mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 355c3a250d
			
		
	
	
		355c3a250d
		
	
	
	
	
		
			
			git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@30583 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			4712 lines
		
	
	
	
		
			116 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4712 lines
		
	
	
	
		
			116 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   array.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Fri Aug  6 09:46:12 JST 1993
 | |
| 
 | |
|   Copyright (C) 1993-2007 Yukihiro Matsumoto
 | |
|   Copyright (C) 2000  Network Applied Communication Laboratory, Inc.
 | |
|   Copyright (C) 2000  Information-technology Promotion Agency, Japan
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| #include "ruby/ruby.h"
 | |
| #include "ruby/util.h"
 | |
| #include "ruby/st.h"
 | |
| 
 | |
| #ifndef ARRAY_DEBUG
 | |
| # define NDEBUG
 | |
| #endif
 | |
| #include <assert.h>
 | |
| 
 | |
| #define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
 | |
| 
 | |
| VALUE rb_cArray;
 | |
| 
 | |
| static ID id_cmp;
 | |
| 
 | |
| #define ARY_DEFAULT_SIZE 16
 | |
| #define ARY_MAX_SIZE (LONG_MAX / (int)sizeof(VALUE))
 | |
| 
 | |
| void
 | |
| rb_mem_clear(register VALUE *mem, register long size)
 | |
| {
 | |
|     while (size--) {
 | |
| 	*mem++ = Qnil;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| memfill(register VALUE *mem, register long size, register VALUE val)
 | |
| {
 | |
|     while (size--) {
 | |
| 	*mem++ = val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| # define ARY_SHARED_P(ary) \
 | |
|     (assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \
 | |
|      FL_TEST((ary),ELTS_SHARED)!=0)
 | |
| # define ARY_EMBED_P(ary) \
 | |
|     (assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \
 | |
|      FL_TEST((ary), RARRAY_EMBED_FLAG)!=0)
 | |
| 
 | |
| #define ARY_HEAP_PTR(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.ptr)
 | |
| #define ARY_HEAP_LEN(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.len)
 | |
| #define ARY_EMBED_PTR(a) (assert(ARY_EMBED_P(a)), RARRAY(a)->as.ary)
 | |
| #define ARY_EMBED_LEN(a) \
 | |
|     (assert(ARY_EMBED_P(a)), \
 | |
|      (long)((RBASIC(a)->flags >> RARRAY_EMBED_LEN_SHIFT) & \
 | |
| 	 (RARRAY_EMBED_LEN_MASK >> RARRAY_EMBED_LEN_SHIFT)))
 | |
| 
 | |
| #define ARY_OWNS_HEAP_P(a) (!FL_TEST((a), ELTS_SHARED|RARRAY_EMBED_FLAG))
 | |
| #define FL_SET_EMBED(a) do { \
 | |
|     assert(!ARY_SHARED_P(a)); \
 | |
|     assert(!OBJ_FROZEN(a)); \
 | |
|     FL_SET((a), RARRAY_EMBED_FLAG); \
 | |
| } while (0)
 | |
| #define FL_UNSET_EMBED(ary) FL_UNSET((ary), RARRAY_EMBED_FLAG|RARRAY_EMBED_LEN_MASK)
 | |
| #define FL_SET_SHARED(ary) do { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     FL_SET((ary), ELTS_SHARED); \
 | |
| } while (0)
 | |
| #define FL_UNSET_SHARED(ary) FL_UNSET((ary), ELTS_SHARED)
 | |
| 
 | |
| #define ARY_SET_PTR(ary, p) do { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     assert(!OBJ_FROZEN(ary)); \
 | |
|     RARRAY(ary)->as.heap.ptr = (p); \
 | |
| } while (0)
 | |
| #define ARY_SET_EMBED_LEN(ary, n) do { \
 | |
|     long tmp_n = (n); \
 | |
|     assert(ARY_EMBED_P(ary)); \
 | |
|     assert(!OBJ_FROZEN(ary)); \
 | |
|     RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK; \
 | |
|     RBASIC(ary)->flags |= (tmp_n) << RARRAY_EMBED_LEN_SHIFT; \
 | |
| } while (0)
 | |
| #define ARY_SET_HEAP_LEN(ary, n) do { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     RARRAY(ary)->as.heap.len = (n); \
 | |
| } while (0)
 | |
| #define ARY_SET_LEN(ary, n) do { \
 | |
|     if (ARY_EMBED_P(ary)) { \
 | |
|         ARY_SET_EMBED_LEN((ary), (n)); \
 | |
|     } \
 | |
|     else { \
 | |
|         ARY_SET_HEAP_LEN((ary), (n)); \
 | |
|     } \
 | |
|     assert(RARRAY_LEN(ary) == (n)); \
 | |
| } while (0)
 | |
| #define ARY_INCREASE_PTR(ary, n) do  { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     assert(!OBJ_FROZEN(ary)); \
 | |
|     RARRAY(ary)->as.heap.ptr += (n); \
 | |
| } while (0)
 | |
| #define ARY_INCREASE_LEN(ary, n) do  { \
 | |
|     assert(!OBJ_FROZEN(ary)); \
 | |
|     if (ARY_EMBED_P(ary)) { \
 | |
|         ARY_SET_EMBED_LEN((ary), RARRAY_LEN(ary)+(n)); \
 | |
|     } \
 | |
|     else { \
 | |
|         RARRAY(ary)->as.heap.len += (n); \
 | |
|     } \
 | |
| } while (0)
 | |
| 
 | |
| #define ARY_CAPA(ary) (ARY_EMBED_P(ary) ? RARRAY_EMBED_LEN_MAX : \
 | |
| 		       ARY_SHARED_ROOT_P(ary) ? RARRAY_LEN(ary) : RARRAY(ary)->as.heap.aux.capa)
 | |
| #define ARY_SET_CAPA(ary, n) do { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     assert(!ARY_SHARED_P(ary)); \
 | |
|     assert(!OBJ_FROZEN(ary)); \
 | |
|     RARRAY(ary)->as.heap.aux.capa = (n); \
 | |
| } while (0)
 | |
| 
 | |
| #define ARY_SHARED(ary) (assert(ARY_SHARED_P(ary)), RARRAY(ary)->as.heap.aux.shared)
 | |
| #define ARY_SET_SHARED(ary, value) do { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     assert(ARY_SHARED_P(ary)); \
 | |
|     assert(ARY_SHARED_ROOT_P(value)); \
 | |
|     RARRAY(ary)->as.heap.aux.shared = (value); \
 | |
| } while (0)
 | |
| #define RARRAY_SHARED_ROOT_FLAG FL_USER5
 | |
| #define ARY_SHARED_ROOT_P(ary) (FL_TEST((ary), RARRAY_SHARED_ROOT_FLAG))
 | |
| #define ARY_SHARED_NUM(ary) \
 | |
|     (assert(ARY_SHARED_ROOT_P(ary)), RARRAY(ary)->as.heap.aux.capa)
 | |
| #define ARY_SET_SHARED_NUM(ary, value) do { \
 | |
|     assert(ARY_SHARED_ROOT_P(ary)); \
 | |
|     RARRAY(ary)->as.heap.aux.capa = (value); \
 | |
| } while (0)
 | |
| #define FL_SET_SHARED_ROOT(ary) do { \
 | |
|     assert(!ARY_EMBED_P(ary)); \
 | |
|     FL_SET((ary), RARRAY_SHARED_ROOT_FLAG); \
 | |
| } while (0)
 | |
| 
 | |
| static void
 | |
| ary_resize_capa(VALUE ary, long capacity)
 | |
| {
 | |
|     assert(RARRAY_LEN(ary) <= capacity);
 | |
|     assert(!OBJ_FROZEN(ary));
 | |
|     assert(!ARY_SHARED_P(ary));
 | |
|     if (capacity > RARRAY_EMBED_LEN_MAX) {
 | |
|         if (ARY_EMBED_P(ary)) {
 | |
|             long len = ARY_EMBED_LEN(ary);
 | |
|             VALUE *ptr = ALLOC_N(VALUE, (capacity));
 | |
|             MEMCPY(ptr, ARY_EMBED_PTR(ary), VALUE, len);
 | |
|             FL_UNSET_EMBED(ary);
 | |
|             ARY_SET_PTR(ary, ptr);
 | |
|             ARY_SET_HEAP_LEN(ary, len);
 | |
|         }
 | |
|         else {
 | |
|             REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, (capacity));
 | |
|         }
 | |
|         ARY_SET_CAPA(ary, (capacity));
 | |
|     }
 | |
|     else {
 | |
|         if (!ARY_EMBED_P(ary)) {
 | |
|             long len = RARRAY_LEN(ary);
 | |
|             VALUE *ptr = RARRAY_PTR(ary);
 | |
|             if (len > capacity) len = capacity;
 | |
|             MEMCPY(RARRAY(ary)->as.ary, ptr, VALUE, len);
 | |
|             FL_SET_EMBED(ary);
 | |
|             ARY_SET_LEN(ary, len);
 | |
|             xfree(ptr);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_double_capa(VALUE ary, long min)
 | |
| {
 | |
|     long new_capa = ARY_CAPA(ary) / 2;
 | |
| 
 | |
|     if (new_capa < ARY_DEFAULT_SIZE) {
 | |
| 	new_capa = ARY_DEFAULT_SIZE;
 | |
|     }
 | |
|     if (new_capa >= ARY_MAX_SIZE - min) {
 | |
| 	new_capa = (ARY_MAX_SIZE - min) / 2;
 | |
|     }
 | |
|     new_capa += min;
 | |
|     ary_resize_capa(ary, new_capa);
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_ary_decrement_share(VALUE shared)
 | |
| {
 | |
|     if (shared) {
 | |
| 	long num = ARY_SHARED_NUM(shared) - 1;
 | |
| 	if (num == 0) {
 | |
| 	    rb_ary_free(shared);
 | |
| 	    rb_gc_force_recycle(shared);
 | |
| 	}
 | |
| 	else if (num > 0) {
 | |
| 	    ARY_SET_SHARED_NUM(shared, num);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_ary_unshare(VALUE ary)
 | |
| {
 | |
|     VALUE shared = RARRAY(ary)->as.heap.aux.shared;
 | |
|     rb_ary_decrement_share(shared);
 | |
|     FL_UNSET_SHARED(ary);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| rb_ary_unshare_safe(VALUE ary)
 | |
| {
 | |
|     if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
 | |
| 	rb_ary_unshare(ary);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_increment_share(VALUE shared)
 | |
| {
 | |
|     long num = ARY_SHARED_NUM(shared);
 | |
|     if (num >= 0) {
 | |
| 	ARY_SET_SHARED_NUM(shared, num + 1);
 | |
|     }
 | |
|     return shared;
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_ary_set_shared(VALUE ary, VALUE shared)
 | |
| {
 | |
|     rb_ary_increment_share(shared);
 | |
|     FL_SET_SHARED(ary);
 | |
|     ARY_SET_SHARED(ary, shared);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| rb_ary_modify_check(VALUE ary)
 | |
| {
 | |
|     rb_check_frozen(ary);
 | |
|     if (!OBJ_UNTRUSTED(ary) && rb_safe_level() >= 4)
 | |
| 	rb_raise(rb_eSecurityError, "Insecure: can't modify array");
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_modify(VALUE ary)
 | |
| {
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (ARY_SHARED_P(ary)) {
 | |
|         long len = RARRAY_LEN(ary);
 | |
|         if (len <= RARRAY_EMBED_LEN_MAX) {
 | |
|             VALUE *ptr = ARY_HEAP_PTR(ary);
 | |
|             VALUE shared = ARY_SHARED(ary);
 | |
|             FL_UNSET_SHARED(ary);
 | |
|             FL_SET_EMBED(ary);
 | |
|             MEMCPY(ARY_EMBED_PTR(ary), ptr, VALUE, len);
 | |
|             rb_ary_decrement_share(shared);
 | |
|             ARY_SET_EMBED_LEN(ary, len);
 | |
|         }
 | |
|         else {
 | |
|             VALUE *ptr = ALLOC_N(VALUE, len);
 | |
|             MEMCPY(ptr, RARRAY_PTR(ary), VALUE, len);
 | |
|             rb_ary_unshare(ary);
 | |
|             ARY_SET_CAPA(ary, len);
 | |
|             ARY_SET_PTR(ary, ptr);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_freeze(VALUE ary)
 | |
| {
 | |
|     return rb_obj_freeze(ary);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.frozen?  -> true or false
 | |
|  *
 | |
|  *  Return <code>true</code> if this array is frozen (or temporarily frozen
 | |
|  *  while being sorted).
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_frozen_p(VALUE ary)
 | |
| {
 | |
|     if (OBJ_FROZEN(ary)) return Qtrue;
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_alloc(VALUE klass)
 | |
| {
 | |
|     NEWOBJ(ary, struct RArray);
 | |
|     OBJSETUP(ary, klass, T_ARRAY);
 | |
|     FL_SET_EMBED((VALUE)ary);
 | |
|     ARY_SET_EMBED_LEN((VALUE)ary, 0);
 | |
| 
 | |
|     return (VALUE)ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_new(VALUE klass, long capa)
 | |
| {
 | |
|     VALUE ary;
 | |
| 
 | |
|     if (capa < 0) {
 | |
| 	rb_raise(rb_eArgError, "negative array size (or size too big)");
 | |
|     }
 | |
|     if (capa > ARY_MAX_SIZE) {
 | |
| 	rb_raise(rb_eArgError, "array size too big");
 | |
|     }
 | |
|     ary = ary_alloc(klass);
 | |
|     if (capa > RARRAY_EMBED_LEN_MAX) {
 | |
|         FL_UNSET_EMBED(ary);
 | |
|         ARY_SET_PTR(ary, ALLOC_N(VALUE, capa));
 | |
|         ARY_SET_CAPA(ary, capa);
 | |
|         ARY_SET_HEAP_LEN(ary, 0);
 | |
|     }
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_new2(long capa)
 | |
| {
 | |
|     return ary_new(rb_cArray, capa);
 | |
| }
 | |
| 
 | |
| 
 | |
| VALUE
 | |
| rb_ary_new(void)
 | |
| {
 | |
|     return rb_ary_new2(RARRAY_EMBED_LEN_MAX);
 | |
| }
 | |
| 
 | |
| #include <stdarg.h>
 | |
| 
 | |
| VALUE
 | |
| rb_ary_new3(long n, ...)
 | |
| {
 | |
|     va_list ar;
 | |
|     VALUE ary;
 | |
|     long i;
 | |
| 
 | |
|     ary = rb_ary_new2(n);
 | |
| 
 | |
|     va_start(ar, n);
 | |
|     for (i=0; i<n; i++) {
 | |
| 	RARRAY_PTR(ary)[i] = va_arg(ar, VALUE);
 | |
|     }
 | |
|     va_end(ar);
 | |
| 
 | |
|     ARY_SET_LEN(ary, n);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_new4(long n, const VALUE *elts)
 | |
| {
 | |
|     VALUE ary;
 | |
| 
 | |
|     ary = rb_ary_new2(n);
 | |
|     if (n > 0 && elts) {
 | |
| 	MEMCPY(RARRAY_PTR(ary), elts, VALUE, n);
 | |
| 	ARY_SET_LEN(ary, n);
 | |
|     }
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_tmp_new(long capa)
 | |
| {
 | |
|     return ary_new(0, capa);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_free(VALUE ary)
 | |
| {
 | |
|     if (ARY_OWNS_HEAP_P(ary)) {
 | |
| 	xfree(ARY_HEAP_PTR(ary));
 | |
|     }
 | |
| }
 | |
| 
 | |
| RUBY_FUNC_EXPORTED size_t
 | |
| rb_ary_memsize(VALUE ary)
 | |
| {
 | |
|     if (ARY_OWNS_HEAP_P(ary)) {
 | |
| 	return RARRAY(ary)->as.heap.aux.capa * sizeof(VALUE);
 | |
|     }
 | |
|     else {
 | |
| 	return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| ary_discard(VALUE ary)
 | |
| {
 | |
|     rb_ary_free(ary);
 | |
|     RBASIC(ary)->flags |= RARRAY_EMBED_FLAG;
 | |
|     RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_shared(VALUE ary)
 | |
| {
 | |
|     assert(!ARY_EMBED_P(ary));
 | |
|     if (ARY_SHARED_P(ary)) {
 | |
| 	return ARY_SHARED(ary);
 | |
|     }
 | |
|     else if (ARY_SHARED_ROOT_P(ary)) {
 | |
| 	return ary;
 | |
|     }
 | |
|     else if (OBJ_FROZEN(ary)) {
 | |
| 	ary_resize_capa(ary, ARY_HEAP_LEN(ary));
 | |
| 	FL_SET_SHARED_ROOT(ary);
 | |
| 	ARY_SET_SHARED_NUM(ary, 1);
 | |
| 	return ary;
 | |
|     }
 | |
|     else {
 | |
| 	NEWOBJ(shared, struct RArray);
 | |
| 	OBJSETUP(shared, 0, T_ARRAY);
 | |
|         FL_UNSET_EMBED(shared);
 | |
| 
 | |
|         ARY_SET_LEN((VALUE)shared, RARRAY_LEN(ary));
 | |
|         ARY_SET_PTR((VALUE)shared, RARRAY_PTR(ary));
 | |
| 	FL_SET_SHARED_ROOT(shared);
 | |
| 	ARY_SET_SHARED_NUM((VALUE)shared, 1);
 | |
| 	FL_SET_SHARED(ary);
 | |
| 	ARY_SET_SHARED(ary, (VALUE)shared);
 | |
| 	OBJ_FREEZE(shared);
 | |
| 	return (VALUE)shared;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| ary_make_substitution(VALUE ary)
 | |
| {
 | |
|     if (RARRAY_LEN(ary) <= RARRAY_EMBED_LEN_MAX) {
 | |
|         VALUE subst = rb_ary_new2(RARRAY_LEN(ary));
 | |
|         MEMCPY(ARY_EMBED_PTR(subst), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
 | |
|         ARY_SET_EMBED_LEN(subst, RARRAY_LEN(ary));
 | |
|         return subst;
 | |
|     }
 | |
|     else {
 | |
|         return rb_ary_increment_share(ary_make_shared(ary));
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_assoc_new(VALUE car, VALUE cdr)
 | |
| {
 | |
|     return rb_ary_new3(2, car, cdr);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| to_ary(VALUE ary)
 | |
| {
 | |
|     return rb_convert_type(ary, T_ARRAY, "Array", "to_ary");
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_check_array_type(VALUE ary)
 | |
| {
 | |
|     return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     Array.try_convert(obj) -> array or nil
 | |
|  *
 | |
|  *  Try to convert <i>obj</i> into an array, using +to_ary+ method.
 | |
|  *  Returns converted array or +nil+ if <i>obj</i> cannot be converted
 | |
|  *  for any reason. This method can be used to check if an argument is an
 | |
|  *  array.
 | |
|  *
 | |
|  *     Array.try_convert([1])   #=> [1]
 | |
|  *     Array.try_convert("1")   #=> nil
 | |
|  *
 | |
|  *     if tmp = Array.try_convert(arg)
 | |
|  *       # the argument is an array
 | |
|  *     elsif tmp = String.try_convert(arg)
 | |
|  *       # the argument is a string
 | |
|  *     end
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_s_try_convert(VALUE dummy, VALUE ary)
 | |
| {
 | |
|     return rb_check_array_type(ary);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     Array.new(size=0, obj=nil)
 | |
|  *     Array.new(array)
 | |
|  *     Array.new(size) {|index| block }
 | |
|  *
 | |
|  *  Returns a new array. In the first form, the new array is
 | |
|  *  empty. In the second it is created with _size_ copies of _obj_
 | |
|  *  (that is, _size_ references to the same
 | |
|  *  _obj_). The third form creates a copy of the array
 | |
|  *  passed as a parameter (the array is generated by calling
 | |
|  *  to_ary  on the parameter). In the last form, an array
 | |
|  *  of the given size is created. Each element in this array is
 | |
|  *  calculated by passing the element's index to the given block and
 | |
|  *  storing the return value.
