1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/ujit_compile.c
2021-10-20 18:19:25 -04:00

767 lines
20 KiB
C

#include <assert.h>
#include "insns.inc"
#include "internal.h"
#include "vm_core.h"
#include "vm_sync.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "internal/compile.h"
#include "insns_info.inc"
#include "ujit_compile.h"
#include "ujit_asm.h"
#include "ujit_utils.h"
// TODO: give ujit_examples.inc some more meaningful file name
// eg ujit_hook.h
#include "ujit_examples.inc"
#ifdef _WIN32
#define PLATFORM_SUPPORTED_P 0
#else
#define PLATFORM_SUPPORTED_P 1
#endif
bool rb_ujit_enabled;
// Hash table of encoded instructions
extern st_table *rb_encoded_insn_data;
// Code generation context
typedef struct ctx_struct
{
// Current PC
VALUE *pc;
// Difference between the current stack pointer and actual stack top
int32_t stack_diff;
const rb_iseq_t *iseq;
} ctx_t;
// MicroJIT code generation function signature
typedef bool (*codegen_fn)(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx);
// Map from YARV opcodes to code generation functions
static st_table *gen_fns;
// Code block into which we write machine code
static codeblock_t block;
static codeblock_t* cb = NULL;
// Code block into which we write out-of-line machine code
static codeblock_t outline_block;
static codeblock_t* ocb = NULL;
// Keep track of mapping from instructions to generated code
// See comment for rb_encoded_insn_data in iseq.c
static void
addr2insn_bookkeeping(void *code_ptr, int insn)
{
const void * const *table = rb_vm_get_insns_address_table();
const void * const translated_address = table[insn];
st_data_t encoded_insn_data;
if (st_lookup(rb_encoded_insn_data, (st_data_t)translated_address, &encoded_insn_data)) {
st_insert(rb_encoded_insn_data, (st_data_t)code_ptr, encoded_insn_data);
}
else {
rb_bug("ujit: failed to find info for original instruction while dealing with addr2insn");
}
}
static int
opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc)
{
const VALUE at_pc = *pc;
if (FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED)) {
return rb_vm_insn_addr2opcode((const void *)at_pc);
}
else {
return (int)at_pc;
}
}
// Get the current instruction opcode from the context object
int ctx_get_opcode(ctx_t *ctx)
{
return opcode_at_pc(ctx->iseq, ctx->pc);
}
// Get an instruction argument from the context object
VALUE ctx_get_arg(ctx_t* ctx, size_t arg_idx)
{
assert (arg_idx + 1 < insn_len(ctx_get_opcode(ctx)));
return *(ctx->pc + arg_idx + 1);
}
/*
Get an operand for the adjusted stack pointer address
*/
x86opnd_t ctx_sp_opnd(ctx_t* ctx, size_t n)
{
int32_t offset = (ctx->stack_diff) * 8;
return mem_opnd(64, RSI, offset);
}
/*
Make space on the stack for N values
Return a pointer to the new stack top
*/
x86opnd_t ctx_stack_push(ctx_t* ctx, size_t n)
{
ctx->stack_diff += n;
// SP points just above the topmost value
int32_t offset = (ctx->stack_diff - 1) * 8;
return mem_opnd(64, RSI, offset);
}
/*
Pop N values off the stack
Return a pointer to the stack top before the pop operation
*/
x86opnd_t ctx_stack_pop(ctx_t* ctx, size_t n)
{
// SP points just above the topmost value
int32_t offset = (ctx->stack_diff - 1) * 8;
x86opnd_t top = mem_opnd(64, RSI, offset);
ctx->stack_diff -= n;
return top;
}
x86opnd_t ctx_stack_opnd(ctx_t* ctx, int32_t idx)
{
// SP points just above the topmost value
int32_t offset = (ctx->stack_diff - 1 - idx) * 8;
x86opnd_t opnd = mem_opnd(64, RSI, offset);
return opnd;
}
// Ruby instruction entry
static void
ujit_gen_entry(codeblock_t* cb)
{
for (size_t i = 0; i < sizeof(ujit_pre_call_bytes); ++i)
cb_write_byte(cb, ujit_pre_call_bytes[i]);
}
/**
Generate an inline exit to return to the interpreter
*/
static void
ujit_gen_exit(codeblock_t* cb, ctx_t* ctx, VALUE* exit_pc)
{
// Write the adjusted SP back into the CFP
if (ctx->stack_diff != 0)
{
x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 1);
lea(cb, RSI, stack_pointer);
mov(cb, mem_opnd(64, RDI, 8), RSI);
}
// Directly return the next PC, which is a constant
mov(cb, RAX, const_ptr_opnd(exit_pc));
// Write PC back into the CFP
