER_INTERRUPT_MASK)
 | 
						|
 *
 | 
						|
 * UBF_TIMER is to close TOCTTOU signal race on programs where we
 | 
						|
 * cannot rely on GVL contention (vm->gvl.timer) to perform wakeups
 | 
						|
 * while a thread is doing blocking I/O on sockets or pipes.  With
 | 
						|
 * rb_thread_call_without_gvl and similar functions:
 | 
						|
 *
 | 
						|
 * (1) Check interrupts.
 | 
						|
 * (2) release GVL.
 | 
						|
 * (2a) signal received
 | 
						|
 * (3) call func with data1 (blocks for a long time without ubf_timer)
 | 
						|
 * (4) acquire GVL.
 | 
						|
 *     Other Ruby threads can not run in parallel any more.
 | 
						|
 * (5) Check interrupts.
 | 
						|
 *
 | 
						|
 * We need UBF_TIMER to break out of (3) if (2a) happens.
 | 
						|
 *
 | 
						|
 * ubf_list wakeups may be triggered on gvl_yield.
 | 
						|
 *
 | 
						|
 * If we have vm->gvl.timer (on GVL contention), we don't need UBF_TIMER
 | 
						|
 * as it can perform the same tasks while doing timeslices.
 | 
						|
 */
 | 
						|
#define UBF_TIMER_NONE 0
 | 
						|
#define UBF_TIMER_POSIX 1
 | 
						|
#define UBF_TIMER_PTHREAD 2
 | 
						|
 | 
						|
#ifndef UBF_TIMER
 | 
						|
#  if defined(HAVE_TIMER_SETTIME) && defined(HAVE_TIMER_CREATE) && \
 | 
						|
      defined(CLOCK_MONOTONIC) && defined(USE_UBF_LIST)
 | 
						|
     /* preferred */
 | 
						|
#    define UBF_TIMER UBF_TIMER_POSIX
 | 
						|
#  elif defined(USE_UBF_LIST)
 | 
						|
     /* safe, but inefficient */
 | 
						|
#    define UBF_TIMER UBF_TIMER_PTHREAD
 | 
						|
#  else
 | 
						|
     /* we'll be racy without SIGVTALRM for ubf_list */
 | 
						|
#    define UBF_TIMER UBF_TIMER_NONE
 | 
						|
#  endif
 | 
						|
#endif
 | 
						|
 | 
						|
enum rtimer_state {
 | 
						|
    /* alive, after timer_create: */
 | 
						|
    RTIMER_DISARM,
 | 
						|
    RTIMER_ARMING,
 | 
						|
    RTIMER_ARMED,
 | 
						|
 | 
						|
    RTIMER_DEAD
 | 
						|
};
 | 
						|
 | 
						|
#if UBF_TIMER == UBF_TIMER_POSIX
 | 
						|
static const struct itimerspec zero;
 | 
						|
static struct {
 | 
						|
    rb_atomic_t state_; /* rtimer_state */
 | 
						|
    rb_pid_t owner;
 | 
						|
    timer_t timerid;
 | 
						|
} timer_posix = {
 | 
						|
    /* .state = */ RTIMER_DEAD,
 | 
						|
};
 | 
						|
 | 
						|
#define TIMER_STATE_DEBUG 0
 | 
						|
 | 
						|
static const char *
 | 
						|
rtimer_state_name(enum rtimer_state state)
 | 
						|
{
 | 
						|
    switch (state) {
 | 
						|
      case RTIMER_DISARM: return "disarm";
 | 
						|
      case RTIMER_ARMING: return "arming";
 | 
						|
      case RTIMER_ARMED:  return "armed";
 | 
						|
      case RTIMER_DEAD:   return "dead";
 | 
						|
      default: rb_bug("unreachable");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static enum rtimer_state
 | 
						|
timer_state_exchange(enum rtimer_state state)
 | 
						|
{
 | 
						|
    enum rtimer_state prev = ATOMIC_EXCHANGE(timer_posix.state_, state);
 | 
						|
    if (TIMER_STATE_DEBUG) fprintf(stderr, "state (exc): %s->%s\n", rtimer_state_name(prev), rtimer_state_name(state));
 | 
						|
    return prev;
 | 
						|
}
 | 
						|
 | 
						|
static enum rtimer_state
 | 
						|
timer_state_cas(enum rtimer_state expected_prev, enum rtimer_state state)
 | 
						|
{
 | 
						|
    enum rtimer_state prev = ATOMIC_CAS(timer_posix.state_, expected_prev, state);
 | 
						|
 | 
						|
    if (TIMER_STATE_DEBUG) {
 | 
						|
        if (prev == expected_prev) {
 | 
						|
            fprintf(stderr, "state (cas): %s->%s\n", rtimer_state_name(prev), rtimer_state_name(state));
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            fprintf(stderr, "state (cas): %s (expected:%s)\n", rtimer_state_name(prev), rtimer_state_name(expected_prev));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return prev;
 | 
						|
}
 | 
						|
 | 
						|
#elif UBF_TIMER == UBF_TIMER_PTHREAD
 | 
						|
static void *timer_pthread_fn(void *);
 | 
						|
static struct {
 | 
						|
    int low[2];
 | 
						|
    rb_atomic_t armed; /* boolean */
 | 
						|
    rb_pid_t owner;
 | 
						|
    pthread_t thid;
 | 
						|
} timer_pthread = {
 | 
						|
    { -1, -1 },
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
static const rb_hrtime_t *sigwait_timeout(rb_thread_t *, int sigwait_fd,
 | 
						|
                                              const rb_hrtime_t *,
 | 
						|
                                              int *drained_p);
 | 
						|
static void ubf_timer_disarm(void);
 | 
						|
static void threadptr_trap_interrupt(rb_thread_t *);
 | 
						|
static void clear_thread_cache_altstack(void);
 | 
						|
static void ubf_wakeup_all_threads(void);
 | 
						|
static int ubf_threads_empty(void);
 | 
						|
 | 
						|
#define TIMER_THREAD_CREATED_P() (signal_self_pipe.owner_process == getpid())
 | 
						|
 | 
						|
/* for testing, and in case we come across a platform w/o pipes: */
 | 
						|
#define BUSY_WAIT_SIGNALS (0)
 | 
						|
 | 
						|
/*
 | 
						|
 * sigwait_th is the thread which owns sigwait_fd and sleeps on it
 | 
						|
 * (using ppoll).  MJIT worker can be sigwait_th==0, so we initialize
 | 
						|
 * it to THREAD_INVALID at startup and fork time.  It is the ONLY thread
 | 
						|
 * allowed to read from sigwait_fd, otherwise starvation can occur.
 | 
						|
 */
 | 
						|
#define THREAD_INVALID ((const rb_thread_t *)-1)
 | 
						|
static const rb_thread_t *sigwait_th;
 | 
						|
 | 
						|
#ifdef HAVE_SCHED_YIELD
 | 
						|
#define native_thread_yield() (void)sched_yield()
 | 
						|
#else
 | 
						|
#define native_thread_yield() ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK) && \
 | 
						|
    defined(CLOCK_REALTIME) && defined(CLOCK_MONOTONIC) && \
 | 
						|
    defined(HAVE_CLOCK_GETTIME)
 | 
						|
static pthread_condattr_t condattr_mono;
 | 
						|
static pthread_condattr_t *condattr_monotonic = &condattr_mono;
 | 
						|
#else
 | 
						|
static const void *const condattr_monotonic = NULL;
 | 
						|
#endif
 | 
						|
 | 
						|
/* 100ms.  10ms is too small for user level thread scheduling
 | 
						|
 * on recent Linux (tested on 2.6.35)
 | 
						|
 */
 | 
						|
#define TIME_QUANTUM_MSEC (100)
 | 
						|
#define TIME_QUANTUM_USEC (TIME_QUANTUM_MSEC * 1000)
 | 
						|
#define TIME_QUANTUM_NSEC (TIME_QUANTUM_USEC * 1000)
 | 
						|
 | 
						|
static rb_hrtime_t native_cond_timeout(rb_nativethread_cond_t *, rb_hrtime_t);
 | 
						|
static int native_cond_timedwait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex, const rb_hrtime_t *abs);
 | 
						|
 | 
						|
/*
 | 
						|
 * Designate the next gvl.timer thread, favor the last thread in
 | 
						|
 * the waitq since it will be in waitq longest
 | 
						|
 */
 | 
						|
static int
 | 
						|
designate_timer_thread(rb_global_vm_lock_t *gvl)
 | 
						|
{
 | 
						|
    native_thread_data_t *last;
 | 
						|
 | 
						|
    last = list_tail(&gvl->waitq, native_thread_data_t, node.ubf);
 | 
						|
    if (last) {
 | 
						|
        rb_native_cond_signal(&last->cond.gvlq);
 | 
						|
        return TRUE;
 | 
						|
    }
 | 
						|
    return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We become designated timer thread to kick vm->gvl.owner
 | 
						|
 * periodically.  Continue on old timeout if it expired.
