ruby--ruby/yjit_core.h

299 lines
7.9 KiB
C

#ifndef YJIT_CORE_H
#define YJIT_CORE_H 1
#include "stddef.h"
#include "yjit_asm.h"
// Register YJIT receives the CFP and EC into
#define REG_CFP RDI
#define REG_EC RSI
// Register YJIT loads the SP into
#define REG_SP RDX
// Scratch registers used by YJIT
#define REG0 RAX
#define REG1 RCX
#define REG0_32 EAX
#define REG1_32 ECX
#define REG0_8 AL
// Maximum number of temp value types we keep track of
#define MAX_TEMP_TYPES 8
// Maximum number of local variable types we keep track of
#define MAX_LOCAL_TYPES 8
// Default versioning context (no type information)
#define DEFAULT_CTX ( (ctx_t){ 0 } )
enum yjit_type_enum
{
ETYPE_UNKNOWN = 0,
ETYPE_NIL,
ETYPE_TRUE,
ETYPE_FALSE,
ETYPE_FIXNUM,
ETYPE_FLONUM,
ETYPE_ARRAY,
ETYPE_HASH,
ETYPE_SYMBOL,
ETYPE_STRING
};
// Represent the type of a value (local/stack/self) in YJIT
typedef struct yjit_type_struct
{
// Value is definitely a heap object
uint8_t is_heap : 1;
// Value is definitely an immediate
uint8_t is_imm : 1;
// Specific value type, if known
uint8_t type : 4;
} val_type_t;
STATIC_ASSERT(val_type_size, sizeof(val_type_t) == 1);
// Unknown type, could be anything, all zeroes
#define TYPE_UNKNOWN ( (val_type_t){ 0 } )
// Could be any heap object
#define TYPE_HEAP ( (val_type_t){ .is_heap = 1 } )
// Could be any immediate
#define TYPE_IMM ( (val_type_t){ .is_imm = 1 } )
#define TYPE_NIL ( (val_type_t){ .is_imm = 1, .type = ETYPE_NIL } )
#define TYPE_TRUE ( (val_type_t){ .is_imm = 1, .type = ETYPE_TRUE } )
#define TYPE_FALSE ( (val_type_t){ .is_imm = 1, .type = ETYPE_FALSE } )
#define TYPE_FIXNUM ( (val_type_t){ .is_imm = 1, .type = ETYPE_FIXNUM } )
#define TYPE_FLONUM ( (val_type_t){ .is_imm = 1, .type = ETYPE_FLONUM } )
#define TYPE_STATIC_SYMBOL ( (val_type_t){ .is_imm = 1, .type = ETYPE_SYMBOL } )
#define TYPE_ARRAY ( (val_type_t){ .is_heap = 1, .type = ETYPE_ARRAY } )
#define TYPE_HASH ( (val_type_t){ .is_heap = 1, .type = ETYPE_HASH } )
#define TYPE_STRING ( (val_type_t){ .is_heap = 1, .type = ETYPE_STRING } )
enum yjit_temp_loc
{
TEMP_STACK = 0,
TEMP_SELF,
TEMP_LOCAL, // Local with index
//TEMP_CONST, // Small constant (0, 1, 2, Qnil, Qfalse, Qtrue)
};
// Potential mapping of a value on the temporary stack to
// self, a local variable or constant so that we can track its type
typedef struct yjit_temp_mapping
{
// Where/how is the value stored?