 | |
|  *
 | |
|  *     Array.new
 | |
|  *     Array.new(2)
 | |
|  *     Array.new(5, "A")
 | |
|  *
 | |
|  *     # only one copy of the object is created
 | |
|  *     a = Array.new(2, Hash.new)
 | |
|  *     a[0]['cat'] = 'feline'
 | |
|  *     a
 | |
|  *     a[1]['cat'] = 'Felix'
 | |
|  *     a
 | |
|  *
 | |
|  *     # here multiple copies are created
 | |
|  *     a = Array.new(2) { Hash.new }
 | |
|  *     a[0]['cat'] = 'feline'
 | |
|  *     a
 | |
|  *
 | |
|  *     squares = Array.new(5) {|i| i*i}
 | |
|  *     squares
 | |
|  *
 | |
|  *     copy = Array.new(squares)
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long len;
 | |
|     VALUE size, val;
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     if (argc == 0) {
 | |
| 	if (ARY_OWNS_HEAP_P(ary) && RARRAY_PTR(ary)) {
 | |
| 	    xfree(RARRAY_PTR(ary));
 | |
| 	}
 | |
|         rb_ary_unshare_safe(ary);
 | |
|         FL_SET_EMBED(ary);
 | |
| 	ARY_SET_EMBED_LEN(ary, 0);
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    rb_warning("given block not used");
 | |
| 	}
 | |
| 	return ary;
 | |
|     }
 | |
|     rb_scan_args(argc, argv, "02", &size, &val);
 | |
|     if (argc == 1 && !FIXNUM_P(size)) {
 | |
| 	val = rb_check_array_type(size);
 | |
| 	if (!NIL_P(val)) {
 | |
| 	    rb_ary_replace(ary, val);
 | |
| 	    return ary;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     len = NUM2LONG(size);
 | |
|     if (len < 0) {
 | |
| 	rb_raise(rb_eArgError, "negative array size");
 | |
|     }
 | |
|     if (len > ARY_MAX_SIZE) {
 | |
| 	rb_raise(rb_eArgError, "array size too big");
 | |
|     }
 | |
|     rb_ary_modify(ary);
 | |
|     ary_resize_capa(ary, len);
 | |
|     if (rb_block_given_p()) {
 | |
| 	long i;
 | |
| 
 | |
| 	if (argc == 2) {
 | |
| 	    rb_warn("block supersedes default value argument");
 | |
| 	}
 | |
| 	for (i=0; i<len; i++) {
 | |
| 	    rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
 | |
| 	    ARY_SET_LEN(ary, i + 1);
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	memfill(RARRAY_PTR(ary), len, val);
 | |
| 	ARY_SET_LEN(ary, len);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| * Returns a new array populated with the given objects.
 | |
| *
 | |
| *   Array.[]( 1, 'a', /^A/ )
 | |
| *   Array[ 1, 'a', /^A/ ]
 | |
| *   [ 1, 'a', /^A/ ]
 | |
| */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE ary = ary_new(klass, argc);
 | |
|     if (argc > 0 && argv) {
 | |
|         MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
 | |
|         ARY_SET_LEN(ary, argc);
 | |
|     }
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_ary_store(VALUE ary, long idx, VALUE val)
 | |
| {
 | |
|     if (idx < 0) {
 | |
| 	idx += RARRAY_LEN(ary);
 | |
| 	if (idx < 0) {
 | |
| 	    rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
 | |
| 		     idx - RARRAY_LEN(ary), -RARRAY_LEN(ary));
 | |
| 	}
 | |
|     }
 | |
|     else if (idx >= ARY_MAX_SIZE) {
 | |
| 	rb_raise(rb_eIndexError, "index %ld too big", idx);
 | |
|     }
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     if (idx >= ARY_CAPA(ary)) {
 | |
| 	ary_double_capa(ary, idx);
 | |
|     }
 | |
|     if (idx > RARRAY_LEN(ary)) {
 | |
| 	rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary),
 | |
| 		     idx-RARRAY_LEN(ary) + 1);
 | |
|     }
 | |
| 
 | |
|     if (idx >= RARRAY_LEN(ary)) {
 | |
| 	ARY_SET_LEN(ary, idx + 1);
 | |
|     }
 | |
|     RARRAY_PTR(ary)[idx] = val;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_partial(VALUE ary, VALUE klass, long offset, long len)
 | |
| {
 | |
|     assert(offset >= 0);
 | |
|     assert(len >= 0);
 | |
|     assert(offset+len <= RARRAY_LEN(ary));
 | |
| 
 | |
|     if (len <= RARRAY_EMBED_LEN_MAX) {
 | |
|         VALUE result = ary_alloc(klass);
 | |
|         MEMCPY(ARY_EMBED_PTR(result), RARRAY_PTR(ary) + offset, VALUE, len);
 | |
|         ARY_SET_EMBED_LEN(result, len);
 | |
|         return result;
 | |
|     }
 | |
|     else {
 | |
|         VALUE shared, result = ary_alloc(klass);
 | |
|         FL_UNSET_EMBED(result);
 | |
| 
 | |
|         shared = ary_make_shared(ary);
 | |
|         ARY_SET_PTR(result, RARRAY_PTR(ary));
 | |
|         ARY_SET_LEN(result, RARRAY_LEN(ary));
 | |
|         rb_ary_set_shared(result, shared);
 | |
| 
 | |
|         ARY_INCREASE_PTR(result, offset);
 | |
|         ARY_SET_LEN(result, len);
 | |
|         return result;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_shared_copy(VALUE ary)
 | |
| {
 | |
|     return ary_make_partial(ary, rb_obj_class(ary), 0, RARRAY_LEN(ary));
 | |
| }
 | |
| 
 | |
| enum ary_take_pos_flags
 | |
| {
 | |
|     ARY_TAKE_FIRST = 0,
 | |
|     ARY_TAKE_LAST = 1
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| ary_take_first_or_last(int argc, VALUE *argv, VALUE ary, enum ary_take_pos_flags last)
 | |
| {
 | |
|     VALUE nv;
 | |
|     long n;
 | |
|     long offset = 0;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "1", &nv);
 | |
|     n = NUM2LONG(nv);
 | |
|     if (n > RARRAY_LEN(ary)) {
 | |
| 	n = RARRAY_LEN(ary);
 | |
|     }
 | |
|     else if (n < 0) {
 | |
| 	rb_raise(rb_eArgError, "negative array size");
 | |
|     }
 | |
|     if (last) {
 | |
| 	offset = RARRAY_LEN(ary) - n;
 | |
|     }
 | |
|     return ary_make_partial(ary, rb_cArray, offset, n);
 | |
| }
 | |
| 
 | |
| static VALUE rb_ary_push_1(VALUE ary, VALUE item);
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary << obj            -> ary
 | |
|  *
 | |
|  *  Append---Pushes the given object on to the end of this array. This
 | |
|  *  expression returns the array itself, so several appends
 | |
|  *  may be chained together.
 | |
|  *
 | |
|  *     [ 1, 2 ] << "c" << "d" << [ 3, 4 ]
 | |
|  *             #=>  [ 1, 2, "c", "d", [ 3, 4 ] ]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_push(VALUE ary, VALUE item)
 | |
| {
 | |
|     rb_ary_modify(ary);
 | |
|     return rb_ary_push_1(ary, item);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_push_1(VALUE ary, VALUE item)
 | |
| {
 | |
|     long idx = RARRAY_LEN(ary);
 | |
| 
 | |
|     if (idx >= ARY_CAPA(ary)) {
 | |
| 	ary_double_capa(ary, idx);
 | |
|     }
 | |
|     RARRAY_PTR(ary)[idx] = item;
 | |
|     ARY_SET_LEN(ary, idx + 1);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.push(obj, ... )   -> ary
 | |
|  *
 | |
|  *  Append---Pushes the given object(s) on to the end of this array. This
 | |
|  *  expression returns the array itself, so several appends
 | |
|  *  may be chained together.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c" ]
 | |
|  *     a.push("d", "e", "f")
 | |
|  *             #=> ["a", "b", "c", "d", "e", "f"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     rb_ary_modify(ary);
 | |
|     while (argc--) {
 | |
| 	rb_ary_push_1(ary, *argv++);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_pop(VALUE ary)
 | |
| {
 | |
|     long n;
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (RARRAY_LEN(ary) == 0) return Qnil;
 | |
|     if (ARY_OWNS_HEAP_P(ary) &&
 | |
| 	RARRAY_LEN(ary) * 3 < ARY_CAPA(ary) &&
 | |
| 	ARY_CAPA(ary) > ARY_DEFAULT_SIZE)
 | |
|     {
 | |
| 	ary_resize_capa(ary, RARRAY_LEN(ary) * 2);
 | |
|     }
 | |
|     n = RARRAY_LEN(ary)-1;
 | |
|     ARY_SET_LEN(ary, n);
 | |
|     return RARRAY_PTR(ary)[n];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.pop    -> obj or nil
 | |
|  *     ary.pop(n) -> new_ary
 | |
|  *
 | |
|  *  Removes the last element from +self+ and returns it, or
 | |
|  *  <code>nil</code> if the array is empty.
 | |
|  *
 | |
|  *  If a number _n_ is given, returns an array of the last n elements
 | |
|  *  (or less) just like <code>array.slice!(-n, n)</code> does.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c", "d" ]
 | |
|  *     a.pop     #=> "d"
 | |
|  *     a.pop(2)  #=> ["b", "c"]
 | |
|  *     a         #=> ["a"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE result;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	return rb_ary_pop(ary);
 | |
|     }
 | |
| 
 | |
|     rb_ary_modify_check(ary);
 | |
|     result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
 | |
|     ARY_INCREASE_LEN(ary, -RARRAY_LEN(result));
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_shift(VALUE ary)
 | |
| {
 | |
|     VALUE top;
 | |
| 
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (RARRAY_LEN(ary) == 0) return Qnil;
 | |
|     top = RARRAY_PTR(ary)[0];
 | |
|     if (!ARY_SHARED_P(ary)) {
 | |
| 	if (RARRAY_LEN(ary) < ARY_DEFAULT_SIZE) {
 | |
| 	    MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+1, VALUE, RARRAY_LEN(ary)-1);
 | |
|             ARY_INCREASE_LEN(ary, -1);
 | |
| 	    return top;
 | |
| 	}
 | |
|         assert(!ARY_EMBED_P(ary)); /* ARY_EMBED_LEN_MAX < ARY_DEFAULT_SIZE */
 | |
| 
 | |
| 	RARRAY_PTR(ary)[0] = Qnil;
 | |
| 	ary_make_shared(ary);
 | |
|     }
 | |
|     else if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) {
 | |
| 	RARRAY_PTR(ary)[0] = Qnil;
 | |
|     }
 | |
|     ARY_INCREASE_PTR(ary, 1);		/* shift ptr */
 | |
|     ARY_INCREASE_LEN(ary, -1);
 | |
| 
 | |
|     return top;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.shift    -> obj or nil
 | |
|  *     ary.shift(n) -> new_ary
 | |
|  *
 | |
|  *  Returns the first element of +self+ and removes it (shifting all
 | |
|  *  other elements down by one). Returns <code>nil</code> if the array
 | |
|  *  is empty.
 | |
|  *
 | |
|  *  If a number _n_ is given, returns an array of the first n elements
 | |
|  *  (or less) just like <code>array.slice!(0, n)</code> does.
 | |
|  *
 | |
|  *     args = [ "-m", "-q", "filename" ]
 | |
|  *     args.shift     #=> "-m"
 | |
|  *     args           #=> ["-q", "filename"]
 | |
|  *
 | |
|  *     args = [ "-m", "-q", "filename" ]
 | |
|  *     args.shift(2)  #=> ["-m", "-q"]
 | |
|  *     args           #=> ["filename"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE result;
 | |
|     long n;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	return rb_ary_shift(ary);
 | |
|     }
 | |
| 
 | |
|     rb_ary_modify_check(ary);
 | |
|     result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
 | |
|     n = RARRAY_LEN(result);
 | |
|     if (ARY_SHARED_P(ary)) {
 | |
| 	if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) {
 | |
| 	    rb_mem_clear(RARRAY_PTR(ary), n);
 | |
| 	}
 | |
|         ARY_INCREASE_PTR(ary, n);
 | |
|     }
 | |
|     else {
 | |
| 	MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n);
 | |
|     }
 | |
|     ARY_INCREASE_LEN(ary, -n);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.unshift(obj, ...)  -> ary
 | |
|  *
 | |
|  *  Prepends objects to the front of +self+,
 | |
|  *  moving other elements upwards.
 | |
|  *
 | |
|  *     a = [ "b", "c", "d" ]
 | |
|  *     a.unshift("a")   #=> ["a", "b", "c", "d"]
 | |
|  *     a.unshift(1, 2)  #=> [ 1, 2, "a", "b", "c", "d"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long len;
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     if (argc == 0) return ary;
 | |
|     if (ARY_CAPA(ary) <= (len = RARRAY_LEN(ary)) + argc) {
 | |
| 	ary_double_capa(ary, len + argc);
 | |
|     }
 | |
| 
 | |
|     /* sliding items */
 | |
|     MEMMOVE(RARRAY_PTR(ary) + argc, RARRAY_PTR(ary), VALUE, len);
 | |
|     MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
 | |
|     ARY_INCREASE_LEN(ary, argc);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_unshift(VALUE ary, VALUE item)
 | |
| {
 | |
|     return rb_ary_unshift_m(1,&item,ary);
 | |
| }
 | |
| 
 | |
| /* faster version - use this if you don't need to treat negative offset */
 | |
| static inline VALUE
 | |
| rb_ary_elt(VALUE ary, long offset)
 | |
| {
 | |
|     if (RARRAY_LEN(ary) == 0) return Qnil;
 | |
|     if (offset < 0 || RARRAY_LEN(ary) <= offset) {
 | |
| 	return Qnil;
 | |
|     }
 | |
|     return RARRAY_PTR(ary)[offset];
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_entry(VALUE ary, long offset)
 | |
| {
 | |
|     if (offset < 0) {
 | |
| 	offset += RARRAY_LEN(ary);
 | |
|     }
 | |
|     return rb_ary_elt(ary, offset);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_subseq(VALUE ary, long beg, long len)
 | |
| {
 | |
|     VALUE klass;
 | |
| 
 | |
|     if (beg > RARRAY_LEN(ary)) return Qnil;
 | |
|     if (beg < 0 || len < 0) return Qnil;
 | |
| 
 | |
|     if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
 | |
| 	len = RARRAY_LEN(ary) - beg;
 | |
|     }
 | |
|     klass = rb_obj_class(ary);
 | |
|     if (len == 0) return ary_new(klass, 0);
 | |
| 
 | |
|     return ary_make_partial(ary, klass, beg, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary[index]                -> obj     or nil
 | |
|  *     ary[start, length]        -> new_ary or nil
 | |
|  *     ary[range]                -> new_ary or nil
 | |
|  *     ary.slice(index)          -> obj     or nil
 | |
|  *     ary.slice(start, length)  -> new_ary or nil
 | |
|  *     ary.slice(range)          -> new_ary or nil
 | |
|  *
 | |
|  *  Element Reference---Returns the element at _index_,
 | |
|  *  or returns a subarray starting at _start_ and
 | |
|  *  continuing for _length_ elements, or returns a subarray
 | |
|  *  specified by _range_.
 | |
|  *  Negative indices count backward from the end of the
 | |
|  *  array (-1 is the last element). Returns +nil+ if the index
 | |
|  *  (or starting index) are out of range.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c", "d", "e" ]
 | |
|  *     a[2] +  a[0] + a[1]    #=> "cab"
 | |
|  *     a[6]                   #=> nil
 | |
|  *     a[1, 2]                #=> [ "b", "c" ]
 | |
|  *     a[1..3]                #=> [ "b", "c", "d" ]
 | |
|  *     a[4..7]                #=> [ "e" ]
 | |
|  *     a[6..10]               #=> nil
 | |
|  *     a[-3, 3]               #=> [ "c", "d", "e" ]
 | |
|  *     # special cases
 | |
|  *     a[5]                   #=> nil
 | |
|  *     a[5, 1]                #=> []
 | |
|  *     a[5..10]               #=> []
 | |
|  *
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_aref(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE arg;
 | |
|     long beg, len;
 | |
| 
 | |
|     if (argc == 2) {
 | |
| 	beg = NUM2LONG(argv[0]);
 | |
| 	len = NUM2LONG(argv[1]);
 | |
| 	if (beg < 0) {
 | |
| 	    beg += RARRAY_LEN(ary);
 | |
| 	}
 | |
| 	return rb_ary_subseq(ary, beg, len);
 | |
|     }
 | |
|     if (argc != 1) {
 | |
| 	rb_scan_args(argc, argv, "11", 0, 0);
 | |
|     }
 | |
|     arg = argv[0];
 | |
|     /* special case - speeding up */
 | |
|     if (FIXNUM_P(arg)) {
 | |
| 	return rb_ary_entry(ary, FIX2LONG(arg));
 | |
|     }
 | |
|     /* check if idx is Range */
 | |
|     switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
 | |
|       case Qfalse:
 | |
| 	break;
 | |
|       case Qnil:
 | |
| 	return Qnil;
 | |
|       default:
 | |
| 	return rb_ary_subseq(ary, beg, len);
 | |
|     }
 | |
|     return rb_ary_entry(ary, NUM2LONG(arg));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.at(index)   ->   obj  or nil
 | |
|  *
 | |
|  *  Returns the element at _index_. A
 | |
|  *  negative index counts from the end of +self+.  Returns +nil+
 | |
|  *  if the index is out of range. See also <code>Array#[]</code>.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c", "d", "e" ]
 | |
|  *     a.at(0)     #=> "a"
 | |
|  *     a.at(-1)    #=> "e"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_at(VALUE ary, VALUE pos)
 | |
| {
 | |
|     return rb_ary_entry(ary, NUM2LONG(pos));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.first     ->   obj or nil
 | |
|  *     ary.first(n)  ->   new_ary
 | |
|  *
 | |
|  *  Returns the first element, or the first +n+ elements, of the array.
 | |
|  *  If the array is empty, the first form returns <code>nil</code>, and the
 | |
|  *  second form returns an empty array.
 | |
|  *
 | |
|  *     a = [ "q", "r", "s", "t" ]
 | |
|  *     a.first     #=> "q"
 | |
|  *     a.first(2)  #=> ["q", "r"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_first(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     if (argc == 0) {
 | |
| 	if (RARRAY_LEN(ary) == 0) return Qnil;
 | |
| 	return RARRAY_PTR(ary)[0];
 | |
|     }
 | |
|     else {
 | |
| 	return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.last     ->  obj or nil
 | |
|  *     ary.last(n)  ->  new_ary
 | |
|  *
 | |
|  *  Returns the last element(s) of +self+. If the array is empty,
 | |
|  *  the first form returns <code>nil</code>.
 | |
|  *
 | |
|  *     a = [ "w", "x", "y", "z" ]
 | |
|  *     a.last     #=> "z"
 | |
|  *     a.last(2)  #=> ["y", "z"]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_last(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     if (argc == 0) {
 | |
| 	if (RARRAY_LEN(ary) == 0) return Qnil;
 | |
| 	return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1];
 | |
|     }
 | |
|     else {
 | |
| 	return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.fetch(index)                    -> obj
 | |
|  *     ary.fetch(index, default )          -> obj
 | |
|  *     ary.fetch(index) {|index| block }   -> obj
 | |
|  *
 | |
|  *  Tries to return the element at position <i>index</i>. If the index
 | |
|  *  lies outside the array, the first form throws an
 | |
|  *  <code>IndexError</code> exception, the second form returns
 | |
|  *  <i>default</i>, and the third form returns the value of invoking
 | |
|  *  the block, passing in the index. Negative values of <i>index</i>
 | |
|  *  count from the end of the array.
 | |
|  *
 | |
|  *     a = [ 11, 22, 33, 44 ]
 | |
|  *     a.fetch(1)               #=> 22
 | |
|  *     a.fetch(-1)              #=> 44
 | |
|  *     a.fetch(4, 'cat')        #=> "cat"
 | |
|  *     a.fetch(4) { |i| i*i }   #=> 16
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE pos, ifnone;
 | |
|     long block_given;
 | |
|     long idx;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "11", &pos, &ifnone);
 | |
|     block_given = rb_block_given_p();
 | |
|     if (block_given && argc == 2) {
 | |
| 	rb_warn("block supersedes default value argument");
 | |
|     }
 | |
|     idx = NUM2LONG(pos);
 | |
| 
 | |
|     if (idx < 0) {
 | |
| 	idx +=  RARRAY_LEN(ary);
 | |
|     }
 | |
|     if (idx < 0 || RARRAY_LEN(ary) <= idx) {
 | |
| 	if (block_given) return rb_yield(pos);
 | |
| 	if (argc == 1) {
 | |
| 	    rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld",
 | |
| 			idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary));
 | |
| 	}
 | |
| 	return ifnone;
 | |
|     }
 | |
|     return RARRAY_PTR(ary)[idx];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.index(obj)           ->  int or nil
 | |
|  *     ary.index {|item| block} ->  int or nil
 | |
|  *     ary.index                ->  an_enumerator
 | |
|  *
 | |
|  *  Returns the index of the first object in +self+ such that is
 | |
|  *  <code>==</code> to <i>obj</i>. If a block is given instead of an
 | |
|  *  argument, returns first object for which <em>block</em> is true.