 | 
						|
 */
 | 
						|
static void
 | 
						|
do_gvl_timer(rb_global_vm_lock_t *gvl, rb_thread_t *th)
 | 
						|
{
 | 
						|
    rb_vm_t *vm = GET_VM();
 | 
						|
    static rb_hrtime_t abs;
 | 
						|
    native_thread_data_t *nd = &th->native_thread_data;
 | 
						|
 | 
						|
    gvl->timer = th;
 | 
						|
 | 
						|
    /* take over wakeups from UBF_TIMER */
 | 
						|
    ubf_timer_disarm();
 | 
						|
 | 
						|
    if (gvl->timer_err == ETIMEDOUT) {
 | 
						|
        abs = native_cond_timeout(&nd->cond.gvlq, TIME_QUANTUM_NSEC);
 | 
						|
    }
 | 
						|
    gvl->timer_err = native_cond_timedwait(&nd->cond.gvlq, &gvl->lock, &abs);
 | 
						|
 | 
						|
    ubf_wakeup_all_threads();
 | 
						|
    ruby_sigchld_handler(vm);
 | 
						|
 | 
						|
    if (UNLIKELY(rb_signal_buff_size())) {
 | 
						|
        if (th == vm->ractor.main_thread) {
 | 
						|
            RUBY_VM_SET_TRAP_INTERRUPT(th->ec);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            threadptr_trap_interrupt(vm->ractor.main_thread);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Timeslice.  Warning: the process may fork while this
 | 
						|
     * thread is contending for GVL:
 | 
						|
     */
 | 
						|
    if (gvl->owner) {
 | 
						|
        // strictly speaking, accessing "gvl->owner" is not thread-safe
 | 
						|
        RUBY_VM_SET_TIMER_INTERRUPT(gvl->owner->ec);
 | 
						|
    }
 | 
						|
    gvl->timer = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_acquire_common(rb_global_vm_lock_t *gvl, rb_thread_t *th)
 | 
						|
{
 | 
						|
    if (gvl->owner) {
 | 
						|
        native_thread_data_t *nd = &th->native_thread_data;
 | 
						|
 | 
						|
        VM_ASSERT(th->unblock.func == 0 &&
 | 
						|
	          "we must not be in ubf_list and GVL waitq at the same time");
 | 
						|
 | 
						|
        list_add_tail(&gvl->waitq, &nd->node.gvl);
 | 
						|
 | 
						|
        do {
 | 
						|
            if (!gvl->timer) {
 | 
						|
                do_gvl_timer(gvl, th);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                rb_native_cond_wait(&nd->cond.gvlq, &gvl->lock);
 | 
						|
            }
 | 
						|
        } while (gvl->owner);
 | 
						|
 | 
						|
        list_del_init(&nd->node.gvl);
 | 
						|
 | 
						|
        if (gvl->need_yield) {
 | 
						|
            gvl->need_yield = 0;
 | 
						|
            rb_native_cond_signal(&gvl->switch_cond);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else { /* reset timer if uncontended */
 | 
						|
        gvl->timer_err = ETIMEDOUT;
 | 
						|
    }
 | 
						|
    gvl->owner = th;
 | 
						|
    if (!gvl->timer) {
 | 
						|
        if (!designate_timer_thread(gvl) && !ubf_threads_empty()) {
 | 
						|
            rb_thread_wakeup_timer_thread(-1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_acquire(rb_global_vm_lock_t *gvl, rb_thread_t *th)
 | 
						|
{
 | 
						|
    rb_native_mutex_lock(&gvl->lock);
 | 
						|
    gvl_acquire_common(gvl, th);
 | 
						|
    rb_native_mutex_unlock(&gvl->lock);
 | 
						|
}
 | 
						|
 | 
						|
static const native_thread_data_t *
 | 
						|
gvl_release_common(rb_global_vm_lock_t *gvl)
 | 
						|
{
 | 
						|
    native_thread_data_t *next;
 | 
						|
    gvl->owner = 0;
 | 
						|
    next = list_top(&gvl->waitq, native_thread_data_t, node.ubf);
 | 
						|
    if (next) rb_native_cond_signal(&next->cond.gvlq);
 | 
						|
 | 
						|
    return next;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_release(rb_global_vm_lock_t *gvl)
 | 
						|
{
 | 
						|
    rb_native_mutex_lock(&gvl->lock);
 | 
						|
    gvl_release_common(gvl);
 | 
						|
    rb_native_mutex_unlock(&gvl->lock);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_yield(rb_global_vm_lock_t *gvl, rb_thread_t *th)
 | 
						|
{
 | 
						|
    const native_thread_data_t *next;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Perhaps other threads are stuck in blocking region w/o GVL, too,
 | 
						|
     * (perhaps looping in io_close_fptr) so we kick them:
 | 
						|
     */
 | 
						|
    ubf_wakeup_all_threads();
 | 
						|
    rb_native_mutex_lock(&gvl->lock);
 | 
						|
    next = gvl_release_common(gvl);
 | 
						|
 | 
						|
    /* An another thread is processing GVL yield. */
 | 
						|
    if (UNLIKELY(gvl->wait_yield)) {
 | 
						|
        while (gvl->wait_yield)
 | 
						|
            rb_native_cond_wait(&gvl->switch_wait_cond, &gvl->lock);
 | 
						|
    }
 | 
						|
    else if (next) {
 | 
						|
        /* Wait until another thread task takes GVL. */
 | 
						|
        gvl->need_yield = 1;
 | 
						|
        gvl->wait_yield = 1;
 | 
						|
        while (gvl->need_yield)
 | 
						|
            rb_native_cond_wait(&gvl->switch_cond, &gvl->lock);
 | 
						|
        gvl->wait_yield = 0;
 | 
						|
        rb_native_cond_broadcast(&gvl->switch_wait_cond);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        rb_native_mutex_unlock(&gvl->lock);
 | 
						|
        native_thread_yield();
 | 
						|
        rb_native_mutex_lock(&gvl->lock);
 | 
						|
        rb_native_cond_broadcast(&gvl->switch_wait_cond);
 | 
						|
    }
 | 
						|
    gvl_acquire_common(gvl, th);
 | 
						|
    rb_native_mutex_unlock(&gvl->lock);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_gvl_init(rb_global_vm_lock_t *gvl)
 | 
						|
{
 | 
						|
    rb_native_mutex_initialize(&gvl->lock);
 | 
						|
    rb_native_cond_initialize(&gvl->switch_cond);
 | 
						|
    rb_native_cond_initialize(&gvl->switch_wait_cond);
 | 
						|
    list_head_init(&gvl->waitq);
 | 
						|
    gvl->owner = 0;
 | 
						|
    gvl->timer = 0;
 | 
						|
    gvl->timer_err = ETIMEDOUT;
 | 
						|
    gvl->need_yield = 0;
 | 
						|
    gvl->wait_yield = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
gvl_destroy(rb_global_vm_lock_t *gvl)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     * only called once at VM shutdown (not atfork), another thread
 | 
						|
     * may still grab vm->gvl.lock when calling gvl_release at
 | 
						|
     * the end of thread_start_func_2
 | 
						|
     */
 | 
						|
    if (0) {
 | 
						|
        rb_native_cond_destroy(&gvl->switch_wait_cond);
 | 
						|
        rb_native_cond_destroy(&gvl->switch_cond);
 | 
						|
        rb_native_mutex_destroy(&gvl->lock);
 | 
						|
    }
 | 
						|
    clear_thread_cache_altstack();
 | 
						|
}
 | 
						|
 | 
						|
#if defined(HAVE_WORKING_FORK)
 | 
						|
static void thread_cache_reset(void);
 | 
						|
static void
 | 
						|
gvl_atfork(rb_global_vm_lock_t *gvl)
 | 
						|
{
 | 
						|
    thread_cache_reset();
 | 
						|
    rb_gvl_init(gvl);
 | 
						|
    gvl_acquire(gvl, GET_THREAD());
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#define NATIVE_MUTEX_LOCK_DEBUG 0
 | 
						|
 | 
						|
static void
 | 
						|
mutex_debug(const char *msg, void *lock)
 | 
						|
{
 | 
						|
    if (NATIVE_MUTEX_LOCK_DEBUG) {
 | 
						|
	int r;
 | 
						|
	static pthread_mutex_t dbglock = PTHREAD_MUTEX_INITIALIZER;
 | 
						|
 | 
						|
	if ((r = pthread_mutex_lock(&dbglock)) != 0) {exit(EXIT_FAILURE);}
 | 
						|
	fprintf(stdout, "%s: %p\n", msg, lock);
 | 
						|
	if ((r = pthread_mutex_unlock(&dbglock)) != 0) {exit(EXIT_FAILURE);}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_native_mutex_lock(pthread_mutex_t *lock)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
    mutex_debug("lock", lock);
 | 
						|
    if ((r = pthread_mutex_lock(lock)) != 0) {
 | 
						|
	rb_bug_errno("pthread_mutex_lock", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_native_mutex_unlock(pthread_mutex_t *lock)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
    mutex_debug("unlock", lock);
 | 
						|
    if ((r = pthread_mutex_unlock(lock)) != 0) {
 | 
						|
	rb_bug_errno("pthread_mutex_unlock", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
rb_native_mutex_trylock(pthread_mutex_t *lock)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
    mutex_debug("trylock", lock);
 | 
						|
    if ((r = pthread_mutex_trylock(lock)) != 0) {
 | 
						|
	if (r == EBUSY) {
 | 
						|
	    return EBUSY;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    rb_bug_errno("pthread_mutex_trylock", r);
 | 
						|
	}
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_native_mutex_initialize(pthread_mutex_t *lock)
 | 
						|
{
 | 
						|
    int r = pthread_mutex_init(lock, 0);
 | 
						|
    mutex_debug("init", lock);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_mutex_init", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_native_mutex_destroy(pthread_mutex_t *lock)
 | 
						|
{
 | 
						|
    int r = pthread_mutex_destroy(lock);
 | 
						|
    mutex_debug("destroy", lock);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_mutex_destroy", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_native_cond_initialize(rb_nativethread_cond_t *cond)
 | 
						|
{
 | 
						|
    int r = pthread_cond_init(cond, condattr_monotonic);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_cond_init", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_native_cond_destroy(rb_nativethread_cond_t *cond)
 | 
						|
{
 | 
						|
    int r = pthread_cond_destroy(cond);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_cond_destroy", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * In OS X 10.7 (Lion), pthread_cond_signal and pthread_cond_broadcast return
 | 
						|
 * EAGAIN after retrying 8192 times.  You can see them in the following page:
 | 
						|
 *
 | 
						|
 * http://www.opensource.apple.com/source/Libc/Libc-763.11/pthreads/pthread_cond.c
 | 
						|
 *
 | 
						|
 * The following rb_native_cond_signal and rb_native_cond_broadcast functions
 | 
						|
 * need to retrying until pthread functions don't return EAGAIN.
 | 
						|
 */
 | 
						|
 | 
						|
void
 | 
						|
rb_native_cond_signal(rb_nativethread_cond_t *cond)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
    do {
 | 
						|
	r = pthread_cond_signal(cond);
 | 
						|
    } while (r == EAGAIN);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_cond_signal", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_native_cond_broadcast(rb_nativethread_cond_t *cond)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
    do {
 | 
						|
	r = pthread_cond_broadcast(cond);
 | 
						|
    } while (r == EAGAIN);
 | 
						|
    if (r != 0) {
 | 
						|
        rb_bug_errno("rb_native_cond_broadcast", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_native_cond_wait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex)
 | 
						|
{
 | 
						|
    int r = pthread_cond_wait(cond, mutex);
 | 
						|
    if (r != 0) {
 | 
						|
	rb_bug_errno("pthread_cond_wait", r);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
native_cond_timedwait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex, const rb_hrtime_t *abs)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
    struct timespec ts;
 | 
						|
 | 
						|
    /*
 | 
						|
     * An old Linux may return EINTR. Even though POSIX says
 | 
						|
     *   "These functions shall not return an error code of [EINTR]".
 | 
						|
     *   http://pubs.opengroup.org/onlinepubs/009695399/functions/pthread_cond_timedwait.html
 | 
						|
     * Let's hide it from arch generic code.