mov(cb, mem_opnd(64, RDI, 0), RAX);
// Write the post call bytes
for (size_t i = 0; i < sizeof(ujit_post_call_bytes); ++i)
cb_write_byte(cb, ujit_post_call_bytes[i]);
}
/**
Generate an out-of-line exit to return to the interpreter
*/
uint8_t*
ujit_side_exit(codeblock_t* cb, ctx_t* ctx, VALUE* exit_pc)
{
uint8_t* code_ptr = cb_get_ptr(cb, cb->write_pos);
// Write back the old instruction at the exit PC
// Otherwise the interpreter may jump right back to the
// JITted code we're trying to exit
const void * const *table = rb_vm_get_insns_address_table();
int opcode = opcode_at_pc(ctx->iseq, exit_pc);
void* old_instr = (void*)table[opcode];
mov(cb, RAX, const_ptr_opnd(exit_pc));
mov(cb, RCX, const_ptr_opnd(old_instr));
mov(cb, mem_opnd(64, RAX, 0), RCX);
// Generate the code to exit to the interpreters
ujit_gen_exit(cb, ctx, exit_pc);
return code_ptr;
}
/*
Generate a chunk of machine code for one individual bytecode instruction
Eventually, this will handle multiple instructions in a sequence
MicroJIT code gets a pointer to the cfp as the first argument in RDI
See rb_ujit_empty_func(rb_control_frame_t *cfp) in iseq.c
Throughout the generated code, we store the current stack pointer in RSI
System V ABI reference:
https://wiki.osdev.org/System_V_ABI#x86-64
*/
uint8_t *
ujit_compile_insn(const rb_iseq_t *iseq, unsigned int insn_idx, unsigned int* next_ujit_idx)
{
if (!cb) {
return NULL;
}
VALUE *encoded = iseq->body->iseq_encoded;
// NOTE: if we are ever deployed in production, we
// should probably just log an error and return NULL here,
// so we can fail more gracefully
if (cb->write_pos + 1024 >= cb->mem_size)
{
rb_bug("out of executable memory");
}
if (ocb->write_pos + 1024 >= ocb->mem_size)
{
rb_bug("out of executable memory (outlined block)");
}
// Align the current write positon to cache line boundaries
cb_align_pos(cb, 64);
// Get a pointer to the current write position in the code block
uint8_t *code_ptr = &cb->mem_block[cb->write_pos];
//printf("write pos: %ld\n", cb->write_pos);
// Get the first opcode in the sequence
int first_opcode = opcode_at_pc(iseq, &encoded[insn_idx]);
// Create codegen context
ctx_t ctx;
ctx.pc = NULL;
ctx.stack_diff = 0;
ctx.iseq = iseq;
// For each instruction to compile
size_t num_instrs;
for (num_instrs = 0;; ++num_instrs)
{
// Set the current PC
ctx.pc = &encoded[insn_idx];
// Get the current opcode
int opcode = ctx_get_opcode(&ctx);
// Lookup the codegen function for this instruction
st_data_t st_gen_fn;
if (!rb_st_lookup(gen_fns, opcode, &st_gen_fn))
{
//print_int(cb, imm_opnd(num_instrs));
//print_str(cb, insn_name(opcode));
break;
}
// Write the pre call bytes before the first instruction
if (num_instrs == 0)
{
ujit_gen_entry(cb);
// Load the current SP from the CFP into RSI
mov(cb, RSI, mem_opnd(64, RDI, 8));
}
// Call the code generation function
codegen_fn gen_fn = (codegen_fn)st_gen_fn;
if (!gen_fn(cb, ocb, &ctx))
{
break;
}
// Move to the next instruction
insn_idx += insn_len(opcode);
}
// Let the caller know how many instructions ujit compiled
*next_ujit_idx = insn_idx;
// If no instructions were compiled
if (num_instrs == 0)
{
return NULL;
}
// Generate code to exit to the interpreter
ujit_gen_exit(cb, &ctx, ctx.pc);
addr2insn_bookkeeping(code_ptr, first_opcode);
return code_ptr;
}
bool
gen_dup(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
x86opnd_t dup_val = ctx_stack_pop(ctx, 1);
x86opnd_t loc0 = ctx_stack_push(ctx, 1);
x86opnd_t loc1 = ctx_stack_push(ctx, 1);
mov(cb, RAX, dup_val);
mov(cb, loc0, RAX);
mov(cb, loc1, RAX);
return true;
}
bool
gen_nop(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Do nothing
return true;
}
bool
gen_pop(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Decrement SP
ctx_stack_pop(ctx, 1);
return true;
}
bool
gen_putnil(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Write constant at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, imm_opnd(Qnil));
return true;
}
bool
gen_putobject(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Load the argument from the bytecode sequence.
