1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/spec/syntax_suggest/fixtures/syntax_tree.rb.txt
2022-08-26 12:15:47 +09:00

9234 lines
212 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# frozen_string_literal: true
require 'ripper'
require_relative 'syntax_tree/version'
class SyntaxTree < Ripper
# Represents a line in the source. If this class is being used, it means that
# every character in the string is 1 byte in length, so we can just return the
# start of the line + the index.
class SingleByteString
def initialize(start)
@start = start
end
def [](byteindex)
@start + byteindex
end
end
# Represents a line in the source. If this class is being used, it means that
# there are characters in the string that are multi-byte, so we will build up
# an array of indices, such that array[byteindex] will be equal to the index
# of the character within the string.
class MultiByteString
def initialize(start, line)
@indices = []
line
.each_char
.with_index(start) do |char, index|
char.bytesize.times { @indices << index }
end
end
def [](byteindex)
@indices[byteindex]
end
end
# Represents the location of a node in the tree from the source code.
class Location
attr_reader :start_line, :start_char, :end_line, :end_char
def initialize(start_line:, start_char:, end_line:, end_char:)
@start_line = start_line
@start_char = start_char
@end_line = end_line
@end_char = end_char
end
def ==(other)
other.is_a?(Location) && start_line == other.start_line &&
start_char == other.start_char && end_line == other.end_line &&
end_char == other.end_char
end
def to(other)
Location.new(
start_line: start_line,
start_char: start_char,
end_line: other.end_line,
end_char: other.end_char
)
end
def to_json(*opts)
[start_line, start_char, end_line, end_char].to_json(*opts)
end
def self.token(line:, char:, size:)
new(
start_line: line,
start_char: char,
end_line: line,
end_char: char + size
)
end
def self.fixed(line:, char:)
new(start_line: line, start_char: char, end_line: line, end_char: char)
end
end
# A special parser error so that we can get nice syntax displays on the error
# message when prettier prints out the results.
class ParseError < StandardError
attr_reader :lineno, :column
def initialize(error, lineno, column)
super(error)
@lineno = lineno
@column = column
end
end
attr_reader :source, :lines, :tokens
# This is an attr_accessor so Stmts objects can grab comments out of this
# array and attach them to themselves.
attr_accessor :comments
def initialize(source, *)
super
# We keep the source around so that we can refer back to it when we're
# generating the AST. Sometimes it's easier to just reference the source
# string when you want to check if it contains a certain character, for
# example.
@source = source
# Similarly, we keep the lines of the source string around to be able to
# check if certain lines contain certain characters. For example, we'll use
# this to generate the content that goes after the __END__ keyword. Or we'll
# use this to check if a comment has other content on its line.
@lines = source.split("\n")
# This is the full set of comments that have been found by the parser. It's
# a running list. At the end of every block of statements, they will go in
# and attempt to grab any comments that are on their own line and turn them
# into regular statements. So at the end of parsing the only comments left
# in here will be comments on lines that also contain code.
@comments = []
# This is the current embdoc (comments that start with =begin and end with
# =end). Since they can't be nested, there's no need for a stack here, as
# there can only be one active. These end up getting dumped into the
# comments list before getting picked up by the statements that surround
# them.
@embdoc = nil
# This is an optional node that can be present if the __END__ keyword is
# used in the file. In that case, this will represent the content after that
# keyword.
@__end__ = nil
# Heredocs can actually be nested together if you're using interpolation, so
# this is a stack of heredoc nodes that are currently being created. When we
# get to the token that finishes off a heredoc node, we pop the top
# one off. If there are others surrounding it, then the body events will now
# be added to the correct nodes.
@heredocs = []
# This is a running list of tokens that have fired. It's useful
# mostly for maintaining location information. For example, if you're inside
# the handle of a def event, then in order to determine where the AST node
# started, you need to look backward in the tokens to find a def
# keyword. Most of the time, when a parser event consumes one of these
# events, it will be deleted from the list. So ideally, this list stays
# pretty short over the course of parsing a source string.
@tokens = []
# Here we're going to build up a list of SingleByteString or MultiByteString
# objects. They're each going to represent a string in the source. They are
# used by the `char_pos` method to determine where we are in the source
# string.
@line_counts = []
last_index = 0
@source.lines.each do |line|
if line.size == line.bytesize
@line_counts << SingleByteString.new(last_index)
else
@line_counts << MultiByteString.new(last_index, line)
end
last_index += line.size
end
end
def self.parse(source)
parser = new(source)
response = parser.parse
response unless parser.error?
end
private
# ----------------------------------------------------------------------------
# :section: Helper methods
# The following methods are used by the ripper event handlers to either
# determine their bounds or query other nodes.
# ----------------------------------------------------------------------------
# This represents the current place in the source string that we've gotten to
# so far. We have a memoized line_counts object that we can use to get the
# number of characters that we've had to go through to get to the beginning of
# this line, then we add the number of columns into this line that we've gone
# through.
def char_pos
@line_counts[lineno - 1][column]
end
# As we build up a list of tokens, we'll periodically need to go backwards and
# find the ones that we've already hit in order to determine the location
# information for nodes that use them. For example, if you have a module node
# then you'll look backward for a kw token to determine your start location.
#
# This works with nesting since we're deleting tokens from the list once
# they've been used up. For example if you had nested module declarations then
# the innermost declaration would grab the last kw node that matches "module"
# (which would happen to be the innermost keyword). Then the outer one would
# only be able to grab the first one. In this way all of the tokens act as
# their own stack.
def find_token(type, value = :any, consume: true)
index =
tokens.rindex do |token|
token.is_a?(type) && (value == :any || (token.value == value))
end
if consume
# If we're expecting to be able to find a token and consume it,
# but can't actually find it, then we need to raise an error. This is
# _usually_ caused by a syntax error in the source that we're printing. It
# could also be caused by accidentally attempting to consume a token twice
# by two different parser event handlers.
unless index
message = "Cannot find expected #{value == :any ? type : value}"
raise ParseError.new(message, lineno, column)
end
tokens.delete_at(index)
elsif index
tokens[index]
end
end
# A helper function to find a :: operator. We do special handling instead of
# using find_token here because we don't pop off all of the ::
# operators so you could end up getting the wrong information if you have for
# instance ::X::Y::Z.
def find_colon2_before(const)
index =
tokens.rindex do |token|
token.is_a?(Op) && token.value == '::' &&
token.location.start_char < const.location.start_char
end
tokens[index]
end
# Finds the next position in the source string that begins a statement. This
# is used to bind statements lists and make sure they don't include a
# preceding comment. For example, we want the following comment to be attached
# to the class node and not the statement node:
#
# class Foo # :nodoc:
# ...
# end
#
# By finding the next non-space character, we can make sure that the bounds of
# the statement list are correct.
def find_next_statement_start(position)
remaining = source[position..-1]
if remaining.sub(/\A +/, '')[0] == '#'
return position + remaining.index("\n")
end
position
end
# ----------------------------------------------------------------------------
# :section: Ripper event handlers
# The following methods all handle a dispatched ripper event.
# ----------------------------------------------------------------------------
# BEGINBlock represents the use of the +BEGIN+ keyword, which hooks into the
# lifecycle of the interpreter. Whatever is inside the block will get executed
# when the program starts.
#
# BEGIN {
# }
#
# Interestingly, the BEGIN keyword doesn't allow the do and end keywords for
# the block. Only braces are permitted.
class BEGINBlock
# [LBrace] the left brace that is seen after the keyword
attr_reader :lbrace
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(lbrace:, statements:, location:)
@lbrace = lbrace
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('BEGIN')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :BEGIN,
lbrace: lbrace,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_BEGIN: (Statements statements) -> BEGINBlock
def on_BEGIN(statements)
lbrace = find_token(LBrace)
rbrace = find_token(RBrace)
statements.bind(
find_next_statement_start(lbrace.location.end_char),
rbrace.location.start_char
)
keyword = find_token(Kw, 'BEGIN')
BEGINBlock.new(
lbrace: lbrace,
statements: statements,
location: keyword.location.to(rbrace.location)
)
end
# CHAR irepresents a single codepoint in the script encoding.
#
# ?a
#
# In the example above, the CHAR node represents the string literal "a". You
# can use control characters with this as well, as in ?\C-a.
class CHAR
# [String] the value of the character literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('CHAR')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :CHAR, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_CHAR: (String value) -> CHAR
def on_CHAR(value)
node =
CHAR.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# ENDBlock represents the use of the +END+ keyword, which hooks into the
# lifecycle of the interpreter. Whatever is inside the block will get executed
# when the program ends.
#
# END {
# }
#
# Interestingly, the END keyword doesn't allow the do and end keywords for the
# block. Only braces are permitted.
class ENDBlock
# [LBrace] the left brace that is seen after the keyword
attr_reader :lbrace
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(lbrace:, statements:, location:)
@lbrace = lbrace
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('END')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{ type: :END, lbrace: lbrace, stmts: statements, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_END: (Statements statements) -> ENDBlock
def on_END(statements)
lbrace = find_token(LBrace)
rbrace = find_token(RBrace)
statements.bind(
find_next_statement_start(lbrace.location.end_char),
rbrace.location.start_char
)
keyword = find_token(Kw, 'END')
ENDBlock.new(
lbrace: lbrace,
statements: statements,
location: keyword.location.to(rbrace.location)
)
end
# EndContent represents the use of __END__ syntax, which allows individual
# scripts to keep content after the main ruby code that can be read through
# the DATA constant.
#
# puts DATA.read
#
# __END__
# some other content that is not executed by the program
#
class EndContent
# [String] the content after the script
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('__end__')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :__end__, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on___end__: (String value) -> EndContent
def on___end__(value)
@__end__ =
EndContent.new(
value: lines[lineno..-1].join("\n"),
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
end
# Alias represents the use of the +alias+ keyword with regular arguments (not
# global variables). The +alias+ keyword is used to make a method respond to
# another name as well as the current one.
#
# alias aliased_name name
#
# For the example above, in the current context you can now call aliased_name
# and it will execute the name method. When you're aliasing two methods, you
# can either provide bare words (like the example above) or you can provide
# symbols (note that this includes dynamic symbols like
# :"left-#{middle}-right").
class Alias
# [DynaSymbol | SymbolLiteral] the new name of the method
attr_reader :left
# [DynaSymbol | SymbolLiteral] the old name of the method
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, right:, location:)
@left = left
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('alias')
q.breakable
q.pp(left)
q.breakable
q.pp(right)
end
end
def to_json(*opts)
{ type: :alias, left: left, right: right, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_alias: (
# (DynaSymbol | SymbolLiteral) left,
# (DynaSymbol | SymbolLiteral) right
# ) -> Alias
def on_alias(left, right)
keyword = find_token(Kw, 'alias')
Alias.new(
left: left,
right: right,
location: keyword.location.to(right.location)
)