 | 
						|
     */
 | 
						|
    do {
 | 
						|
        rb_hrtime2timespec(&ts, abs);
 | 
						|
        r = pthread_cond_timedwait(cond, mutex, &ts);
 | 
						|
    } while (r == EINTR);
 | 
						|
 | 
						|
    if (r != 0 && r != ETIMEDOUT) {
 | 
						|
        rb_bug_errno("pthread_cond_timedwait", r);
 | 
						|
    }
 | 
						|
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_native_cond_timedwait(rb_nativethread_cond_t *cond, pthread_mutex_t *mutex, unsigned long msec)
 | 
						|
{
 | 
						|
    rb_hrtime_t hrmsec = native_cond_timeout(cond, RB_HRTIME_PER_MSEC * msec);
 | 
						|
    native_cond_timedwait(cond, mutex, &hrmsec);
 | 
						|
}
 | 
						|
 | 
						|
static rb_hrtime_t
 | 
						|
native_cond_timeout(rb_nativethread_cond_t *cond, const rb_hrtime_t rel)
 | 
						|
{
 | 
						|
    if (condattr_monotonic) {
 | 
						|
        return rb_hrtime_add(rb_hrtime_now(), rel);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        struct timespec ts;
 | 
						|
 | 
						|
        rb_timespec_now(&ts);
 | 
						|
        return rb_hrtime_add(rb_timespec2hrtime(&ts), rel);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define native_cleanup_push pthread_cleanup_push
 | 
						|
#define native_cleanup_pop  pthread_cleanup_pop
 | 
						|
 | 
						|
#ifdef RB_THREAD_LOCAL_SPECIFIER
 | 
						|
static RB_THREAD_LOCAL_SPECIFIER rb_thread_t *ruby_native_thread;
 | 
						|
#else
 | 
						|
static pthread_key_t ruby_native_thread_key;
 | 
						|
#endif
 | 
						|
 | 
						|
static void
 | 
						|
null_func(int i)
 | 
						|
{
 | 
						|
    /* null */
 | 
						|
}
 | 
						|
 | 
						|
static rb_thread_t *
 | 
						|
ruby_thread_from_native(void)
 | 
						|
{
 | 
						|
#ifdef RB_THREAD_LOCAL_SPECIFIER
 | 
						|
    return ruby_native_thread;
 | 
						|
#else
 | 
						|
    return pthread_getspecific(ruby_native_thread_key);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ruby_thread_set_native(rb_thread_t *th)
 | 
						|
{
 | 
						|
    if (th && th->ec) {
 | 
						|
        rb_ractor_set_current_ec(th->ractor, th->ec);
 | 
						|
    }
 | 
						|
#ifdef RB_THREAD_LOCAL_SPECIFIER
 | 
						|
    ruby_native_thread = th;
 | 
						|
    return 1;
 | 
						|
#else
 | 
						|
    return pthread_setspecific(ruby_native_thread_key, th) == 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void native_thread_init(rb_thread_t *th);
 | 
						|
 | 
						|
void
 | 
						|
Init_native_thread(rb_thread_t *th)
 | 
						|
{
 | 
						|
#if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK)
 | 
						|
    if (condattr_monotonic) {
 | 
						|
        int r = pthread_condattr_init(condattr_monotonic);
 | 
						|
        if (r == 0) {
 | 
						|
            r = pthread_condattr_setclock(condattr_monotonic, CLOCK_MONOTONIC);
 | 
						|
        }
 | 
						|
        if (r) condattr_monotonic = NULL;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef RB_THREAD_LOCAL_SPECIFIER
 | 
						|
    if (pthread_key_create(&ruby_native_thread_key, 0) == EAGAIN) {
 | 
						|
        rb_bug("pthread_key_create failed (ruby_native_thread_key)");
 | 
						|
    }
 | 
						|
    if (pthread_key_create(&ruby_current_ec_key, 0) == EAGAIN) {
 | 
						|
        rb_bug("pthread_key_create failed (ruby_current_ec_key)");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    th->thread_id = pthread_self();
 | 
						|
    ruby_thread_set_native(th);
 | 
						|
    fill_thread_id_str(th);
 | 
						|
    native_thread_init(th);
 | 
						|
    posix_signal(SIGVTALRM, null_func);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_thread_init(rb_thread_t *th)
 | 
						|
{
 | 
						|
    native_thread_data_t *nd = &th->native_thread_data;
 | 
						|
 | 
						|
#ifdef USE_UBF_LIST
 | 
						|
    list_node_init(&nd->node.ubf);
 | 
						|
#endif
 | 
						|
    rb_native_cond_initialize(&nd->cond.gvlq);
 | 
						|
    if (&nd->cond.gvlq != &nd->cond.intr)
 | 
						|
        rb_native_cond_initialize(&nd->cond.intr);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef USE_THREAD_CACHE
 | 
						|
#define USE_THREAD_CACHE 1
 | 
						|
#endif
 | 
						|
 | 
						|
static void
 | 
						|
native_thread_destroy(rb_thread_t *th)
 | 
						|
{
 | 
						|
    native_thread_data_t *nd = &th->native_thread_data;
 | 
						|
 | 
						|
    rb_native_cond_destroy(&nd->cond.gvlq);
 | 
						|
    if (&nd->cond.gvlq != &nd->cond.intr)
 | 
						|
        rb_native_cond_destroy(&nd->cond.intr);
 | 
						|
 | 
						|
    /*
 | 
						|
     * prevent false positive from ruby_thread_has_gvl_p if that
 | 
						|
     * gets called from an interposing function wrapper
 | 
						|
     */
 | 
						|
    if (USE_THREAD_CACHE)
 | 
						|
        ruby_thread_set_native(0);
 | 
						|
}
 | 
						|
 | 
						|
#if USE_THREAD_CACHE
 | 
						|
static rb_thread_t *register_cached_thread_and_wait(void *);
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined HAVE_PTHREAD_GETATTR_NP || defined HAVE_PTHREAD_ATTR_GET_NP
 | 
						|
#define STACKADDR_AVAILABLE 1
 | 
						|
#elif defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP
 | 
						|
#define STACKADDR_AVAILABLE 1
 | 
						|
#undef MAINSTACKADDR_AVAILABLE
 | 
						|
#define MAINSTACKADDR_AVAILABLE 1
 | 
						|
void *pthread_get_stackaddr_np(pthread_t);
 | 
						|
size_t pthread_get_stacksize_np(pthread_t);
 | 
						|
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
 | 
						|
#define STACKADDR_AVAILABLE 1
 | 
						|
#elif defined HAVE_PTHREAD_GETTHRDS_NP
 | 
						|
#define STACKADDR_AVAILABLE 1
 | 
						|
#elif defined __HAIKU__
 | 
						|
#define STACKADDR_AVAILABLE 1
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef MAINSTACKADDR_AVAILABLE
 | 
						|
# ifdef STACKADDR_AVAILABLE
 | 
						|
#   define MAINSTACKADDR_AVAILABLE 1
 | 
						|
# else
 | 
						|
#   define MAINSTACKADDR_AVAILABLE 0
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
#if MAINSTACKADDR_AVAILABLE && !defined(get_main_stack)
 | 
						|
# define get_main_stack(addr, size) get_stack(addr, size)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef STACKADDR_AVAILABLE
 | 
						|
/*
 | 
						|
 * Get the initial address and size of current thread's stack
 | 
						|
 */
 | 
						|
static int
 | 
						|
get_stack(void **addr, size_t *size)
 | 
						|
{
 | 
						|
#define CHECK_ERR(expr)				\
 | 
						|
    {int err = (expr); if (err) return err;}
 | 
						|
#ifdef HAVE_PTHREAD_GETATTR_NP /* Linux */
 | 
						|
    pthread_attr_t attr;
 | 
						|
    size_t guard = 0;
 | 
						|
    STACK_GROW_DIR_DETECTION;
 | 
						|
    CHECK_ERR(pthread_getattr_np(pthread_self(), &attr));
 | 
						|
# ifdef HAVE_PTHREAD_ATTR_GETSTACK
 | 
						|
    CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
 | 
						|
    STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
 | 
						|
# else
 | 
						|
    CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
 | 
						|
    CHECK_ERR(pthread_attr_getstacksize(&attr, size));
 | 
						|
# endif
 | 
						|
# ifdef HAVE_PTHREAD_ATTR_GETGUARDSIZE
 | 
						|
    CHECK_ERR(pthread_attr_getguardsize(&attr, &guard));
 | 
						|
    *size -= guard;
 | 
						|
# else
 | 
						|
    *size -= getpagesize();
 | 
						|
# endif
 | 
						|
    pthread_attr_destroy(&attr);
 | 
						|
#elif defined HAVE_PTHREAD_ATTR_GET_NP /* FreeBSD, DragonFly BSD, NetBSD */
 | 
						|
    pthread_attr_t attr;
 | 
						|
    CHECK_ERR(pthread_attr_init(&attr));
 | 
						|
    CHECK_ERR(pthread_attr_get_np(pthread_self(), &attr));
 | 
						|
# ifdef HAVE_PTHREAD_ATTR_GETSTACK
 | 
						|
    CHECK_ERR(pthread_attr_getstack(&attr, addr, size));
 | 
						|
# else
 | 
						|
    CHECK_ERR(pthread_attr_getstackaddr(&attr, addr));
 | 
						|
    CHECK_ERR(pthread_attr_getstacksize(&attr, size));
 | 
						|
# endif
 | 
						|
    STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
 | 
						|
    pthread_attr_destroy(&attr);
 | 
						|
#elif (defined HAVE_PTHREAD_GET_STACKADDR_NP && defined HAVE_PTHREAD_GET_STACKSIZE_NP) /* MacOS X */
 | 
						|
    pthread_t th = pthread_self();
 | 
						|
    *addr = pthread_get_stackaddr_np(th);
 | 
						|
    *size = pthread_get_stacksize_np(th);
 | 
						|
#elif defined HAVE_THR_STKSEGMENT || defined HAVE_PTHREAD_STACKSEG_NP
 | 
						|
    stack_t stk;
 | 
						|
# if defined HAVE_THR_STKSEGMENT /* Solaris */
 | 
						|
    CHECK_ERR(thr_stksegment(&stk));
 | 
						|
# else /* OpenBSD */
 | 
						|
    CHECK_ERR(pthread_stackseg_np(pthread_self(), &stk));
 | 
						|
# endif
 | 
						|
    *addr = stk.ss_sp;
 | 
						|
    *size = stk.ss_size;
 | 
						|
#elif defined HAVE_PTHREAD_GETTHRDS_NP /* AIX */
 | 
						|
    pthread_t th = pthread_self();
 | 
						|
    struct __pthrdsinfo thinfo;
 | 
						|
    char reg[256];
 | 
						|
    int regsiz=sizeof(reg);
 | 
						|
    CHECK_ERR(pthread_getthrds_np(&th, PTHRDSINFO_QUERY_ALL,
 | 
						|
				   &thinfo, sizeof(thinfo),
 | 
						|
				   ®, ®siz));
 | 
						|
    *addr = thinfo.__pi_stackaddr;
 | 
						|
    /* Must not use thinfo.__pi_stacksize for size.
 | 
						|
       It is around 3KB smaller than the correct size
 | 
						|
       calculated by thinfo.__pi_stackend - thinfo.__pi_stackaddr. */
 | 
						|
    *size = thinfo.__pi_stackend - thinfo.__pi_stackaddr;
 | 
						|
    STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
 | 
						|
#elif defined __HAIKU__
 | 
						|
    thread_info info;
 | 
						|
    STACK_GROW_DIR_DETECTION;
 | 
						|
    CHECK_ERR(get_thread_info(find_thread(NULL), &info));
 | 
						|
    *addr = info.stack_base;
 | 
						|
    *size = (uintptr_t)info.stack_end - (uintptr_t)info.stack_base;
 | 
						|
    STACK_DIR_UPPER((void)0, (void)(*addr = (char *)*addr + *size));
 | 
						|
#else
 | 
						|
#error STACKADDR_AVAILABLE is defined but not implemented.
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
#undef CHECK_ERR
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static struct {
 | 
						|
    rb_nativethread_id_t id;
 | 
						|
    size_t stack_maxsize;
 | 
						|
    VALUE *stack_start;
 | 
						|
} native_main_thread;
 | 
						|
 | 
						|
#ifdef STACK_END_ADDRESS
 | 
						|
extern void *STACK_END_ADDRESS;
 | 
						|
#endif
 | 
						|
 | 
						|
enum {
 | 
						|
    RUBY_STACK_SPACE_LIMIT = 1024 * 1024, /* 1024KB */
 | 
						|
    RUBY_STACK_SPACE_RATIO = 5
 | 
						|
};
 | 
						|
 | 
						|
static size_t
 | 
						|
space_size(size_t stack_size)
 | 
						|
{
 | 
						|
    size_t space_size = stack_size / RUBY_STACK_SPACE_RATIO;
 | 
						|
    if (space_size > RUBY_STACK_SPACE_LIMIT) {
 | 
						|
	return RUBY_STACK_SPACE_LIMIT;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	return space_size;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef __linux__
 | 
						|
static __attribute__((noinline)) void
 | 
						|
reserve_stack(volatile char *limit, size_t size)
 | 
						|
{
 | 
						|
# ifdef C_ALLOCA
 | 
						|
#   error needs alloca()
 | 
						|
# endif
 | 
						|
    struct rlimit rl;
 | 
						|
    volatile char buf[0x100];
 | 
						|
    enum {stack_check_margin = 0x1000}; /* for -fstack-check */
 | 
						|
 | 
						|
    STACK_GROW_DIR_DETECTION;
 | 
						|
 | 
						|
    if (!getrlimit(RLIMIT_STACK, &rl) && rl.rlim_cur == RLIM_INFINITY)
 | 
						|
	return;
 | 
						|
 | 
						|
    if (size < stack_check_margin) return;
 | 
						|
    size -= stack_check_margin;
 | 
						|
 | 
						|
    size -= sizeof(buf); /* margin */
 | 
						|
    if (IS_STACK_DIR_UPPER()) {
 | 
						|
	const volatile char *end = buf + sizeof(buf);
 | 
						|
	limit += size;
 | 
						|
	if (limit > end) {
 | 
						|
	    /* |<-bottom (=limit(a))                                     top->|
 | 
						|
	     * | .. |<-buf 256B |<-end                          | stack check |
 | 
						|
	     * |  256B  |              =size=                   | margin (4KB)|
 | 
						|
	     * |              =size=         limit(b)->|  256B  |             |
 | 
						|
	     * |                |       alloca(sz)     |        |             |
 | 
						|
	     * | .. |<-buf      |<-limit(c)    [sz-1]->0>       |             |
 | 
						|
	     */
 | 
						|
	    size_t sz = limit - end;
 | 
						|
	    limit = alloca(sz);
 | 
						|
	    limit[sz-1] = 0;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	limit -= size;
 | 
						|
	if (buf > limit) {
 | 
						|
	    /* |<-top (=limit(a))                                     bottom->|
 | 
						|
	     * | .. | 256B buf->|                               | stack check |
 | 
						|
	     * |  256B  |              =size=                   | margin (4KB)|
 | 
						|
	     * |              =size=         limit(b)->|  256B  |             |
 | 
						|
	     * |                |       alloca(sz)     |        |             |
 | 
						|
	     * | .. |      buf->|           limit(c)-><0>       |             |
 | 
						|
	     */
 | 
						|
	    size_t sz = buf - limit;
 | 
						|
	    limit = alloca(sz);
 | 
						|
	    limit[0] = 0;
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
#else
 | 
						|
# define reserve_stack(limit, size) ((void)(limit), (void)(size))
 | 
						|
#endif
 | 
						|
 | 
						|
#undef ruby_init_stack
 | 
						|
/* Set stack bottom of Ruby implementation.