// We need to do this as the argument can chanage due to GC compaction.
x86opnd_t pc_imm = const_ptr_opnd((void*)ctx->pc);
mov(cb, RAX, pc_imm);
mov(cb, RAX, mem_opnd(64, RAX, 8)); // One after the opcode
// Write argument at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, RAX);
return true;
}
bool
gen_putobject_int2fix(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
int opcode = ctx_get_opcode(ctx);
int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;
// Write constant at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, imm_opnd(INT2FIX(cst_val)));
return true;
}
bool
gen_putself(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Load self from CFP
mov(cb, RAX, mem_opnd(64, RDI, 24));
// Write it on the stack
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, RAX);
return true;
}
bool
gen_getlocal_wc0(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Load environment pointer EP from CFP
mov(cb, RDX, member_opnd(RDI, rb_control_frame_t, ep));
// Compute the offset from BP to the local
int32_t local_idx = (int32_t)ctx_get_arg(ctx, 0);
const int32_t offs = -8 * local_idx;
// Load the local from the block
mov(cb, RCX, mem_opnd(64, RDX, offs));
// Write the local at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, RCX);
return true;
}
bool
gen_setlocal_wc0(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
/*
vm_env_write(const VALUE *ep, int index, VALUE v)
{
VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS];
if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) {
VM_STACK_ENV_WRITE(ep, index, v);
}
else {
vm_env_write_slowpath(ep, index, v);
}
}
*/
// Load environment pointer EP from CFP
mov(cb, RDX, member_opnd(RDI, rb_control_frame_t, ep));
// flags & VM_ENV_FLAG_WB_REQUIRED
x86opnd_t flags_opnd = mem_opnd(64, RDX, 8 * VM_ENV_DATA_INDEX_FLAGS);
test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED));
// Create a size-exit to fall back to the interpreter
uint8_t* side_exit = ujit_side_exit(ocb, ctx, ctx->pc);
// if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0
jnz_ptr(cb, side_exit);
// Pop the value to write from the stack
x86opnd_t stack_top = ctx_stack_pop(ctx, 1);
mov(cb, RCX, stack_top);
// Write the value at the environment pointer
int32_t local_idx = (int32_t)ctx_get_arg(ctx, 0);
const int32_t offs = -8 * local_idx;
mov(cb, mem_opnd(64, RDX, offs), RCX);
return true;
}
bool
gen_opt_minus(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Create a size-exit to fall back to the interpreter
// Note: we generate the side-exit before popping operands from the stack
uint8_t* side_exit = ujit_side_exit(ocb, ctx, ctx->pc);
// TODO: make a helper function for this
// Make sure that minus isn't redefined for integers
mov(cb, RAX, const_ptr_opnd(ruby_current_vm_ptr));
test(
cb,
member_opnd_idx(RAX, rb_vm_t, redefined_flag, BOP_MINUS),
imm_opnd(INTEGER_REDEFINED_OP_FLAG)
);
jnz_ptr(cb, side_exit);
// Get the operands and destination from the stack
x86opnd_t arg1 = ctx_stack_pop(ctx, 1);
x86opnd_t arg0 = ctx_stack_pop(ctx, 1);
// If not fixnums, fall back
test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG));
jz_ptr(cb, side_exit);
test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG));
jz_ptr(cb, side_exit);
// Subtract arg0 - arg1 and test for overflow