end
# ARef represents when you're pulling a value out of a collection at a
# specific index. Put another way, it's any time you're calling the method
# #[].
#
# collection[index]
#
# The nodes usually contains two children, the collection and the index. In
# some cases, you don't necessarily have the second child node, because you
# can call procs with a pretty esoteric syntax. In the following example, you
# wouldn't have a second child node:
#
# collection[]
#
class ARef
# [untyped] the value being indexed
attr_reader :collection
# [nil | Args | ArgsAddBlock] the value being passed within the brackets
attr_reader :index
# [Location] the location of this node
attr_reader :location
def initialize(collection:, index:, location:)
@collection = collection
@index = index
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('aref')
q.breakable
q.pp(collection)
q.breakable
q.pp(index)
end
end
def to_json(*opts)
{
type: :aref,
collection: collection,
index: index,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_aref: (untyped collection, (nil | Args | ArgsAddBlock) index) -> ARef
def on_aref(collection, index)
find_token(LBracket)
rbracket = find_token(RBracket)
ARef.new(
collection: collection,
index: index,
location: collection.location.to(rbracket.location)
)
end
# ARefField represents assigning values into collections at specific indices.
# Put another way, it's any time you're calling the method #[]=. The
# ARefField node itself is just the left side of the assignment, and they're
# always wrapped in assign nodes.
#
# collection[index] = value
#
class ARefField
# [untyped] the value being indexed
attr_reader :collection
# [nil | ArgsAddBlock] the value being passed within the brackets
attr_reader :index
# [Location] the location of this node
attr_reader :location
def initialize(collection:, index:, location:)
@collection = collection
@index = index
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('aref_field')
q.breakable
q.pp(collection)
q.breakable
q.pp(index)
end
end
def to_json(*opts)
{
type: :aref_field,
collection: collection,
index: index,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_aref_field: (
# untyped collection,
# (nil | ArgsAddBlock) index
# ) -> ARefField
def on_aref_field(collection, index)
find_token(LBracket)
rbracket = find_token(RBracket)
ARefField.new(
collection: collection,
index: index,
location: collection.location.to(rbracket.location)
)
end
# def on_arg_ambiguous(value)
# value
# end
# ArgParen represents wrapping arguments to a method inside a set of
# parentheses.
#
# method(argument)
#
# In the example above, there would be an ArgParen node around the
# ArgsAddBlock node that represents the set of arguments being sent to the
# method method. The argument child node can be +nil+ if no arguments were
# passed, as in:
#
# method()
#
class ArgParen
# [nil | Args | ArgsAddBlock | ArgsForward] the arguments inside the
# parentheses
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('arg_paren')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :arg_paren, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_arg_paren: (
# (nil | Args | ArgsAddBlock | ArgsForward) arguments
# ) -> ArgParen
def on_arg_paren(arguments)
lparen = find_token(LParen)
rparen = find_token(RParen)
# If the arguments exceed the ending of the parentheses, then we know we
# have a heredoc in the arguments, and we need to use the bounds of the
# arguments to determine how large the arg_paren is.
ending =
if arguments && arguments.location.end_line > rparen.location.end_line
arguments
else
rparen
end
ArgParen.new(
arguments: arguments,
location: lparen.location.to(ending.location)
)
end
# Args represents a list of arguments being passed to a method call or array
# literal.
#
# method(first, second, third)
#
class Args
# [Array[ untyped ]] the arguments that this node wraps
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('args')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :args, parts: parts, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_args_add: (Args arguments, untyped argument) -> Args
def on_args_add(arguments, argument)
if arguments.parts.empty?
# If this is the first argument being passed into the list of arguments,
# then we're going to use the bounds of the argument to override the
# parent node's location since this will be more accurate.
Args.new(parts: [argument], location: argument.location)
else
# Otherwise we're going to update the existing list with the argument
# being added as well as the new end bounds.
Args.new(
parts: arguments.parts << argument,
location: arguments.location.to(argument.location)
)
end
end
# ArgsAddBlock represents a list of arguments and potentially a block
# argument. ArgsAddBlock is commonly seen being passed to any method where you
# use parentheses (wrapped in an ArgParen node). Its also used to pass
# arguments to the various control-flow keywords like +return+.
#
# method(argument, &block)
#
class ArgsAddBlock
# [Args] the arguments before the optional block
attr_reader :arguments
# [nil | untyped] the optional block argument
attr_reader :block
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, block:, location:)
@arguments = arguments
@block = block
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('args_add_block')
q.breakable
q.pp(arguments)
q.breakable
q.pp(block)
end
end
def to_json(*opts)
{
type: :args_add_block,
args: arguments,
block: block,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_args_add_block: (
# Args arguments,
# (false | untyped) block
# ) -> ArgsAddBlock
def on_args_add_block(arguments, block)
ending = block || arguments
ArgsAddBlock.new(
arguments: arguments,
block: block || nil,
location: arguments.location.to(ending.location)
)
end
# Star represents using a splat operator on an expression.
#
# method(*arguments)
#
class ArgStar
# [untyped] the expression being splatted
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('arg_star')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :arg_star, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_args_add_star: (Args arguments, untyped star) -> Args
def on_args_add_star(arguments, argument)
beginning = find_token(Op, '*')
ending = argument || beginning
location =
if arguments.parts.empty?
ending.location
else
arguments.location.to(ending.location)
end
arg_star =
ArgStar.new(
value: argument,
location: beginning.location.to(ending.location)
)
Args.new(parts: arguments.parts << arg_star, location: location)
end
# ArgsForward represents forwarding all kinds of arguments onto another method
# call.
#
# def request(method, path, **headers, &block); end
#
# def get(...)
# request(:GET, ...)
# end
#
# def post(...)
# request(:POST, ...)
# end
#
# In the example above, both the get and post methods are forwarding all of
# their arguments (positional, keyword, and block) on to the request method.
# The ArgsForward node appears in both the caller (the request method calls)
# and the callee (the get and post definitions).
class ArgsForward
# [String] the value of the operator
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('args_forward')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :args_forward, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_args_forward: () -> ArgsForward
def on_args_forward
op = find_token(Op, '...')
ArgsForward.new(value: op.value, location: op.location)
end
# :call-seq:
# on_args_new: () -> Args
def on_args_new
Args.new(parts: [], location: Location.fixed(line: lineno, char: char_pos))
end
# ArrayLiteral represents any form of an array literal, and contains myriad
# child nodes because of the special array literal syntax like %w and %i.
#
# []
# [one, two, three]
# [*one_two_three]
# %i[one two three]
# %w[one two three]
# %I[one two three]
# %W[one two three]
#
# Every line in the example above produces an ArrayLiteral node. In order, the
# child contents node of this ArrayLiteral node would be nil, Args, QSymbols,
# QWords, Symbols, and Words.
class ArrayLiteral
# [nil | Args | QSymbols | QWords | Symbols | Words] the
# contents of the array
attr_reader :contents
# [Location] the location of this node
attr_reader :location
def initialize(contents:, location:)
@contents = contents
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('array')
q.breakable
q.pp(contents)
end
end
def to_json(*opts)
{ type: :array, cnts: contents, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_array: (
# (nil | Args | QSymbols | QWords | Symbols | Words) contents
# ) -> ArrayLiteral
def on_array(contents)
if !contents || contents.is_a?(Args)
lbracket = find_token(LBracket)
rbracket = find_token(RBracket)
ArrayLiteral.new(
contents: contents,
location: lbracket.location.to(rbracket.location)
)
else
tstring_end = find_token(TStringEnd)
contents =
contents.class.new(
elements: contents.elements,
location: contents.location.to(tstring_end.location)
)
ArrayLiteral.new(contents: contents, location: contents.location)
end
end
# AryPtn represents matching against an array pattern using the Ruby 2.7+
# pattern matching syntax. Its one of the more complicated nodes, because
# the four parameters that it accepts can almost all be nil.
#
# case [1, 2, 3]
# in [Integer, Integer]
# "matched"
# in Container[Integer, Integer]
# "matched"
# in [Integer, *, Integer]
# "matched"
# end
#
# An AryPtn node is created with four parameters: an optional constant
# wrapper, an array of positional matches, an optional splat with identifier,
# and an optional array of positional matches that occur after the splat.
# All of the in clauses above would create an AryPtn node.
class AryPtn
# [nil | VarRef] the optional constant wrapper
attr_reader :constant
# [Array[ untyped ]] the regular positional arguments that this array
# pattern is matching against
attr_reader :requireds
# [nil | VarField] the optional starred identifier that grabs up a list of
# positional arguments
attr_reader :rest
# [Array[ untyped ]] the list of positional arguments occurring after the
# optional star if there is one
attr_reader :posts
# [Location] the location of this node
attr_reader :location
def initialize(constant:, requireds:, rest:, posts:, location:)
@constant = constant
@requireds = requireds
@rest = rest
@posts = posts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('aryptn')
if constant
q.breakable
q.pp(constant)
end
if requireds.any?
q.breakable
q.group(2, '(', ')') do
q.seplist(requireds) { |required| q.pp(required) }
end
end
if rest
q.breakable
q.pp(rest)
end
if posts.any?