 | 
						|
 *
 | 
						|
 * You must call this function before any heap allocation by Ruby implementation.
 | 
						|
 * Or GC will break living objects */
 | 
						|
void
 | 
						|
ruby_init_stack(volatile VALUE *addr)
 | 
						|
{
 | 
						|
    native_main_thread.id = pthread_self();
 | 
						|
 | 
						|
#if MAINSTACKADDR_AVAILABLE
 | 
						|
    if (native_main_thread.stack_maxsize) return;
 | 
						|
    {
 | 
						|
	void* stackaddr;
 | 
						|
	size_t size;
 | 
						|
	if (get_main_stack(&stackaddr, &size) == 0) {
 | 
						|
	    native_main_thread.stack_maxsize = size;
 | 
						|
	    native_main_thread.stack_start = stackaddr;
 | 
						|
	    reserve_stack(stackaddr, size);
 | 
						|
	    goto bound_check;
 | 
						|
	}
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#ifdef STACK_END_ADDRESS
 | 
						|
    native_main_thread.stack_start = STACK_END_ADDRESS;
 | 
						|
#else
 | 
						|
    if (!native_main_thread.stack_start ||
 | 
						|
        STACK_UPPER((VALUE *)(void *)&addr,
 | 
						|
                    native_main_thread.stack_start > addr,
 | 
						|
                    native_main_thread.stack_start < addr)) {
 | 
						|
        native_main_thread.stack_start = (VALUE *)addr;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    {
 | 
						|
#if defined(HAVE_GETRLIMIT)
 | 
						|
#if defined(PTHREAD_STACK_DEFAULT)
 | 
						|
# if PTHREAD_STACK_DEFAULT < RUBY_STACK_SPACE*5
 | 
						|
#  error "PTHREAD_STACK_DEFAULT is too small"
 | 
						|
# endif
 | 
						|
	size_t size = PTHREAD_STACK_DEFAULT;
 | 
						|
#else
 | 
						|
	size_t size = RUBY_VM_THREAD_VM_STACK_SIZE;
 | 
						|
#endif
 | 
						|
	size_t space;
 | 
						|
	int pagesize = getpagesize();
 | 
						|
	struct rlimit rlim;
 | 
						|
        STACK_GROW_DIR_DETECTION;
 | 
						|
	if (getrlimit(RLIMIT_STACK, &rlim) == 0) {
 | 
						|
	    size = (size_t)rlim.rlim_cur;
 | 
						|
	}
 | 
						|
	addr = native_main_thread.stack_start;
 | 
						|
	if (IS_STACK_DIR_UPPER()) {
 | 
						|
	    space = ((size_t)((char *)addr + size) / pagesize) * pagesize - (size_t)addr;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    space = (size_t)addr - ((size_t)((char *)addr - size) / pagesize + 1) * pagesize;
 | 
						|
	}
 | 
						|
	native_main_thread.stack_maxsize = space;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
#if MAINSTACKADDR_AVAILABLE
 | 
						|
  bound_check:
 | 
						|
#endif
 | 
						|
    /* If addr is out of range of main-thread stack range estimation,  */
 | 
						|
    /* it should be on co-routine (alternative stack). [Feature #2294] */
 | 
						|
    {
 | 
						|
	void *start, *end;
 | 
						|
	STACK_GROW_DIR_DETECTION;
 | 
						|
 | 
						|
	if (IS_STACK_DIR_UPPER()) {
 | 
						|
	    start = native_main_thread.stack_start;
 | 
						|
	    end = (char *)native_main_thread.stack_start + native_main_thread.stack_maxsize;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    start = (char *)native_main_thread.stack_start - native_main_thread.stack_maxsize;
 | 
						|
	    end = native_main_thread.stack_start;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((void *)addr < start || (void *)addr > end) {
 | 
						|
	    /* out of range */
 | 
						|
	    native_main_thread.stack_start = (VALUE *)addr;
 | 
						|
	    native_main_thread.stack_maxsize = 0; /* unknown */
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define CHECK_ERR(expr) \
 | 
						|
    {int err = (expr); if (err) {rb_bug_errno(#expr, err);}}
 | 
						|
 | 
						|
static int
 | 
						|
native_thread_init_stack(rb_thread_t *th)
 | 
						|
{
 | 
						|
    rb_nativethread_id_t curr = pthread_self();
 | 
						|
 | 
						|
    if (pthread_equal(curr, native_main_thread.id)) {
 | 
						|
	th->ec->machine.stack_start = native_main_thread.stack_start;
 | 
						|
	th->ec->machine.stack_maxsize = native_main_thread.stack_maxsize;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
#ifdef STACKADDR_AVAILABLE
 | 
						|
	void *start;
 | 
						|
	size_t size;
 | 
						|
 | 
						|
	if (get_stack(&start, &size) == 0) {
 | 
						|
	    uintptr_t diff = (uintptr_t)start - (uintptr_t)&curr;
 | 
						|
	    th->ec->machine.stack_start = (VALUE *)&curr;
 | 
						|
	    th->ec->machine.stack_maxsize = size - diff;
 | 
						|
	}
 | 
						|
#else
 | 
						|
	rb_raise(rb_eNotImpError, "ruby engine can initialize only in the main thread");
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef __CYGWIN__
 | 
						|
#define USE_NATIVE_THREAD_INIT 1
 | 
						|
#endif
 | 
						|
 | 
						|
static void *
 | 
						|
thread_start_func_1(void *th_ptr)
 | 
						|
{
 | 
						|
    rb_thread_t *th = th_ptr;
 | 
						|
    RB_ALTSTACK_INIT(void *altstack, th->altstack);
 | 
						|
#if USE_THREAD_CACHE
 | 
						|
  thread_start:
 | 
						|
#endif
 | 
						|
    {
 | 
						|
#if !defined USE_NATIVE_THREAD_INIT
 | 
						|
	VALUE stack_start;
 | 
						|
#endif
 | 
						|
 | 
						|
	fill_thread_id_str(th);
 | 
						|
#if defined USE_NATIVE_THREAD_INIT
 | 
						|
	native_thread_init_stack(th);
 | 
						|
#endif
 | 
						|
	native_thread_init(th);
 | 
						|
	/* run */
 | 
						|
#if defined USE_NATIVE_THREAD_INIT
 | 
						|
        thread_start_func_2(th, th->ec->machine.stack_start);
 | 
						|
#else
 | 
						|
        thread_start_func_2(th, &stack_start);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#if USE_THREAD_CACHE
 | 
						|
    /* cache thread */
 | 
						|
    if ((th = register_cached_thread_and_wait(RB_ALTSTACK(altstack))) != 0) {
 | 
						|
        goto thread_start;
 | 
						|
    }
 | 
						|
#else
 | 
						|
    RB_ALTSTACK_FREE(altstack);
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct cached_thread_entry {
 | 
						|
    rb_nativethread_cond_t cond;
 | 
						|
    rb_nativethread_id_t thread_id;
 | 
						|
    rb_thread_t *th;
 | 
						|
    void *altstack;
 | 
						|
    struct list_node node;
 | 
						|
};
 | 
						|
 | 
						|
#if USE_THREAD_CACHE
 | 
						|
static rb_nativethread_lock_t thread_cache_lock = RB_NATIVETHREAD_LOCK_INIT;
 | 
						|
static LIST_HEAD(cached_thread_head);
 | 
						|
 | 
						|
#  if defined(HAVE_WORKING_FORK)
 | 
						|
static void
 | 
						|
thread_cache_reset(void)
 | 
						|
{
 | 
						|
    rb_native_mutex_initialize(&thread_cache_lock);
 | 
						|
    list_head_init(&cached_thread_head);
 | 
						|
}
 | 
						|
#  endif
 | 
						|
 | 
						|
/*
 | 
						|
 * number of seconds to cache for, I think 1-5s is sufficient to obviate
 | 
						|
 * the need for thread pool in many network programs (taking into account
 | 
						|
 * worst case network latency across the globe) without wasting memory
 | 
						|
 */
 | 
						|
#ifndef THREAD_CACHE_TIME
 | 
						|
#  define THREAD_CACHE_TIME ((rb_hrtime_t)3 * RB_HRTIME_PER_SEC)
 | 
						|
#endif
 | 
						|
 | 
						|
static rb_thread_t *
 | 
						|
register_cached_thread_and_wait(void *altstack)
 | 
						|
{
 | 
						|
    rb_hrtime_t end = THREAD_CACHE_TIME;
 | 
						|
    struct cached_thread_entry entry;
 | 
						|
 | 
						|
    rb_native_cond_initialize(&entry.cond);
 | 
						|
    entry.altstack = altstack;
 | 
						|
    entry.th = NULL;
 | 
						|
    entry.thread_id = pthread_self();
 | 
						|
    end = native_cond_timeout(&entry.cond, end);
 | 
						|
 | 
						|
    rb_native_mutex_lock(&thread_cache_lock);
 | 
						|
    {
 | 
						|
        list_add(&cached_thread_head, &entry.node);
 | 
						|
 | 
						|
        native_cond_timedwait(&entry.cond, &thread_cache_lock, &end);
 | 
						|
 | 
						|
        if (entry.th == NULL) { /* unused */
 | 
						|
            list_del(&entry.node);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    rb_native_mutex_unlock(&thread_cache_lock);
 | 
						|
 | 
						|
    rb_native_cond_destroy(&entry.cond);
 | 
						|
    if (!entry.th) {
 | 
						|
        RB_ALTSTACK_FREE(entry.altstack);
 | 
						|
    }
 | 
						|
 | 
						|
    return entry.th;
 | 
						|
}
 | 
						|
#else
 | 
						|
#  if defined(HAVE_WORKING_FORK)
 | 
						|
static void thread_cache_reset(void) { }
 | 
						|
#  endif
 | 
						|
#endif
 | 
						|
 | 
						|
static int
 | 
						|
use_cached_thread(rb_thread_t *th)
 | 
						|
{
 | 
						|
#if USE_THREAD_CACHE
 | 
						|
    struct cached_thread_entry *entry;
 | 
						|
 | 
						|
    rb_native_mutex_lock(&thread_cache_lock);
 | 
						|
    entry = list_pop(&cached_thread_head, struct cached_thread_entry, node);
 | 
						|
    if (entry) {
 | 
						|
        entry->th = th;
 | 
						|
        /* th->thread_id must be set before signal for Thread#name= */
 | 
						|
        th->thread_id = entry->thread_id;
 | 
						|
        fill_thread_id_str(th);
 | 
						|
        rb_native_cond_signal(&entry->cond);
 | 
						|
    }
 | 
						|
    rb_native_mutex_unlock(&thread_cache_lock);
 | 
						|
    return !!entry;
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
clear_thread_cache_altstack(void)
 | 
						|
{
 | 
						|
#if USE_THREAD_CACHE
 | 
						|
    struct cached_thread_entry *entry;
 | 
						|
 | 
						|
    rb_native_mutex_lock(&thread_cache_lock);
 | 
						|
    list_for_each(&cached_thread_head, entry, node) {
 | 
						|
        void MAYBE_UNUSED(*altstack) = entry->altstack;
 | 
						|
        entry->altstack = 0;
 | 
						|
        RB_ALTSTACK_FREE(altstack);
 | 
						|
    }
 | 
						|
    rb_native_mutex_unlock(&thread_cache_lock);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
native_thread_create(rb_thread_t *th)
 | 
						|
{
 | 
						|
    int err = 0;
 | 
						|
 | 
						|
    if (use_cached_thread(th)) {
 | 
						|
	thread_debug("create (use cached thread): %p\n", (void *)th);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	pthread_attr_t attr;
 | 
						|
        const size_t stack_size = th->vm->default_params.thread_machine_stack_size + th->vm->default_params.thread_vm_stack_size;
 | 
						|
	const size_t space = space_size(stack_size);
 | 
						|
 | 
						|
#ifdef USE_SIGALTSTACK
 | 
						|
        th->altstack = rb_allocate_sigaltstack();
 | 
						|
#endif
 | 
						|
        th->ec->machine.stack_maxsize = stack_size - space;
 | 
						|
 | 
						|
	CHECK_ERR(pthread_attr_init(&attr));
 | 
						|
 | 
						|
# ifdef PTHREAD_STACK_MIN
 | 
						|
	thread_debug("create - stack size: %lu\n", (unsigned long)stack_size);
 | 
						|
	CHECK_ERR(pthread_attr_setstacksize(&attr, stack_size));
 | 
						|
# endif
 | 
						|
 | 
						|
# ifdef HAVE_PTHREAD_ATTR_SETINHERITSCHED
 | 
						|
	CHECK_ERR(pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
 | 
						|
# endif
 | 
						|
	CHECK_ERR(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
 | 
						|
 | 
						|
        err = pthread_create(&th->thread_id, &attr, thread_start_func_1, th);
 | 
						|
	thread_debug("create: %p (%d)\n", (void *)th, err);
 | 
						|
	/* should be done in the created thread */
 | 
						|
	fill_thread_id_str(th);
 | 
						|
	CHECK_ERR(pthread_attr_destroy(&attr));
 | 
						|
    }
 | 
						|
    return err;
 | 
						|
}
 | 
						|
 | 
						|
#if USE_NATIVE_THREAD_PRIORITY
 | 
						|
 | 
						|
static void
 | 
						|
native_thread_apply_priority(rb_thread_t *th)
 | 
						|
{
 | 
						|
#if defined(_POSIX_PRIORITY_SCHEDULING) && (_POSIX_PRIORITY_SCHEDULING > 0)
 | 
						|
    struct sched_param sp;
 | 
						|
    int policy;
 | 
						|
    int priority = 0 - th->priority;
 | 
						|
    int max, min;
 | 
						|
    pthread_getschedparam(th->thread_id, &policy, &sp);
 | 
						|
    max = sched_get_priority_max(policy);
 | 
						|
    min = sched_get_priority_min(policy);
 | 
						|
 | 
						|
    if (min > priority) {
 | 
						|
	priority = min;
 | 
						|
    }
 | 
						|
    else if (max < priority) {
 | 
						|
	priority = max;
 | 
						|
    }
 | 
						|
 | 
						|
    sp.sched_priority = priority;
 | 
						|
    pthread_setschedparam(th->thread_id, policy, &sp);
 | 
						|
#else
 | 
						|
    /* not touched */
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif /* USE_NATIVE_THREAD_PRIORITY */
 | 
						|
 | 
						|
static int
 | 
						|
native_fd_select(int n, rb_fdset_t *readfds, rb_fdset_t *writefds, rb_fdset_t *exceptfds, struct timeval *timeout, rb_thread_t *th)
 | 
						|
{
 | 
						|
    return rb_fd_select(n, readfds, writefds, exceptfds, timeout);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ubf_pthread_cond_signal(void *ptr)
 | 
						|
{
 | 
						|
    rb_thread_t *th = (rb_thread_t *)ptr;
 | 
						|
    thread_debug("ubf_pthread_cond_signal (%p)\n", (void *)th);
 | 
						|
    rb_native_cond_signal(&th->native_thread_data.cond.intr);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_cond_sleep(rb_thread_t *th, rb_hrtime_t *rel)
 | 
						|
{
 | 
						|
    rb_nativethread_lock_t *lock = &th->interrupt_lock;
 | 
						|
    rb_nativethread_cond_t *cond = &th->native_thread_data.cond.intr;
 | 
						|
 | 
						|
    /* Solaris cond_timedwait() return EINVAL if an argument is greater than
 | 
						|
     * current_time + 100,000,000.  So cut up to 100,000,000.  This is
 | 
						|
     * considered as a kind of spurious wakeup.  The caller to native_sleep
 | 
						|
     * should care about spurious wakeup.