 | |
|  *  Returns <code>nil</code> if no match is found.
 | |
|  *  See also <code>Array#rindex</code>.
 | |
|  *
 | |
|  *  If neither block nor argument is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c" ]
 | |
|  *     a.index("b")        #=> 1
 | |
|  *     a.index("z")        #=> nil
 | |
|  *     a.index{|x|x=="b"}  #=> 1
 | |
|  *
 | |
|  *  This is an alias of <code>#find_index</code>.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_index(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE val;
 | |
|     long i;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	RETURN_ENUMERATOR(ary, 0, 0);
 | |
| 	for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	    if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
 | |
| 		return LONG2NUM(i);
 | |
| 	    }
 | |
| 	}
 | |
| 	return Qnil;
 | |
|     }
 | |
|     rb_scan_args(argc, argv, "1", &val);
 | |
|     if (rb_block_given_p())
 | |
| 	rb_warn("given block not used");
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	if (rb_equal(RARRAY_PTR(ary)[i], val))
 | |
| 	    return LONG2NUM(i);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.rindex(obj)           ->  int or nil
 | |
|  *     ary.rindex {|item| block} ->  int or nil
 | |
|  *     ary.rindex                ->  an_enumerator
 | |
|  *
 | |
|  *  Returns the index of the last object in +self+
 | |
|  *  <code>==</code> to <i>obj</i>. If a block is given instead of an
 | |
|  *  argument, returns first object for which <em>block</em> is
 | |
|  *  true, starting from the last object.
 | |
|  *  Returns <code>nil</code> if no match is found.
 | |
|  *  See also <code>Array#index</code>.
 | |
|  *
 | |
|  *  If neither block nor argument is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = [ "a", "b", "b", "b", "c" ]
 | |
|  *     a.rindex("b")        #=> 3
 | |
|  *     a.rindex("z")        #=> nil
 | |
|  *     a.rindex{|x|x=="b"}  #=> 3
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE val;
 | |
|     long i = RARRAY_LEN(ary);
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	RETURN_ENUMERATOR(ary, 0, 0);
 | |
| 	while (i--) {
 | |
| 	    if (RTEST(rb_yield(RARRAY_PTR(ary)[i])))
 | |
| 		return LONG2NUM(i);
 | |
| 	    if (i > RARRAY_LEN(ary)) {
 | |
| 		i = RARRAY_LEN(ary);
 | |
| 	    }
 | |
| 	}
 | |
| 	return Qnil;
 | |
|     }
 | |
|     rb_scan_args(argc, argv, "1", &val);
 | |
|     if (rb_block_given_p())
 | |
| 	rb_warn("given block not used");
 | |
|     while (i--) {
 | |
| 	if (rb_equal(RARRAY_PTR(ary)[i], val))
 | |
| 	    return LONG2NUM(i);
 | |
| 	if (i > RARRAY_LEN(ary)) {
 | |
| 	    i = RARRAY_LEN(ary);
 | |
| 	}
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_to_ary(VALUE obj)
 | |
| {
 | |
|     VALUE tmp = rb_check_array_type(obj);
 | |
| 
 | |
|     if (!NIL_P(tmp)) return tmp;
 | |
|     return rb_ary_new3(1, obj);
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_ary_splice(VALUE ary, long beg, long len, VALUE rpl)
 | |
| {
 | |
|     long rlen;
 | |
| 
 | |
|     if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
 | |
|     if (beg < 0) {
 | |
| 	beg += RARRAY_LEN(ary);
 | |
| 	if (beg < 0) {
 | |
| 	    rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
 | |
| 		     beg - RARRAY_LEN(ary), -RARRAY_LEN(ary));
 | |
| 	}
 | |
|     }
 | |
|     if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
 | |
| 	len = RARRAY_LEN(ary) - beg;
 | |
|     }
 | |
| 
 | |
|     if (rpl == Qundef) {
 | |
| 	rlen = 0;
 | |
|     }
 | |
|     else {
 | |
| 	rpl = rb_ary_to_ary(rpl);
 | |
| 	rlen = RARRAY_LEN(rpl);
 | |
|     }
 | |
|     rb_ary_modify(ary);
 | |
|     if (beg >= RARRAY_LEN(ary)) {
 | |
| 	if (beg > ARY_MAX_SIZE - rlen) {
 | |
| 	    rb_raise(rb_eIndexError, "index %ld too big", beg);
 | |
| 	}
 | |
| 	len = beg + rlen;
 | |
| 	if (len >= ARY_CAPA(ary)) {
 | |
| 	    ary_double_capa(ary, len);
 | |
| 	}
 | |
| 	rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), beg - RARRAY_LEN(ary));
 | |
| 	if (rlen > 0) {
 | |
| 	    MEMCPY(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
 | |
| 	}
 | |
| 	ARY_SET_LEN(ary, len);
 | |
|     }
 | |
|     else {
 | |
| 	long alen;
 | |
| 
 | |
| 	alen = RARRAY_LEN(ary) + rlen - len;
 | |
| 	if (alen >= ARY_CAPA(ary)) {
 | |
| 	    ary_double_capa(ary, alen);
 | |
| 	}
 | |
| 
 | |
| 	if (len != rlen) {
 | |
| 	    MEMMOVE(RARRAY_PTR(ary) + beg + rlen, RARRAY_PTR(ary) + beg + len,
 | |
| 		    VALUE, RARRAY_LEN(ary) - (beg + len));
 | |
| 	    ARY_SET_LEN(ary, alen);
 | |
| 	}
 | |
| 	if (rlen > 0) {
 | |
| 	    MEMMOVE(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * expands or shrinks \a ary to \a len elements.
 | |
|  * expanded region will be filled with Qnil.
 | |
|  * \param ary  an array
 | |
|  * \param len  new size
 | |
|  * \return     \a ary
 | |
|  * \post       the size of \a ary is \a len.
 | |
|  */
 | |
| VALUE
 | |
| rb_ary_resize(VALUE ary, long len)
 | |
| {
 | |
|     long olen;
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     olen = RARRAY_LEN(ary);
 | |
|     if (len == olen) return ary;
 | |
|     if (len > ARY_MAX_SIZE) {
 | |
| 	rb_raise(rb_eIndexError, "index %ld too big", len);
 | |
|     }
 | |
|     if (len > olen) {
 | |
| 	if (len >= ARY_CAPA(ary)) {
 | |
| 	    ary_double_capa(ary, len);
 | |
| 	}
 | |
| 	rb_mem_clear(RARRAY_PTR(ary) + olen, len - olen);
 | |
|         ARY_SET_LEN(ary, len);
 | |
|     }
 | |
|     else if (ARY_EMBED_P(ary)) {
 | |
|         ARY_SET_EMBED_LEN(ary, len);
 | |
|     }
 | |
|     else if (len <= RARRAY_EMBED_LEN_MAX) {
 | |
| 	VALUE tmp[RARRAY_EMBED_LEN_MAX];
 | |
| 	MEMCPY(tmp, ARY_HEAP_PTR(ary), VALUE, len);
 | |
| 	ary_discard(ary);
 | |
| 	MEMCPY(ARY_EMBED_PTR(ary), tmp, VALUE, len);
 | |
|         ARY_SET_EMBED_LEN(ary, len);
 | |
|     }
 | |
|     else {
 | |
| 	if (olen > len + ARY_DEFAULT_SIZE) {
 | |
| 	    REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, len);
 | |
| 	    ARY_SET_CAPA(ary, len);
 | |
| 	}
 | |
| 	ARY_SET_HEAP_LEN(ary, len);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary[index]         = obj                      ->  obj
 | |
|  *     ary[start, length] = obj or other_ary or nil  ->  obj or other_ary or nil
 | |
|  *     ary[range]         = obj or other_ary or nil  ->  obj or other_ary or nil
 | |
|  *
 | |
|  *  Element Assignment---Sets the element at _index_,
 | |
|  *  or replaces a subarray starting at _start_ and
 | |
|  *  continuing for _length_ elements, or replaces a subarray
 | |
|  *  specified by _range_.  If indices are greater than
 | |
|  *  the current capacity of the array, the array grows
 | |
|  *  automatically. A negative indices will count backward
 | |
|  *  from the end of the array. Inserts elements if _length_ is
 | |
|  *  zero. An +IndexError+ is raised if a negative index points
 | |
|  *  past the beginning of the array. See also
 | |
|  *  <code>Array#push</code>, and <code>Array#unshift</code>.
 | |
|  *
 | |
|  *     a = Array.new
 | |
|  *     a[4] = "4";                 #=> [nil, nil, nil, nil, "4"]
 | |
|  *     a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
 | |
|  *     a[1..2] = [ 1, 2 ]          #=> ["a", 1, 2, nil, "4"]
 | |
|  *     a[0, 2] = "?"               #=> ["?", 2, nil, "4"]
 | |
|  *     a[0..2] = "A"               #=> ["A", "4"]
 | |
|  *     a[-1]   = "Z"               #=> ["A", "Z"]
 | |
|  *     a[1..-1] = nil              #=> ["A", nil]
 | |
|  *     a[1..-1] = []               #=> ["A"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_aset(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long offset, beg, len;
 | |
| 
 | |
|     if (argc == 3) {
 | |
| 	rb_ary_modify_check(ary);
 | |
| 	beg = NUM2LONG(argv[0]);
 | |
| 	len = NUM2LONG(argv[1]);
 | |
| 	rb_ary_splice(ary, beg, len, argv[2]);
 | |
| 	return argv[2];
 | |
|     }
 | |
|     if (argc != 2) {
 | |
| 	rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc);
 | |
|     }
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (FIXNUM_P(argv[0])) {
 | |
| 	offset = FIX2LONG(argv[0]);
 | |
| 	goto fixnum;
 | |
|     }
 | |
|     if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
 | |
| 	/* check if idx is Range */
 | |
| 	rb_ary_splice(ary, beg, len, argv[1]);
 | |
| 	return argv[1];
 | |
|     }
 | |
| 
 | |
|     offset = NUM2LONG(argv[0]);
 | |
| fixnum:
 | |
|     rb_ary_store(ary, offset, argv[1]);
 | |
|     return argv[1];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.insert(index, obj...)  -> ary
 | |
|  *
 | |
|  *  Inserts the given values before the element with the given index
 | |
|  *  (which may be negative).
 | |
|  *
 | |
|  *     a = %w{ a b c d }
 | |
|  *     a.insert(2, 99)         #=> ["a", "b", 99, "c", "d"]
 | |
|  *     a.insert(-2, 1, 2, 3)   #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_insert(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long pos;
 | |
| 
 | |
|     if (argc < 1) {
 | |
| 	rb_raise(rb_eArgError, "wrong number of arguments (at least 1)");
 | |
|     }
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (argc == 1) return ary;
 | |
|     pos = NUM2LONG(argv[0]);
 | |
|     if (pos == -1) {
 | |
| 	pos = RARRAY_LEN(ary);
 | |
|     }
 | |
|     if (pos < 0) {
 | |
| 	pos++;
 | |
|     }
 | |
|     rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.each {|item| block }   -> ary
 | |
|  *     ary.each                   -> an_enumerator
 | |
|  *
 | |
|  *  Calls <i>block</i> once for each element in +self+, passing that
 | |
|  *  element as a parameter.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c" ]
 | |
|  *     a.each {|x| print x, " -- " }
 | |
|  *
 | |
|  *  produces:
 | |
|  *
 | |
|  *     a -- b -- c --
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_each(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	rb_yield(RARRAY_PTR(ary)[i]);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.each_index {|index| block }  -> ary
 | |
|  *     ary.each_index                   -> an_enumerator
 | |
|  *
 | |
|  *  Same as <code>Array#each</code>, but passes the index of the element
 | |
|  *  instead of the element itself.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *
 | |
|  *     a = [ "a", "b", "c" ]
 | |
|  *     a.each_index {|x| print x, " -- " }
 | |
|  *
 | |
|  *  produces:
 | |
|  *
 | |
|  *     0 -- 1 -- 2 --
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_each_index(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	rb_yield(LONG2NUM(i));
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.reverse_each {|item| block }   -> ary
 | |
|  *     ary.reverse_each                   -> an_enumerator
 | |
|  *
 | |
|  *  Same as <code>Array#each</code>, but traverses +self+ in reverse
 | |
|  *  order.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c" ]
 | |
|  *     a.reverse_each {|x| print x, " " }
 | |
|  *
 | |
|  *  produces:
 | |
|  *
 | |
|  *     c b a
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_reverse_each(VALUE ary)
 | |
| {
 | |
|     long len;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     len = RARRAY_LEN(ary);
 | |
|     while (len--) {
 | |
| 	rb_yield(RARRAY_PTR(ary)[len]);
 | |
| 	if (RARRAY_LEN(ary) < len) {
 | |
| 	    len = RARRAY_LEN(ary);
 | |
| 	}
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.length -> int
 | |
|  *
 | |
|  *  Returns the number of elements in +self+. May be zero.
 | |
|  *
 | |
|  *     [ 1, 2, 3, 4, 5 ].length   #=> 5
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_length(VALUE ary)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     return LONG2NUM(len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.empty?   -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if +self+ contains no elements.
 | |
|  *
 | |
|  *     [].empty?   #=> true
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_empty_p(VALUE ary)
 | |
| {
 | |
|     if (RARRAY_LEN(ary) == 0)
 | |
| 	return Qtrue;
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_dup(VALUE ary)
 | |
| {
 | |
|     VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
 | |
|     MEMCPY(RARRAY_PTR(dup), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
 | |
|     ARY_SET_LEN(dup, RARRAY_LEN(ary));
 | |
|     return dup;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_resurrect(VALUE ary)
 | |
| {
 | |
|     return rb_ary_new4(RARRAY_LEN(ary), RARRAY_PTR(ary));
 | |
| }
 | |
| 
 | |
| extern VALUE rb_output_fs;
 | |
| 
 | |
| static void ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result);
 | |
| 
 | |
| static VALUE
 | |
| recursive_join(VALUE obj, VALUE argp, int recur)
 | |
| {
 | |
|     VALUE *arg = (VALUE *)argp;
 | |
|     VALUE ary = arg[0];
 | |
|     VALUE sep = arg[1];
 | |
|     VALUE result = arg[2];
 | |
| 
 | |
|     if (recur) {
 | |
| 	rb_raise(rb_eArgError, "recursive array join");
 | |
|     }
 | |
|     else {
 | |
| 	ary_join_1(obj, ary, sep, 0, result);
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_join_0(VALUE ary, VALUE sep, long max, VALUE result)
 | |
| {
 | |
|     long i;
 | |
|     VALUE val;
 | |
| 
 | |
|     for (i=0; i<max; i++) {
 | |
| 	val = RARRAY_PTR(ary)[i];
 | |
| 	if (i > 0 && !NIL_P(sep))
 | |
| 	    rb_str_buf_append(result, sep);
 | |
| 	rb_str_buf_append(result, val);
 | |
| 	if (OBJ_TAINTED(val)) OBJ_TAINT(result);
 | |
| 	if (OBJ_UNTRUSTED(val)) OBJ_TAINT(result);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result)
 | |
| {
 | |
|     VALUE val, tmp;
 | |
| 
 | |
|     for (; i<RARRAY_LEN(ary); i++) {
 | |
| 	if (i > 0 && !NIL_P(sep))
 | |
| 	    rb_str_buf_append(result, sep);
 | |
| 
 | |
| 	val = RARRAY_PTR(ary)[i];
 | |
| 	switch (TYPE(val)) {
 | |
| 	  case T_STRING:
 | |
| 	  str_join:
 | |
| 	    rb_str_buf_append(result, val);
 | |
| 	    break;
 | |
| 	  case T_ARRAY:
 | |
| 	    obj = val;
 | |
| 	  ary_join:
 | |
| 	    if (val == ary) {
 | |
| 		rb_raise(rb_eArgError, "recursive array join");
 | |
| 	    }
 | |
| 	    else {
 | |
| 		VALUE args[3];
 | |
| 
 | |
| 		args[0] = val;
 | |
| 		args[1] = sep;
 | |
| 		args[2] = result;
 | |
| 		rb_exec_recursive(recursive_join, obj, (VALUE)args);
 | |
| 	    }
 | |
| 	    break;
 | |
| 	  default:
 | |
| 	    tmp = rb_check_string_type(val);
 | |
| 	    if (!NIL_P(tmp)) {
 | |
| 		val = tmp;
 | |
| 		goto str_join;
 | |
| 	    }
 | |
| 	    tmp = rb_check_convert_type(val, T_ARRAY, "Array", "to_ary");
 | |
| 	    if (!NIL_P(tmp)) {
 | |
| 		obj = val;
 | |
| 		val = tmp;
 | |
| 		goto ary_join;
 | |
| 	    }
 | |
| 	    val = rb_obj_as_string(val);
 | |
| 	    goto str_join;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_join(VALUE ary, VALUE sep)
 | |
| {
 | |
|     long len = 1, i;
 | |
|     int taint = FALSE;
 | |
|     int untrust = FALSE;
 | |
|     VALUE val, tmp, result;
 | |
| 
 | |
|     if (RARRAY_LEN(ary) == 0) return rb_str_new(0, 0);
 | |
|     if (OBJ_TAINTED(ary) || OBJ_TAINTED(sep)) taint = TRUE;
 | |
|     if (OBJ_UNTRUSTED(ary) || OBJ_UNTRUSTED(sep)) untrust = TRUE;
 | |
| 
 | |
|     if (!NIL_P(sep)) {
 | |
| 	StringValue(sep);
 | |
| 	len += RSTRING_LEN(sep) * (RARRAY_LEN(ary) - 1);
 | |
|     }
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	val = RARRAY_PTR(ary)[i];
 | |
| 	tmp = rb_check_string_type(val);
 | |
| 
 | |
| 	if (NIL_P(tmp) || tmp != val) {
 | |
| 	    result = rb_str_buf_new(len + (RARRAY_LEN(ary)-i)*10);
 | |
| 	    if (taint) OBJ_TAINT(result);
 | |
| 	    if (untrust) OBJ_UNTRUST(result);
 | |
| 	    ary_join_0(ary, sep, i, result);
 | |
| 	    ary_join_1(ary, ary, sep, i, result);
 | |
| 	    return result;
 | |
| 	}
 | |
| 
 | |
| 	len += RSTRING_LEN(tmp);
 | |
|     }
 | |
| 
 | |
|     result = rb_str_buf_new(len);
 | |
|     if (taint) OBJ_TAINT(result);
 | |
|     if (untrust) OBJ_UNTRUST(result);
 | |
|     ary_join_0(ary, sep, RARRAY_LEN(ary), result);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.join(sep=$,)    -> str
 | |
|  *
 | |
|  *  Returns a string created by converting each element of the array to
 | |
|  *  a string, separated by <i>sep</i>.
 | |
|  *
 | |
|  *     [ "a", "b", "c" ].join        #=> "abc"
 | |
|  *     [ "a", "b", "c" ].join("-")   #=> "a-b-c"
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE sep;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &sep);
 | |
|     if (NIL_P(sep)) sep = rb_output_fs;
 | |
| 
 | |
|     return rb_ary_join(ary, sep);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| inspect_ary(VALUE ary, VALUE dummy, int recur)
 | |
| {
 | |
|     int tainted = OBJ_TAINTED(ary);
 | |
|     int untrust = OBJ_UNTRUSTED(ary);
 | |
|     long i;
 | |
|     VALUE s, str;
 | |
| 
 | |
|     if (recur) return rb_tainted_str_new2("[...]");
 | |
|     str = rb_str_buf_new2("[");
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	s = rb_inspect(RARRAY_PTR(ary)[i]);
 | |
| 	if (OBJ_TAINTED(s)) tainted = TRUE;
 | |
| 	if (OBJ_UNTRUSTED(s)) untrust = TRUE;
 | |
| 	if (i > 0) rb_str_buf_cat2(str, ", ");
 | |
| 	rb_str_buf_append(str, s);
 | |
|     }
 | |
|     rb_str_buf_cat2(str, "]");
 | |
|     if (tainted) OBJ_TAINT(str);
 | |
|     if (untrust) OBJ_UNTRUST(str);
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.to_s -> string
 | |
|  *     ary.inspect  -> string
 | |
|  *
 | |
|  *  Creates a string representation of +self+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_inspect(VALUE ary)
 | |
| {
 | |
|     if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
 | |
|     return rb_exec_recursive(inspect_ary, ary, 0);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_to_s(VALUE ary)
 | |
| {
 | |
|     return rb_ary_inspect(ary);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.to_a     -> ary
 | |
|  *
 | |
|  *  Returns +self+. If called on a subclass of Array, converts
 | |
|  *  the receiver to an Array object.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_to_a(VALUE ary)
 | |
| {
 | |
|     if (rb_obj_class(ary) != rb_cArray) {
 | |
| 	VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
 | |
| 	rb_ary_replace(dup, ary);
 | |
| 	return dup;
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.to_ary -> ary
 | |
|  *
 | |
|  *  Returns +self+.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_to_ary_m(VALUE ary)
 | |
| {
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static void
 | |
| ary_reverse(p1, p2)
 | |
|     VALUE *p1, *p2;
 | |
| {
 | |
|     while (p1 < p2) {
 | |
| 	VALUE tmp = *p1;
 | |
| 	*p1++ = *p2;
 | |
| 	*p2-- = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_reverse(VALUE ary)
 | |
| {
 | |
|     VALUE *p1, *p2;
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     if (RARRAY_LEN(ary) > 1) {
 | |
| 	p1 = RARRAY_PTR(ary);
 | |
| 	p2 = p1 + RARRAY_LEN(ary) - 1;	/* points last item */
 | |
| 	ary_reverse(p1, p2);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.reverse!   -> ary
 | |
|  *
 | |
|  *  Reverses +self+ in place.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c" ]
 | |
|  *     a.reverse!       #=> ["c", "b", "a"]
 | |
|  *     a                #=> ["c", "b", "a"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_reverse_bang(VALUE ary)
 | |
| {
 | |
|     return rb_ary_reverse(ary);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.reverse -> new_ary
 | |
|  *
 | |
|  *  Returns a new array containing +self+'s elements in reverse order.