mov(cb, RAX, arg0);
sub(cb, RAX, arg1);
jo_ptr(cb, side_exit);
add(cb, RAX, imm_opnd(1));
// Push the output on the stack
x86opnd_t dst = ctx_stack_push(ctx, 1);
mov(cb, dst, RAX);
return true;
}
bool
gen_opt_send_without_block(codeblock_t* cb, codeblock_t* ocb, ctx_t* ctx)
{
// Relevant definitions:
// vm_call_cfunc_with_frame : vm_insnhelper.c
// rb_callcache : vm_callinfo.h
// invoker, cfunc logic : method.h, vm_method.c
// rb_callable_method_entry_t: method.h
struct rb_call_data * cd = (struct rb_call_data *)ctx_get_arg(ctx, 0);
int32_t argc = (int32_t)vm_ci_argc(cd->ci);
const struct rb_callcache *cc = cd->cc;
// Callee method ID
ID mid = vm_ci_mid(cd->ci);
//printf("jitting call to \"%s\", argc: %lu\n", rb_id2name(mid), argc);
// Don't JIT calls with keyword splat
if (vm_ci_flag(cd->ci) & VM_CALL_KW_SPLAT)
{
return false;
}
// Don't JIT calls that aren't simple
if (!(vm_ci_flag(cd->ci) & VM_CALL_ARGS_SIMPLE))
{
return false;
}
// Don't JIT if the inline cache is not set
if (cd->cc == vm_cc_empty())
{
//printf("call cache is empty\n");
return false;
}
const rb_callable_method_entry_t *me = vm_cc_cme(cd->cc);
// Don't JIT if this is not a C call
if (me->def->type != VM_METHOD_TYPE_CFUNC)
{
return false;
}
const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(me->def, body.cfunc);
// Don't jit if the argument count doesn't match
if (cfunc->argc < 0 || cfunc->argc != argc)
{
return false;
}
//printf("call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc);
//print_str(cb, rb_id2name(mid));
//print_ptr(cb, RCX);
// Create a size-exit to fall back to the interpreter
uint8_t* side_exit = ujit_side_exit(ocb, ctx, ctx->pc);
// Points to the receiver operand on the stack
x86opnd_t recv = ctx_stack_opnd(ctx, argc);
mov(cb, RCX, recv);
// IDEA: we may be able to eliminate this in some cases if we know the previous instruction?
// TODO: guard_is_object() helper function?
//
// Check that the receiver is a heap object
test(cb, RCX, imm_opnd(RUBY_IMMEDIATE_MASK));
jnz_ptr(cb, side_exit);
cmp(cb, RCX, imm_opnd(Qfalse));
je_ptr(cb, side_exit);
cmp(cb, RCX, imm_opnd(Qnil));
je_ptr(cb, side_exit);
// Pointer to the klass field of the receiver &(recv->klass)
x86opnd_t klass_opnd = mem_opnd(64, RCX, offsetof(struct RBasic, klass));
// FIXME: currently assuming that cc->klass doesn't change
// Ideally we would like the GC to update the klass pointer
//
// Check if we have a cache hit
mov(cb, RAX, const_ptr_opnd((void*)cd->cc->klass));
cmp(cb, RAX, klass_opnd);
jne_ptr(cb, side_exit);
// NOTE: there *has to be* a way to optimize the entry invalidated check
// Could we have Ruby invalidate the JIT code instead of invalidating CME?
//
// Check that the method entry is not invalidated
// cd->cc->cme->flags
// #define METHOD_ENTRY_INVALIDATED(me) ((me)->flags & IMEMO_FL_USER5)
mov(cb, RAX, const_ptr_opnd(cd));
x86opnd_t ptr_to_cc = member_opnd(RAX, struct rb_call_data, cc);
mov(cb, RAX, ptr_to_cc);
x86opnd_t ptr_to_cme_ = mem_opnd(64, RAX, offsetof(struct rb_callcache, cme_));
mov(cb, RAX, ptr_to_cme_);
x86opnd_t flags_opnd = mem_opnd(64, RAX, offsetof(rb_callable_method_entry_t, flags));
test(cb, flags_opnd, imm_opnd(IMEMO_FL_USER5));
jnz_ptr(cb, side_exit);
// NOTE: stack frame setup may not be needed for some C functions
// TODO: do we need this check?