 | 
						|
     *
 | 
						|
     * See also [Bug #1341] [ruby-core:29702]
 | 
						|
     * http://download.oracle.com/docs/cd/E19683-01/816-0216/6m6ngupgv/index.html
 | 
						|
     */
 | 
						|
    const rb_hrtime_t max = (rb_hrtime_t)100000000 * RB_HRTIME_PER_SEC;
 | 
						|
 | 
						|
    GVL_UNLOCK_BEGIN(th);
 | 
						|
    {
 | 
						|
        rb_native_mutex_lock(lock);
 | 
						|
	th->unblock.func = ubf_pthread_cond_signal;
 | 
						|
	th->unblock.arg = th;
 | 
						|
 | 
						|
	if (RUBY_VM_INTERRUPTED(th->ec)) {
 | 
						|
	    /* interrupted.  return immediate */
 | 
						|
	    thread_debug("native_sleep: interrupted before sleep\n");
 | 
						|
	}
 | 
						|
	else {
 | 
						|
	    if (!rel) {
 | 
						|
		rb_native_cond_wait(cond, lock);
 | 
						|
	    }
 | 
						|
            else {
 | 
						|
                rb_hrtime_t end;
 | 
						|
 | 
						|
                if (*rel > max) {
 | 
						|
                    *rel = max;
 | 
						|
                }
 | 
						|
 | 
						|
                end = native_cond_timeout(cond, *rel);
 | 
						|
                native_cond_timedwait(cond, lock, &end);
 | 
						|
            }
 | 
						|
	}
 | 
						|
	th->unblock.func = 0;
 | 
						|
 | 
						|
	rb_native_mutex_unlock(lock);
 | 
						|
    }
 | 
						|
    GVL_UNLOCK_END(th);
 | 
						|
 | 
						|
    thread_debug("native_sleep done\n");
 | 
						|
}
 | 
						|
 | 
						|
#ifdef USE_UBF_LIST
 | 
						|
static LIST_HEAD(ubf_list_head);
 | 
						|
static rb_nativethread_lock_t ubf_list_lock = RB_NATIVETHREAD_LOCK_INIT;
 | 
						|
 | 
						|
static void
 | 
						|
ubf_list_atfork(void)
 | 
						|
{
 | 
						|
    list_head_init(&ubf_list_head);
 | 
						|
    rb_native_mutex_initialize(&ubf_list_lock);
 | 
						|
}
 | 
						|
 | 
						|
/* The thread 'th' is registered to be trying unblock. */
 | 
						|
static void
 | 
						|
register_ubf_list(rb_thread_t *th)
 | 
						|
{
 | 
						|
    struct list_node *node = &th->native_thread_data.node.ubf;
 | 
						|
 | 
						|
    if (list_empty((struct list_head*)node)) {
 | 
						|
        rb_native_mutex_lock(&ubf_list_lock);
 | 
						|
	list_add(&ubf_list_head, node);
 | 
						|
        rb_native_mutex_unlock(&ubf_list_lock);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* The thread 'th' is unblocked. It no longer need to be registered. */
 | 
						|
static void
 | 
						|
unregister_ubf_list(rb_thread_t *th)
 | 
						|
{
 | 
						|
    struct list_node *node = &th->native_thread_data.node.ubf;
 | 
						|
 | 
						|
    /* we can't allow re-entry into ubf_list_head */
 | 
						|
    VM_ASSERT(th->unblock.func == 0);
 | 
						|
 | 
						|
    if (!list_empty((struct list_head*)node)) {
 | 
						|
        rb_native_mutex_lock(&ubf_list_lock);
 | 
						|
        list_del_init(node);
 | 
						|
        if (list_empty(&ubf_list_head) && !rb_signal_buff_size()) {
 | 
						|
            ubf_timer_disarm();
 | 
						|
        }
 | 
						|
        rb_native_mutex_unlock(&ubf_list_lock);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * send a signal to intent that a target thread return from blocking syscall.
 | 
						|
 * Maybe any signal is ok, but we chose SIGVTALRM.
 | 
						|
 */
 | 
						|
static void
 | 
						|
ubf_wakeup_thread(rb_thread_t *th)
 | 
						|
{
 | 
						|
    thread_debug("thread_wait_queue_wakeup (%"PRI_THREAD_ID")\n", thread_id_str(th));
 | 
						|
    pthread_kill(th->thread_id, SIGVTALRM);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ubf_select(void *ptr)
 | 
						|
{
 | 
						|
    rb_thread_t *th = (rb_thread_t *)ptr;
 | 
						|
    rb_global_vm_lock_t *gvl = rb_ractor_gvl(th->ractor);
 | 
						|
    const rb_thread_t *cur = ruby_thread_from_native(); /* may be 0 */
 | 
						|
 | 
						|
    register_ubf_list(th);
 | 
						|
 | 
						|
    /*
 | 
						|
     * ubf_wakeup_thread() doesn't guarantee to wake up a target thread.
 | 
						|
     * Therefore, we repeatedly call ubf_wakeup_thread() until a target thread
 | 
						|
     * exit from ubf function.  We must have a timer to perform this operation.
 | 
						|
     * We use double-checked locking here because this function may be called
 | 
						|
     * while vm->gvl.lock is held in do_gvl_timer.
 | 
						|
     * There is also no need to start a timer if we're the designated
 | 
						|
     * sigwait_th thread, otherwise we can deadlock with a thread
 | 
						|
     * in unblock_function_clear.
 | 
						|
     */
 | 
						|
    if (cur != gvl->timer && cur != sigwait_th) {
 | 
						|
        /*
 | 
						|
         * Double-checked locking above was to prevent nested locking
 | 
						|
         * by the SAME thread.  We use trylock here to prevent deadlocks
 | 
						|
         * between DIFFERENT threads
 | 
						|
         */
 | 
						|
        if (rb_native_mutex_trylock(&gvl->lock) == 0) {
 | 
						|
            if (!gvl->timer) {
 | 
						|
                rb_thread_wakeup_timer_thread(-1);
 | 
						|
            }
 | 
						|
            rb_native_mutex_unlock(&gvl->lock);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ubf_wakeup_thread(th);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
ubf_threads_empty(void)
 | 
						|
{
 | 
						|
    return list_empty(&ubf_list_head);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ubf_wakeup_all_threads(void)
 | 
						|
{
 | 
						|
    rb_thread_t *th;
 | 
						|
    native_thread_data_t *dat;
 | 
						|
 | 
						|
    if (!ubf_threads_empty()) {
 | 
						|
        rb_native_mutex_lock(&ubf_list_lock);
 | 
						|
	list_for_each(&ubf_list_head, dat, node.ubf) {
 | 
						|
	    th = container_of(dat, rb_thread_t, native_thread_data);
 | 
						|
	    ubf_wakeup_thread(th);
 | 
						|
	}
 | 
						|
        rb_native_mutex_unlock(&ubf_list_lock);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#else /* USE_UBF_LIST */
 | 
						|
#define register_ubf_list(th) (void)(th)
 | 
						|
#define unregister_ubf_list(th) (void)(th)
 | 
						|
#define ubf_select 0
 | 
						|
static void ubf_wakeup_all_threads(void) { return; }
 | 
						|
static int ubf_threads_empty(void) { return 1; }
 | 
						|
#define ubf_list_atfork() do {} while (0)
 | 
						|
#endif /* USE_UBF_LIST */
 | 
						|
 | 
						|
#define TT_DEBUG 0
 | 
						|
#define WRITE_CONST(fd, str) (void)(write((fd),(str),sizeof(str)-1)<0)
 | 
						|
 | 
						|
static struct {
 | 
						|
    /* pipes are closed in forked children when owner_process does not match */
 | 
						|
    int normal[2]; /* [0] == sigwait_fd */
 | 
						|
    int ub_main[2]; /* unblock main thread from native_ppoll_sleep */
 | 
						|
 | 
						|
    /* volatile for signal handler use: */
 | 
						|
    volatile rb_pid_t owner_process;
 | 
						|
} signal_self_pipe = {
 | 
						|
    {-1, -1},
 | 
						|
    {-1, -1},
 | 
						|
};
 | 
						|
 | 
						|
/* only use signal-safe system calls here */
 | 
						|
static void
 | 
						|
rb_thread_wakeup_timer_thread_fd(int fd)
 | 
						|
{
 | 
						|
#if USE_EVENTFD
 | 
						|
    const uint64_t buff = 1;
 | 
						|
#else
 | 
						|
    const char buff = '!';
 | 
						|
#endif
 | 
						|
    ssize_t result;
 | 
						|
 | 
						|
    /* already opened */
 | 
						|
    if (fd >= 0) {
 | 
						|
      retry:
 | 
						|
	if ((result = write(fd, &buff, sizeof(buff))) <= 0) {
 | 
						|
	    int e = errno;
 | 
						|
	    switch (e) {
 | 
						|
	      case EINTR: goto retry;
 | 
						|
	      case EAGAIN:
 | 
						|
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
 | 
						|
	      case EWOULDBLOCK:
 | 
						|
#endif
 | 
						|
		break;
 | 
						|
	      default:
 | 
						|
		async_bug_fd("rb_thread_wakeup_timer_thread: write", e, fd);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (TT_DEBUG) WRITE_CONST(2, "rb_thread_wakeup_timer_thread: write\n");
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	/* ignore wakeup */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This ensures we get a SIGVTALRM in TIME_QUANTUM_MSEC if our
 | 
						|
 * process could not react to the original signal in time.