q.breakable
q.group(2, '(', ')') { q.seplist(posts) { |post| q.pp(post) } }
end
end
end
def to_json(*opts)
{
type: :aryptn,
constant: constant,
reqs: requireds,
rest: rest,
posts: posts,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_aryptn: (
# (nil | VarRef) constant,
# (nil | Array[untyped]) requireds,
# (nil | VarField) rest,
# (nil | Array[untyped]) posts
# ) -> AryPtn
def on_aryptn(constant, requireds, rest, posts)
parts = [constant, *requireds, rest, *posts].compact
AryPtn.new(
constant: constant,
requireds: requireds || [],
rest: rest,
posts: posts || [],
location: parts[0].location.to(parts[-1].location)
)
end
# Assign represents assigning something to a variable or constant. Generally,
# the left side of the assignment is going to be any node that ends with the
# name "Field".
#
# variable = value
#
class Assign
# [ARefField | ConstPathField | Field | TopConstField | VarField] the target
# to assign the result of the expression to
attr_reader :target
# [untyped] the expression to be assigned
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(target:, value:, location:)
@target = target
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('assign')
q.breakable
q.pp(target)
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :assign, target: target, value: value, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_assign: (
# (ARefField | ConstPathField | Field | TopConstField | VarField) target,
# untyped value
# ) -> Assign
def on_assign(target, value)
Assign.new(
target: target,
value: value,
location: target.location.to(value.location)
)
end
# Assoc represents a key-value pair within a hash. It is a child node of
# either an AssocListFromArgs or a BareAssocHash.
#
# { key1: value1, key2: value2 }
#
# In the above example, the would be two AssocNew nodes.
class Assoc
# [untyped] the key of this pair
attr_reader :key
# [untyped] the value of this pair
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(key:, value:, location:)
@key = key
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('assoc')
q.breakable
q.pp(key)
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :assoc, key: key, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_assoc_new: (untyped key, untyped value) -> Assoc
def on_assoc_new(key, value)
Assoc.new(
key: key,
value: value,
location: key.location.to(value.location)
)
end
# AssocSplat represents double-splatting a value into a hash (either a hash
# literal or a bare hash in a method call).
#
# { **pairs }
#
class AssocSplat
# [untyped] the expression that is being splatted
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('assoc_splat')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :assoc_splat, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_assoc_splat: (untyped value) -> AssocSplat
def on_assoc_splat(value)
operator = find_token(Op, '**')
AssocSplat.new(value: value, location: operator.location.to(value.location))
end
# AssocListFromArgs represents the key-value pairs of a hash literal. Its
# parent node is always a hash.
#
# { key1: value1, key2: value2 }
#
class AssocListFromArgs
# [Array[ AssocNew | AssocSplat ]]
attr_reader :assocs
# [Location] the location of this node
attr_reader :location
def initialize(assocs:, location:)
@assocs = assocs
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('assoclist_from_args')
q.breakable
q.group(2, '(', ')') { q.seplist(assocs) { |assoc| q.pp(assoc) } }
end
end
def to_json(*opts)
{ type: :assoclist_from_args, assocs: assocs, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_assoclist_from_args: (
# Array[AssocNew | AssocSplat] assocs
# ) -> AssocListFromArgs
def on_assoclist_from_args(assocs)
AssocListFromArgs.new(
assocs: assocs,
location: assocs[0].location.to(assocs[-1].location)
)
end
# Backref represents a global variable referencing a matched value. It comes
# in the form of a $ followed by a positive integer.
#
# $1
#
class Backref
# [String] the name of the global backreference variable
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('backref')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :backref, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_backref: (String value) -> Backref
def on_backref(value)
node =
Backref.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Backtick represents the use of the ` operator. It's usually found being used
# for an XStringLiteral, but could also be found as the name of a method being
# defined.
class Backtick
# [String] the backtick in the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('backtick')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :backtick, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_backtick: (String value) -> Backtick
def on_backtick(value)
node =
Backtick.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# BareAssocHash represents a hash of contents being passed as a method
# argument (and therefore has omitted braces). It's very similar to an
# AssocListFromArgs node.
#
# method(key1: value1, key2: value2)
#
class BareAssocHash
# [Array[ AssocNew | AssocSplat ]]
attr_reader :assocs
# [Location] the location of this node
attr_reader :location
def initialize(assocs:, location:)
@assocs = assocs
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('bare_assoc_hash')
q.breakable
q.group(2, '(', ')') { q.seplist(assocs) { |assoc| q.pp(assoc) } }
end
end
def to_json(*opts)
{ type: :bare_assoc_hash, assocs: assocs, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_bare_assoc_hash: (Array[AssocNew | AssocSplat] assocs) -> BareAssocHash
def on_bare_assoc_hash(assocs)
BareAssocHash.new(
assocs: assocs,
location: assocs[0].location.to(assocs[-1].location)
)
end
# Begin represents a begin..end chain.
#
# begin
# value
# end
#
class Begin
# [BodyStmt] the bodystmt that contains the contents of this begin block
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(bodystmt:, location:)
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('begin')
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{ type: :begin, bodystmt: bodystmt, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_begin: (BodyStmt bodystmt) -> Begin
def on_begin(bodystmt)
keyword = find_token(Kw, 'begin')
end_char =
if bodystmt.rescue_clause || bodystmt.ensure_clause ||
bodystmt.else_clause
bodystmt.location.end_char
else
find_token(Kw, 'end').location.end_char
end
bodystmt.bind(keyword.location.end_char, end_char)
Begin.new(
bodystmt: bodystmt,
location: keyword.location.to(bodystmt.location)
)
end
# Binary represents any expression that involves two sub-expressions with an
# operator in between. This can be something that looks like a mathematical
# operation:
#
# 1 + 1
#
# but can also be something like pushing a value onto an array:
#
# array << value
#
class Binary
# [untyped] the left-hand side of the expression
attr_reader :left
# [String] the operator used between the two expressions
attr_reader :operator
# [untyped] the right-hand side of the expression
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, operator:, right:, location:)
@left = left
@operator = operator
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('binary')
q.breakable
q.pp(left)
q.breakable
q.text(operator)
q.breakable
q.pp(right)
end
end
def to_json(*opts)
{
type: :binary,
left: left,
op: operator,
right: right,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_binary: (untyped left, (Op | Symbol) operator, untyped right) -> Binary
def on_binary(left, operator, right)
# On most Ruby implementations, operator is a Symbol that represents that
# operation being performed. For instance in the example `1 < 2`, the
# `operator` object would be `:<`. However, on JRuby, it's an `@op` node,
# so here we're going to explicitly convert it into the same normalized
# form.
operator = tokens.delete(operator).value unless operator.is_a?(Symbol)
Binary.new(
left: left,
operator: operator,
right: right,
location: left.location.to(right.location)
)
end
# BlockVar represents the parameters being declared for a block. Effectively
# this node is everything contained within the pipes. This includes all of the
# various parameter types, as well as block-local variable declarations.
#
# method do |positional, optional = value, keyword:, &block; local|
# end
#
class BlockVar
# [Params] the parameters being declared with the block
attr_reader :params
# [Array[ Ident ]] the list of block-local variable declarations
attr_reader :locals
# [Location] the location of this node
attr_reader :location
def initialize(params:, locals:, location:)
@params = params
@locals = locals
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('block_var')
q.breakable
q.pp(params)
if locals.any?
q.breakable
q.group(2, '(', ')') { q.seplist(locals) { |local| q.pp(local) } }
end
end
end
def to_json(*opts)
{
type: :block_var,
params: params,
locals: locals,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_block_var: (Params params, (nil | Array[Ident]) locals) -> BlockVar
def on_block_var(params, locals)
index =
tokens.rindex do |node|
node.is_a?(Op) && %w[| ||].include?(node.value) &&
node.location.start_char < params.location.start_char
end
beginning = tokens[index]
ending = tokens[-1]
BlockVar.new(
params: params,
locals: locals || [],
location: beginning.location.to(ending.location)
)
end
# BlockArg represents declaring a block parameter on a method definition.
#
# def method(&block); end
#
class BlockArg
# [Ident] the name of the block argument
attr_reader :name
# [Location] the location of this node
attr_reader :location
def initialize(name:, location:)
@name = name
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('blockarg')
q.breakable
q.pp(name)
end
end
def to_json(*opts)
{ type: :blockarg, name: name, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_blockarg: (Ident name) -> BlockArg
def on_blockarg(name)
operator = find_token(Op, '&')
BlockArg.new(name: name, location: operator.location.to(name.location))
end
# bodystmt can't actually determine its bounds appropriately because it
# doesn't necessarily know where it started. So the parent node needs to
# report back down into this one where it goes.
class BodyStmt
# [Statements] the list of statements inside the begin clause
attr_reader :statements
# [nil | Rescue] the optional rescue chain attached to the begin clause
attr_reader :rescue_clause
# [nil | Statements] the optional set of statements inside the else clause
attr_reader :else_clause
# [nil | Ensure] the optional ensure clause
attr_reader :ensure_clause
# [Location] the location of this node
attr_reader :location
def initialize(
statements:,
rescue_clause:,
else_clause:,
ensure_clause:,
location:
)
@statements = statements
@rescue_clause = rescue_clause
@else_clause = else_clause
@ensure_clause = ensure_clause
@location = location
end
def bind(start_char, end_char)
@location =
Location.new(
start_line: location.start_line,
start_char: start_char,
end_line: location.end_line,
end_char: end_char
)
parts = [rescue_clause, else_clause, ensure_clause]
# Here we're going to determine the bounds for the statements
consequent = parts.compact.first
statements.bind(
start_char,
consequent ? consequent.location.start_char : end_char
)
# Next we're going to determine the rescue clause if there is one
if rescue_clause
consequent = parts.drop(1).compact.first
rescue_clause.bind_end(
consequent ? consequent.location.start_char : end_char
)
end
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('bodystmt')
q.breakable
q.pp(statements)
if rescue_clause
q.breakable
q.pp(rescue_clause)
end
if else_clause
q.breakable
q.pp(else_clause)
end
if ensure_clause
q.breakable
q.pp(ensure_clause)
end
end
end
def to_json(*opts)
{
type: :bodystmt,
stmts: statements,
rsc: rescue_clause,
els: else_clause,
ens: ensure_clause,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_bodystmt: (
# Statements statements,
# (nil | Rescue) rescue_clause,
# (nil | Statements) else_clause,
# (nil | Ensure) ensure_clause
# ) -> BodyStmt
def on_bodystmt(statements, rescue_clause, else_clause, ensure_clause)
BodyStmt.new(
statements: statements,
rescue_clause: rescue_clause,
else_clause: else_clause,
ensure_clause: ensure_clause,
location: Location.fixed(line: lineno, char: char_pos)
)
end
# BraceBlock represents passing a block to a method call using the { }
# operators.
#
# method { |variable| variable + 1 }
#
class BraceBlock
# [LBrace] the left brace that opens this block
attr_reader :lbrace
# [nil | BlockVar] the optional set of parameters to the block
attr_reader :block_var
# [Statements] the list of expressions to evaluate within the block
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(lbrace:, block_var:, statements:, location:)
@lbrace = lbrace
@block_var = block_var
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('brace_block')
if block_var
q.breakable
q.pp(block_var)
end
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :brace_block,
lbrace: lbrace,
block_var: block_var,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_brace_block: (
# (nil | BlockVar) block_var,
# Statements statements
# ) -> BraceBlock
def on_brace_block(block_var, statements)
lbrace = find_token(LBrace)
rbrace = find_token(RBrace)
statements.bind(
find_next_statement_start((block_var || lbrace).location.end_char),
rbrace.location.start_char
)
location =
Location.new(
start_line: lbrace.location.start_line,
start_char: lbrace.location.start_char,
end_line: [rbrace.location.end_line, statements.location.end_line].max,
end_char: rbrace.location.end_char
)
BraceBlock.new(
lbrace: lbrace,
block_var: block_var,
statements: statements,
location: location
)