 | |
|  *
 | |
|  *     [ "a", "b", "c" ].reverse   #=> ["c", "b", "a"]
 | |
|  *     [ 1 ].reverse               #=> [1]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_reverse_m(VALUE ary)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     VALUE dup = rb_ary_new2(len);
 | |
| 
 | |
|     if (len > 0) {
 | |
| 	VALUE *p1 = RARRAY_PTR(ary);
 | |
| 	VALUE *p2 = RARRAY_PTR(dup) + len - 1;
 | |
| 	do *p2-- = *p1++; while (--len > 0);
 | |
|     }
 | |
|     ARY_SET_LEN(dup, RARRAY_LEN(ary));
 | |
|     return dup;
 | |
| }
 | |
| 
 | |
| static inline long
 | |
| rotate_count(long cnt, long len)
 | |
| {
 | |
|     return (cnt < 0) ? (len - (~cnt % len) - 1) : (cnt % len);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_rotate(VALUE ary, long cnt)
 | |
| {
 | |
|     rb_ary_modify(ary);
 | |
| 
 | |
|     if (cnt != 0) {
 | |
| 	VALUE *ptr = RARRAY_PTR(ary);
 | |
| 	long len = RARRAY_LEN(ary);
 | |
| 
 | |
| 	if (len > 0 && (cnt = rotate_count(cnt, len)) > 0) {
 | |
| 	    --len;
 | |
| 	    if (cnt < len) ary_reverse(ptr + cnt, ptr + len);
 | |
| 	    if (--cnt > 0) ary_reverse(ptr, ptr + cnt);
 | |
| 	    if (len > 0) ary_reverse(ptr, ptr + len);
 | |
| 	    return ary;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.rotate!(cnt=1) -> ary
 | |
|  *
 | |
|  *  Rotates +self+ in place so that the element at +cnt+ comes first,
 | |
|  *  and returns +self+.  If +cnt+ is negative then it rotates in
 | |
|  *  counter direction.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c", "d" ]
 | |
|  *     a.rotate!        #=> ["b", "c", "d", "a"]
 | |
|  *     a                #=> ["b", "c", "d", "a"]
 | |
|  *     a.rotate!(2)     #=> ["d", "a", "b", "c"]
 | |
|  *     a.rotate!(-3)    #=> ["a", "b", "c", "d"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long n = 1;
 | |
| 
 | |
|     switch (argc) {
 | |
|       case 1: n = NUM2LONG(argv[0]);
 | |
|       case 0: break;
 | |
|       default: rb_scan_args(argc, argv, "01", NULL);
 | |
|     }
 | |
|     rb_ary_rotate(ary, n);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.rotate([cnt = 1]) -> new_ary
 | |
|  *
 | |
|  *  Returns new array by rotating +self+, whose first element is the
 | |
|  *  element at +cnt+ in +self+.  If +cnt+ is negative then it rotates
 | |
|  *  in counter direction.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c", "d" ]
 | |
|  *     a.rotate         #=> ["b", "c", "d", "a"]
 | |
|  *     a                #=> ["a", "b", "c", "d"]
 | |
|  *     a.rotate(2)      #=> ["c", "d", "a", "b"]
 | |
|  *     a.rotate(-3)     #=> ["b", "c", "d", "a"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE rotated, *ptr, *ptr2;
 | |
|     long len, cnt = 1;
 | |
| 
 | |
|     switch (argc) {
 | |
|       case 1: cnt = NUM2LONG(argv[0]);
 | |
|       case 0: break;
 | |
|       default: rb_scan_args(argc, argv, "01", NULL);
 | |
|     }
 | |
| 
 | |
|     len = RARRAY_LEN(ary);
 | |
|     rotated = rb_ary_new2(len);
 | |
|     if (len > 0) {
 | |
| 	cnt = rotate_count(cnt, len);
 | |
| 	ptr = RARRAY_PTR(ary);
 | |
| 	ptr2 = RARRAY_PTR(rotated);
 | |
| 	len -= cnt;
 | |
| 	MEMCPY(ptr2, ptr + cnt, VALUE, len);
 | |
| 	MEMCPY(ptr2 + len, ptr, VALUE, cnt);
 | |
|     }
 | |
|     ARY_SET_LEN(rotated, RARRAY_LEN(ary));
 | |
|     return rotated;
 | |
| }
 | |
| 
 | |
| struct ary_sort_data {
 | |
|     VALUE ary;
 | |
|     int opt_methods;
 | |
|     int opt_inited;
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     sort_opt_Fixnum,
 | |
|     sort_opt_String,
 | |
|     sort_optimizable_count
 | |
| };
 | |
| 
 | |
| #define STRING_P(s) (TYPE(s) == T_STRING && CLASS_OF(s) == rb_cString)
 | |
| 
 | |
| #define SORT_OPTIMIZABLE_BIT(type) (1U << TOKEN_PASTE(sort_opt_,type))
 | |
| #define SORT_OPTIMIZABLE(data, type) \
 | |
|     (((data)->opt_inited & SORT_OPTIMIZABLE_BIT(type)) ? \
 | |
|      ((data)->opt_methods & SORT_OPTIMIZABLE_BIT(type)) : \
 | |
|      (((data)->opt_inited |= SORT_OPTIMIZABLE_BIT(type)), \
 | |
|       rb_method_basic_definition_p(TOKEN_PASTE(rb_c,type), id_cmp) && \
 | |
|       ((data)->opt_methods |= SORT_OPTIMIZABLE_BIT(type))))
 | |
| 
 | |
| static VALUE
 | |
| sort_reentered(VALUE ary)
 | |
| {
 | |
|     if (RBASIC(ary)->klass) {
 | |
| 	rb_raise(rb_eRuntimeError, "sort reentered");
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static int
 | |
| sort_1(const void *ap, const void *bp, void *dummy)
 | |
| {
 | |
|     struct ary_sort_data *data = dummy;
 | |
|     VALUE retval = sort_reentered(data->ary);
 | |
|     VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
 | |
|     int n;
 | |
| 
 | |
|     retval = rb_yield_values(2, a, b);
 | |
|     n = rb_cmpint(retval, a, b);
 | |
|     sort_reentered(data->ary);
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| static int
 | |
| sort_2(const void *ap, const void *bp, void *dummy)
 | |
| {
 | |
|     struct ary_sort_data *data = dummy;
 | |
|     VALUE retval = sort_reentered(data->ary);
 | |
|     VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
 | |
|     int n;
 | |
| 
 | |
|     if (FIXNUM_P(a) && FIXNUM_P(b) && SORT_OPTIMIZABLE(data, Fixnum)) {
 | |
| 	if ((long)a > (long)b) return 1;
 | |
| 	if ((long)a < (long)b) return -1;
 | |
| 	return 0;
 | |
|     }
 | |
|     if (STRING_P(a) && STRING_P(b) && SORT_OPTIMIZABLE(data, String)) {
 | |
| 	return rb_str_cmp(a, b);
 | |
|     }
 | |
| 
 | |
|     retval = rb_funcall(a, id_cmp, 1, b);
 | |
|     n = rb_cmpint(retval, a, b);
 | |
|     sort_reentered(data->ary);
 | |
| 
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.sort!                   -> ary
 | |
|  *     ary.sort! {| a,b | block }  -> ary
 | |
|  *
 | |
|  *  Sorts +self+. Comparisons for
 | |
|  *  the sort will be done using the <code><=></code> operator or using
 | |
|  *  an optional code block. The block implements a comparison between
 | |
|  *  <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
 | |
|  *  <code>Enumerable#sort_by</code>.
 | |
|  *
 | |
|  *     a = [ "d", "a", "e", "c", "b" ]
 | |
|  *     a.sort                    #=> ["a", "b", "c", "d", "e"]
 | |
|  *     a.sort {|x,y| y <=> x }   #=> ["e", "d", "c", "b", "a"]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_sort_bang(VALUE ary)
 | |
| {
 | |
|     rb_ary_modify(ary);
 | |
|     assert(!ARY_SHARED_P(ary));
 | |
|     if (RARRAY_LEN(ary) > 1) {
 | |
| 	VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
 | |
| 	struct ary_sort_data data;
 | |
| 
 | |
| 	RBASIC(tmp)->klass = 0;
 | |
| 	data.ary = tmp;
 | |
| 	data.opt_methods = 0;
 | |
| 	data.opt_inited = 0;
 | |
| 	ruby_qsort(RARRAY_PTR(tmp), RARRAY_LEN(tmp), sizeof(VALUE),
 | |
| 		   rb_block_given_p()?sort_1:sort_2, &data);
 | |
| 
 | |
|         if (ARY_EMBED_P(tmp)) {
 | |
|             assert(ARY_EMBED_P(tmp));
 | |
|             if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
 | |
|                 rb_ary_unshare(ary);
 | |
|             }
 | |
|             FL_SET_EMBED(ary);
 | |
|             MEMCPY(RARRAY_PTR(ary), ARY_EMBED_PTR(tmp), VALUE, ARY_EMBED_LEN(tmp));
 | |
|             ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp));
 | |
|         }
 | |
|         else {
 | |
|             assert(!ARY_EMBED_P(tmp));
 | |
|             if (ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) {
 | |
|                 assert(!ARY_EMBED_P(ary));
 | |
|                 FL_UNSET_SHARED(ary);
 | |
|                 ARY_SET_CAPA(ary, ARY_CAPA(tmp));
 | |
|             }
 | |
|             else {
 | |
|                 assert(!ARY_SHARED_P(tmp));
 | |
|                 if (ARY_EMBED_P(ary)) {
 | |
|                     FL_UNSET_EMBED(ary);
 | |
|                 }
 | |
|                 else if (ARY_SHARED_P(ary)) {
 | |
|                     /* ary might be destructively operated in the given block */
 | |
|                     rb_ary_unshare(ary);
 | |
|                 }
 | |
|                 else {
 | |
|                     xfree(ARY_HEAP_PTR(ary));
 | |
|                 }
 | |
|                 ARY_SET_PTR(ary, RARRAY_PTR(tmp));
 | |
|                 ARY_SET_HEAP_LEN(ary, RARRAY_LEN(tmp));
 | |
|                 ARY_SET_CAPA(ary, ARY_CAPA(tmp));
 | |
|             }
 | |
|             /* tmp was lost ownership for the ptr */
 | |
|             FL_UNSET(tmp, FL_FREEZE);
 | |
|             FL_SET_EMBED(tmp);
 | |
|             ARY_SET_EMBED_LEN(tmp, 0);
 | |
|             FL_SET(tmp, FL_FREEZE);
 | |
| 	}
 | |
|         /* tmp will be GC'ed. */
 | |
|         RBASIC(tmp)->klass = rb_cArray;
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.sort                   -> new_ary
 | |
|  *     ary.sort {| a,b | block }  -> new_ary
 | |
|  *
 | |
|  *  Returns a new array created by sorting +self+. Comparisons for
 | |
|  *  the sort will be done using the <code><=></code> operator or using
 | |
|  *  an optional code block. The block implements a comparison between
 | |
|  *  <i>a</i> and <i>b</i>, returning -1, 0, or +1. See also
 | |
|  *  <code>Enumerable#sort_by</code>.
 | |
|  *
 | |
|  *     a = [ "d", "a", "e", "c", "b" ]
 | |
|  *     a.sort                    #=> ["a", "b", "c", "d", "e"]
 | |
|  *     a.sort {|x,y| y <=> x }   #=> ["e", "d", "c", "b", "a"]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_sort(VALUE ary)
 | |
| {
 | |
|     ary = rb_ary_dup(ary);
 | |
|     rb_ary_sort_bang(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| sort_by_i(VALUE i)
 | |
| {
 | |
|     return rb_yield(i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.sort_by! {| obj | block }    -> ary
 | |
|  *     ary.sort_by!                     -> an_enumerator
 | |
|  *
 | |
|  *  Sorts +self+ in place using a set of keys generated by mapping the
 | |
|  *  values in +self+ through the given block.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_sort_by_bang(VALUE ary)
 | |
| {
 | |
|     VALUE sorted;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     rb_ary_modify(ary);
 | |
|     sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
 | |
|     rb_ary_replace(ary, sorted);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.collect {|item| block }  -> new_ary
 | |
|  *     ary.map     {|item| block }  -> new_ary
 | |
|  *     ary.collect                  -> an_enumerator
 | |
|  *     ary.map                      -> an_enumerator
 | |
|  *
 | |
|  *  Invokes <i>block</i> once for each element of +self+. Creates a
 | |
|  *  new array containing the values returned by the block.
 | |
|  *  See also <code>Enumerable#collect</code>.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c", "d" ]
 | |
|  *     a.collect {|x| x + "!" }   #=> ["a!", "b!", "c!", "d!"]
 | |
|  *     a                          #=> ["a", "b", "c", "d"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_collect(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
|     VALUE collect;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     collect = rb_ary_new2(RARRAY_LEN(ary));
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
 | |
|     }
 | |
|     return collect;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.collect! {|item| block }   -> ary
 | |
|  *     ary.map!     {|item| block }   -> ary
 | |
|  *     ary.collect                    -> an_enumerator
 | |
|  *     ary.map                        -> an_enumerator
 | |
|  *
 | |
|  *  Invokes the block once for each element of +self+, replacing the
 | |
|  *  element with the value returned by _block_.
 | |
|  *  See also <code>Enumerable#collect</code>.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c", "d" ]
 | |
|  *     a.collect! {|x| x + "!" }
 | |
|  *     a             #=>  [ "a!", "b!", "c!", "d!" ]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_collect_bang(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     rb_ary_modify(ary);
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	rb_ary_store(ary, i, rb_yield(RARRAY_PTR(ary)[i]));
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_get_values_at(VALUE obj, long olen, int argc, VALUE *argv, VALUE (*func) (VALUE, long))
 | |
| {
 | |
|     VALUE result = rb_ary_new2(argc);
 | |
|     long beg, len, i, j;
 | |
| 
 | |
|     for (i=0; i<argc; i++) {
 | |
| 	if (FIXNUM_P(argv[i])) {
 | |
| 	    rb_ary_push(result, (*func)(obj, FIX2LONG(argv[i])));
 | |
| 	    continue;
 | |
| 	}
 | |
| 	/* check if idx is Range */
 | |
| 	switch (rb_range_beg_len(argv[i], &beg, &len, olen, 0)) {
 | |
| 	  case Qfalse:
 | |
| 	    break;
 | |
| 	  case Qnil:
 | |
| 	    continue;
 | |
| 	  default:
 | |
| 	    for (j=0; j<len; j++) {
 | |
| 		rb_ary_push(result, (*func)(obj, j+beg));
 | |
| 	    }
 | |
| 	    continue;
 | |
| 	}
 | |
| 	rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i])));
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.values_at(selector,... )  -> new_ary
 | |
|  *
 | |
|  *  Returns an array containing the elements in
 | |
|  *  +self+ corresponding to the given selector(s). The selectors
 | |
|  *  may be either integer indices or ranges.
 | |
|  *  See also <code>Array#select</code>.
 | |
|  *
 | |
|  *     a = %w{ a b c d e f }
 | |
|  *     a.values_at(1, 3, 5)
 | |
|  *     a.values_at(1, 3, 5, 7)
 | |
|  *     a.values_at(-1, -3, -5, -7)
 | |
|  *     a.values_at(1..3, 2...5)
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.select {|item| block } -> new_ary
 | |
|  *     ary.select                 -> an_enumerator
 | |
|  *
 | |
|  *  Invokes the block passing in successive elements from +self+,
 | |
|  *  returning an array containing those elements for which the block
 | |
|  *  returns a true value (equivalent to <code>Enumerable#select</code>).
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = %w{ a b c d e f }
 | |
|  *     a.select {|v| v =~ /[aeiou]/}   #=> ["a", "e"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_select(VALUE ary)
 | |
| {
 | |
|     VALUE result;
 | |
|     long i;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     result = rb_ary_new2(RARRAY_LEN(ary));
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
 | |
| 	    rb_ary_push(result, rb_ary_elt(ary, i));
 | |
| 	}
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.select! {|item| block } -> new_ary or nil
 | |
|  *     ary.select!                 -> an_enumerator
 | |
|  *
 | |
|  *  Invokes the block passing in successive elements from
 | |
|  *  +self+, deleting elements for which the block returns a
 | |
|  *  false value. It returns +self+ if changes were made,
 | |
|  *  otherwise it returns <code>nil</code>.
 | |
|  *  See also <code>Array#keep_if</code>
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_select_bang(VALUE ary)
 | |
| {
 | |
|     long i1, i2;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     rb_ary_modify(ary);
 | |
|     for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
 | |
| 	VALUE v = RARRAY_PTR(ary)[i1];
 | |
| 	if (!RTEST(rb_yield(v))) continue;
 | |
| 	if (i1 != i2) {
 | |
| 	    rb_ary_store(ary, i2, v);
 | |
| 	}
 | |
| 	i2++;
 | |
|     }
 | |
| 
 | |
|     if (RARRAY_LEN(ary) == i2) return Qnil;
 | |
|     if (i2 < RARRAY_LEN(ary))
 | |
| 	ARY_SET_LEN(ary, i2);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.keep_if {|item| block } -> ary
 | |
|  *     ary.keep_if                 -> an_enumerator
 | |
|  *
 | |
|  *  Deletes every element of +self+ for which <i>block</i> evaluates
 | |
|  *  to false.
 | |
|  *  See also <code>Array#select!</code>
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = %w{ a b c d e f }
 | |
|  *     a.keep_if {|v| v =~ /[aeiou]/}   #=> ["a", "e"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_keep_if(VALUE ary)
 | |
| {
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     rb_ary_select_bang(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.delete(obj)            -> obj or nil
 | |
|  *     ary.delete(obj) { block }  -> obj or nil
 | |
|  *
 | |
|  *  Deletes items from +self+ that are equal to <i>obj</i>.
 | |
|  *  If any items are found, returns <i>obj</i>.   If
 | |
|  *  the item is not found, returns <code>nil</code>. If the optional
 | |
|  *  code block is given, returns the result of <i>block</i> if the item
 | |
|  *  is not found.  (To remove <code>nil</code> elements and
 | |
|  *  get an informative return value, use #compact!)