//vm_check_frame(type, specval, cref_or_me, iseq);
// FIXME: stack overflow check
//vm_check_canary(ec, sp);
// TODO: under construction, stop here for now
jmp_ptr(cb, side_exit);
return true;
// FIXME: for now, we hardcode ec
// TODO: hardcode EC
// Allocate a new CFP
//ec->cfp--;
// Increment the stack pointer by 3
//sp += 3
// Write method entry at sp[-2]
//sp[-2] = me;
// Write block handller at sp[-1]
//VALUE recv = calling->recv;
//VALUE block_handler = calling->block_handler;
//sp[-1] = block_handler;
// Write env flags at sp[0]
uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL;
//sp[0] = frame_type;
// Setup the new frame
/*
*cfp = (const struct rb_control_frame_struct) {
.pc = 0,
.sp = sp,
.iseq = 0,
.self = recv,
.ep = sp - 1,
.block_code = 0,
.__bp__ = sp,
};
ec->cfp = cfp;
*/
// NOTE: we need a helper to pop multiple values here
// Pop the C function arguments from the stack (in the caller)
//reg_cfp->sp -= orig_argc + 1;
// Save the MicroJIT registers
push(cb, RDI);
push(cb, RSI);
// Call the function
//VALUE ret = (cfunc->func)(recv, argv[0], argv[1]);
// Restore MicroJIT registers
pop(cb, RSI);
pop(cb, RDI);
// TODO: later
// RUBY_VM_CHECK_INTS(ec);
// Pop the stack frame
//ec->cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
jmp_ptr(cb, side_exit);
return true;
}
void
rb_ujit_compile_iseq(const rb_iseq_t *iseq)
{
#if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE
RB_VM_LOCK();
VALUE *encoded = (VALUE *)iseq->body->iseq_encoded;
unsigned int insn_idx;
unsigned int next_ujit_idx = 0;
for (insn_idx = 0; insn_idx < iseq->body->iseq_size; /* */) {
int insn = opcode_at_pc(iseq, &encoded[insn_idx]);
int len = insn_len(insn);
uint8_t *native_code_ptr = NULL;
// If ujit hasn't already compiled this instruction
if (insn_idx >= next_ujit_idx) {
native_code_ptr = ujit_compile_insn(iseq, insn_idx, &next_ujit_idx);
}
if (native_code_ptr) {
encoded[insn_idx] = (VALUE)native_code_ptr;
}
insn_idx += len;
}
RB_VM_UNLOCK();
#endif
}
void
rb_ujit_init(void)
{
if (!ujit_scrape_successful || !PLATFORM_SUPPORTED_P)
{
return;
}
rb_ujit_enabled = true;
// Initialize the code blocks
size_t mem_size = 128 * 1024 * 1024;
uint8_t* mem_block = alloc_exec_mem(mem_size);
cb = &block;
cb_init(cb, mem_block, mem_size/2);
ocb = &outline_block;
cb_init(ocb, mem_block + mem_size/2, mem_size/2);
// Initialize the codegen function table
gen_fns = rb_st_init_numtable();
// Map YARV opcodes to the corresponding codegen functions
st_insert(gen_fns, (st_data_t)BIN(dup), (st_data_t)&gen_dup);
st_insert(gen_fns, (st_data_t)BIN(nop), (st_data_t)&gen_nop);
st_insert(gen_fns, (st_data_t)BIN(pop), (st_data_t)&gen_pop);
st_insert(gen_fns, (st_data_t)BIN(putnil), (st_data_t)&gen_putnil);
st_insert(gen_fns, (st_data_t)BIN(putobject), (st_data_t)&gen_putobject);
st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_0_), (st_data_t)&gen_putobject_int2fix);
st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_1_), (st_data_t)&gen_putobject_int2fix);
st_insert(gen_fns, (st_data_t)BIN(putself), (st_data_t)&gen_putself);
st_insert(gen_fns, (st_data_t)BIN(getlocal_WC_0), (st_data_t)&gen_getlocal_wc0);
st_insert(gen_fns, (st_data_t)BIN(setlocal_WC_0), (st_data_t)&gen_setlocal_wc0);
st_insert(gen_fns, (st_data_t)BIN(opt_minus), (st_data_t)&gen_opt_minus);
st_insert(gen_fns, (st_data_t)BIN(opt_send_without_block), (st_data_t)&gen_opt_send_without_block);
}