 | 
						|
 */
 | 
						|
static void
 | 
						|
ubf_timer_arm(rb_pid_t current) /* async signal safe */
 | 
						|
{
 | 
						|
#if UBF_TIMER == UBF_TIMER_POSIX
 | 
						|
    if ((!current || timer_posix.owner == current) &&
 | 
						|
        timer_state_cas(RTIMER_DISARM, RTIMER_ARMING) == RTIMER_DISARM) {
 | 
						|
        struct itimerspec it;
 | 
						|
 | 
						|
        it.it_interval.tv_sec = it.it_value.tv_sec = 0;
 | 
						|
        it.it_interval.tv_nsec = it.it_value.tv_nsec = TIME_QUANTUM_NSEC;
 | 
						|
 | 
						|
        if (timer_settime(timer_posix.timerid, 0, &it, 0))
 | 
						|
            rb_async_bug_errno("timer_settime (arm)", errno);
 | 
						|
 | 
						|
        switch (timer_state_cas(RTIMER_ARMING, RTIMER_ARMED)) {
 | 
						|
          case RTIMER_DISARM:
 | 
						|
            /* somebody requested a disarm while we were arming */
 | 
						|
            /* may race harmlessly with ubf_timer_destroy */
 | 
						|
            (void)timer_settime(timer_posix.timerid, 0, &zero, 0);
 | 
						|
 | 
						|
          case RTIMER_ARMING: return; /* success */
 | 
						|
          case RTIMER_ARMED:
 | 
						|
            /*
 | 
						|
             * it is possible to have another thread disarm, and
 | 
						|
             * a third thread arm finish re-arming before we get
 | 
						|
             * here, so we wasted a syscall with timer_settime but
 | 
						|
             * probably unavoidable in a signal handler.
 | 
						|
             */
 | 
						|
            return;
 | 
						|
          case RTIMER_DEAD:
 | 
						|
            /* may race harmlessly with ubf_timer_destroy */
 | 
						|
            (void)timer_settime(timer_posix.timerid, 0, &zero, 0);
 | 
						|
            return;
 | 
						|
          default:
 | 
						|
            rb_async_bug_errno("UBF_TIMER_POSIX unknown state", ERANGE);
 | 
						|
        }
 | 
						|
    }
 | 
						|
#elif UBF_TIMER == UBF_TIMER_PTHREAD
 | 
						|
    if (!current || current == timer_pthread.owner) {
 | 
						|
        if (ATOMIC_EXCHANGE(timer_pthread.armed, 1) == 0)
 | 
						|
            rb_thread_wakeup_timer_thread_fd(timer_pthread.low[1]);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_thread_wakeup_timer_thread(int sig)
 | 
						|
{
 | 
						|
    rb_pid_t current;
 | 
						|
 | 
						|
    /* non-sighandler path */
 | 
						|
    if (sig <= 0) {
 | 
						|
        rb_thread_wakeup_timer_thread_fd(signal_self_pipe.normal[1]);
 | 
						|
        if (sig < 0) {
 | 
						|
            ubf_timer_arm(0);
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* must be safe inside sighandler, so no mutex */
 | 
						|
    current = getpid();
 | 
						|
    if (signal_self_pipe.owner_process == current) {
 | 
						|
        rb_thread_wakeup_timer_thread_fd(signal_self_pipe.normal[1]);
 | 
						|
 | 
						|
        /*
 | 
						|
         * system_working check is required because vm and main_thread are
 | 
						|
         * freed during shutdown
 | 
						|
         */
 | 
						|
        if (system_working > 0) {
 | 
						|
            volatile rb_execution_context_t *ec;
 | 
						|
            rb_vm_t *vm = GET_VM();
 | 
						|
            rb_thread_t *mth;
 | 
						|
 | 
						|
            /*
 | 
						|
             * FIXME: root VM and main_thread should be static and not
 | 
						|
             * on heap for maximum safety (and startup/shutdown speed)
 | 
						|
             */
 | 
						|
            if (!vm) return;
 | 
						|
            mth = vm->ractor.main_thread;
 | 
						|
            if (!mth || system_working <= 0) return;
 | 
						|
 | 
						|
            /* this relies on GC for grace period before cont_free */
 | 
						|
            ec = ACCESS_ONCE(rb_execution_context_t *, mth->ec);
 | 
						|
 | 
						|
            if (ec) {
 | 
						|
                RUBY_VM_SET_TRAP_INTERRUPT(ec);
 | 
						|
                ubf_timer_arm(current);
 | 
						|
 | 
						|
                /* some ubfs can interrupt single-threaded process directly */
 | 
						|
                if (vm->ubf_async_safe && mth->unblock.func) {
 | 
						|
                    (mth->unblock.func)(mth->unblock.arg);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define CLOSE_INVALIDATE_PAIR(expr) \
 | 
						|
    close_invalidate_pair(expr,"close_invalidate: "#expr)
 | 
						|
static void
 | 
						|
close_invalidate(int *fdp, const char *msg)
 | 
						|
{
 | 
						|
    int fd = *fdp;
 | 
						|
 | 
						|
    *fdp = -1;
 | 
						|
    if (close(fd) < 0) {
 | 
						|
	async_bug_fd(msg, errno, fd);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
close_invalidate_pair(int fds[2], const char *msg)
 | 
						|
{
 | 
						|
    if (USE_EVENTFD && fds[0] == fds[1]) {
 | 
						|
        close_invalidate(&fds[0], msg);
 | 
						|
        fds[1] = -1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        close_invalidate(&fds[0], msg);
 | 
						|
        close_invalidate(&fds[1], msg);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
set_nonblock(int fd)
 | 
						|
{
 | 
						|
    int oflags;
 | 
						|
    int err;
 | 
						|
 | 
						|
    oflags = fcntl(fd, F_GETFL);
 | 
						|
    if (oflags == -1)
 | 
						|
	rb_sys_fail(0);
 | 
						|
    oflags |= O_NONBLOCK;
 | 
						|
    err = fcntl(fd, F_SETFL, oflags);
 | 
						|
    if (err == -1)
 | 
						|
	rb_sys_fail(0);
 | 
						|
}
 | 
						|
 | 
						|
/* communication pipe with timer thread and signal handler */
 | 
						|
static int
 | 
						|
setup_communication_pipe_internal(int pipes[2])
 | 
						|
{
 | 
						|
    int err;
 | 
						|
 | 
						|
    if (pipes[0] >= 0 || pipes[1] >= 0) {
 | 
						|
        VM_ASSERT(pipes[0] >= 0);
 | 
						|
        VM_ASSERT(pipes[1] >= 0);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Don't bother with eventfd on ancient Linux 2.6.22..2.6.26 which were
 | 
						|
     * missing EFD_* flags, they can fall back to pipe
 | 
						|
     */
 | 
						|
#if USE_EVENTFD && defined(EFD_NONBLOCK) && defined(EFD_CLOEXEC)
 | 
						|
    pipes[0] = pipes[1] = eventfd(0, EFD_NONBLOCK|EFD_CLOEXEC);
 | 
						|
    if (pipes[0] >= 0) {
 | 
						|
        rb_update_max_fd(pipes[0]);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    err = rb_cloexec_pipe(pipes);
 | 
						|
    if (err != 0) {
 | 
						|
	rb_warn("pipe creation failed for timer: %s, scheduling broken",
 | 
						|
	        strerror(errno));
 | 
						|
	return -1;
 | 
						|
    }
 | 
						|
    rb_update_max_fd(pipes[0]);
 | 
						|
    rb_update_max_fd(pipes[1]);
 | 
						|
    set_nonblock(pipes[0]);
 | 
						|
    set_nonblock(pipes[1]);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(SET_CURRENT_THREAD_NAME) && defined(__linux__) && defined(PR_SET_NAME)
 | 
						|
# define SET_CURRENT_THREAD_NAME(name) prctl(PR_SET_NAME, name)
 | 
						|
#endif
 | 
						|
 | 
						|
enum {
 | 
						|
    THREAD_NAME_MAX =
 | 
						|
#if defined(__linux__)
 | 
						|
    16
 | 
						|
#elif defined(__APPLE__)
 | 
						|
/* Undocumented, and main thread seems unlimited */
 | 
						|
    64
 | 
						|
#else
 | 
						|
    16
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
static VALUE threadptr_invoke_proc_location(rb_thread_t *th);
 | 
						|
 | 
						|
static void
 | 
						|
native_set_thread_name(rb_thread_t *th)
 | 
						|
{
 | 
						|
#ifdef SET_CURRENT_THREAD_NAME
 | 
						|
    VALUE loc;
 | 
						|
    if (!NIL_P(loc = th->name)) {
 | 
						|
        SET_CURRENT_THREAD_NAME(RSTRING_PTR(loc));
 | 
						|
    }
 | 
						|
    else if ((loc = threadptr_invoke_proc_location(th)) != Qnil) {
 | 
						|
        char *name, *p;
 | 
						|
        char buf[THREAD_NAME_MAX];
 | 
						|
        size_t len;
 | 
						|
        int n;
 | 
						|
 | 
						|
        name = RSTRING_PTR(RARRAY_AREF(loc, 0));
 | 
						|
        p = strrchr(name, '/'); /* show only the basename of the path. */
 | 
						|
        if (p && p[1])
 | 
						|
            name = p + 1;
 | 
						|
 | 
						|
        n = snprintf(buf, sizeof(buf), "%s:%d", name, NUM2INT(RARRAY_AREF(loc, 1)));
 | 
						|
        rb_gc_force_recycle(loc); /* acts as a GC guard, too */
 | 
						|
 | 
						|
        len = (size_t)n;
 | 
						|
        if (len >= sizeof(buf)) {
 | 
						|
            buf[sizeof(buf)-2] = '*';
 | 
						|
            buf[sizeof(buf)-1] = '\0';
 | 
						|
        }
 | 
						|
        SET_CURRENT_THREAD_NAME(buf);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_set_another_thread_name(rb_nativethread_id_t thread_id, VALUE name)
 | 
						|
{
 | 
						|
#if defined SET_ANOTHER_THREAD_NAME || defined SET_CURRENT_THREAD_NAME
 | 
						|
    char buf[THREAD_NAME_MAX];
 | 
						|
    const char *s = "";
 | 
						|
# if !defined SET_ANOTHER_THREAD_NAME
 | 
						|
    if (!pthread_equal(pthread_self(), thread_id)) return;
 | 
						|
# endif
 | 
						|
    if (!NIL_P(name)) {
 | 
						|
        long n;
 | 
						|
        RSTRING_GETMEM(name, s, n);
 | 
						|
        if (n >= (int)sizeof(buf)) {
 | 
						|
            memcpy(buf, s, sizeof(buf)-1);
 | 
						|
            buf[sizeof(buf)-1] = '\0';
 | 
						|
            s = buf;
 | 
						|
        }
 | 
						|
    }
 | 
						|
# if defined SET_ANOTHER_THREAD_NAME
 | 
						|
    SET_ANOTHER_THREAD_NAME(thread_id, s);
 | 
						|
# elif defined SET_CURRENT_THREAD_NAME
 | 
						|
    SET_CURRENT_THREAD_NAME(s);
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ubf_timer_invalidate(void)
 | 
						|
{
 | 
						|
#if UBF_TIMER == UBF_TIMER_PTHREAD
 | 
						|
    CLOSE_INVALIDATE_PAIR(timer_pthread.low);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ubf_timer_pthread_create(rb_pid_t current)
 | 
						|
{
 | 
						|
#if UBF_TIMER == UBF_TIMER_PTHREAD
 | 
						|
    int err;
 | 
						|
    if (timer_pthread.owner == current)
 | 
						|
        return;
 | 
						|
 | 
						|
    if (setup_communication_pipe_internal(timer_pthread.low) < 0)
 | 
						|
        return;
 | 
						|
 | 
						|
    err = pthread_create(&timer_pthread.thid, 0, timer_pthread_fn, GET_VM());
 | 
						|
    if (!err)
 | 
						|
        timer_pthread.owner = current;
 | 
						|
    else
 | 
						|
        rb_warn("pthread_create failed for timer: %s, signals racy",
 | 
						|
                strerror(err));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ubf_timer_create(rb_pid_t current)
 | 
						|
{
 | 
						|
#if UBF_TIMER == UBF_TIMER_POSIX
 | 
						|
#  if defined(__sun)
 | 
						|
#    define UBF_TIMER_CLOCK CLOCK_REALTIME
 | 
						|
#  else /* Tested Linux and FreeBSD: */
 | 
						|
#    define UBF_TIMER_CLOCK CLOCK_MONOTONIC
 | 
						|
#  endif
 | 
						|
 | 
						|
    struct sigevent sev;
 | 
						|
 | 
						|
    sev.sigev_notify = SIGEV_SIGNAL;
 | 
						|
    sev.sigev_signo = SIGVTALRM;
 | 
						|
    sev.sigev_value.sival_ptr = &timer_posix;
 | 
						|
 | 
						|
    if (!timer_create(UBF_TIMER_CLOCK, &sev, &timer_posix.timerid)) {
 | 
						|
        rb_atomic_t prev = timer_state_exchange(RTIMER_DISARM);
 | 
						|
 | 
						|
        if (prev != RTIMER_DEAD) {
 | 
						|
            rb_bug("timer_posix was not dead: %u\n", (unsigned)prev);
 | 
						|
        }
 | 
						|
        timer_posix.owner = current;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	rb_warn("timer_create failed: %s, signals racy", strerror(errno));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    if (UBF_TIMER == UBF_TIMER_PTHREAD)
 | 
						|
        ubf_timer_pthread_create(current);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
rb_thread_create_timer_thread(void)
 | 
						|
{
 | 
						|
    /* we only create the pipe, and lazy-spawn */