 | |
|  *
 | |
|  *     a = [ "a", "b", "b", "b", "c" ]
 | |
|  *     a.delete("b")                   #=> "b"
 | |
|  *     a                               #=> ["a", "c"]
 | |
|  *     a.delete("z")                   #=> nil
 | |
|  *     a.delete("z") { "not found" }   #=> "not found"
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_delete(VALUE ary, VALUE item)
 | |
| {
 | |
|     VALUE v = item;
 | |
|     long i1, i2;
 | |
| 
 | |
|     for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
 | |
| 	VALUE e = RARRAY_PTR(ary)[i1];
 | |
| 
 | |
| 	if (rb_equal(e, item)) {
 | |
| 	    v = e;
 | |
| 	    continue;
 | |
| 	}
 | |
| 	if (i1 != i2) {
 | |
| 	    rb_ary_store(ary, i2, e);
 | |
| 	}
 | |
| 	i2++;
 | |
|     }
 | |
|     if (RARRAY_LEN(ary) == i2) {
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    return rb_yield(item);
 | |
| 	}
 | |
| 	return Qnil;
 | |
|     }
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     if (RARRAY_LEN(ary) > i2) {
 | |
| 	ARY_SET_LEN(ary, i2);
 | |
| 	if (i2 * 2 < ARY_CAPA(ary) &&
 | |
| 	    ARY_CAPA(ary) > ARY_DEFAULT_SIZE) {
 | |
| 	    ary_resize_capa(ary, i2*2);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ary_delete_at(VALUE ary, long pos)
 | |
| {
 | |
|     long len = RARRAY_LEN(ary);
 | |
|     VALUE del;
 | |
| 
 | |
|     if (pos >= len) return Qnil;
 | |
|     if (pos < 0) {
 | |
| 	pos += len;
 | |
| 	if (pos < 0) return Qnil;
 | |
|     }
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     del = RARRAY_PTR(ary)[pos];
 | |
|     MEMMOVE(RARRAY_PTR(ary)+pos, RARRAY_PTR(ary)+pos+1, VALUE,
 | |
| 	    RARRAY_LEN(ary)-pos-1);
 | |
|     ARY_INCREASE_LEN(ary, -1);
 | |
| 
 | |
|     return del;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.delete_at(index)  -> obj or nil
 | |
|  *
 | |
|  *  Deletes the element at the specified index, returning that element,
 | |
|  *  or <code>nil</code> if the index is out of range. See also
 | |
|  *  <code>Array#slice!</code>.
 | |
|  *
 | |
|  *     a = %w( ant bat cat dog )
 | |
|  *     a.delete_at(2)    #=> "cat"
 | |
|  *     a                 #=> ["ant", "bat", "dog"]
 | |
|  *     a.delete_at(99)   #=> nil
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_delete_at_m(VALUE ary, VALUE pos)
 | |
| {
 | |
|     return rb_ary_delete_at(ary, NUM2LONG(pos));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.slice!(index)         -> obj or nil
 | |
|  *     ary.slice!(start, length) -> new_ary or nil
 | |
|  *     ary.slice!(range)         -> new_ary or nil
 | |
|  *
 | |
|  *  Deletes the element(s) given by an index (optionally with a length)
 | |
|  *  or by a range. Returns the deleted object (or objects), or
 | |
|  *  <code>nil</code> if the index is out of range.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c" ]
 | |
|  *     a.slice!(1)     #=> "b"
 | |
|  *     a               #=> ["a", "c"]
 | |
|  *     a.slice!(-1)    #=> "c"
 | |
|  *     a               #=> ["a"]
 | |
|  *     a.slice!(100)   #=> nil
 | |
|  *     a               #=> ["a"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE arg1, arg2;
 | |
|     long pos, len, orig_len;
 | |
| 
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (argc == 2) {
 | |
| 	pos = NUM2LONG(argv[0]);
 | |
| 	len = NUM2LONG(argv[1]);
 | |
|       delete_pos_len:
 | |
| 	if (len < 0) return Qnil;
 | |
| 	orig_len = RARRAY_LEN(ary);
 | |
| 	if (pos < 0) {
 | |
| 	    pos += orig_len;
 | |
| 	    if (pos < 0) return Qnil;
 | |
| 	}
 | |
| 	else if (orig_len < pos) return Qnil;
 | |
| 	if (orig_len < pos + len) {
 | |
| 	    len = orig_len - pos;
 | |
| 	}
 | |
| 	if (len == 0) return rb_ary_new2(0);
 | |
| 	arg2 = rb_ary_new4(len, RARRAY_PTR(ary)+pos);
 | |
| 	RBASIC(arg2)->klass = rb_obj_class(ary);
 | |
| 	rb_ary_splice(ary, pos, len, Qundef);
 | |
| 	return arg2;
 | |
|     }
 | |
| 
 | |
|     if (argc != 1) {
 | |
| 	/* error report */
 | |
| 	rb_scan_args(argc, argv, "11", NULL, NULL);
 | |
|     }
 | |
|     arg1 = argv[0];
 | |
| 
 | |
|     if (!FIXNUM_P(arg1)) {
 | |
| 	switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
 | |
| 	  case Qtrue:
 | |
| 	    /* valid range */
 | |
| 	    goto delete_pos_len;
 | |
| 	  case Qnil:
 | |
| 	    /* invalid range */
 | |
| 	    return Qnil;
 | |
| 	  default:
 | |
| 	    /* not a range */
 | |
| 	    break;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return rb_ary_delete_at(ary, NUM2LONG(arg1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.reject! {|item| block }  -> ary or nil
 | |
|  *     ary.reject!                  -> an_enumerator
 | |
|  *
 | |
|  *  Equivalent to <code>Array#delete_if</code>, deleting elements from
 | |
|  *  +self+ for which the block evaluates to true, but returns
 | |
|  *  <code>nil</code> if no changes were made.
 | |
|  *  See also <code>Enumerable#reject</code> and <code>Array#delete_if</code>.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_reject_bang(VALUE ary)
 | |
| {
 | |
|     long i1, i2;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     rb_ary_modify(ary);
 | |
|     for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
 | |
| 	VALUE v = RARRAY_PTR(ary)[i1];
 | |
| 	if (RTEST(rb_yield(v))) continue;
 | |
| 	if (i1 != i2) {
 | |
| 	    rb_ary_store(ary, i2, v);
 | |
| 	}
 | |
| 	i2++;
 | |
|     }
 | |
| 
 | |
|     if (RARRAY_LEN(ary) == i2) return Qnil;
 | |
|     if (i2 < RARRAY_LEN(ary))
 | |
| 	ARY_SET_LEN(ary, i2);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.reject {|item| block }  -> new_ary
 | |
|  *     ary.reject                  -> an_enumerator
 | |
|  *
 | |
|  *  Returns a new array containing the items in +self+
 | |
|  *  for which the block is not true.
 | |
|  *  See also <code>Array#delete_if</code>
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_reject(VALUE ary)
 | |
| {
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     ary = rb_ary_dup(ary);
 | |
|     rb_ary_reject_bang(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.delete_if {|item| block }  -> ary
 | |
|  *     ary.delete_if                  -> an_enumerator
 | |
|  *
 | |
|  *  Deletes every element of +self+ for which <i>block</i> evaluates
 | |
|  *  to true.
 | |
|  *  See also <code>Array#reject!</code>
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c" ]
 | |
|  *     a.delete_if {|x| x >= "b" }   #=> ["a"]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_delete_if(VALUE ary)
 | |
| {
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     rb_ary_reject_bang(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| take_i(VALUE val, VALUE *args, int argc, VALUE *argv)
 | |
| {
 | |
|     if (args[1]-- == 0) rb_iter_break();
 | |
|     if (argc > 1) val = rb_ary_new4(argc, argv);
 | |
|     rb_ary_push(args[0], val);
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| take_items(VALUE obj, long n)
 | |
| {
 | |
|     VALUE result = rb_check_array_type(obj);
 | |
|     VALUE args[2];
 | |
| 
 | |
|     if (!NIL_P(result)) return rb_ary_subseq(result, 0, n);
 | |
|     result = rb_ary_new2(n);
 | |
|     args[0] = result; args[1] = (VALUE)n;
 | |
|     rb_block_call(obj, rb_intern("each"), 0, 0, take_i, (VALUE)args);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.zip(arg, ...)                   -> new_ary
 | |
|  *     ary.zip(arg, ...) {| arr | block }  -> nil
 | |
|  *
 | |
|  *  Converts any arguments to arrays, then merges elements of
 | |
|  *  +self+ with corresponding elements from each argument. This
 | |
|  *  generates a sequence of <code>self.size</code> <em>n</em>-element
 | |
|  *  arrays, where <em>n</em> is one more that the count of arguments. If
 | |
|  *  the size of any argument is less than <code>enumObj.size</code>,
 | |
|  *  <code>nil</code> values are supplied. If a block is given, it is
 | |
|  *  invoked for each output array, otherwise an array of arrays is
 | |
|  *  returned.
 | |
|  *
 | |
|  *     a = [ 4, 5, 6 ]
 | |
|  *     b = [ 7, 8, 9 ]
 | |
|  *     [1,2,3].zip(a, b)      #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
 | |
|  *     [1,2].zip(a,b)         #=> [[1, 4, 7], [2, 5, 8]]
 | |
|  *     a.zip([1,2],[8])       #=> [[4,1,8], [5,2,nil], [6,nil,nil]]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_zip(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     int i, j;
 | |
|     long len;
 | |
|     VALUE result = Qnil;
 | |
| 
 | |
|     len = RARRAY_LEN(ary);
 | |
|     for (i=0; i<argc; i++) {
 | |
| 	argv[i] = take_items(argv[i], len);
 | |
|     }
 | |
|     if (!rb_block_given_p()) {
 | |
| 	result = rb_ary_new2(len);
 | |
|     }
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	VALUE tmp = rb_ary_new2(argc+1);
 | |
| 
 | |
| 	rb_ary_push(tmp, rb_ary_elt(ary, i));
 | |
| 	for (j=0; j<argc; j++) {
 | |
| 	    rb_ary_push(tmp, rb_ary_elt(argv[j], i));
 | |
| 	}
 | |
| 	if (NIL_P(result)) {
 | |
| 	    rb_yield(tmp);
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_ary_push(result, tmp);
 | |
| 	}
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.transpose -> new_ary
 | |
|  *
 | |
|  *  Assumes that +self+ is an array of arrays and transposes the
 | |
|  *  rows and columns.
 | |
|  *
 | |
|  *     a = [[1,2], [3,4], [5,6]]
 | |
|  *     a.transpose   #=> [[1, 3, 5], [2, 4, 6]]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_transpose(VALUE ary)
 | |
| {
 | |
|     long elen = -1, alen, i, j;
 | |
|     VALUE tmp, result = 0;
 | |
| 
 | |
|     alen = RARRAY_LEN(ary);
 | |
|     if (alen == 0) return rb_ary_dup(ary);
 | |
|     for (i=0; i<alen; i++) {
 | |
| 	tmp = to_ary(rb_ary_elt(ary, i));
 | |
| 	if (elen < 0) {		/* first element */
 | |
| 	    elen = RARRAY_LEN(tmp);
 | |
| 	    result = rb_ary_new2(elen);
 | |
| 	    for (j=0; j<elen; j++) {
 | |
| 		rb_ary_store(result, j, rb_ary_new2(alen));
 | |
| 	    }
 | |
| 	}
 | |
| 	else if (elen != RARRAY_LEN(tmp)) {
 | |
| 	    rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
 | |
| 		     RARRAY_LEN(tmp), elen);
 | |
| 	}
 | |
| 	for (j=0; j<elen; j++) {
 | |
| 	    rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
 | |
| 	}
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.replace(other_ary)  -> ary
 | |
|  *
 | |
|  *  Replaces the contents of +self+ with the contents of
 | |
|  *  <i>other_ary</i>, truncating or expanding if necessary.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c", "d", "e" ]
 | |
|  *     a.replace([ "x", "y", "z" ])   #=> ["x", "y", "z"]
 | |
|  *     a                              #=> ["x", "y", "z"]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_replace(VALUE copy, VALUE orig)
 | |
| {
 | |
|     rb_ary_modify_check(copy);
 | |
|     orig = to_ary(orig);
 | |
|     if (copy == orig) return copy;
 | |
| 
 | |
|     if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
 | |
|         VALUE *ptr;
 | |
|         VALUE shared = 0;
 | |
| 
 | |
|         if (ARY_OWNS_HEAP_P(copy)) {
 | |
|             xfree(RARRAY_PTR(copy));
 | |
|         }
 | |
|         else if (ARY_SHARED_P(copy)) {
 | |
|             shared = ARY_SHARED(copy);
 | |
|             FL_UNSET_SHARED(copy);
 | |
|         }
 | |
|         FL_SET_EMBED(copy);
 | |
|         ptr = RARRAY_PTR(orig);
 | |
|         MEMCPY(RARRAY_PTR(copy), ptr, VALUE, RARRAY_LEN(orig));
 | |
|         if (shared) {
 | |
|             rb_ary_decrement_share(shared);
 | |
|         }
 | |
|         ARY_SET_LEN(copy, RARRAY_LEN(orig));
 | |
|     }
 | |
|     else {
 | |
|         VALUE shared = ary_make_shared(orig);
 | |
|         if (ARY_OWNS_HEAP_P(copy)) {
 | |
|             xfree(RARRAY_PTR(copy));
 | |
|         }
 | |
|         else {
 | |
|             rb_ary_unshare_safe(copy);
 | |
|         }
 | |
|         FL_UNSET_EMBED(copy);
 | |
|         ARY_SET_PTR(copy, RARRAY_PTR(orig));
 | |
|         ARY_SET_LEN(copy, RARRAY_LEN(orig));
 | |
|         rb_ary_set_shared(copy, shared);
 | |
|     }
 | |
|     return copy;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.clear    -> ary
 | |
|  *
 | |
|  *  Removes all elements from +self+.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c", "d", "e" ]
 | |
|  *     a.clear    #=> [ ]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_clear(VALUE ary)
 | |
| {
 | |
|     rb_ary_modify_check(ary);
 | |
|     ARY_SET_LEN(ary, 0);
 | |
|     if (ARY_SHARED_P(ary)) {
 | |
| 	if (!ARY_EMBED_P(ary)) {
 | |
| 	    rb_ary_unshare(ary);
 | |
| 	    FL_SET_EMBED(ary);
 | |
| 	}
 | |
|     }
 | |
|     else if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
 | |
| 	ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.fill(obj)                                -> ary
 | |
|  *     ary.fill(obj, start [, length])              -> ary
 | |
|  *     ary.fill(obj, range )                        -> ary
 | |
|  *     ary.fill {|index| block }                    -> ary
 | |
|  *     ary.fill(start [, length] ) {|index| block } -> ary
 | |
|  *     ary.fill(range) {|index| block }             -> ary
 | |
|  *
 | |
|  *  The first three forms set the selected elements of +self+ (which
 | |
|  *  may be the entire array) to <i>obj</i>. A <i>start</i> of
 | |
|  *  <code>nil</code> is equivalent to zero. A <i>length</i> of
 | |
|  *  <code>nil</code> is equivalent to <i>self.length</i>. The last three
 | |
|  *  forms fill the array with the value of the block. The block is
 | |
|  *  passed the absolute index of each element to be filled.
 | |
|  *  Negative values of <i>start</i> count from the end of the array.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c", "d" ]
 | |
|  *     a.fill("x")              #=> ["x", "x", "x", "x"]
 | |
|  *     a.fill("z", 2, 2)        #=> ["x", "x", "z", "z"]
 | |
|  *     a.fill("y", 0..1)        #=> ["y", "y", "z", "z"]
 | |
|  *     a.fill {|i| i*i}         #=> [0, 1, 4, 9]
 | |
|  *     a.fill(-2) {|i| i*i*i}   #=> [0, 1, 8, 27]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_fill(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE item, arg1, arg2;
 | |
|     long beg = 0, end = 0, len = 0;
 | |
|     VALUE *p, *pend;
 | |
|     int block_p = FALSE;
 | |
| 
 | |
|     if (rb_block_given_p()) {
 | |
| 	block_p = TRUE;
 | |
| 	rb_scan_args(argc, argv, "02", &arg1, &arg2);
 | |
| 	argc += 1;		/* hackish */
 | |
|     }
 | |
|     else {
 | |
| 	rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
 | |
|     }
 | |
|     switch (argc) {
 | |
|       case 1:
 | |
| 	beg = 0;
 | |
| 	len = RARRAY_LEN(ary);
 | |
| 	break;
 | |
|       case 2:
 | |
| 	if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
 | |
| 	    break;
 | |
| 	}
 | |
| 	/* fall through */
 | |
|       case 3:
 | |
| 	beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
 | |
| 	if (beg < 0) {
 | |
| 	    beg = RARRAY_LEN(ary) + beg;
 | |
| 	    if (beg < 0) beg = 0;
 | |
| 	}
 | |
| 	len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
 | |
| 	break;
 | |
|     }
 | |
|     rb_ary_modify(ary);
 | |
|     if (len < 0) {
 | |
|         return ary;
 | |
|     }
 | |
|     if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
 | |
| 	rb_raise(rb_eArgError, "argument too big");
 | |
|     }
 | |
|     end = beg + len;
 | |
|     if (RARRAY_LEN(ary) < end) {
 | |
| 	if (end >= ARY_CAPA(ary)) {
 | |
| 	    ary_resize_capa(ary, end);
 | |
| 	}
 | |
| 	rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary));
 | |
| 	ARY_SET_LEN(ary, end);
 | |
|     }
 | |
| 
 | |
|     if (block_p) {
 | |
| 	VALUE v;
 | |
| 	long i;
 | |
| 
 | |
| 	for (i=beg; i<end; i++) {
 | |
| 	    v = rb_yield(LONG2NUM(i));
 | |
| 	    if (i>=RARRAY_LEN(ary)) break;
 | |
| 	    RARRAY_PTR(ary)[i] = v;
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	p = RARRAY_PTR(ary) + beg;
 | |
| 	pend = p + len;
 | |
| 	while (p < pend) {
 | |
| 	    *p++ = item;
 | |
| 	}
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary + other_ary   -> new_ary
 | |
|  *
 | |
|  *  Concatenation---Returns a new array built by concatenating the
 | |
|  *  two arrays together to produce a third array.
 | |
|  *
 | |
|  *     [ 1, 2, 3 ] + [ 4, 5 ]    #=> [ 1, 2, 3, 4, 5 ]
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_plus(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
|     long len;
 | |
| 
 | |
|     y = to_ary(y);
 | |
|     len = RARRAY_LEN(x) + RARRAY_LEN(y);
 | |
|     z = rb_ary_new2(len);
 | |
|     MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x));
 | |
|     MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y));
 | |
|     ARY_SET_LEN(z, len);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.concat(other_ary)   -> ary
 | |
|  *
 | |
|  *  Appends the elements of <i>other_ary</i> to +self+.
 | |
|  *
 | |
|  *     [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
 | |
|  */
 | |
| 
 | |
| 
 | |
| VALUE
 | |
| rb_ary_concat(VALUE x, VALUE y)
 | |
| {
 | |
|     rb_ary_modify_check(x);
 | |
|     y = to_ary(y);
 | |
|     if (RARRAY_LEN(y) > 0) {
 | |
| 	rb_ary_splice(x, RARRAY_LEN(x), 0, y);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary * int     -> new_ary
 | |
|  *     ary * str     -> new_string
 | |
|  *
 | |
|  *  Repetition---With a String argument, equivalent to
 | |
|  *  self.join(str). Otherwise, returns a new array
 | |
|  *  built by concatenating the _int_ copies of +self+.
 | |
|  *
 | |
|  *
 | |
|  *     [ 1, 2, 3 ] * 3    #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
 | |
|  *     [ 1, 2, 3 ] * ","  #=> "1,2,3"
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_times(VALUE ary, VALUE times)
 | |
| {
 | |
|     VALUE ary2, tmp, *ptr, *ptr2;
 | |
|     long t, len;
 | |
| 
 | |
|     tmp = rb_check_string_type(times);
 | |
|     if (!NIL_P(tmp)) {
 | |
| 	return rb_ary_join(ary, tmp);
 | |
|     }
 | |
| 
 | |
|     len = NUM2LONG(times);
 | |
|     if (len == 0) {
 | |
| 	ary2 = ary_new(rb_obj_class(ary), 0);
 | |
| 	goto out;
 | |
|     }
 | |
|     if (len < 0) {
 | |
| 	rb_raise(rb_eArgError, "negative argument");
 | |
|     }
 | |
|     if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
 | |
| 	rb_raise(rb_eArgError, "argument too big");
 | |
|     }
 | |
|     len *= RARRAY_LEN(ary);
 | |
| 
 | |
|     ary2 = ary_new(rb_obj_class(ary), len);
 | |
|     ARY_SET_LEN(ary2, len);
 | |
| 
 | |
|     ptr = RARRAY_PTR(ary);
 | |
|     ptr2 = RARRAY_PTR(ary2);
 | |
|     t = RARRAY_LEN(ary);
 | |
|     if (0 < t) {
 | |
|         MEMCPY(ptr2, ptr, VALUE, t);
 | |
|         while (t <= len/2) {
 | |
|             MEMCPY(ptr2+t, ptr2, VALUE, t);
 | |
|             t *= 2;
 | |
|         }
 | |
|         if (t < len) {
 | |
|             MEMCPY(ptr2+t, ptr2, VALUE, len-t);
 | |
|         }
 | |
|     }
 | |
|   out:
 | |
|     OBJ_INFECT(ary2, ary);
 | |
| 
 | |
|     return ary2;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.assoc(obj)   -> new_ary  or  nil
 | |
|  *
 | |
|  *  Searches through an array whose elements are also arrays
 | |
|  *  comparing _obj_ with the first element of each contained array
 | |
|  *  using obj.==.