end
# Break represents using the +break+ keyword.
#
# break
#
# It can also optionally accept arguments, as in:
#
# break 1
#
class Break
# [Args | ArgsAddBlock] the arguments being sent to the keyword
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('break')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :break, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_break: ((Args | ArgsAddBlock) arguments) -> Break
def on_break(arguments)
keyword = find_token(Kw, 'break')
location = keyword.location
location = location.to(arguments.location) unless arguments.is_a?(Args)
Break.new(arguments: arguments, location: location)
end
# Call represents a method call. This node doesn't contain the arguments being
# passed (if arguments are passed, this node will get nested under a
# MethodAddArg node).
#
# receiver.message
#
class Call
# [untyped] the receiver of the method call
attr_reader :receiver
# [:"::" | Op | Period] the operator being used to send the message
attr_reader :operator
# [:call | Backtick | Const | Ident | Op] the message being sent
attr_reader :message
# [Location] the location of this node
attr_reader :location
def initialize(receiver:, operator:, message:, location:)
@receiver = receiver
@operator = operator
@message = message
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('call')
q.breakable
q.pp(receiver)
q.breakable
q.pp(operator)
q.breakable
q.pp(message)
end
end
def to_json(*opts)
{
type: :call,
receiver: receiver,
op: operator,
message: message,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_call: (
# untyped receiver,
# (:"::" | Op | Period) operator,
# (:call | Backtick | Const | Ident | Op) message
# ) -> Call
def on_call(receiver, operator, message)
ending = message
ending = operator if message == :call
Call.new(
receiver: receiver,
operator: operator,
message: message,
location:
Location.new(
start_line: receiver.location.start_line,
start_char: receiver.location.start_char,
end_line: [ending.location.end_line, receiver.location.end_line].max,
end_char: ending.location.end_char
)
)
end
# Case represents the beginning of a case chain.
#
# case value
# when 1
# "one"
# when 2
# "two"
# else
# "number"
# end
#
class Case
# [nil | untyped] optional value being switched on
attr_reader :value
# [In | When] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(value:, consequent:, location:)
@value = value
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('case')
if value
q.breakable
q.pp(value)
end
q.breakable
q.pp(consequent)
end
end
def to_json(*opts)
{ type: :case, value: value, cons: consequent, loc: location }.to_json(
*opts
)
end
end
# RAssign represents a single-line pattern match.
#
# value in pattern
# value => pattern
#
class RAssign
# [untyped] the left-hand expression
attr_reader :value
# [Kw | Op] the operator being used to match against the pattern, which is
# either => or in
attr_reader :operator
# [untyped] the pattern on the right-hand side of the expression
attr_reader :pattern
# [Location] the location of this node
attr_reader :location
def initialize(value:, operator:, pattern:, location:)
@value = value
@operator = operator
@pattern = pattern
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rassign')
q.breakable
q.pp(value)
q.breakable
q.pp(operator)
q.breakable
q.pp(pattern)
end
end
def to_json(*opts)
{
type: :rassign,
value: value,
op: operator,
pattern: pattern,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_case: (untyped value, untyped consequent) -> Case | RAssign
def on_case(value, consequent)
if keyword = find_token(Kw, 'case', consume: false)
tokens.delete(keyword)
Case.new(
value: value,
consequent: consequent,
location: keyword.location.to(consequent.location)
)
else
operator = find_token(Kw, 'in', consume: false) || find_token(Op, '=>')
RAssign.new(
value: value,
operator: operator,
pattern: consequent,
location: value.location.to(consequent.location)
)
end
end
# Class represents defining a class using the +class+ keyword.
#
# class Container
# end
#
# Classes can have path names as their class name in case it's being nested
# under a namespace, as in:
#
# class Namespace::Container
# end
#
# Classes can also be defined as a top-level path, in the case that it's
# already in a namespace but you want to define it at the top-level instead,
# as in:
#
# module OtherNamespace
# class ::Namespace::Container
# end
# end
#
# All of these declarations can also have an optional superclass reference, as
# in:
#
# class Child < Parent
# end
#
# That superclass can actually be any Ruby expression, it doesn't necessarily
# need to be a constant, as in:
#
# class Child < method
# end
#
class ClassDeclaration
# [ConstPathRef | ConstRef | TopConstRef] the name of the class being
# defined
attr_reader :constant
# [nil | untyped] the optional superclass declaration
attr_reader :superclass
# [BodyStmt] the expressions to execute within the context of the class
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(constant:, superclass:, bodystmt:, location:)
@constant = constant
@superclass = superclass
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('class')
q.breakable
q.pp(constant)
if superclass
q.breakable
q.pp(superclass)
end
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :class,
constant: constant,
superclass: superclass,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_class: (
# (ConstPathRef | ConstRef | TopConstRef) constant,
# untyped superclass,
# BodyStmt bodystmt
# ) -> ClassDeclaration
def on_class(constant, superclass, bodystmt)
beginning = find_token(Kw, 'class')
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start((superclass || constant).location.end_char),
ending.location.start_char
)
ClassDeclaration.new(
constant: constant,
superclass: superclass,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# Comma represents the use of the , operator.
class Comma
# [String] the comma in the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_comma: (String value) -> Comma
def on_comma(value)
node =
Comma.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Command represents a method call with arguments and no parentheses. Note
# that Command nodes only happen when there is no explicit receiver for this
# method.
#
# method argument
#
class Command
# [Const | Ident] the message being sent to the implicit receiver
attr_reader :message
# [Args | ArgsAddBlock] the arguments being sent with the message
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(message:, arguments:, location:)
@message = message
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('command')
q.breakable
q.pp(message)
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{
type: :command,
message: message,
args: arguments,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_command: (
# (Const | Ident) message,
# (Args | ArgsAddBlock) arguments
# ) -> Command
def on_command(message, arguments)
Command.new(
message: message,
arguments: arguments,
location: message.location.to(arguments.location)
)
end
# CommandCall represents a method call on an object with arguments and no
# parentheses.
#
# object.method argument
#
class CommandCall
# [untyped] the receiver of the message
attr_reader :receiver
# [:"::" | Op | Period] the operator used to send the message
attr_reader :operator
# [Const | Ident | Op] the message being send
attr_reader :message
# [Args | ArgsAddBlock] the arguments going along with the message
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(receiver:, operator:, message:, arguments:, location:)
@receiver = receiver
@operator = operator
@message = message
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('command_call')
q.breakable
q.pp(receiver)
q.breakable
q.pp(operator)
q.breakable
q.pp(message)
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{
type: :command_call,
receiver: receiver,
op: operator,
message: message,
args: arguments,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_command_call: (
# untyped receiver,
# (:"::" | Op | Period) operator,
# (Const | Ident | Op) message,
# (Args | ArgsAddBlock) arguments
# ) -> CommandCall
def on_command_call(receiver, operator, message, arguments)
ending = arguments || message
CommandCall.new(
receiver: receiver,
operator: operator,
message: message,
arguments: arguments,
location: receiver.location.to(ending.location)
)
end
# Comment represents a comment in the source.
#
# # comment
#
class Comment
# [String] the contents of the comment
attr_reader :value
# [boolean] whether or not there is code on the same line as this comment.
# If there is, then inline will be true.
attr_reader :inline
alias inline? inline
# [Location] the location of this node
attr_reader :location
def initialize(value:, inline:, location:)
@value = value
@inline = inline
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('comment')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{
type: :comment,
value: value.force_encoding('UTF-8'),
inline: inline,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_comment: (String value) -> Comment
def on_comment(value)
line = lineno
comment =
Comment.new(
value: value[1..-1].chomp,
inline: value.strip != lines[line - 1],
location:
Location.token(line: line, char: char_pos, size: value.size - 1)
)
@comments << comment
comment
end
# Const represents a literal value that _looks_ like a constant. This could
# actually be a reference to a constant:
#
# Constant
#
# It could also be something that looks like a constant in another context, as
# in a method call to a capitalized method:
#
# object.Constant
#
# or a symbol that starts with a capital letter:
#
# :Constant
#
class Const
# [String] the name of the constant
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('const')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :const, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_const: (String value) -> Const
def on_const(value)
node =
Const.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# ConstPathField represents the child node of some kind of assignment. It
# represents when you're assigning to a constant that is being referenced as
# a child of another variable.
#
# object::Const = value
#
class ConstPathField
# [untyped] the source of the constant
attr_reader :parent
# [Const] the constant itself
attr_reader :constant
# [Location] the location of this node
attr_reader :location
def initialize(parent:, constant:, location:)
@parent = parent
@constant = constant
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('const_path_field')
q.breakable
q.pp(parent)
q.breakable
q.pp(constant)
end
end
def to_json(*opts)
{
type: :const_path_field,
parent: parent,
constant: constant,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_const_path_field: (untyped parent, Const constant) -> ConstPathField
def on_const_path_field(parent, constant)
ConstPathField.new(
parent: parent,
constant: constant,
location: parent.location.to(constant.location)
)
end
# ConstPathRef represents referencing a constant by a path.
#
# object::Const
#
class ConstPathRef
# [untyped] the source of the constant
attr_reader :parent
# [Const] the constant itself
attr_reader :constant
# [Location] the location of this node
attr_reader :location
def initialize(parent:, constant:, location:)
@parent = parent
@constant = constant
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('const_path_ref')
q.breakable
q.pp(parent)
q.breakable
q.pp(constant)
end
end
def to_json(*opts)
{
type: :const_path_ref,
parent: parent,
constant: constant,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_const_path_ref: (untyped parent, Const constant) -> ConstPathRef
def on_const_path_ref(parent, constant)
ConstPathRef.new(
parent: parent,
constant: constant,
location: parent.location.to(constant.location)
)
end
# ConstRef represents the name of the constant being used in a class or module
# declaration.
#
# class Container
# end
#
class ConstRef
# [Const] the constant itself
attr_reader :constant
# [Location] the location of this node
attr_reader :location
def initialize(constant:, location:)
@constant = constant
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('const_ref')
q.breakable
q.pp(constant)
end
end
def to_json(*opts)
{ type: :const_ref, constant: constant, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_const_ref: (Const constant) -> ConstRef
def on_const_ref(constant)
ConstRef.new(constant: constant, location: constant.location)
end
# CVar represents the use of a class variable.
#
# @@variable
#
class CVar
# [String] the name of the class variable
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('cvar')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :cvar, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_cvar: (String value) -> CVar
def on_cvar(value)
node =
CVar.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Def represents defining a regular method on the current self object.