 | 
						|
    rb_pid_t current = getpid();
 | 
						|
    rb_pid_t owner = signal_self_pipe.owner_process;
 | 
						|
 | 
						|
    if (owner && owner != current) {
 | 
						|
        CLOSE_INVALIDATE_PAIR(signal_self_pipe.normal);
 | 
						|
        CLOSE_INVALIDATE_PAIR(signal_self_pipe.ub_main);
 | 
						|
        ubf_timer_invalidate();
 | 
						|
    }
 | 
						|
 | 
						|
    if (setup_communication_pipe_internal(signal_self_pipe.normal) < 0) return;
 | 
						|
    if (setup_communication_pipe_internal(signal_self_pipe.ub_main) < 0) return;
 | 
						|
 | 
						|
    ubf_timer_create(current);
 | 
						|
    if (owner != current) {
 | 
						|
        /* validate pipe on this process */
 | 
						|
        sigwait_th = THREAD_INVALID;
 | 
						|
        signal_self_pipe.owner_process = current;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ubf_timer_disarm(void)
 | 
						|
{
 | 
						|
#if UBF_TIMER == UBF_TIMER_POSIX
 | 
						|
    rb_atomic_t prev;
 | 
						|
 | 
						|
    prev = timer_state_cas(RTIMER_ARMED, RTIMER_DISARM);
 | 
						|
    switch (prev) {
 | 
						|
      case RTIMER_DISARM: return; /* likely */
 | 
						|
      case RTIMER_ARMING: return; /* ubf_timer_arm will disarm itself */
 | 
						|
      case RTIMER_ARMED:
 | 
						|
        if (timer_settime(timer_posix.timerid, 0, &zero, 0)) {
 | 
						|
            int err = errno;
 | 
						|
 | 
						|
            if (err == EINVAL) {
 | 
						|
                prev = timer_state_cas(RTIMER_DISARM, RTIMER_DISARM);
 | 
						|
 | 
						|
                /* main thread may have killed the timer */
 | 
						|
                if (prev == RTIMER_DEAD) return;
 | 
						|
 | 
						|
                rb_bug_errno("timer_settime (disarm)", err);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return;
 | 
						|
      case RTIMER_DEAD: return; /* stay dead */
 | 
						|
      default:
 | 
						|
        rb_bug("UBF_TIMER_POSIX bad state: %u\n", (unsigned)prev);
 | 
						|
    }
 | 
						|
 | 
						|
#elif UBF_TIMER == UBF_TIMER_PTHREAD
 | 
						|
    ATOMIC_SET(timer_pthread.armed, 0);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ubf_timer_destroy(void)
 | 
						|
{
 | 
						|
#if UBF_TIMER == UBF_TIMER_POSIX
 | 
						|
    if (timer_posix.owner == getpid()) {
 | 
						|
        rb_atomic_t expect = RTIMER_DISARM;
 | 
						|
        size_t i, max = 10000000;
 | 
						|
 | 
						|
        /* prevent signal handler from arming: */
 | 
						|
        for (i = 0; i < max; i++) {
 | 
						|
            switch (timer_state_cas(expect, RTIMER_DEAD)) {
 | 
						|
              case RTIMER_DISARM:
 | 
						|
                if (expect == RTIMER_DISARM) goto done;
 | 
						|
                expect = RTIMER_DISARM;
 | 
						|
                break;
 | 
						|
              case RTIMER_ARMING:
 | 
						|
                native_thread_yield(); /* let another thread finish arming */
 | 
						|
                expect = RTIMER_ARMED;
 | 
						|
                break;
 | 
						|
              case RTIMER_ARMED:
 | 
						|
                if (expect == RTIMER_ARMED) {
 | 
						|
                    if (timer_settime(timer_posix.timerid, 0, &zero, 0))
 | 
						|
                        rb_bug_errno("timer_settime (destroy)", errno);
 | 
						|
                    goto done;
 | 
						|
                }
 | 
						|
                expect = RTIMER_ARMED;
 | 
						|
                break;
 | 
						|
              case RTIMER_DEAD:
 | 
						|
                rb_bug("RTIMER_DEAD unexpected");
 | 
						|
            }
 | 
						|
        }
 | 
						|
        rb_bug("timed out waiting for timer to arm");
 | 
						|
done:
 | 
						|
        if (timer_delete(timer_posix.timerid) < 0)
 | 
						|
            rb_sys_fail("timer_delete");
 | 
						|
 | 
						|
        VM_ASSERT(timer_state_exchange(RTIMER_DEAD) == RTIMER_DEAD);
 | 
						|
    }
 | 
						|
#elif UBF_TIMER == UBF_TIMER_PTHREAD
 | 
						|
    int err;
 | 
						|
 | 
						|
    timer_pthread.owner = 0;
 | 
						|
    ubf_timer_disarm();
 | 
						|
    rb_thread_wakeup_timer_thread_fd(timer_pthread.low[1]);
 | 
						|
    err = pthread_join(timer_pthread.thid, 0);
 | 
						|
    if (err) {
 | 
						|
        rb_raise(rb_eThreadError, "native_thread_join() failed (%d)", err);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
native_stop_timer_thread(void)
 | 
						|
{
 | 
						|
    int stopped;
 | 
						|
    stopped = --system_working <= 0;
 | 
						|
    if (stopped)
 | 
						|
        ubf_timer_destroy();
 | 
						|
 | 
						|
    if (TT_DEBUG) fprintf(stderr, "stop timer thread\n");
 | 
						|
    return stopped;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_reset_timer_thread(void)
 | 
						|
{
 | 
						|
    if (TT_DEBUG)  fprintf(stderr, "reset timer thread\n");
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HAVE_SIGALTSTACK
 | 
						|
int
 | 
						|
ruby_stack_overflowed_p(const rb_thread_t *th, const void *addr)
 | 
						|
{
 | 
						|
    void *base;
 | 
						|
    size_t size;
 | 
						|
    const size_t water_mark = 1024 * 1024;
 | 
						|
    STACK_GROW_DIR_DETECTION;
 | 
						|
 | 
						|
#ifdef STACKADDR_AVAILABLE
 | 
						|
    if (get_stack(&base, &size) == 0) {
 | 
						|
# ifdef __APPLE__
 | 
						|
	if (pthread_equal(th->thread_id, native_main_thread.id)) {
 | 
						|
	    struct rlimit rlim;
 | 
						|
	    if (getrlimit(RLIMIT_STACK, &rlim) == 0 && rlim.rlim_cur > size) {
 | 
						|
		size = (size_t)rlim.rlim_cur;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
# endif
 | 
						|
	base = (char *)base + STACK_DIR_UPPER(+size, -size);
 | 
						|
    }
 | 
						|
    else
 | 
						|
#endif
 | 
						|
    if (th) {
 | 
						|
	size = th->ec->machine.stack_maxsize;
 | 
						|
	base = (char *)th->ec->machine.stack_start - STACK_DIR_UPPER(0, size);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
    size /= RUBY_STACK_SPACE_RATIO;
 | 
						|
    if (size > water_mark) size = water_mark;
 | 
						|
    if (IS_STACK_DIR_UPPER()) {
 | 
						|
	if (size > ~(size_t)base+1) size = ~(size_t)base+1;
 | 
						|
	if (addr > base && addr <= (void *)((char *)base + size)) return 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
	if (size > (size_t)base) size = (size_t)base;
 | 
						|
	if (addr > (void *)((char *)base - size) && addr <= base) return 1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
int
 | 
						|
rb_reserved_fd_p(int fd)
 | 
						|
{
 | 
						|
    /* no false-positive if out-of-FD at startup */
 | 
						|
    if (fd < 0)
 | 
						|
        return 0;
 | 
						|
 | 
						|
#if UBF_TIMER == UBF_TIMER_PTHREAD
 | 
						|
    if (fd == timer_pthread.low[0] || fd == timer_pthread.low[1])
 | 
						|
        goto check_pid;
 | 
						|
#endif
 | 
						|
    if (fd == signal_self_pipe.normal[0] || fd == signal_self_pipe.normal[1])
 | 
						|
        goto check_pid;
 | 
						|
    if (fd == signal_self_pipe.ub_main[0] || fd == signal_self_pipe.ub_main[1])
 | 
						|
        goto check_pid;
 | 
						|
    return 0;
 | 
						|
check_pid:
 | 
						|
    if (signal_self_pipe.owner_process == getpid()) /* async-signal-safe */
 | 
						|
	return 1;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
rb_nativethread_id_t
 | 
						|
rb_nativethread_self(void)
 | 
						|
{
 | 
						|
    return pthread_self();
 | 
						|
}
 | 
						|
 | 
						|
#if USE_MJIT
 | 
						|
/* A function that wraps actual worker function, for pthread abstraction. */
 | 
						|
static void *
 | 
						|
mjit_worker(void *arg)
 | 
						|
{
 | 
						|
    void (*worker_func)(void) = (void(*)(void))arg;
 | 
						|
 | 
						|
#ifdef SET_CURRENT_THREAD_NAME
 | 
						|
    SET_CURRENT_THREAD_NAME("ruby-mjitworker"); /* 16 byte including NUL */
 | 
						|
#endif
 | 
						|
    worker_func();
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Launch MJIT thread. Returns FALSE if it fails to create thread. */
 | 
						|
int
 | 
						|
rb_thread_create_mjit_thread(void (*worker_func)(void))
 | 
						|
{
 | 
						|
    pthread_attr_t attr;
 | 
						|
    pthread_t worker_pid;
 | 
						|
    int ret = FALSE;
 | 
						|
 | 
						|
    if (pthread_attr_init(&attr) != 0) return ret;
 | 
						|
 | 
						|
    /* jit_worker thread is not to be joined */
 | 
						|
    if (pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0
 | 
						|
        && pthread_create(&worker_pid, &attr, mjit_worker, (void *)worker_func) == 0) {
 | 
						|
        ret = TRUE;
 | 
						|
    }
 | 
						|
    pthread_attr_destroy(&attr);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
int
 | 
						|
rb_sigwait_fd_get(const rb_thread_t *th)
 | 
						|
{
 | 
						|
    if (signal_self_pipe.normal[0] >= 0) {
 | 
						|
        VM_ASSERT(signal_self_pipe.owner_process == getpid());
 | 
						|
        /*
 | 
						|
         * no need to keep firing the timer if any thread is sleeping
 | 
						|
         * on the signal self-pipe
 | 
						|
         */
 | 
						|
        ubf_timer_disarm();
 | 
						|
 | 
						|
        if (ATOMIC_PTR_CAS(sigwait_th, THREAD_INVALID, th) == THREAD_INVALID) {
 | 
						|
            return signal_self_pipe.normal[0];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return -1; /* avoid thundering herd and work stealing/starvation */
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_sigwait_fd_put(const rb_thread_t *th, int fd)
 | 
						|
{
 | 
						|
    const rb_thread_t *old;
 | 
						|
 | 
						|
    VM_ASSERT(signal_self_pipe.normal[0] == fd);
 | 
						|
    old = ATOMIC_PTR_EXCHANGE(sigwait_th, THREAD_INVALID);
 | 
						|
    if (old != th) assert(old == th);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef HAVE_PPOLL
 | 
						|
/* TODO: don't ignore sigmask */
 | 
						|
static int
 | 
						|
ruby_ppoll(struct pollfd *fds, nfds_t nfds,
 | 
						|
      const struct timespec *ts, const sigset_t *sigmask)
 | 
						|
{
 | 
						|
    int timeout_ms;
 | 
						|
 | 
						|
    if (ts) {
 | 
						|
	int tmp, tmp2;
 | 
						|
 | 
						|
	if (ts->tv_sec > INT_MAX/1000)
 | 
						|
	    timeout_ms = INT_MAX;
 | 
						|
	else {
 | 
						|
	    tmp = (int)(ts->tv_sec * 1000);
 | 
						|
	    /* round up 1ns to 1ms to avoid excessive wakeups for <1ms sleep */
 | 
						|
	    tmp2 = (int)((ts->tv_nsec + 999999L) / (1000L * 1000L));
 | 
						|
	    if (INT_MAX - tmp < tmp2)
 | 
						|
		timeout_ms = INT_MAX;
 | 
						|
	    else
 | 
						|
		timeout_ms = (int)(tmp + tmp2);
 | 
						|
	}
 | 
						|
    }
 | 
						|
    else
 | 
						|
	timeout_ms = -1;
 | 
						|
 | 
						|
    return poll(fds, nfds, timeout_ms);
 | 
						|
}
 | 
						|
#  define ppoll(fds,nfds,ts,sigmask) ruby_ppoll((fds),(nfds),(ts),(sigmask))
 | 
						|
#endif
 | 
						|
 | 
						|
void
 | 
						|
rb_sigwait_sleep(rb_thread_t *th, int sigwait_fd, const rb_hrtime_t *rel)
 | 
						|
{
 | 
						|
    struct pollfd pfd;
 | 
						|
    struct timespec ts;
 | 
						|
 | 
						|
    pfd.fd = sigwait_fd;
 | 
						|
    pfd.events = POLLIN;
 | 
						|
 | 
						|
    if (!BUSY_WAIT_SIGNALS && ubf_threads_empty()) {
 | 
						|
        (void)ppoll(&pfd, 1, rb_hrtime2timespec(&ts, rel), 0);
 | 
						|
        check_signals_nogvl(th, sigwait_fd);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        rb_hrtime_t to = RB_HRTIME_MAX, end;
 | 
						|
        int n = 0;
 | 
						|
 | 
						|
        if (rel) {
 | 
						|
            to = *rel;
 | 
						|
            end = rb_hrtime_add(rb_hrtime_now(), to);
 | 
						|
        }
 | 
						|
        /*
 | 
						|
         * tricky: this needs to return on spurious wakeup (no auto-retry).