uint8_t kind: 2;
// Index of the local variale,
// or small non-negative constant in [0, 63]
uint8_t idx : 6;
} temp_mapping_t;
STATIC_ASSERT(temp_mapping_size, sizeof(temp_mapping_t) == 1);
// By default, temps are just temps on the stack
#define MAP_STACK ( (temp_mapping_t) { 0 } )
// Temp value is actually self
#define MAP_SELF ( (temp_mapping_t) { .kind = TEMP_SELF } )
// Operand to a bytecode instruction
typedef struct yjit_insn_opnd
{
// Indicates if the value is self
bool is_self;
// Index on the temporary stack (for stack operands only)
uint16_t idx;
} insn_opnd_t;
#define OPND_SELF ( (insn_opnd_t){ .is_self = true } )
#define OPND_STACK(stack_idx) ( (insn_opnd_t){ .is_self = false, .idx = stack_idx } )
/**
Code generation context
Contains information we can use to optimize code
*/
typedef struct yjit_context
{
// Number of values currently on the temporary stack
uint16_t stack_size;
// Offset of the JIT SP relative to the interpreter SP
// This represents how far the JIT's SP is from the "real" SP
int16_t sp_offset;
// Depth of this block in the sidechain (eg: inline-cache chain)
uint8_t chain_depth;
// Local variable types we keepp track of
val_type_t local_types[MAX_LOCAL_TYPES];
// Temporary variable types we keep track of
val_type_t temp_types[MAX_TEMP_TYPES];
// Type we track for self
val_type_t self_type;
// Mapping of temp stack entries to types we track
temp_mapping_t temp_mapping[MAX_TEMP_TYPES];
} ctx_t;
STATIC_ASSERT(yjit_ctx_size, sizeof(ctx_t) <= 32);
// Tuple of (iseq, idx) used to idenfity basic blocks
typedef struct BlockId
{
// Instruction sequence
const rb_iseq_t *iseq;
// Index in the iseq where the block starts
uint32_t idx;
} blockid_t;
// Null block id constant
static const blockid_t BLOCKID_NULL = { 0, 0 };
/// Branch code shape enumeration
typedef enum branch_shape
{
SHAPE_NEXT0, // Target 0 is next
SHAPE_NEXT1, // Target 1 is next
SHAPE_DEFAULT // Neither target is next
} branch_shape_t;
// Branch code generation function signature
typedef void (*branchgen_fn)(codeblock_t* cb, uint8_t* target0, uint8_t* target1, uint8_t shape);
/**
Store info about an outgoing branch in a code segment
Note: care must be taken to minimize the size of branch_t objects
*/
typedef struct yjit_branch_entry
{
// Block this is attached to
struct yjit_block_version *block;
// Positions where the generated code starts and ends
uint32_t start_pos;
uint32_t end_pos;
// Context right after the branch instruction
ctx_t src_ctx;
// Branch target blocks and their contexts
blockid_t targets[2];
ctx_t target_ctxs[2];
struct yjit_block_version *blocks[2];
// Jump target addresses
uint8_t* dst_addrs[2];
// Branch code generation function
branchgen_fn gen_fn;
// Shape of the branch
branch_shape_t shape : 2;
} branch_t;
typedef rb_darray(branch_t*) branch_array_t;
typedef rb_darray(uint32_t) int32_array_t;
/**
Basic block version
Represents a portion of an iseq compiled with a given context
Note: care must be taken to minimize the size of block_t objects
*/
typedef struct yjit_block_version
{
// Bytecode sequence (iseq, idx) this is a version of
blockid_t blockid;
// Context at the start of the block
ctx_t ctx;
// Positions where the generated code starts and ends
uint32_t start_pos;
uint32_t end_pos;
// List of incoming branches (from predecessors)
branch_array_t incoming;
// List of outgoing branches (to successors)
// Note: these are owned by this block version
branch_array_t outgoing;
// Offsets for GC managed objects in the mainline code block
int32_array_t gc_object_offsets;
// In case this block is invalidated, these two pieces of info
// help to remove all pointers to this block in the system.
VALUE receiver_klass;
VALUE callee_cme;
// Code page this block lives on
VALUE code_page;
// Index one past the last instruction in the iseq
uint32_t end_idx;
} block_t;
// Context object methods
x86opnd_t ctx_sp_opnd(ctx_t* ctx, int32_t offset_bytes);
x86opnd_t ctx_stack_push(ctx_t* ctx, val_type_t type);
x86opnd_t ctx_stack_push_self(ctx_t* ctx);
x86opnd_t ctx_stack_push_local(ctx_t* ctx, size_t local_idx);
x86opnd_t ctx_stack_pop(ctx_t* ctx, size_t n);
x86opnd_t ctx_stack_opnd(ctx_t* ctx, int32_t idx);
val_type_t ctx_get_opnd_type(const ctx_t* ctx, insn_opnd_t opnd);
void ctx_set_opnd_type(ctx_t* ctx, insn_opnd_t opnd, val_type_t type);
void ctx_set_local_type(ctx_t* ctx, size_t idx, val_type_t type);
void ctx_clear_local_types(ctx_t* ctx);
int ctx_diff(const ctx_t* src, const ctx_t* dst);
block_t* find_block_version(blockid_t blockid, const ctx_t* ctx);
block_t* gen_block_version(blockid_t blockid, const ctx_t* ctx, rb_execution_context_t *ec);
uint8_t* gen_entry_point(const rb_iseq_t *iseq, uint32_t insn_idx, rb_execution_context_t *ec);
void yjit_free_block(block_t *block);
rb_yjit_block_array_t yjit_get_version_array(const rb_iseq_t *iseq, unsigned idx);
void gen_branch(
block_t* block,
const ctx_t* src_ctx,
blockid_t target0,
const ctx_t* ctx0,
blockid_t target1,
const ctx_t* ctx1,
branchgen_fn gen_fn
);
void gen_direct_jump(
block_t* block,
const ctx_t* ctx,
blockid_t target0
);
void defer_compilation(
block_t* block,
uint32_t insn_idx,
ctx_t* cur_ctx
);
void invalidate_block_version(block_t* block);
void yjit_init_core(void);
#endif // #ifndef YJIT_CORE_H