#
# def method(param) result end
#
class Def
# [Backtick | Const | Ident | Kw | Op] the name of the method
attr_reader :name
# [Params | Paren] the parameter declaration for the method
attr_reader :params
# [BodyStmt] the expressions to be executed by the method
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(name:, params:, bodystmt:, location:)
@name = name
@params = params
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('def')
q.breakable
q.pp(name)
q.breakable
q.pp(params)
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :def,
name: name,
params: params,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# DefEndless represents defining a single-line method since Ruby 3.0+.
#
# def method = result
#
class DefEndless
# [Backtick | Const | Ident | Kw | Op] the name of the method
attr_reader :name
# [Paren] the parameter declaration for the method
attr_reader :paren
# [untyped] the expression to be executed by the method
attr_reader :statement
# [Location] the location of this node
attr_reader :location
def initialize(name:, paren:, statement:, location:)
@name = name
@paren = paren
@statement = statement
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('def_endless')
q.breakable
q.pp(name)
q.breakable
q.pp(paren)
q.breakable
q.pp(statement)
end
end
def to_json(*opts)
{
type: :def_endless,
name: name,
paren: paren,
stmt: statement,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_def: (
# (Backtick | Const | Ident | Kw | Op) name,
# (Params | Paren) params,
# untyped bodystmt
# ) -> Def | DefEndless
def on_def(name, params, bodystmt)
# Make sure to delete this token in case you're defining something like def
# class which would lead to this being a kw and causing all kinds of trouble
tokens.delete(name)
# Find the beginning of the method definition, which works for single-line
# and normal method definitions.
beginning = find_token(Kw, 'def')
# If we don't have a bodystmt node, then we have a single-line method
unless bodystmt.is_a?(BodyStmt)
node =
DefEndless.new(
name: name,
paren: params,
statement: bodystmt,
location: beginning.location.to(bodystmt.location)
)
return node
end
# If there aren't any params then we need to correct the params node
# location information
if params.is_a?(Params) && params.empty?
end_char = name.location.end_char
location =
Location.new(
start_line: params.location.start_line,
start_char: end_char,
end_line: params.location.end_line,
end_char: end_char
)
params = Params.new(location: location)
end
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start(params.location.end_char),
ending.location.start_char
)
Def.new(
name: name,
params: params,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# Defined represents the use of the +defined?+ operator. It can be used with
# and without parentheses.
#
# defined?(variable)
#
class Defined
# [untyped] the value being sent to the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('defined')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :defined, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_defined: (untyped value) -> Defined
def on_defined(value)
beginning = find_token(Kw, 'defined?')
ending = value
range = beginning.location.end_char...value.location.start_char
if source[range].include?('(')
find_token(LParen)
ending = find_token(RParen)
end
Defined.new(value: value, location: beginning.location.to(ending.location))
end
# Defs represents defining a singleton method on an object.
#
# def object.method(param) result end
#
class Defs
# [untyped] the target where the method is being defined
attr_reader :target
# [Op | Period] the operator being used to declare the method
attr_reader :operator
# [Backtick | Const | Ident | Kw | Op] the name of the method
attr_reader :name
# [Params | Paren] the parameter declaration for the method
attr_reader :params
# [BodyStmt] the expressions to be executed by the method
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(target:, operator:, name:, params:, bodystmt:, location:)
@target = target
@operator = operator
@name = name
@params = params
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('defs')
q.breakable
q.pp(target)
q.breakable
q.pp(operator)
q.breakable
q.pp(name)
q.breakable
q.pp(params)
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :defs,
target: target,
op: operator,
name: name,
params: params,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_defs: (
# untyped target,
# (Op | Period) operator,
# (Backtick | Const | Ident | Kw | Op) name,
# (Params | Paren) params,
# BodyStmt bodystmt
# ) -> Defs
def on_defs(target, operator, name, params, bodystmt)
# Make sure to delete this token in case you're defining something
# like def class which would lead to this being a kw and causing all kinds
# of trouble
tokens.delete(name)
# If there aren't any params then we need to correct the params node
# location information
if params.is_a?(Params) && params.empty?
end_char = name.location.end_char
location =
Location.new(
start_line: params.location.start_line,
start_char: end_char,
end_line: params.location.end_line,
end_char: end_char
)
params = Params.new(location: location)
end
beginning = find_token(Kw, 'def')
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start(params.location.end_char),
ending.location.start_char
)
Defs.new(
target: target,
operator: operator,
name: name,
params: params,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# DoBlock represents passing a block to a method call using the +do+ and +end+
# keywords.
#
# method do |value|
# end
#
class DoBlock
# [Kw] the do keyword that opens this block
attr_reader :keyword
# [nil | BlockVar] the optional variable declaration within this block
attr_reader :block_var
# [BodyStmt] the expressions to be executed within this block
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(keyword:, block_var:, bodystmt:, location:)
@keyword = keyword
@block_var = block_var
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('do_block')
if block_var
q.breakable
q.pp(block_var)
end
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :do_block,
keyword: keyword,
block_var: block_var,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_do_block: (BlockVar block_var, BodyStmt bodystmt) -> DoBlock
def on_do_block(block_var, bodystmt)
beginning = find_token(Kw, 'do')
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start((block_var || beginning).location.end_char),
ending.location.start_char
)
DoBlock.new(
keyword: beginning,
block_var: block_var,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# Dot2 represents using the .. operator between two expressions. Usually this
# is to create a range object.
#
# 1..2
#
# Sometimes this operator is used to create a flip-flop.
#
# if value == 5 .. value == 10
# end
#
# One of the sides of the expression may be nil, but not both.
class Dot2
# [nil | untyped] the left side of the expression
attr_reader :left
# [nil | untyped] the right side of the expression
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, right:, location:)
@left = left
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('dot2')
if left
q.breakable
q.pp(left)
end
if right
q.breakable
q.pp(right)
end
end
end
def to_json(*opts)
{ type: :dot2, left: left, right: right, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_dot2: ((nil | untyped) left, (nil | untyped) right) -> Dot2
def on_dot2(left, right)
operator = find_token(Op, '..')
beginning = left || operator
ending = right || operator
Dot2.new(
left: left,
right: right,
location: beginning.location.to(ending.location)
)
end
# Dot3 represents using the ... operator between two expressions. Usually this
# is to create a range object. It's effectively the same event as the Dot2
# node but with this operator you're asking Ruby to omit the final value.
#
# 1...2
#
# Like Dot2 it can also be used to create a flip-flop.
#
# if value == 5 ... value == 10
# end
#
# One of the sides of the expression may be nil, but not both.
class Dot3
# [nil | untyped] the left side of the expression
attr_reader :left
# [nil | untyped] the right side of the expression
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, right:, location:)
@left = left
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('dot3')
if left
q.breakable
q.pp(left)
end
if right
q.breakable
q.pp(right)
end
end
end
def to_json(*opts)
{ type: :dot3, left: left, right: right, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_dot3: ((nil | untyped) left, (nil | untyped) right) -> Dot3
def on_dot3(left, right)
operator = find_token(Op, '...')
beginning = left || operator
ending = right || operator
Dot3.new(
left: left,
right: right,
location: beginning.location.to(ending.location)
)
end
# DynaSymbol represents a symbol literal that uses quotes to dynamically
# define its value.
#
# :"#{variable}"
#
# They can also be used as a special kind of dynamic hash key, as in:
#
# { "#{key}": value }
#
class DynaSymbol
# [Array[ StringDVar | StringEmbExpr | TStringContent ]] the parts of the
# dynamic symbol
attr_reader :parts
# [String] the quote used to delimit the dynamic symbol
attr_reader :quote
# [Location] the location of this node
attr_reader :location
def initialize(parts:, quote:, location:)
@parts = parts
@quote = quote
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('dyna_symbol')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :dyna_symbol, parts: parts, quote: quote, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_dyna_symbol: (StringContent string_content) -> DynaSymbol
def on_dyna_symbol(string_content)
if find_token(SymBeg, consume: false)
# A normal dynamic symbol
symbeg = find_token(SymBeg)
tstring_end = find_token(TStringEnd)
DynaSymbol.new(
quote: symbeg.value,
parts: string_content.parts,
location: symbeg.location.to(tstring_end.location)
)
else
# A dynamic symbol as a hash key
tstring_beg = find_token(TStringBeg)
label_end = find_token(LabelEnd)
DynaSymbol.new(
parts: string_content.parts,
quote: label_end.value[0],
location: tstring_beg.location.to(label_end.location)
)
end
end
# Else represents the end of an +if+, +unless+, or +case+ chain.
#
# if variable
# else
# end
#
class Else
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(statements:, location:)
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('else')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{ type: :else, stmts: statements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_else: (Statements statements) -> Else
def on_else(statements)
beginning = find_token(Kw, 'else')
# else can either end with an end keyword (in which case we'll want to
# consume that event) or it can end with an ensure keyword (in which case
# we'll leave that to the ensure to handle).
index =
tokens.rindex do |token|
token.is_a?(Kw) && %w[end ensure].include?(token.value)
end
node = tokens[index]
ending = node.value == 'end' ? tokens.delete_at(index) : node
statements.bind(beginning.location.end_char, ending.location.start_char)
Else.new(
statements: statements,
location: beginning.location.to(ending.location)
)
end
# Elsif represents another clause in an +if+ or +unless+ chain.
#
# if variable
# elsif other_variable
# end
#
class Elsif
# [untyped] the expression to be checked
attr_reader :predicate
# [Statements] the expressions to be executed
attr_reader :statements
# [nil | Elsif | Else] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, statements:, consequent:, location:)
@predicate = predicate
@statements = statements
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('elsif')
q.breakable
q.pp(predicate)
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :elsif,
pred: predicate,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_elsif: (
# untyped predicate,
# Statements statements,
# (nil | Elsif | Else) consequent
# ) -> Elsif
def on_elsif(predicate, statements, consequent)
beginning = find_token(Kw, 'elsif')
ending = consequent || find_token(Kw, 'end')
statements.bind(predicate.location.end_char, ending.location.start_char)
Elsif.new(
predicate: predicate,
statements: statements,
consequent: consequent,
location: beginning.location.to(ending.location)
)
end
# EmbDoc represents a multi-line comment.
#
# =begin
# first line
# second line
# =end
#
class EmbDoc
# [String] the contents of the comment
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def inline?