 | 
						|
         * But we also need to distinguish between periodic quantum
 | 
						|
         * wakeups, so we care about the result of consume_communication_pipe
 | 
						|
         *
 | 
						|
         * We want to avoid spurious wakeup for Mutex#sleep compatibility
 | 
						|
         * [ruby-core:88102]
 | 
						|
         */
 | 
						|
        for (;;) {
 | 
						|
            const rb_hrtime_t *sto = sigwait_timeout(th, sigwait_fd, &to, &n);
 | 
						|
 | 
						|
            if (n) return;
 | 
						|
            n = ppoll(&pfd, 1, rb_hrtime2timespec(&ts, sto), 0);
 | 
						|
            if (check_signals_nogvl(th, sigwait_fd))
 | 
						|
                return;
 | 
						|
            if (n || (th && RUBY_VM_INTERRUPTED(th->ec)))
 | 
						|
                return;
 | 
						|
            if (rel && hrtime_update_expire(&to, end))
 | 
						|
                return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * we need to guarantee wakeups from native_ppoll_sleep because
 | 
						|
 * ubf_select may not be going through ubf_list if other threads
 | 
						|
 * are all sleeping.
 | 
						|
 */
 | 
						|
static void
 | 
						|
ubf_ppoll_sleep(void *ignore)
 | 
						|
{
 | 
						|
    rb_thread_wakeup_timer_thread_fd(signal_self_pipe.ub_main[1]);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Single CPU setups benefit from explicit sched_yield() before ppoll(),
 | 
						|
 * since threads may be too starved to enter the GVL waitqueue for
 | 
						|
 * us to detect contention.  Instead, we want to kick other threads
 | 
						|
 * so they can run and possibly prevent us from entering slow paths
 | 
						|
 * in ppoll() or similar syscalls.
 | 
						|
 *
 | 
						|
 * Confirmed on FreeBSD 11.2 and Linux 4.19.
 | 
						|
 * [ruby-core:90417] [Bug #15398]
 | 
						|
 */
 | 
						|
#define GVL_UNLOCK_BEGIN_YIELD(th) do { \
 | 
						|
    const native_thread_data_t *next; \
 | 
						|
    rb_global_vm_lock_t *gvl = rb_ractor_gvl(th->ractor); \
 | 
						|
    RB_GC_SAVE_MACHINE_CONTEXT(th); \
 | 
						|
    rb_native_mutex_lock(&gvl->lock); \
 | 
						|
    next = gvl_release_common(gvl); \
 | 
						|
    rb_native_mutex_unlock(&gvl->lock); \
 | 
						|
    if (!next && rb_ractor_living_thread_num(th->ractor) > 1) { \
 | 
						|
        native_thread_yield(); \
 | 
						|
    }
 | 
						|
 | 
						|
/*
 | 
						|
 * This function does not exclusively acquire sigwait_fd, so it
 | 
						|
 * cannot safely read from it.  However, it can be woken up in
 | 
						|
 * 4 ways:
 | 
						|
 *
 | 
						|
 * 1) ubf_ppoll_sleep (from another thread)
 | 
						|
 * 2) rb_thread_wakeup_timer_thread (from signal handler)
 | 
						|
 * 3) any unmasked signal hitting the process
 | 
						|
 * 4) periodic ubf timer wakeups (after 3)
 | 
						|
 */
 | 
						|
static void
 | 
						|
native_ppoll_sleep(rb_thread_t *th, rb_hrtime_t *rel)
 | 
						|
{
 | 
						|
    rb_native_mutex_lock(&th->interrupt_lock);
 | 
						|
    th->unblock.func = ubf_ppoll_sleep;
 | 
						|
    rb_native_mutex_unlock(&th->interrupt_lock);
 | 
						|
 | 
						|
    GVL_UNLOCK_BEGIN_YIELD(th);
 | 
						|
 | 
						|
    if (!RUBY_VM_INTERRUPTED(th->ec)) {
 | 
						|
        struct pollfd pfd[2];
 | 
						|
        struct timespec ts;
 | 
						|
 | 
						|
        pfd[0].fd = signal_self_pipe.normal[0]; /* sigwait_fd */
 | 
						|
        pfd[1].fd = signal_self_pipe.ub_main[0];
 | 
						|
        pfd[0].events = pfd[1].events = POLLIN;
 | 
						|
        if (ppoll(pfd, 2, rb_hrtime2timespec(&ts, rel), 0) > 0) {
 | 
						|
            if (pfd[1].revents & POLLIN) {
 | 
						|
                (void)consume_communication_pipe(pfd[1].fd);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        /*
 | 
						|
         * do not read the sigwait_fd, here, let uplevel callers
 | 
						|
         * or other threads that, otherwise we may steal and starve
 | 
						|
         * other threads
 | 
						|
         */
 | 
						|
    }
 | 
						|
    unblock_function_clear(th);
 | 
						|
    GVL_UNLOCK_END(th);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
native_sleep(rb_thread_t *th, rb_hrtime_t *rel)
 | 
						|
{
 | 
						|
    int sigwait_fd = rb_sigwait_fd_get(th);
 | 
						|
    rb_ractor_blocking_threads_inc(th->ractor, __FILE__, __LINE__);
 | 
						|
 | 
						|
    if (sigwait_fd >= 0) {
 | 
						|
        rb_native_mutex_lock(&th->interrupt_lock);
 | 
						|
        th->unblock.func = ubf_sigwait;
 | 
						|
        rb_native_mutex_unlock(&th->interrupt_lock);
 | 
						|
 | 
						|
        GVL_UNLOCK_BEGIN_YIELD(th);
 | 
						|
 | 
						|
        if (!RUBY_VM_INTERRUPTED(th->ec)) {
 | 
						|
            rb_sigwait_sleep(th, sigwait_fd, rel);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            check_signals_nogvl(th, sigwait_fd);
 | 
						|
        }
 | 
						|
        unblock_function_clear(th);
 | 
						|
        GVL_UNLOCK_END(th);
 | 
						|
        rb_sigwait_fd_put(th, sigwait_fd);
 | 
						|
        rb_sigwait_fd_migrate(th->vm);
 | 
						|
    }
 | 
						|
    else if (th == th->vm->ractor.main_thread) { /* always able to handle signals */
 | 
						|
        native_ppoll_sleep(th, rel);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        native_cond_sleep(th, rel);
 | 
						|
    }
 | 
						|
 | 
						|
    rb_ractor_blocking_threads_dec(th->ractor, __FILE__, __LINE__);
 | 
						|
}
 | 
						|
 | 
						|
#if UBF_TIMER == UBF_TIMER_PTHREAD
 | 
						|
static void *
 | 
						|
timer_pthread_fn(void *p)
 | 
						|
{
 | 
						|
    rb_vm_t *vm = p;
 | 
						|
    pthread_t main_thread_id = vm->ractor.main_thread->thread_id;
 | 
						|
    struct pollfd pfd;
 | 
						|
    int timeout = -1;
 | 
						|
    int ccp;
 | 
						|
 | 
						|
    pfd.fd = timer_pthread.low[0];
 | 
						|
    pfd.events = POLLIN;
 | 
						|
 | 
						|
    while (system_working > 0) {
 | 
						|
        (void)poll(&pfd, 1, timeout);
 | 
						|
        ccp = consume_communication_pipe(pfd.fd);
 | 
						|
 | 
						|
        if (system_working > 0) {
 | 
						|
            if (ATOMIC_CAS(timer_pthread.armed, 1, 1)) {
 | 
						|
                pthread_kill(main_thread_id, SIGVTALRM);
 | 
						|
 | 
						|
                if (rb_signal_buff_size() || !ubf_threads_empty()) {
 | 
						|
                    timeout = TIME_QUANTUM_MSEC;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    ATOMIC_SET(timer_pthread.armed, 0);
 | 
						|
                    timeout = -1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else if (ccp) {
 | 
						|
                pthread_kill(main_thread_id, SIGVTALRM);
 | 
						|
                ATOMIC_SET(timer_pthread.armed, 0);
 | 
						|
                timeout = -1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif /* UBF_TIMER_PTHREAD */
 | 
						|
 | 
						|
static VALUE
 | 
						|
ubf_caller(void *ignore)
 | 
						|
{
 | 
						|
    rb_thread_sleep_forever();
 | 
						|
 | 
						|
    return Qfalse;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called if and only if one thread is running, and
 | 
						|
 * the unblock function is NOT async-signal-safe
 | 
						|
 * This assumes USE_THREAD_CACHE is true for performance reasons
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
rb_thread_start_unblock_thread(void)
 | 
						|
{
 | 
						|
    return rb_thread_create(ubf_caller, 0);
 | 
						|
}
 | 
						|
#endif /* THREAD_SYSTEM_DEPENDENT_IMPLEMENTATION */
 |