 | |
|  *  Returns the first contained array that matches (that
 | |
|  *  is, the first associated array),
 | |
|  *  or +nil+ if no match is found.
 | |
|  *  See also <code>Array#rassoc</code>.
 | |
|  *
 | |
|  *     s1 = [ "colors", "red", "blue", "green" ]
 | |
|  *     s2 = [ "letters", "a", "b", "c" ]
 | |
|  *     s3 = "foo"
 | |
|  *     a  = [ s1, s2, s3 ]
 | |
|  *     a.assoc("letters")  #=> [ "letters", "a", "b", "c" ]
 | |
|  *     a.assoc("foo")      #=> nil
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_assoc(VALUE ary, VALUE key)
 | |
| {
 | |
|     long i;
 | |
|     VALUE v;
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
| 	v = rb_check_array_type(RARRAY_PTR(ary)[i]);
 | |
| 	if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
 | |
| 	    rb_equal(RARRAY_PTR(v)[0], key))
 | |
| 	    return v;
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.rassoc(obj) -> new_ary or nil
 | |
|  *
 | |
|  *  Searches through the array whose elements are also arrays. Compares
 | |
|  *  _obj_ with the second element of each contained array using
 | |
|  *  <code>==</code>. Returns the first contained array that matches. See
 | |
|  *  also <code>Array#assoc</code>.
 | |
|  *
 | |
|  *     a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
 | |
|  *     a.rassoc("two")    #=> [2, "two"]
 | |
|  *     a.rassoc("four")   #=> nil
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_rassoc(VALUE ary, VALUE value)
 | |
| {
 | |
|     long i;
 | |
|     VALUE v;
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
| 	v = RARRAY_PTR(ary)[i];
 | |
| 	if (TYPE(v) == T_ARRAY &&
 | |
| 	    RARRAY_LEN(v) > 1 &&
 | |
| 	    rb_equal(RARRAY_PTR(v)[1], value))
 | |
| 	    return v;
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| recursive_equal(VALUE ary1, VALUE ary2, int recur)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     if (recur) return Qtrue; /* Subtle! */
 | |
|     for (i=0; i<RARRAY_LEN(ary1); i++) {
 | |
| 	if (!rb_equal(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
 | |
| 	    return Qfalse;
 | |
|     }
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary == other_ary   ->   bool
 | |
|  *
 | |
|  *  Equality---Two arrays are equal if they contain the same number
 | |
|  *  of elements and if each element is equal to (according to
 | |
|  *  Object.==) the corresponding element in the other array.
 | |
|  *
 | |
|  *     [ "a", "c" ]    == [ "a", "c", 7 ]     #=> false
 | |
|  *     [ "a", "c", 7 ] == [ "a", "c", 7 ]     #=> true
 | |
|  *     [ "a", "c", 7 ] == [ "a", "d", "f" ]   #=> false
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_equal(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     if (ary1 == ary2) return Qtrue;
 | |
|     if (TYPE(ary2) != T_ARRAY) {
 | |
| 	if (!rb_respond_to(ary2, rb_intern("to_ary"))) {
 | |
| 	    return Qfalse;
 | |
| 	}
 | |
| 	return rb_equal(ary2, ary1);
 | |
|     }
 | |
|     if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
 | |
|     return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| recursive_eql(VALUE ary1, VALUE ary2, int recur)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     if (recur) return Qtrue; /* Subtle! */
 | |
|     for (i=0; i<RARRAY_LEN(ary1); i++) {
 | |
| 	if (!rb_eql(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
 | |
| 	    return Qfalse;
 | |
|     }
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.eql?(other)  -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if +self+ and _other_ are the same object,
 | |
|  *  or are both arrays with the same content.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_eql(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     if (ary1 == ary2) return Qtrue;
 | |
|     if (TYPE(ary2) != T_ARRAY) return Qfalse;
 | |
|     if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
 | |
|     return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| recursive_hash(VALUE ary, VALUE dummy, int recur)
 | |
| {
 | |
|     long i;
 | |
|     st_index_t h;
 | |
|     VALUE n;
 | |
| 
 | |
|     h = rb_hash_start(RARRAY_LEN(ary));
 | |
|     if (recur) {
 | |
| 	h = rb_hash_uint(h, NUM2LONG(rb_hash(rb_cArray)));
 | |
|     }
 | |
|     else {
 | |
| 	for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	    n = rb_hash(RARRAY_PTR(ary)[i]);
 | |
| 	    h = rb_hash_uint(h, NUM2LONG(n));
 | |
| 	}
 | |
|     }
 | |
|     h = rb_hash_end(h);
 | |
|     return LONG2FIX(h);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.hash   -> fixnum
 | |
|  *
 | |
|  *  Compute a hash-code for this array. Two arrays with the same content
 | |
|  *  will have the same hash code (and will compare using <code>eql?</code>).
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_hash(VALUE ary)
 | |
| {
 | |
|     return rb_exec_recursive_outer(recursive_hash, ary, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.include?(obj)   -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> if the given object is present in
 | |
|  *  +self+ (that is, if any object <code>==</code> <i>anObject</i>),
 | |
|  *  <code>false</code> otherwise.
 | |
|  *
 | |
|  *     a = [ "a", "b", "c" ]
 | |
|  *     a.include?("b")   #=> true
 | |
|  *     a.include?("z")   #=> false
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_includes(VALUE ary, VALUE item)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	if (rb_equal(RARRAY_PTR(ary)[i], item)) {
 | |
| 	    return Qtrue;
 | |
| 	}
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| recursive_cmp(VALUE ary1, VALUE ary2, int recur)
 | |
| {
 | |
|     long i, len;
 | |
| 
 | |
|     if (recur) return Qundef;	/* Subtle! */
 | |
|     len = RARRAY_LEN(ary1);
 | |
|     if (len > RARRAY_LEN(ary2)) {
 | |
| 	len = RARRAY_LEN(ary2);
 | |
|     }
 | |
|     for (i=0; i<len; i++) {
 | |
| 	VALUE v = rb_funcall(rb_ary_elt(ary1, i), id_cmp, 1, rb_ary_elt(ary2, i));
 | |
| 	if (v != INT2FIX(0)) {
 | |
| 	    return v;
 | |
| 	}
 | |
|     }
 | |
|     return Qundef;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary <=> other_ary   ->  -1, 0, +1 or nil
 | |
|  *
 | |
|  *  Comparison---Returns an integer (-1, 0,
 | |
|  *  or +1) if this array is less than, equal to, or greater than
 | |
|  *  <i>other_ary</i>.  Each object in each array is compared
 | |
|  *  (using <=>). If any value isn't
 | |
|  *  equal, then that inequality is the return value. If all the
 | |
|  *  values found are equal, then the return is based on a
 | |
|  *  comparison of the array lengths.  Thus, two arrays are
 | |
|  *  ``equal'' according to <code>Array#<=></code> if and only if they have
 | |
|  *  the same length and the value of each element is equal to the
 | |
|  *  value of the corresponding element in the other array.
 | |
|  *
 | |
|  *     [ "a", "a", "c" ]    <=> [ "a", "b", "c" ]   #=> -1
 | |
|  *     [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ]            #=> +1
 | |
|  *
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_ary_cmp(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     long len;
 | |
|     VALUE v;
 | |
| 
 | |
|     ary2 = rb_check_array_type(ary2);
 | |
|     if (NIL_P(ary2)) return Qnil;
 | |
|     if (ary1 == ary2) return INT2FIX(0);
 | |
|     v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
 | |
|     if (v != Qundef) return v;
 | |
|     len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
 | |
|     if (len == 0) return INT2FIX(0);
 | |
|     if (len > 0) return INT2FIX(1);
 | |
|     return INT2FIX(-1);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_add_hash(VALUE hash, VALUE ary)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	rb_hash_aset(hash, RARRAY_PTR(ary)[i], Qtrue);
 | |
|     }
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| ary_tmp_hash_new(void)
 | |
| {
 | |
|     VALUE hash = rb_hash_new();
 | |
| 
 | |
|     RBASIC(hash)->klass = 0;
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_hash(VALUE ary)
 | |
| {
 | |
|     VALUE hash = ary_tmp_hash_new();
 | |
|     return ary_add_hash(hash, ary);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_add_hash_by(VALUE hash, VALUE ary)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     for (i = 0; i < RARRAY_LEN(ary); ++i) {
 | |
| 	VALUE v = rb_ary_elt(ary, i), k = rb_yield(v);
 | |
| 	if (rb_hash_lookup2(hash, k, Qundef) == Qundef) {
 | |
| 	    rb_hash_aset(hash, k, v);
 | |
| 	}
 | |
|     }
 | |
|     return hash;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ary_make_hash_by(VALUE ary)
 | |
| {
 | |
|     VALUE hash = ary_tmp_hash_new();
 | |
|     return ary_add_hash_by(hash, ary);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| ary_recycle_hash(VALUE hash)
 | |
| {
 | |
|     if (RHASH(hash)->ntbl) {
 | |
| 	st_table *tbl = RHASH(hash)->ntbl;
 | |
| 	RHASH(hash)->ntbl = 0;
 | |
| 	st_free_table(tbl);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary - other_ary    -> new_ary
 | |
|  *
 | |
|  *  Array Difference---Returns a new array that is a copy of
 | |
|  *  the original array, removing any items that also appear in
 | |
|  *  <i>other_ary</i>. (If you need set-like behavior, see the
 | |
|  *  library class Set.)
 | |
|  *
 | |
|  *     [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ]  #=>  [ 3, 3, 5 ]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_diff(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     VALUE ary3;
 | |
|     volatile VALUE hash;
 | |
|     long i;
 | |
| 
 | |
|     hash = ary_make_hash(to_ary(ary2));
 | |
|     ary3 = rb_ary_new();
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary1); i++) {
 | |
| 	if (st_lookup(RHASH_TBL(hash), RARRAY_PTR(ary1)[i], 0)) continue;
 | |
| 	rb_ary_push(ary3, rb_ary_elt(ary1, i));
 | |
|     }
 | |
|     ary_recycle_hash(hash);
 | |
|     return ary3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary & other_ary      -> new_ary
 | |
|  *
 | |
|  *  Set Intersection---Returns a new array
 | |
|  *  containing elements common to the two arrays, with no duplicates.
 | |
|  *
 | |
|  *     [ 1, 1, 3, 5 ] & [ 1, 2, 3 ]   #=> [ 1, 3 ]
 | |
|  */
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_and(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     VALUE hash, ary3, v;
 | |
|     st_data_t vv;
 | |
|     long i;
 | |
| 
 | |
|     ary2 = to_ary(ary2);
 | |
|     ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ?
 | |
| 	    RARRAY_LEN(ary1) : RARRAY_LEN(ary2));
 | |
|     hash = ary_make_hash(ary2);
 | |
| 
 | |
|     if (RHASH_EMPTY_P(hash))
 | |
|         return ary3;
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary1); i++) {
 | |
| 	vv = (st_data_t)(v = rb_ary_elt(ary1, i));
 | |
| 	if (st_delete(RHASH_TBL(hash), &vv, 0)) {
 | |
| 	    rb_ary_push(ary3, v);
 | |
| 	}
 | |
|     }
 | |
|     ary_recycle_hash(hash);
 | |
| 
 | |
|     return ary3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary | other_ary     -> new_ary
 | |
|  *
 | |
|  *  Set Union---Returns a new array by joining this array with
 | |
|  *  <i>other_ary</i>, removing duplicates.
 | |
|  *
 | |
|  *     [ "a", "b", "c" ] | [ "c", "d", "a" ]
 | |
|  *            #=> [ "a", "b", "c", "d" ]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_or(VALUE ary1, VALUE ary2)
 | |
| {
 | |
|     VALUE hash, ary3, v;
 | |
|     st_data_t vv;
 | |
|     long i;
 | |
| 
 | |
|     ary2 = to_ary(ary2);
 | |
|     ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2));
 | |
|     hash = ary_add_hash(ary_make_hash(ary1), ary2);
 | |
| 
 | |
|     for (i=0; i<RARRAY_LEN(ary1); i++) {
 | |
| 	vv = (st_data_t)(v = rb_ary_elt(ary1, i));
 | |
| 	if (st_delete(RHASH_TBL(hash), &vv, 0)) {
 | |
| 	    rb_ary_push(ary3, v);
 | |
| 	}
 | |
|     }
 | |
|     for (i=0; i<RARRAY_LEN(ary2); i++) {
 | |
| 	vv = (st_data_t)(v = rb_ary_elt(ary2, i));
 | |
| 	if (st_delete(RHASH_TBL(hash), &vv, 0)) {
 | |
| 	    rb_ary_push(ary3, v);
 | |
| 	}
 | |
|     }
 | |
|     ary_recycle_hash(hash);
 | |
|     return ary3;
 | |
| }
 | |
| 
 | |
| static int
 | |
| push_value(st_data_t key, st_data_t val, st_data_t ary)
 | |
| {
 | |
|     rb_ary_push((VALUE)ary, (VALUE)val);
 | |
|     return ST_CONTINUE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.uniq! -> ary or nil
 | |
|  *
 | |
|  *  Removes duplicate elements from +self+.
 | |
|  *  Returns <code>nil</code> if no changes are made (that is, no
 | |
|  *  duplicates are found).
 | |
|  *
 | |
|  *     a = [ "a", "a", "b", "b", "c" ]
 | |
|  *     a.uniq!   #=> ["a", "b", "c"]
 | |
|  *     b = [ "a", "b", "c" ]
 | |
|  *     b.uniq!   #=> nil
 | |
|  *     c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ]
 | |
|  *     c.uniq! {|s| s[/^\w+/]}  #=> [ "a:def", "b:abc", "c:jkl" ]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_uniq_bang(VALUE ary)
 | |
| {
 | |
|     VALUE hash, v;
 | |
|     long i, j;
 | |
| 
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (RARRAY_LEN(ary) <= 1)
 | |
|         return Qnil;
 | |
|     if (rb_block_given_p()) {
 | |
| 	hash = ary_make_hash_by(ary);
 | |
| 	if (RARRAY_LEN(ary) == (i = RHASH_SIZE(hash))) {
 | |
| 	    return Qnil;
 | |
| 	}
 | |
| 	ary_resize_capa(ary, i);
 | |
| 	ARY_SET_LEN(ary, 0);
 | |
| 	st_foreach(RHASH_TBL(hash), push_value, ary);
 | |
|     }
 | |
|     else {
 | |
| 	hash = ary_make_hash(ary);
 | |
| 	if (RARRAY_LEN(ary) == (long)RHASH_SIZE(hash)) {
 | |
| 	    return Qnil;
 | |
| 	}
 | |
| 	for (i=j=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	    st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
 | |
| 	    if (st_delete(RHASH_TBL(hash), &vv, 0)) {
 | |
| 		rb_ary_store(ary, j++, v);
 | |
| 	    }
 | |
| 	}
 | |
| 	ARY_SET_LEN(ary, j);
 | |
|     }
 | |
|     ary_recycle_hash(hash);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.uniq   -> new_ary
 | |
|  *
 | |
|  *  Returns a new array by removing duplicate values in +self+.
 | |
|  *
 | |
|  *     a = [ "a", "a", "b", "b", "c" ]
 | |
|  *     a.uniq   #=> ["a", "b", "c"]
 | |
|  *     c = [ "a:def", "a:xyz", "b:abc", "b:xyz", "c:jkl" ]
 | |
|  *     c.uniq {|s| s[/^\w+/]}  #=> [ "a:def", "b:abc", "c:jkl" ]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_uniq(VALUE ary)
 | |
| {
 | |
|     VALUE hash, uniq, v;
 | |
|     long i;
 | |
| 
 | |
|     if (RARRAY_LEN(ary) <= 1)
 | |
|         return rb_ary_dup(ary);
 | |
|     if (rb_block_given_p()) {
 | |
| 	hash = ary_make_hash_by(ary);
 | |
| 	uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
 | |
| 	st_foreach(RHASH_TBL(hash), push_value, uniq);
 | |
|     }
 | |
|     else {
 | |
| 	hash = ary_make_hash(ary);
 | |
| 	uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
 | |
| 	for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
| 	    st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
 | |
| 	    if (st_delete(RHASH_TBL(hash), &vv, 0)) {
 | |
| 		rb_ary_push(uniq, v);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     ary_recycle_hash(hash);
 | |
| 
 | |
|     return uniq;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.compact!    -> ary  or  nil
 | |
|  *
 | |
|  *  Removes +nil+ elements from the array.
 | |
|  *  Returns +nil+ if no changes were made, otherwise returns
 | |
|  *  </i>ary</i>.
 | |
|  *
 | |
|  *     [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
 | |
|  *     [ "a", "b", "c" ].compact!           #=> nil
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_compact_bang(VALUE ary)
 | |
| {
 | |
|     VALUE *p, *t, *end;
 | |
|     long n;
 | |
| 
 | |
|     rb_ary_modify(ary);
 | |
|     p = t = RARRAY_PTR(ary);
 | |
|     end = p + RARRAY_LEN(ary);
 | |
| 
 | |
|     while (t < end) {
 | |
| 	if (NIL_P(*t)) t++;
 | |
| 	else *p++ = *t++;
 | |
|     }
 | |
|     n = p - RARRAY_PTR(ary);
 | |
|     if (RARRAY_LEN(ary) == n) {
 | |
| 	return Qnil;
 | |
|     }
 | |
|     ARY_SET_LEN(ary, n);
 | |
|     if (n * 2 < ARY_CAPA(ary) && ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
 | |
| 	ary_resize_capa(ary, n * 2);
 | |
|     }
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.compact     -> new_ary
 | |
|  *
 | |
|  *  Returns a copy of +self+ with all +nil+ elements removed.
 | |
|  *
 | |
|  *     [ "a", nil, "b", nil, "c", nil ].compact
 | |
|  *                       #=> [ "a", "b", "c" ]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_compact(VALUE ary)
 | |
| {
 | |
|     ary = rb_ary_dup(ary);
 | |
|     rb_ary_compact_bang(ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.count      -> int
 | |
|  *     ary.count(obj) -> int
 | |
|  *     ary.count { |item| block }  -> int
 | |
|  *
 | |
|  *  Returns the number of elements.  If an argument is given, counts
 | |
|  *  the number of elements which equals to <i>obj</i>.  If a block is
 | |
|  *  given, counts the number of elements yielding a true value.
 | |
|  *
 | |
|  *     ary = [1, 2, 4, 2]
 | |
|  *     ary.count             #=> 4
 | |
|  *     ary.count(2)          #=> 2
 | |
|  *     ary.count{|x|x%2==0}  #=> 3
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_count(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long n = 0;
 | |
| 
 | |
|     if (argc == 0) {
 | |
| 	VALUE *p, *pend;
 | |
| 
 | |
| 	if (!rb_block_given_p())
 | |
| 	    return LONG2NUM(RARRAY_LEN(ary));
 | |
| 
 | |
| 	for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
 | |
| 	    if (RTEST(rb_yield(*p))) n++;
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	VALUE obj, *p, *pend;
 | |
| 
 | |
| 	rb_scan_args(argc, argv, "1", &obj);
 | |
| 	if (rb_block_given_p()) {
 | |
| 	    rb_warn("given block not used");
 | |
| 	}
 | |
| 	for (p = RARRAY_PTR(ary), pend = p + RARRAY_LEN(ary); p < pend; p++) {
 | |
| 	    if (rb_equal(*p, obj)) n++;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return LONG2NUM(n);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| flatten(VALUE ary, int level, int *modified)
 | |
| {
 | |
|     long i = 0;
 | |
|     VALUE stack, result, tmp, elt;
 | |
|     st_table *memo;
 | |
|     st_data_t id;
 | |
| 
 | |
|     stack = ary_new(0, ARY_DEFAULT_SIZE);
 | |
|     result = ary_new(0, RARRAY_LEN(ary));
 | |
|     memo = st_init_numtable();
 | |
|     st_insert(memo, (st_data_t)ary, (st_data_t)Qtrue);
 | |
|     *modified = 0;
 | |
| 
 | |
|     while (1) {
 | |
| 	while (i < RARRAY_LEN(ary)) {
 | |
| 	    elt = RARRAY_PTR(ary)[i++];
 | |
| 	    tmp = rb_check_array_type(elt);
 | |
| 	    if (RBASIC(result)->klass) {
 | |
| 		rb_raise(rb_eRuntimeError, "flatten reentered");
 | |
| 	    }
 | |
| 	    if (NIL_P(tmp) || (level >= 0 && RARRAY_LEN(stack) / 2 >= level)) {
 | |
| 		rb_ary_push(result, elt);
 | |
| 	    }
 | |
| 	    else {
 | |
| 		*modified = 1;
 | |
| 		id = (st_data_t)tmp;
 | |
| 		if (st_lookup(memo, id, 0)) {
 | |
| 		    st_free_table(memo);
 | |
| 		    rb_raise(rb_eArgError, "tried to flatten recursive array");
 | |
| 		}
 | |
| 		st_insert(memo, id, (st_data_t)Qtrue);
 | |
| 		rb_ary_push(stack, ary);
 | |
| 		rb_ary_push(stack, LONG2NUM(i));
 | |
| 		ary = tmp;
 | |
| 		i = 0;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (RARRAY_LEN(stack) == 0) {
 | |
| 	    break;
 | |
| 	}
 | |
| 	id = (st_data_t)ary;
 | |
| 	st_delete(memo, &id, 0);
 | |
| 	tmp = rb_ary_pop(stack);
 | |
| 	i = NUM2LONG(tmp);
 | |
| 	ary = rb_ary_pop(stack);
 | |
|     }
 | |
| 
 | |
|     st_free_table(memo);
 | |
| 
 | |
|     RBASIC(result)->klass = rb_class_of(ary);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.flatten!        -> ary or nil
 | |
|  *     ary.flatten!(level) -> array or nil
 | |
|  *
 | |
|  *  Flattens +self+ in place.