false
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('embdoc')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :embdoc, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_embdoc: (String value) -> EmbDoc
def on_embdoc(value)
@embdoc.value << value
@embdoc
end
# :call-seq:
# on_embdoc_beg: (String value) -> EmbDoc
def on_embdoc_beg(value)
@embdoc =
EmbDoc.new(
value: value,
location: Location.fixed(line: lineno, char: char_pos)
)
end
# :call-seq:
# on_embdoc_end: (String value) -> EmbDoc
def on_embdoc_end(value)
location = @embdoc.location
embdoc =
EmbDoc.new(
value: @embdoc.value << value.chomp,
location:
Location.new(
start_line: location.start_line,
start_char: location.start_char,
end_line: lineno,
end_char: char_pos + value.length - 1
)
)
@comments << embdoc
@embdoc = nil
embdoc
end
# EmbExprBeg represents the beginning token for using interpolation inside of
# a parent node that accepts string content (like a string or regular
# expression).
#
# "Hello, #{person}!"
#
class EmbExprBeg
# [String] the #{ used in the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_embexpr_beg: (String value) -> EmbExprBeg
def on_embexpr_beg(value)
node =
EmbExprBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# EmbExprEnd represents the ending token for using interpolation inside of a
# parent node that accepts string content (like a string or regular
# expression).
#
# "Hello, #{person}!"
#
class EmbExprEnd
# [String] the } used in the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_embexpr_end: (String value) -> EmbExprEnd
def on_embexpr_end(value)
node =
EmbExprEnd.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# EmbVar represents the use of shorthand interpolation for an instance, class,
# or global variable into a parent node that accepts string content (like a
# string or regular expression).
#
# "#@variable"
#
# In the example above, an EmbVar node represents the # because it forces
# @variable to be interpolated.
class EmbVar
# [String] the # used in the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_embvar: (String value) -> EmbVar
def on_embvar(value)
node =
EmbVar.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Ensure represents the use of the +ensure+ keyword and its subsequent
# statements.
#
# begin
# ensure
# end
#
class Ensure
# [Kw] the ensure keyword that began this node
attr_reader :keyword
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(keyword:, statements:, location:)
@keyword = keyword
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('ensure')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :ensure,
keyword: keyword,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_ensure: (Statements statements) -> Ensure
def on_ensure(statements)
keyword = find_token(Kw, 'ensure')
# We don't want to consume the :@kw event, because that would break
# def..ensure..end chains.
ending = find_token(Kw, 'end', consume: false)
statements.bind(
find_next_statement_start(keyword.location.end_char),
ending.location.start_char
)
Ensure.new(
keyword: keyword,
statements: statements,
location: keyword.location.to(ending.location)
)
end
# ExcessedComma represents a trailing comma in a list of block parameters. It
# changes the block parameters such that they will destructure.
#
# [[1, 2, 3], [2, 3, 4]].each do |first, second,|
# end
#
# In the above example, an ExcessedComma node would appear in the third
# position of the Params node that is used to declare that block. The third
# position typically represents a rest-type parameter, but in this case is
# used to indicate that a trailing comma was used.
class ExcessedComma
# [String] the comma
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('excessed_comma')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :excessed_comma, value: value, loc: location }.to_json(*opts)
end
end
# The handler for this event accepts no parameters (though in previous
# versions of Ruby it accepted a string literal with a value of ",").
#
# :call-seq:
# on_excessed_comma: () -> ExcessedComma
def on_excessed_comma(*)
comma = find_token(Comma)
ExcessedComma.new(value: comma.value, location: comma.location)
end
# FCall represents the piece of a method call that comes before any arguments
# (i.e., just the name of the method). It is used in places where the parser
# is sure that it is a method call and not potentially a local variable.
#
# method(argument)
#
# In the above example, it's referring to the +method+ segment.
class FCall
# [Const | Ident] the name of the method
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('fcall')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :fcall, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_fcall: ((Const | Ident) value) -> FCall
def on_fcall(value)
FCall.new(value: value, location: value.location)
end
# Field is always the child of an assignment. It represents assigning to a
# “field” on an object.
#
# object.variable = value
#
class Field
# [untyped] the parent object that owns the field being assigned
attr_reader :parent
# [:"::" | Op | Period] the operator being used for the assignment
attr_reader :operator
# [Const | Ident] the name of the field being assigned
attr_reader :name
# [Location] the location of this node
attr_reader :location
def initialize(parent:, operator:, name:, location:)
@parent = parent
@operator = operator
@name = name
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('field')
q.breakable
q.pp(parent)
q.breakable
q.pp(operator)
q.breakable
q.pp(name)
end
end
def to_json(*opts)
{
type: :field,
parent: parent,
op: operator,
name: name,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_field: (
# untyped parent,
# (:"::" | Op | Period) operator
# (Const | Ident) name
# ) -> Field
def on_field(parent, operator, name)
Field.new(
parent: parent,
operator: operator,
name: name,
location: parent.location.to(name.location)
)
end
# FloatLiteral represents a floating point number literal.
#
# 1.0
#
class FloatLiteral
# [String] the value of the floating point number literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('float')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :float, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_float: (String value) -> FloatLiteral
def on_float(value)
node =
FloatLiteral.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# FndPtn represents matching against a pattern where you find a pattern in an
# array using the Ruby 3.0+ pattern matching syntax.
#
# case value
# in [*, 7, *]
# end
#
class FndPtn
# [nil | untyped] the optional constant wrapper
attr_reader :constant
# [VarField] the splat on the left-hand side
attr_reader :left
# [Array[ untyped ]] the list of positional expressions in the pattern that
# are being matched
attr_reader :values
# [VarField] the splat on the right-hand side
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(constant:, left:, values:, right:, location:)
@constant = constant
@left = left
@values = values
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('fndptn')
if constant
q.breakable
q.pp(constant)
end
q.breakable
q.pp(left)
q.breakable
q.group(2, '(', ')') { q.seplist(values) { |value| q.pp(value) } }
q.breakable
q.pp(right)
end
end
def to_json(*opts)
{
type: :fndptn,
constant: constant,
left: left,
values: values,
right: right,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_fndptn: (
# (nil | untyped) constant,
# VarField left,
# Array[untyped] values,
# VarField right
# ) -> FndPtn
def on_fndptn(constant, left, values, right)
beginning = constant || find_token(LBracket)
ending = find_token(RBracket)
FndPtn.new(
constant: constant,
left: left,
values: values,
right: right,
location: beginning.location.to(ending.location)
)
end
# For represents using a +for+ loop.
#
# for value in list do
# end
#
class For
# [MLHS | MLHSAddStar | VarField] the variable declaration being used to
# pull values out of the object being enumerated
attr_reader :index
# [untyped] the object being enumerated in the loop
attr_reader :collection
# [Statements] the statements to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(index:, collection:, statements:, location:)
@index = index
@collection = collection
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('for')
q.breakable
q.pp(index)
q.breakable
q.pp(collection)
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :for,
index: index,
collection: collection,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_for: (
# (MLHS | MLHSAddStar | VarField) value,
# untyped collection,
# Statements statements
# ) -> For
def on_for(index, collection, statements)
beginning = find_token(Kw, 'for')
ending = find_token(Kw, 'end')
# Consume the do keyword if it exists so that it doesn't get confused for
# some other block
keyword = find_token(Kw, 'do', consume: false)
if keyword && keyword.location.start_char > collection.location.end_char &&
keyword.location.end_char < ending.location.start_char
tokens.delete(keyword)
end
statements.bind(
(keyword || collection).location.end_char,
ending.location.start_char
)
For.new(
index: index,
collection: collection,
statements: statements,
location: beginning.location.to(ending.location)
)
end
# GVar represents a global variable literal.
#
# $variable
#
class GVar
# [String] the name of the global variable
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('gvar')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :gvar, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_gvar: (String value) -> GVar
def on_gvar(value)
node =
GVar.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# HashLiteral represents a hash literal.
#
# { key => value }
#
class HashLiteral
# [nil | AssocListFromArgs] the contents of the hash
attr_reader :contents
# [Location] the location of this node
attr_reader :location
def initialize(contents:, location:)
@contents = contents
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('hash')
q.breakable
q.pp(contents)
end
end
def to_json(*opts)
{ type: :hash, cnts: contents, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_hash: ((nil | AssocListFromArgs) contents) -> HashLiteral
def on_hash(contents)
lbrace = find_token(LBrace)
rbrace = find_token(RBrace)
if contents
# Here we're going to expand out the location information for the contents
# node so that it can grab up any remaining comments inside the hash.
location =
Location.new(
start_line: contents.location.start_line,
start_char: lbrace.location.end_char,
end_line: contents.location.end_line,
end_char: rbrace.location.start_char
)
contents = contents.class.new(assocs: contents.assocs, location: location)
end
HashLiteral.new(
contents: contents,
location: lbrace.location.to(rbrace.location)
)
end
# Heredoc represents a heredoc string literal.
#
# <<~DOC
# contents
# DOC
#
class Heredoc
# [HeredocBeg] the opening of the heredoc
attr_reader :beginning
# [String] the ending of the heredoc
attr_reader :ending
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# heredoc string literal
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(beginning:, ending: nil, parts: [], location:)
@beginning = beginning
@ending = ending
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('heredoc')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{
type: :heredoc,
beging: beginning,
ending: ending,
parts: parts,
loc: location
}.to_json(*opts)
end
end
# HeredocBeg represents the beginning declaration of a heredoc.
#
# <<~DOC
# contents
# DOC
#
# In the example above the HeredocBeg node represents <<~DOC.
class HeredocBeg
# [String] the opening declaration of the heredoc
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('heredoc_beg')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :heredoc_beg, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_heredoc_beg: (String value) -> HeredocBeg
def on_heredoc_beg(value)
location =
Location.token(line: lineno, char: char_pos, size: value.size + 1)
# Here we're going to artificially create an extra node type so that if
# there are comments after the declaration of a heredoc, they get printed.
beginning = HeredocBeg.new(value: value, location: location)
@heredocs << Heredoc.new(beginning: beginning, location: location)
beginning
end
# :call-seq:
# on_heredoc_dedent: (StringContent string, Integer width) -> Heredoc
def on_heredoc_dedent(string, width)
heredoc = @heredocs[-1]
@heredocs[-1] =
Heredoc.new(
beginning: heredoc.beginning,
ending: heredoc.ending,
parts: string.parts,
location: heredoc.location
)
end
# :call-seq:
# on_heredoc_end: (String value) -> Heredoc
def on_heredoc_end(value)
heredoc = @heredocs[-1]
@heredocs[-1] =
Heredoc.new(
beginning: heredoc.beginning,
ending: value.chomp,
parts: heredoc.parts,
location:
Location.new(
start_line: heredoc.location.start_line,
start_char: heredoc.location.start_char,
end_line: lineno,
end_char: char_pos
)
)
end
# HshPtn represents matching against a hash pattern using the Ruby 2.7+
# pattern matching syntax.
#
# case value
# in { key: }
# end
#
class HshPtn
# [nil | untyped] the optional constant wrapper
attr_reader :constant
# [Array[ [Label, untyped] ]] the set of tuples representing the keywords
# that should be matched against in the pattern
attr_reader :keywords
# [nil | VarField] an optional parameter to gather up all remaining keywords
attr_reader :keyword_rest
# [Location] the location of this node
attr_reader :location
def initialize(constant:, keywords:, keyword_rest:, location:)
@constant = constant
@keywords = keywords
@keyword_rest = keyword_rest
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('hshptn')
if constant
q.breakable
q.pp(constant)
end
if keywords.any?
q.breakable
q.group(2, '(', ')') do
q.seplist(keywords) { |keyword| q.pp(keyword) }
end
end
if keyword_rest
q.breakable
q.pp(keyword_rest)
end
end
end
def to_json(*opts)
{
type: :hshptn,
constant: constant,
keywords: keywords,
kwrest: keyword_rest,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_hshptn: (
# (nil | untyped) constant,
# Array[[Label, untyped]] keywords,
# (nil | VarField) keyword_rest
# ) -> HshPtn
def on_hshptn(constant, keywords, keyword_rest)
parts = [constant, keywords, keyword_rest].flatten(2).compact
HshPtn.new(
constant: constant,
keywords: keywords,
keyword_rest: keyword_rest,
location: parts[0].location.to(parts[-1].location)
)
end
# Ident represents an identifier anywhere in code. It can represent a very
# large number of things, depending on where it is in the syntax tree.
#
# value
#
class Ident
# [String] the value of the identifier
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('ident')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{
type: :ident,
value: value.force_encoding('UTF-8'),
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_ident: (String value) -> Ident
def on_ident(value)
node =
Ident.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# If represents the first clause in an +if+ chain.
#
# if predicate
# end
#
class If
# [untyped] the expression to be checked
attr_reader :predicate
# [Statements] the expressions to be executed
attr_reader :statements
# [nil, Elsif, Else] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, statements:, consequent:, location:)
@predicate = predicate
@statements = statements
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('if')
q.breakable
q.pp(predicate)
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :if,
pred: predicate,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_if: (
# untyped predicate,
# Statements statements,
# (nil | Elsif | Else) consequent
# ) -> If
def on_if(predicate, statements, consequent)
beginning = find_token(Kw, 'if')
ending = consequent || find_token(Kw, 'end')
statements.bind(predicate.location.end_char, ending.location.start_char)
If.new(
predicate: predicate,
statements: statements,
consequent: consequent,
location: beginning.location.to(ending.location)
)
end
# IfOp represents a ternary clause.
#
# predicate ? truthy : falsy
#
class IfOp
# [untyped] the expression to be checked
attr_reader :predicate
# [untyped] the expression to be executed if the predicate is truthy
attr_reader :truthy
# [untyped] the expression to be executed if the predicate is falsy
attr_reader :falsy
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, truthy:, falsy:, location:)
@predicate = predicate
@truthy = truthy
@falsy = falsy
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('ifop')
q.breakable
q.pp(predicate)
q.breakable
q.pp(truthy)
q.breakable
q.pp(falsy)
end
end
def to_json(*opts)
{
type: :ifop,
pred: predicate,
tthy: truthy,
flsy: falsy,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_ifop: (untyped predicate, untyped truthy, untyped falsy) -> IfOp
def on_ifop(predicate, truthy, falsy)
IfOp.new(
predicate: predicate,
truthy: truthy,
falsy: falsy,
location: predicate.location.to(falsy.location)
)
end
# IfMod represents the modifier form of an +if+ statement.
#
# expression if predicate
#
class IfMod
# [untyped] the expression to be executed
attr_reader :statement
# [untyped] the expression to be checked
attr_reader :predicate
# [Location] the location of this node
attr_reader :location
def initialize(statement:, predicate:, location:)
@statement = statement
@predicate = predicate
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('if_mod')
q.breakable
q.pp(statement)
q.breakable
q.pp(predicate)
end
end
def to_json(*opts)
{
type: :if_mod,
stmt: statement,
pred: predicate,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_if_mod: (untyped predicate, untyped statement) -> IfMod
def on_if_mod(predicate, statement)
find_token(Kw, 'if')
IfMod.new(
statement: statement,
predicate: predicate,
location: statement.location.to(predicate.location)
)
end
# def on_ignored_nl(value)
# value
# end
# def on_ignored_sp(value)
# value
# end
# Imaginary represents an imaginary number literal.
#
# 1i
#
class Imaginary
# [String] the value of the imaginary number literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('imaginary')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :imaginary, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_imaginary: (String value) -> Imaginary
def on_imaginary(value)
node =
Imaginary.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# In represents using the +in+ keyword within the Ruby 2.7+ pattern matching
# syntax.
#
# case value
# in pattern
# end
#
class In
# [untyped] the pattern to check against
attr_reader :pattern
# [Statements] the expressions to execute if the pattern matched
attr_reader :statements
# [nil | In | Else] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(pattern:, statements:, consequent:, location:)
@pattern = pattern
@statements = statements
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('in')
q.breakable
q.pp(pattern)
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :in,
pattern: pattern,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_in: (RAssign pattern, nil statements, nil consequent) -> RAssign
# | (
# untyped pattern,
# Statements statements,
# (nil | In | Else) consequent
# ) -> In
def on_in(pattern, statements, consequent)
# Here we have a rightward assignment
return pattern unless statements
beginning = find_token(Kw, 'in')
ending = consequent || find_token(Kw, 'end')
statements.bind(beginning.location.end_char, ending.location.start_char)
In.new(
pattern: pattern,
statements: statements,
consequent: consequent,
location: beginning.location.to(ending.location)
)
end
# Int represents an integer number literal.
#
# 1
#
class Int
# [String] the value of the integer
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('int')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :int, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_int: (String value) -> Int
def on_int(value)
node =
Int.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# IVar represents an instance variable literal.
#
# @variable
#
class IVar
# [String] the name of the instance variable
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('ivar')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :ivar, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_ivar: (String value) -> IVar
def on_ivar(value)
node =
IVar.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Kw represents the use of a keyword. It can be almost anywhere in the syntax
# tree, so you end up seeing it quite a lot.
#
# if value
# end
#
# In the above example, there would be two Kw nodes: one for the if and one
# for the end. Note that anything that matches the list of keywords in Ruby
# will use a Kw, so if you use a keyword in a symbol literal for instance:
#
# :if
#
# then the contents of the symbol node will contain a Kw node.
class Kw
# [String] the value of the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('kw')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :kw, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_kw: (String value) -> Kw
def on_kw(value)
node =
Kw.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# KwRestParam represents defining a parameter in a method definition that
# accepts all remaining keyword parameters.
#
# def method(**kwargs) end
#
class KwRestParam
# [nil | Ident] the name of the parameter
attr_reader :name
# [Location] the location of this node
attr_reader :location
def initialize(name:, location:)
@name = name
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('kwrest_param')
q.breakable
q.pp(name)
end
end
def to_json(*opts)
{ type: :kwrest_param, name: name, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_kwrest_param: ((nil | Ident) name) -> KwRestParam
def on_kwrest_param(name)
location = find_token(Op, '**').location
location = location.to(name.location) if name
KwRestParam.new(name: name, location: location)
end
# Label represents the use of an identifier to associate with an object. You
# can find it in a hash key, as in:
#
# { key: value }
#
# In this case "key:" would be the body of the label. You can also find it in
# pattern matching, as in:
#
# case value
# in key:
# end
#
# In this case "key:" would be the body of the label.
class Label
# [String] the value of the label
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('label')
q.breakable
q.text(':')
q.text(value[0...-1])
end
end
def to_json(*opts)
{ type: :label, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_label: (String value) -> Label
def on_label(value)
node =
Label.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# LabelEnd represents the end of a dynamic symbol.
#
# { "key": value }
#
# In the example above, LabelEnd represents the "\":" token at the end of the
# hash key. This node is important for determining the type of quote being
# used by the label.
class LabelEnd
# [String] the end of the label
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_label_end: (String value) -> LabelEnd
def on_label_end(value)
node =
LabelEnd.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Lambda represents using a lambda literal (not the lambda method call).
#
# ->(value) { value * 2 }
#
class Lambda
# [Params | Paren] the parameter declaration for this lambda
attr_reader :params
# [BodyStmt | Statements] the expressions to be executed in this lambda
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(params:, statements:, location:)
@params = params
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('lambda')
q.breakable
q.pp(params)
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :lambda,
params: params,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_lambda: (
# (Params | Paren) params,
# (BodyStmt | Statements) statements
# ) -> Lambda
def on_lambda(params, statements)
beginning = find_token(TLambda)
if token = find_token(TLamBeg, consume: false)
opening = tokens.delete(token)
closing = find_token(RBrace)
else
opening = find_token(Kw, 'do')
closing = find_token(Kw, 'end')
end
statements.bind(opening.location.end_char, closing.location.start_char)
Lambda.new(
params: params,
statements: statements,
location: beginning.location.to(closing.location)
)
end
# LBrace represents the use of a left brace, i.e., {.
class LBrace
# [String] the left brace
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('lbrace')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :lbrace, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_lbrace: (String value) -> LBrace
def on_lbrace(value)
node =
LBrace.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# LBracket represents the use of a left bracket, i.e., [.
class LBracket
# [String] the left bracket
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_lbracket: (String value) -> LBracket
def on_lbracket(value)
node =
LBracket.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# LParen represents the use of a left parenthesis, i.e., (.