 | |
|  *  Returns <code>nil</code> if no modifications were made (i.e.,
 | |
|  *  <i>ary</i> contains no subarrays.)  If the optional <i>level</i>
 | |
|  *  argument determines the level of recursion to flatten.
 | |
|  *
 | |
|  *     a = [ 1, 2, [3, [4, 5] ] ]
 | |
|  *     a.flatten!   #=> [1, 2, 3, 4, 5]
 | |
|  *     a.flatten!   #=> nil
 | |
|  *     a            #=> [1, 2, 3, 4, 5]
 | |
|  *     a = [ 1, 2, [3, [4, 5] ] ]
 | |
|  *     a.flatten!(1) #=> [1, 2, 3, [4, 5]]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     int mod = 0, level = -1;
 | |
|     VALUE result, lv;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &lv);
 | |
|     rb_ary_modify_check(ary);
 | |
|     if (!NIL_P(lv)) level = NUM2INT(lv);
 | |
|     if (level == 0) return Qnil;
 | |
| 
 | |
|     result = flatten(ary, level, &mod);
 | |
|     if (mod == 0) {
 | |
| 	ary_discard(result);
 | |
| 	return Qnil;
 | |
|     }
 | |
|     if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result);
 | |
|     rb_ary_replace(ary, result);
 | |
|     if (mod) ARY_SET_EMBED_LEN(result, 0);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.flatten -> new_ary
 | |
|  *     ary.flatten(level) -> new_ary
 | |
|  *
 | |
|  *  Returns a new array that is a one-dimensional flattening of this
 | |
|  *  array (recursively). That is, for every element that is an array,
 | |
|  *  extract its elements into the new array.  If the optional
 | |
|  *  <i>level</i> argument determines the level of recursion to flatten.
 | |
|  *
 | |
|  *     s = [ 1, 2, 3 ]           #=> [1, 2, 3]
 | |
|  *     t = [ 4, 5, 6, [7, 8] ]   #=> [4, 5, 6, [7, 8]]
 | |
|  *     a = [ s, t, 9, 10 ]       #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
 | |
|  *     a.flatten                 #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 | |
|  *     a = [ 1, 2, [3, [4, 5] ] ]
 | |
|  *     a.flatten(1)              #=> [1, 2, 3, [4, 5]]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     int mod = 0, level = -1;
 | |
|     VALUE result, lv;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &lv);
 | |
|     if (!NIL_P(lv)) level = NUM2INT(lv);
 | |
|     if (level == 0) return ary_make_shared_copy(ary);
 | |
| 
 | |
|     result = flatten(ary, level, &mod);
 | |
|     OBJ_INFECT(result, ary);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #define OPTHASH_GIVEN_P(opts) \
 | |
|     (argc > 0 && !NIL_P((opts) = rb_check_hash_type(argv[argc-1])) && (--argc, 1))
 | |
| static VALUE sym_random;
 | |
| 
 | |
| #define RAND_UPTO(max) (long)(rb_random_real(randgen)*(max))
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.shuffle!              -> ary
 | |
|  *     ary.shuffle!(random: rng) -> ary
 | |
|  *
 | |
|  *  Shuffles elements in +self+ in place.
 | |
|  *  If +rng+ is given, it will be used as the random number generator.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_shuffle_bang(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE *ptr, opts, *snap_ptr, randgen = rb_cRandom;
 | |
|     long i, snap_len;
 | |
| 
 | |
|     if (OPTHASH_GIVEN_P(opts)) {
 | |
| 	randgen = rb_hash_lookup2(opts, sym_random, randgen);
 | |
|     }
 | |
|     if (argc > 0) {
 | |
| 	rb_raise(rb_eArgError, "wrong number of arguments (%d for 0)", argc);
 | |
|     }
 | |
|     rb_ary_modify(ary);
 | |
|     i = RARRAY_LEN(ary);
 | |
|     ptr = RARRAY_PTR(ary);
 | |
|     snap_len = i;
 | |
|     snap_ptr = ptr;
 | |
|     while (i) {
 | |
| 	long j = RAND_UPTO(i);
 | |
| 	VALUE tmp;
 | |
| 	if (snap_len != RARRAY_LEN(ary) || snap_ptr != RARRAY_PTR(ary)) {
 | |
| 	    rb_raise(rb_eRuntimeError, "modified during shuffle");
 | |
| 	}
 | |
| 	tmp = ptr[--i];
 | |
| 	ptr[i] = ptr[j];
 | |
| 	ptr[j] = tmp;
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.shuffle              -> new_ary
 | |
|  *     ary.shuffle(random: rng) -> new_ary
 | |
|  *
 | |
|  *  Returns a new array with elements of this array shuffled.
 | |
|  *
 | |
|  *     a = [ 1, 2, 3 ]           #=> [1, 2, 3]
 | |
|  *     a.shuffle                 #=> [2, 3, 1]
 | |
|  *
 | |
|  *  If +rng+ is given, it will be used as the random number generator.
 | |
|  *
 | |
|  *     a.shuffle(random: Random.new(1))  #=> [1, 3, 2]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_shuffle(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     ary = rb_ary_dup(ary);
 | |
|     rb_ary_shuffle_bang(argc, argv, ary);
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.sample                  -> obj
 | |
|  *     ary.sample(random: rng)     -> obj
 | |
|  *     ary.sample(n)               -> new_ary
 | |
|  *     ary.sample(n, random: rng)  -> new_ary
 | |
|  *
 | |
|  *  Choose a random element or +n+ random elements from the array. The elements
 | |
|  *  are chosen by using random and unique indices into the array in order to
 | |
|  *  ensure that an element doesn't repeat itself unless the array already
 | |
|  *  contained duplicate elements. If the array is empty the first form returns
 | |
|  *  <code>nil</code> and the second form returns an empty array.
 | |
|  *
 | |
|  *  If +rng+ is given, it will be used as the random number generator.
 | |
|  */
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_sample(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE nv, result, *ptr;
 | |
|     VALUE opts, randgen = rb_cRandom;
 | |
|     long n, len, i, j, k, idx[10];
 | |
|     double rnds[numberof(idx)];
 | |
| 
 | |
|     if (OPTHASH_GIVEN_P(opts)) {
 | |
| 	randgen = rb_hash_lookup2(opts, sym_random, randgen);
 | |
|     }
 | |
|     ptr = RARRAY_PTR(ary);
 | |
|     len = RARRAY_LEN(ary);
 | |
|     if (argc == 0) {
 | |
| 	if (len == 0) return Qnil;
 | |
| 	if (len == 1) {
 | |
| 	    i = 0;
 | |
| 	}
 | |
| 	else {
 | |
| 	    double x = rb_random_real(randgen);
 | |
| 	    if ((len = RARRAY_LEN(ary)) == 0) return Qnil;
 | |
| 	    i = (long)(x * len);
 | |
| 	}
 | |
| 	return RARRAY_PTR(ary)[i];
 | |
|     }
 | |
|     rb_scan_args(argc, argv, "1", &nv);
 | |
|     n = NUM2LONG(nv);
 | |
|     if (n < 0) rb_raise(rb_eArgError, "negative sample number");
 | |
|     if (n > len) n = len;
 | |
|     if (n <= numberof(idx)) {
 | |
| 	for (i = 0; i < n; ++i) {
 | |
| 	    rnds[i] = rb_random_real(randgen);
 | |
| 	}
 | |
|     }
 | |
|     len = RARRAY_LEN(ary);
 | |
|     ptr = RARRAY_PTR(ary);
 | |
|     if (n > len) n = len;
 | |
|     switch (n) {
 | |
|       case 0:
 | |
| 	return rb_ary_new2(0);
 | |
|       case 1:
 | |
| 	i = (long)(rnds[0] * len);
 | |
| 	return rb_ary_new4(1, &ptr[i]);
 | |
|       case 2:
 | |
| 	i = (long)(rnds[0] * len);
 | |
| 	j = (long)(rnds[1] * (len-1));
 | |
| 	if (j >= i) j++;
 | |
| 	return rb_ary_new3(2, ptr[i], ptr[j]);
 | |
|       case 3:
 | |
| 	i = (long)(rnds[0] * len);
 | |
| 	j = (long)(rnds[1] * (len-1));
 | |
| 	k = (long)(rnds[2] * (len-2));
 | |
| 	{
 | |
| 	    long l = j, g = i;
 | |
| 	    if (j >= i) l = i, g = ++j;
 | |
| 	    if (k >= l && (++k >= g)) ++k;
 | |
| 	}
 | |
| 	return rb_ary_new3(3, ptr[i], ptr[j], ptr[k]);
 | |
|     }
 | |
|     if (n <= numberof(idx)) {
 | |
| 	VALUE *ptr_result;
 | |
| 	long sorted[numberof(idx)];
 | |
| 	sorted[0] = idx[0] = (long)(rnds[0] * len);
 | |
| 	for (i=1; i<n; i++) {
 | |
| 	    k = (long)(rnds[i] * --len);
 | |
| 	    for (j = 0; j < i; ++j) {
 | |
| 		if (k < sorted[j]) break;
 | |
| 		++k;
 | |
| 	    }
 | |
| 	    memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j));
 | |
| 	    sorted[j] = idx[i] = k;
 | |
| 	}
 | |
| 	result = rb_ary_new2(n);
 | |
| 	ptr_result = RARRAY_PTR(result);
 | |
| 	for (i=0; i<n; i++) {
 | |
| 	    ptr_result[i] = ptr[idx[i]];
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	VALUE *ptr_result;
 | |
| 	result = rb_ary_new4(len, ptr);
 | |
| 	RBASIC(result)->klass = 0;
 | |
| 	ptr_result = RARRAY_PTR(result);
 | |
| 	RB_GC_GUARD(ary);
 | |
| 	for (i=0; i<n; i++) {
 | |
| 	    j = RAND_UPTO(len-i) + i;
 | |
| 	    nv = ptr_result[j];
 | |
| 	    ptr_result[j] = ptr_result[i];
 | |
| 	    ptr_result[i] = nv;
 | |
| 	}
 | |
| 	RBASIC(result)->klass = rb_cArray;
 | |
|     }
 | |
|     ARY_SET_LEN(result, n);
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.cycle(n=nil) {|obj| block }  -> nil
 | |
|  *     ary.cycle(n=nil)                 -> an_enumerator
 | |
|  *
 | |
|  *  Calls <i>block</i> for each element repeatedly _n_ times or
 | |
|  *  forever if none or +nil+ is given.  If a non-positive number is
 | |
|  *  given or the array is empty, does nothing.  Returns +nil+ if the
 | |
|  *  loop has finished without getting interrupted.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *
 | |
|  *     a = ["a", "b", "c"]
 | |
|  *     a.cycle {|x| puts x }  # print, a, b, c, a, b, c,.. forever.
 | |
|  *     a.cycle(2) {|x| puts x }  # print, a, b, c, a, b, c.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     long n, i;
 | |
|     VALUE nv = Qnil;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "01", &nv);
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, argc, argv);
 | |
|     if (NIL_P(nv)) {
 | |
|         n = -1;
 | |
|     }
 | |
|     else {
 | |
|         n = NUM2LONG(nv);
 | |
|         if (n <= 0) return Qnil;
 | |
|     }
 | |
| 
 | |
|     while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
 | |
|         for (i=0; i<RARRAY_LEN(ary); i++) {
 | |
|             rb_yield(RARRAY_PTR(ary)[i]);
 | |
|         }
 | |
|     }
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| #define tmpbuf(n, size) rb_str_tmp_new((n)*(size))
 | |
| #define tmpbuf_discard(s) (rb_str_resize((s), 0L), RBASIC(s)->klass = rb_cString)
 | |
| #define tmpary(n) rb_ary_tmp_new(n)
 | |
| #define tmpary_discard(a) (ary_discard(a), RBASIC(a)->klass = rb_cArray)
 | |
| 
 | |
| /*
 | |
|  * Recursively compute permutations of r elements of the set [0..n-1].
 | |
|  * When we have a complete permutation of array indexes, copy the values
 | |
|  * at those indexes into a new array and yield that array.
 | |
|  *
 | |
|  * n: the size of the set
 | |
|  * r: the number of elements in each permutation
 | |
|  * p: the array (of size r) that we're filling in
 | |
|  * index: what index we're filling in now
 | |
|  * used: an array of booleans: whether a given index is already used
 | |
|  * values: the Ruby array that holds the actual values to permute
 | |
|  */
 | |
| static void
 | |
| permute0(long n, long r, long *p, long index, char *used, VALUE values)
 | |
| {
 | |
|     long i,j;
 | |
|     for (i = 0; i < n; i++) {
 | |
| 	if (used[i] == 0) {
 | |
| 	    p[index] = i;
 | |
| 	    if (index < r-1) {             /* if not done yet */
 | |
| 		used[i] = 1;               /* mark index used */
 | |
| 		permute0(n, r, p, index+1, /* recurse */
 | |
| 			 used, values);
 | |
| 		used[i] = 0;               /* index unused */
 | |
| 	    }
 | |
| 	    else {
 | |
| 		/* We have a complete permutation of array indexes */
 | |
| 		/* Build a ruby array of the corresponding values */
 | |
| 		/* And yield it to the associated block */
 | |
| 		VALUE result = rb_ary_new2(r);
 | |
| 		VALUE *result_array = RARRAY_PTR(result);
 | |
| 		const VALUE *values_array = RARRAY_PTR(values);
 | |
| 
 | |
| 		for (j = 0; j < r; j++) result_array[j] = values_array[p[j]];
 | |
| 		ARY_SET_LEN(result, r);
 | |
| 		rb_yield(result);
 | |
| 		if (RBASIC(values)->klass) {
 | |
| 		    rb_raise(rb_eRuntimeError, "permute reentered");
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.permutation { |p| block }          -> ary
 | |
|  *     ary.permutation                        -> an_enumerator
 | |
|  *     ary.permutation(n) { |p| block }       -> ary
 | |
|  *     ary.permutation(n)                     -> an_enumerator
 | |
|  *
 | |
|  * When invoked with a block, yield all permutations of length <i>n</i>
 | |
|  * of the elements of <i>ary</i>, then return the array itself.
 | |
|  * If <i>n</i> is not specified, yield all permutations of all elements.
 | |
|  * The implementation makes no guarantees about the order in which
 | |
|  * the permutations are yielded.
 | |
|  *
 | |
|  * If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  * Examples:
 | |
|  *
 | |
|  *     a = [1, 2, 3]
 | |
|  *     a.permutation.to_a     #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
 | |
|  *     a.permutation(1).to_a  #=> [[1],[2],[3]]
 | |
|  *     a.permutation(2).to_a  #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
 | |
|  *     a.permutation(3).to_a  #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
 | |
|  *     a.permutation(0).to_a  #=> [[]] # one permutation of length 0
 | |
|  *     a.permutation(4).to_a  #=> []   # no permutations of length 4
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     VALUE num;
 | |
|     long r, n, i;
 | |
| 
 | |
|     n = RARRAY_LEN(ary);                  /* Array length */
 | |
|     RETURN_ENUMERATOR(ary, argc, argv);   /* Return enumerator if no block */
 | |
|     rb_scan_args(argc, argv, "01", &num);
 | |
|     r = NIL_P(num) ? n : NUM2LONG(num);   /* Permutation size from argument */
 | |
| 
 | |
|     if (r < 0 || n < r) {
 | |
| 	/* no permutations: yield nothing */
 | |
|     }
 | |
|     else if (r == 0) { /* exactly one permutation: the zero-length array */
 | |
| 	rb_yield(rb_ary_new2(0));
 | |
|     }
 | |
|     else if (r == 1) { /* this is a special, easy case */
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	    rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
 | |
| 	}
 | |
|     }
 | |
|     else {             /* this is the general case */
 | |
| 	volatile VALUE t0 = tmpbuf(n,sizeof(long));
 | |
| 	long *p = (long*)RSTRING_PTR(t0);
 | |
| 	volatile VALUE t1 = tmpbuf(n,sizeof(char));
 | |
| 	char *used = (char*)RSTRING_PTR(t1);
 | |
| 	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
 | |
| 	RBASIC(ary0)->klass = 0;
 | |
| 
 | |
| 	MEMZERO(used, char, n); /* initialize array */
 | |
| 
 | |
| 	permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */
 | |
| 	tmpbuf_discard(t0);
 | |
| 	tmpbuf_discard(t1);
 | |
| 	RBASIC(ary0)->klass = rb_cArray;
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.combination(n) { |c| block }    -> ary
 | |
|  *     ary.combination(n)                  -> an_enumerator
 | |
|  *
 | |
|  * When invoked with a block, yields all combinations of length <i>n</i>
 | |
|  * of elements from <i>ary</i> and then returns <i>ary</i> itself.
 | |
|  * The implementation makes no guarantees about the order in which
 | |
|  * the combinations are yielded.
 | |
|  *
 | |
|  * If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  * Examples:
 | |
|  *
 | |
|  *     a = [1, 2, 3, 4]
 | |
|  *     a.combination(1).to_a  #=> [[1],[2],[3],[4]]
 | |
|  *     a.combination(2).to_a  #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
 | |
|  *     a.combination(3).to_a  #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
 | |
|  *     a.combination(4).to_a  #=> [[1,2,3,4]]
 | |
|  *     a.combination(0).to_a  #=> [[]] # one combination of length 0
 | |
|  *     a.combination(5).to_a  #=> []   # no combinations of length 5
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_combination(VALUE ary, VALUE num)
 | |
| {
 | |
|     long n, i, len;
 | |
| 
 | |
|     n = NUM2LONG(num);
 | |
|     RETURN_ENUMERATOR(ary, 1, &num);
 | |
|     len = RARRAY_LEN(ary);
 | |
|     if (n < 0 || len < n) {
 | |
| 	/* yield nothing */
 | |
|     }
 | |
|     else if (n == 0) {
 | |
| 	rb_yield(rb_ary_new2(0));
 | |
|     }
 | |
|     else if (n == 1) {
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 	    rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	volatile VALUE t0 = tmpbuf(n+1, sizeof(long));
 | |
| 	long *stack = (long*)RSTRING_PTR(t0);
 | |
| 	volatile VALUE cc = tmpary(n);
 | |
| 	VALUE *chosen = RARRAY_PTR(cc);
 | |
| 	long lev = 0;
 | |
| 
 | |
| 	MEMZERO(stack, long, n);
 | |
| 	stack[0] = -1;
 | |
| 	for (;;) {
 | |
| 	    chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]];
 | |
| 	    for (lev++; lev < n; lev++) {
 | |
| 		chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1];
 | |
| 	    }
 | |
| 	    rb_yield(rb_ary_new4(n, chosen));
 | |
| 	    if (RBASIC(t0)->klass) {
 | |
| 		rb_raise(rb_eRuntimeError, "combination reentered");
 | |
| 	    }
 | |
| 	    do {
 | |
| 		if (lev == 0) goto done;
 | |
| 		stack[lev--]++;
 | |
| 	    } while (stack[lev+1]+n == len+lev+1);
 | |
| 	}
 | |
|     done:
 | |
| 	tmpbuf_discard(t0);
 | |
| 	tmpary_discard(cc);
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Recursively compute repeated permutations of r elements of the set
 | |
|  * [0..n-1].
 | |
|  * When we have a complete repeated permutation of array indexes, copy the
 | |
|  * values at those indexes into a new array and yield that array.
 | |
|  *
 | |
|  * n: the size of the set
 | |
|  * r: the number of elements in each permutation
 | |
|  * p: the array (of size r) that we're filling in
 | |
|  * index: what index we're filling in now
 | |
|  * values: the Ruby array that holds the actual values to permute
 | |
|  */
 | |
| static void
 | |
| rpermute0(long n, long r, long *p, long index, VALUE values)
 | |
| {
 | |
|     long i, j;
 | |
|     for (i = 0; i < n; i++) {
 | |
| 	p[index] = i;
 | |
| 	if (index < r-1) {              /* if not done yet */
 | |
| 	    rpermute0(n, r, p, index+1, values); /* recurse */
 | |
| 	}
 | |
| 	else {
 | |
| 	    /* We have a complete permutation of array indexes */
 | |
| 	    /* Build a ruby array of the corresponding values */
 | |
| 	    /* And yield it to the associated block */
 | |
| 	    VALUE result = rb_ary_new2(r);
 | |
| 	    VALUE *result_array = RARRAY_PTR(result);
 | |
| 	    const VALUE *values_array = RARRAY_PTR(values);
 | |
| 
 | |
| 	    for (j = 0; j < r; j++) result_array[j] = values_array[p[j]];
 | |
| 	    ARY_SET_LEN(result, r);
 | |
| 	    rb_yield(result);
 | |
| 	    if (RBASIC(values)->klass) {
 | |
| 		rb_raise(rb_eRuntimeError, "repeated permute reentered");
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.repeated_permutation(n) { |p| block } -> ary
 | |
|  *     ary.repeated_permutation(n)               -> an_enumerator
 | |
|  *
 | |
|  * When invoked with a block, yield all repeated permutations of length
 | |
|  * <i>n</i> of the elements of <i>ary</i>, then return the array itself.
 | |
|  * The implementation makes no guarantees about the order in which
 | |
|  * the repeated permutations are yielded.
 | |
|  *
 | |
|  * If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  * Examples:
 | |
|  *
 | |
|  *     a = [1, 2]
 | |
|  *     a.repeated_permutation(1).to_a  #=> [[1], [2]]
 | |
|  *     a.repeated_permutation(2).to_a  #=> [[1,1],[1,2],[2,1],[2,2]]
 | |
|  *     a.repeated_permutation(3).to_a  #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2],
 | |
|  *                                     #    [2,1,1],[2,1,2],[2,2,1],[2,2,2]]
 | |
|  *     a.repeated_permutation(0).to_a  #=> [[]] # one permutation of length 0
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_repeated_permutation(VALUE ary, VALUE num)
 | |
| {
 | |
|     long r, n, i;
 | |
| 
 | |
|     n = RARRAY_LEN(ary);                  /* Array length */
 | |
|     RETURN_ENUMERATOR(ary, 1, &num);      /* Return enumerator if no block */
 | |
|     r = NUM2LONG(num);                    /* Permutation size from argument */
 | |
| 
 | |
|     if (r < 0) {
 | |
| 	/* no permutations: yield nothing */
 | |
|     }
 | |
|     else if (r == 0) { /* exactly one permutation: the zero-length array */
 | |
| 	rb_yield(rb_ary_new2(0));
 | |
|     }
 | |
|     else if (r == 1) { /* this is a special, easy case */
 | |
| 	for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	    rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
 | |
| 	}
 | |
|     }
 | |
|     else {             /* this is the general case */
 | |
| 	volatile VALUE t0 = tmpbuf(r, sizeof(long));
 | |
| 	long *p = (long*)RSTRING_PTR(t0);
 | |
| 	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
 | |
| 	RBASIC(ary0)->klass = 0;
 | |
| 
 | |
| 	rpermute0(n, r, p, 0, ary0); /* compute and yield repeated permutations */
 | |
| 	tmpbuf_discard(t0);
 | |
| 	RBASIC(ary0)->klass = rb_cArray;
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| static void
 | |
| rcombinate0(long n, long r, long *p, long index, long rest, VALUE values)
 | |
| {
 | |
|     long j;
 | |
|     if (rest > 0) {
 | |
| 	for (; index < n; ++index) {
 | |
| 	    p[r-rest] = index;
 | |
| 	    rcombinate0(n, r, p, index, rest-1, values);
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	VALUE result = rb_ary_new2(r);
 | |
| 	VALUE *result_array = RARRAY_PTR(result);
 | |
| 	const VALUE *values_array = RARRAY_PTR(values);
 | |
| 
 | |
| 	for (j = 0; j < r; ++j) result_array[j] = values_array[p[j]];
 | |
| 	ARY_SET_LEN(result, r);
 | |
| 	rb_yield(result);
 | |
| 	if (RBASIC(values)->klass) {
 | |
| 	    rb_raise(rb_eRuntimeError, "repeated combination reentered");
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.repeated_combination(n) { |c| block } -> ary
 | |
|  *     ary.repeated_combination(n)               -> an_enumerator
 | |
|  *
 | |
|  * When invoked with a block, yields all repeated combinations of
 | |
|  * length <i>n</i> of elements from <i>ary</i> and then returns
 | |
|  * <i>ary</i> itself.
 | |
|  * The implementation makes no guarantees about the order in which
 | |
|  * the repeated combinations are yielded.
 | |
|  *
 | |
|  * If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  * Examples:
 | |
|  *
 | |
|  *     a = [1, 2, 3]
 | |
|  *     a.repeated_combination(1).to_a  #=> [[1], [2], [3]]
 | |
|  *     a.repeated_combination(2).to_a  #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]]
 | |
|  *     a.repeated_combination(3).to_a  #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],
 | |
|  *                                     #    [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]]
 | |
|  *     a.repeated_combination(4).to_a  #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],
 | |
|  *                                     #    [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],
 | |
|  *                                     #    [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]]
 | |
|  *     a.repeated_combination(0).to_a  #=> [[]] # one combination of length 0
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_repeated_combination(VALUE ary, VALUE num)
 | |
| {
 | |
|     long n, i, len;
 | |
| 
 | |
|     n = NUM2LONG(num);                 /* Combination size from argument */
 | |
|     RETURN_ENUMERATOR(ary, 1, &num);   /* Return enumerator if no block */
 | |
|     len = RARRAY_LEN(ary);
 | |
|     if (n < 0) {
 | |
| 	/* yield nothing */
 | |
|     }
 | |
|     else if (n == 0) {
 | |
| 	rb_yield(rb_ary_new2(0));
 | |
|     }
 | |
|     else if (n == 1) {
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 	    rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
 | |
| 	}
 | |
|     }
 | |
|     else if (len == 0) {
 | |
| 	/* yield nothing */
 | |
|     }
 | |
|     else {
 | |
| 	volatile VALUE t0 = tmpbuf(n, sizeof(long));
 | |
| 	long *p = (long*)RSTRING_PTR(t0);
 | |
| 	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
 | |
| 	RBASIC(ary0)->klass = 0;
 | |
| 
 | |
| 	rcombinate0(len, n, p, 0, n, ary0); /* compute and yield repeated combinations */
 | |
| 	tmpbuf_discard(t0);
 | |
| 	RBASIC(ary0)->klass = rb_cArray;
 | |
|     }
 | |
|     return ary;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.product(other_ary, ...)                -> new_ary
 | |
|  *     ary.product(other_ary, ...) { |p| block }  -> ary
 | |
|  *
 | |
|  *  Returns an array of all combinations of elements from all arrays,
 | |
|  *  The length of the returned array is the product of the length
 | |
|  *  of +self+ and the argument arrays.
 | |
|  *  If given a block, <i>product</i> will yield all combinations
 | |
|  *  and return +self+ instead.
 | |
|  *
 | |
|  *
 | |
|  *     [1,2,3].product([4,5])     #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
 | |
|  *     [1,2].product([1,2])       #=> [[1,1],[1,2],[2,1],[2,2]]
 | |
|  *     [1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
 | |
|  *                                #     [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
 | |
|  *     [1,2].product()            #=> [[1],[2]]
 | |
|  *     [1,2].product([])          #=> []
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_product(int argc, VALUE *argv, VALUE ary)
 | |
| {
 | |
|     int n = argc+1;    /* How many arrays we're operating on */
 | |
|     volatile VALUE t0 = tmpary(n);
 | |
|     volatile VALUE t1 = tmpbuf(n, sizeof(int));
 | |
|     VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
 | |
|     int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */
 | |
|     VALUE result = Qnil;      /* The array we'll be returning, when no block given */
 | |
|     long i,j;
 | |
|     long resultlen = 1;
 | |
| 
 | |
|     RBASIC(t0)->klass = 0;
 | |
|     RBASIC(t1)->klass = 0;
 | |
| 
 | |
|     /* initialize the arrays of arrays */
 | |
|     ARY_SET_LEN(t0, n);
 | |
|     arrays[0] = ary;
 | |
|     for (i = 1; i < n; i++) arrays[i] = Qnil;
 | |
|     for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
 | |
| 
 | |
|     /* initialize the counters for the arrays */
 | |
|     for (i = 0; i < n; i++) counters[i] = 0;
 | |
| 
 | |
|     /* Otherwise, allocate and fill in an array of results */
 | |
|     if (rb_block_given_p()) {
 | |
| 	/* Make defensive copies of arrays; exit if any is empty */
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 	    if (RARRAY_LEN(arrays[i]) == 0) goto done;
 | |
| 	    arrays[i] = ary_make_shared_copy(arrays[i]);
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	/* Compute the length of the result array; return [] if any is empty */
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 	    long k = RARRAY_LEN(arrays[i]), l = resultlen;
 | |
| 	    if (k == 0) {
 | |
| 		result = rb_ary_new2(0);
 | |
| 		goto done;
 | |
| 	    }
 | |
| 	    resultlen *= k;
 | |
| 	    if (resultlen < k || resultlen < l || resultlen / k != l) {
 | |
| 		rb_raise(rb_eRangeError, "too big to product");
 | |
| 	    }
 | |
| 	}
 | |
| 	result = rb_ary_new2(resultlen);
 | |
|     }
 | |
|     for (;;) {
 | |
| 	int m;
 | |
| 	/* fill in one subarray */
 | |
| 	VALUE subarray = rb_ary_new2(n);
 | |
| 	for (j = 0; j < n; j++) {
 | |
| 	    rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
 | |
| 	}
 | |
| 
 | |
| 	/* put it on the result array */
 | |
| 	if(NIL_P(result)) {
 | |
| 	    FL_SET(t0, FL_USER5);
 | |
| 	    rb_yield(subarray);
 | |
| 	    if (! FL_TEST(t0, FL_USER5)) {
 | |
| 		rb_raise(rb_eRuntimeError, "product reentered");
 | |
| 	    }
 | |
| 	    else {
 | |
| 		FL_UNSET(t0, FL_USER5);
 | |
| 	    }
 | |
| 	}
 | |
| 	else {
 | |
| 	    rb_ary_push(result, subarray);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Increment the last counter.  If it overflows, reset to 0
 | |
| 	 * and increment the one before it.
 | |
| 	 */
 | |
| 	m = n-1;
 | |
| 	counters[m]++;
 | |
| 	while (counters[m] == RARRAY_LEN(arrays[m])) {
 | |
| 	    counters[m] = 0;
 | |
| 	    /* If the first counter overflows, we are done */
 | |
| 	    if (--m < 0) goto done;
 | |
| 	    counters[m]++;
 | |
| 	}
 | |
|     }
 | |
| done:
 | |
|     tmpary_discard(t0);
 | |
|     tmpbuf_discard(t1);
 | |
| 
 | |
|     return NIL_P(result) ? ary : result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.take(n)               -> new_ary
 | |
|  *
 | |
|  *  Returns first n elements from <i>ary</i>.
 | |
|  *
 | |
|  *     a = [1, 2, 3, 4, 5, 0]
 | |
|  *     a.take(3)             #=> [1, 2, 3]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_take(VALUE obj, VALUE n)
 | |
| {
 | |
|     long len = NUM2LONG(n);
 | |
|     if (len < 0) {
 | |
| 	rb_raise(rb_eArgError, "attempt to take negative size");
 | |
|     }
 | |
|     return rb_ary_subseq(obj, 0, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.take_while {|arr| block }   -> new_ary
 | |
|  *     ary.take_while                  -> an_enumerator
 | |
|  *
 | |
|  *  Passes elements to the block until the block returns +nil+ or +false+,
 | |
|  *  then stops iterating and returns an array of all prior elements.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = [1, 2, 3, 4, 5, 0]
 | |
|  *     a.take_while {|i| i < 3 }   #=> [1, 2]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_take_while(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
 | |
|     }
 | |
|     return rb_ary_take(ary, LONG2FIX(i));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.drop(n)               -> new_ary
 | |
|  *
 | |
|  *  Drops first n elements from <i>ary</i>, and returns rest elements
 | |
|  *  in an array.
 | |
|  *
 | |
|  *     a = [1, 2, 3, 4, 5, 0]
 | |
|  *     a.drop(3)             #=> [4, 5, 0]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_drop(VALUE ary, VALUE n)
 | |
| {
 | |
|     VALUE result;
 | |
|     long pos = NUM2LONG(n);
 | |
|     if (pos < 0) {
 | |
| 	rb_raise(rb_eArgError, "attempt to drop negative size");
 | |
|     }
 | |
| 
 | |
|     result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
 | |
|     if (result == Qnil) result = rb_ary_new();
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     ary.drop_while {|arr| block }   -> new_ary
 | |
|  *     ary.drop_while                  -> an_enumerator
 | |
|  *
 | |
|  *  Drops elements up to, but not including, the first element for
 | |
|  *  which the block returns +nil+ or +false+ and returns an array
 | |
|  *  containing the remaining elements.
 | |
|  *
 | |
|  *  If no block is given, an enumerator is returned instead.
 | |
|  *
 | |
|  *     a = [1, 2, 3, 4, 5, 0]
 | |
|  *     a.drop_while {|i| i < 3 }   #=> [3, 4, 5, 0]
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_ary_drop_while(VALUE ary)
 | |
| {
 | |
|     long i;
 | |
| 
 | |
|     RETURN_ENUMERATOR(ary, 0, 0);
 | |
|     for (i = 0; i < RARRAY_LEN(ary); i++) {
 | |
| 	if (!RTEST(rb_yield(RARRAY_PTR(ary)[i]))) break;
 | |
|     }
 | |
|     return rb_ary_drop(ary, LONG2FIX(i));
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Arrays are ordered, integer-indexed collections of any object.
 | |
|  * Array indexing starts at 0, as in C or Java.  A negative index is
 | |
|  * assumed to be relative to the end of the array---that is, an index of -1
 | |
|  * indicates the last element of the array, -2 is the next to last
 | |
|  * element in the array, and so on.
 | |
|  */
 | |
| 
 | |
| void
 | |
| Init_Array(void)
 | |
| {
 | |
| #undef rb_intern
 | |
| #define rb_intern(str) rb_intern_const(str)
 | |
| 
 | |
|     rb_cArray  = rb_define_class("Array", rb_cObject);
 | |
|     rb_include_module(rb_cArray, rb_mEnumerable);
 | |
| 
 | |
|     rb_define_alloc_func(rb_cArray, ary_alloc);
 | |
|     rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1);
 | |
|     rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1);
 | |
|     rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1);
 | |
|     rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0);
 | |
|     rb_define_alias(rb_cArray,  "to_s", "inspect");
 | |
|     rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0);
 | |
|     rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0);
 | |
|     rb_define_method(rb_cArray, "frozen?",  rb_ary_frozen_p, 0);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "==", rb_ary_equal, 1);
 | |
|     rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1);
 | |
|     rb_define_method(rb_cArray, "hash", rb_ary_hash, 0);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "[]", rb_ary_aref, -1);
 | |
|     rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1);
 | |
|     rb_define_method(rb_cArray, "at", rb_ary_at, 1);
 | |
|     rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1);
 | |
|     rb_define_method(rb_cArray, "first", rb_ary_first, -1);
 | |
|     rb_define_method(rb_cArray, "last", rb_ary_last, -1);
 | |
|     rb_define_method(rb_cArray, "concat", rb_ary_concat, 1);
 | |
|     rb_define_method(rb_cArray, "<<", rb_ary_push, 1);
 | |
|     rb_define_method(rb_cArray, "push", rb_ary_push_m, -1);
 | |
|     rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1);
 | |
|     rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1);
 | |
|     rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1);
 | |
|     rb_define_method(rb_cArray, "insert", rb_ary_insert, -1);
 | |
|     rb_define_method(rb_cArray, "each", rb_ary_each, 0);
 | |
|     rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0);
 | |
|     rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0);
 | |
|     rb_define_method(rb_cArray, "length", rb_ary_length, 0);
 | |
|     rb_define_alias(rb_cArray,  "size", "length");
 | |
|     rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0);
 | |
|     rb_define_method(rb_cArray, "find_index", rb_ary_index, -1);
 | |
|     rb_define_method(rb_cArray, "index", rb_ary_index, -1);
 | |
|     rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1);
 | |
|     rb_define_method(rb_cArray, "join", rb_ary_join_m, -1);
 | |
|     rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0);
 | |
|     rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0);
 | |
|     rb_define_method(rb_cArray, "rotate", rb_ary_rotate_m, -1);
 | |
|     rb_define_method(rb_cArray, "rotate!", rb_ary_rotate_bang, -1);
 | |
|     rb_define_method(rb_cArray, "sort", rb_ary_sort, 0);
 | |
|     rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0);
 | |
|     rb_define_method(rb_cArray, "sort_by!", rb_ary_sort_by_bang, 0);
 | |
|     rb_define_method(rb_cArray, "collect", rb_ary_collect, 0);
 | |
|     rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0);
 | |
|     rb_define_method(rb_cArray, "map", rb_ary_collect, 0);
 | |
|     rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0);
 | |
|     rb_define_method(rb_cArray, "select", rb_ary_select, 0);
 | |
|     rb_define_method(rb_cArray, "select!", rb_ary_select_bang, 0);
 | |
|     rb_define_method(rb_cArray, "keep_if", rb_ary_keep_if, 0);
 | |
|     rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1);
 | |
|     rb_define_method(rb_cArray, "delete", rb_ary_delete, 1);
 | |
|     rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1);
 | |
|     rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0);
 | |
|     rb_define_method(rb_cArray, "reject", rb_ary_reject, 0);
 | |
|     rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0);
 | |
|     rb_define_method(rb_cArray, "zip", rb_ary_zip, -1);
 | |
|     rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0);
 | |
|     rb_define_method(rb_cArray, "replace", rb_ary_replace, 1);
 | |
|     rb_define_method(rb_cArray, "clear", rb_ary_clear, 0);
 | |
|     rb_define_method(rb_cArray, "fill", rb_ary_fill, -1);
 | |
|     rb_define_method(rb_cArray, "include?", rb_ary_includes, 1);
 | |
|     rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "slice", rb_ary_aref, -1);
 | |
|     rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1);
 | |
|     rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "+", rb_ary_plus, 1);
 | |
|     rb_define_method(rb_cArray, "*", rb_ary_times, 1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "-", rb_ary_diff, 1);
 | |
|     rb_define_method(rb_cArray, "&", rb_ary_and, 1);
 | |
|     rb_define_method(rb_cArray, "|", rb_ary_or, 1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0);
 | |
|     rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0);
 | |
|     rb_define_method(rb_cArray, "compact", rb_ary_compact, 0);
 | |
|     rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0);
 | |
|     rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1);
 | |
|     rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1);
 | |
|     rb_define_method(rb_cArray, "count", rb_ary_count, -1);
 | |
|     rb_define_method(rb_cArray, "shuffle!", rb_ary_shuffle_bang, -1);
 | |
|     rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, -1);
 | |
|     rb_define_method(rb_cArray, "sample", rb_ary_sample, -1);
 | |
|     rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1);
 | |
|     rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1);
 | |
|     rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
 | |
|     rb_define_method(rb_cArray, "repeated_permutation", rb_ary_repeated_permutation, 1);
 | |
|     rb_define_method(rb_cArray, "repeated_combination", rb_ary_repeated_combination, 1);
 | |
|     rb_define_method(rb_cArray, "product", rb_ary_product, -1);
 | |
| 
 | |
|     rb_define_method(rb_cArray, "take", rb_ary_take, 1);
 | |
|     rb_define_method(rb_cArray, "take_while", rb_ary_take_while, 0);
 | |
|     rb_define_method(rb_cArray, "drop", rb_ary_drop, 1);
 | |
|     rb_define_method(rb_cArray, "drop_while", rb_ary_drop_while, 0);
 | |
| 
 | |
|     id_cmp = rb_intern("<=>");
 | |
|     sym_random = ID2SYM(rb_intern("random"));
 | |
| }
 |