class LParen
# [String] the left parenthesis
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('lparen')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :lparen, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_lparen: (String value) -> LParen
def on_lparen(value)
node =
LParen.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# def on_magic_comment(key, value)
# [key, value]
# end
# MAssign is a parent node of any kind of multiple assignment. This includes
# splitting out variables on the left like:
#
# first, second, third = value
#
# as well as splitting out variables on the right, as in:
#
# value = first, second, third
#
# Both sides support splats, as well as variables following them. There's also
# destructuring behavior that you can achieve with the following:
#
# first, = value
#
class MAssign
# [Mlhs | MlhsAddPost | MlhsAddStar | MlhsParen] the target of the multiple
# assignment
attr_reader :target
# [untyped] the value being assigned
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(target:, value:, location:)
@target = target
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('massign')
q.breakable
q.pp(target)
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :massign, target: target, value: value, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_massign: (
# (Mlhs | MlhsAddPost | MlhsAddStar | MlhsParen) target,
# untyped value
# ) -> MAssign
def on_massign(target, value)
comma_range = target.location.end_char...value.location.start_char
target.comma = true if source[comma_range].strip.start_with?(',')
MAssign.new(
target: target,
value: value,
location: target.location.to(value.location)
)
end
# MethodAddArg represents a method call with arguments and parentheses.
#
# method(argument)
#
# MethodAddArg can also represent with a method on an object, as in:
#
# object.method(argument)
#
# Finally, MethodAddArg can represent calling a method with no receiver that
# ends in a ?. In this case, the parser knows it's a method call and not a
# local variable, so it uses a MethodAddArg node as opposed to a VCall node,
# as in:
#
# method?
#
class MethodAddArg
# [Call | FCall] the method call
attr_reader :call
# [ArgParen | Args | ArgsAddBlock] the arguments to the method call
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(call:, arguments:, location:)
@call = call
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('method_add_arg')
q.breakable
q.pp(call)
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{
type: :method_add_arg,
call: call,
args: arguments,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_method_add_arg: (
# (Call | FCall) call,
# (ArgParen | Args | ArgsAddBlock) arguments
# ) -> MethodAddArg
def on_method_add_arg(call, arguments)
location = call.location
location = location.to(arguments.location) unless arguments.is_a?(Args)
MethodAddArg.new(call: call, arguments: arguments, location: location)
end
# MethodAddBlock represents a method call with a block argument.
#
# method {}
#
class MethodAddBlock
# [Call | Command | CommandCall | FCall | MethodAddArg] the method call
attr_reader :call
# [BraceBlock | DoBlock] the block being sent with the method call
attr_reader :block
# [Location] the location of this node
attr_reader :location
def initialize(call:, block:, location:)
@call = call
@block = block
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('method_add_block')
q.breakable
q.pp(call)
q.breakable
q.pp(block)
end
end
def to_json(*opts)
{
type: :method_add_block,
call: call,
block: block,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_method_add_block: (
# (Call | Command | CommandCall | FCall | MethodAddArg) call,
# (BraceBlock | DoBlock) block
# ) -> MethodAddBlock
def on_method_add_block(call, block)
MethodAddBlock.new(
call: call,
block: block,
location: call.location.to(block.location)
)
end
# MLHS represents a list of values being destructured on the left-hand side
# of a multiple assignment.
#
# first, second, third = value
#
class MLHS
# Array[ARefField | Field | Ident | MlhsParen | VarField] the parts of
# the left-hand side of a multiple assignment
attr_reader :parts
# [boolean] whether or not there is a trailing comma at the end of this
# list, which impacts destructuring. It's an attr_accessor so that while
# the syntax tree is being built it can be set by its parent node
attr_accessor :comma
# [Location] the location of this node
attr_reader :location
def initialize(parts:, comma: false, location:)
@parts = parts
@comma = comma
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mlhs')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :mlhs, parts: parts, comma: comma, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_mlhs_add: (
# MLHS mlhs,
# (ARefField | Field | Ident | MlhsParen | VarField) part
# ) -> MLHS
def on_mlhs_add(mlhs, part)
if mlhs.parts.empty?
MLHS.new(parts: [part], location: part.location)
else
MLHS.new(
parts: mlhs.parts << part,
location: mlhs.location.to(part.location)
)
end
end
# MLHSAddPost represents adding another set of variables onto a list of
# assignments after a splat variable within a multiple assignment.
#
# left, *middle, right = values
#
class MLHSAddPost
# [MlhsAddStar] the value being starred
attr_reader :star
# [Mlhs] the values after the star
attr_reader :mlhs
# [Location] the location of this node
attr_reader :location
def initialize(star:, mlhs:, location:)
@star = star
@mlhs = mlhs
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mlhs_add_post')
q.breakable
q.pp(star)
q.breakable
q.pp(mlhs)
end
end
def to_json(*opts)
{ type: :mlhs_add_post, star: star, mlhs: mlhs, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_mlhs_add_post: (MLHSAddStar star, MLHS mlhs) -> MLHSAddPost
def on_mlhs_add_post(star, mlhs)
MLHSAddPost.new(
star: star,
mlhs: mlhs,
location: star.location.to(mlhs.location)
)
end
# MLHSAddStar represents a splatted variable inside of a multiple assignment
# on the left hand side.
#
# first, *rest = values
#
class MLHSAddStar
# [MLHS] the values before the starred expression
attr_reader :mlhs
# [nil | ARefField | Field | Ident | VarField] the expression being
# splatted
attr_reader :star
# [Location] the location of this node
attr_reader :location
def initialize(mlhs:, star:, location:)
@mlhs = mlhs
@star = star
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mlhs_add_star')
q.breakable
q.pp(mlhs)
q.breakable
q.pp(star)
end
end
def to_json(*opts)
{ type: :mlhs_add_star, mlhs: mlhs, star: star, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_mlhs_add_star: (
# MLHS mlhs,
# (nil | ARefField | Field | Ident | VarField) part
# ) -> MLHSAddStar
def on_mlhs_add_star(mlhs, part)
beginning = find_token(Op, '*')
ending = part || beginning
MLHSAddStar.new(
mlhs: mlhs,
star: part,
location: beginning.location.to(ending.location)
)
end
# :call-seq:
# on_mlhs_new: () -> MLHS
def on_mlhs_new
MLHS.new(parts: [], location: Location.fixed(line: lineno, char: char_pos))
end
# MLHSParen represents parentheses being used to destruct values in a multiple
# assignment on the left hand side.
#
# (left, right) = value
#
class MLHSParen
# [Mlhs | MlhsAddPost | MlhsAddStar | MlhsParen] the contents inside of the
# parentheses
attr_reader :contents
# [Location] the location of this node
attr_reader :location
def initialize(contents:, location:)
@contents = contents
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mlhs_paren')
q.breakable
q.pp(contents)
end
end
def to_json(*opts)
{ type: :mlhs_paren, cnts: contents, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_mlhs_paren: (
# (Mlhs | MlhsAddPost | MlhsAddStar | MlhsParen) contents
# ) -> MLHSParen
def on_mlhs_paren(contents)
lparen = find_token(LParen)
rparen = find_token(RParen)
comma_range = lparen.location.end_char...rparen.location.start_char
contents.comma = true if source[comma_range].strip.end_with?(',')
MLHSParen.new(
contents: contents,
location: lparen.location.to(rparen.location)
)
end
# ModuleDeclaration represents defining a module using the +module+ keyword.
#
# module Namespace
# end
#
class ModuleDeclaration
# [ConstPathRef | ConstRef | TopConstRef] the name of the module
attr_reader :constant
# [BodyStmt] the expressions to be executed in the context of the module
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(constant:, bodystmt:, location:)
@constant = constant
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('module')
q.breakable
q.pp(constant)
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :module,
constant: constant,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_module: (
# (ConstPathRef | ConstRef | TopConstRef) constant,
# BodyStmt bodystmt
# ) -> ModuleDeclaration
def on_module(constant, bodystmt)
beginning = find_token(Kw, 'module')
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start(constant.location.end_char),
ending.location.start_char
)
ModuleDeclaration.new(
constant: constant,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# MRHS represents the values that are being assigned on the right-hand side of
# a multiple assignment.
#
# values = first, second, third
#
class MRHS
# Array[untyped] the parts that are being assigned
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mrhs')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :mrhs, parts: parts, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_mrhs_new: () -> MRHS
def on_mrhs_new
MRHS.new(parts: [], location: Location.fixed(line: lineno, char: char_pos))
end
# :call-seq:
# on_mrhs_add: (MRHS mrhs, untyped part) -> MRHS
def on_mrhs_add(mrhs, part)
if mrhs.is_a?(MRHSNewFromArgs)
MRHS.new(
parts: [*mrhs.arguments.parts, part],
location: mrhs.location.to(part.location)
)
elsif mrhs.parts.empty?
MRHS.new(parts: [part], location: mrhs.location)
else
MRHS.new(parts: mrhs.parts << part, loc: mrhs.location.to(part.location))
end
end
# MRHSAddStar represents using the splat operator to expand out a value on the
# right hand side of a multiple assignment.
#
# values = first, *rest
#
class MRHSAddStar
# [MRHS | MRHSNewFromArgs] the values before the splatted expression
attr_reader :mrhs
# [untyped] the splatted expression
attr_reader :star
# [Location] the location of this node
attr_reader :location
def initialize(mrhs:, star:, location:)
@mrhs = mrhs
@star = star
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mrhs_add_star')
q.breakable
q.pp(mrhs)
q.breakable
q.pp(star)
end
end
def to_json(*opts)
{ type: :mrhs_add_star, mrhs: mrhs, star: star, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_mrhs_add_star: (
# (MRHS | MRHSNewFromArgs) mrhs,
# untyped star
# ) -> MRHSAddStar
def on_mrhs_add_star(mrhs, star)
beginning = find_token(Op, '*')
ending = star || beginning
MRHSAddStar.new(
mrhs: mrhs,
star: star,
location: beginning.location.to(ending.location)
)
end
# MRHSNewFromArgs represents the shorthand of a multiple assignment that
# allows you to assign values using just commas as opposed to assigning from
# an array.
#
# values = first, second, third
#
class MRHSNewFromArgs
# [Args] the arguments being used in the assignment
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('mrhs_new_from_args')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :mrhs_new_from_args, args: arguments, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_mrhs_new_from_args: (Args arguments) -> MRHSNewFromArgs
def on_mrhs_new_from_args(arguments)
MRHSNewFromArgs.new(arguments: arguments, location: arguments.location)
end
# Next represents using the +next+ keyword.
#
# next
#
# The +next+ keyword can also optionally be called with an argument:
#
# next value
#
# +next+ can even be called with multiple arguments, but only if parentheses
# are omitted, as in:
#
# next first, second, third
#
# If a single value is being given, parentheses can be used, as in:
#
# next(value)
#
class Next
# [Args | ArgsAddBlock] the arguments passed to the next keyword
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('next')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :next, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_next: ((Args | ArgsAddBlock) arguments) -> Next
def on_next(arguments)
keyword = find_token(Kw, 'next')
location = keyword.location
location = location.to(arguments.location) unless arguments.is_a?(Args)
Next.new(arguments: arguments, location: location)
end
# def on_nl(value)
# value
# end
# def on_nokw_param(value)
# value
# end
# Op represents an operator literal in the source.
#
# 1 + 2
#
# In the example above, the Op node represents the + operator.
class Op
# [String] the operator
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('op')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :op, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_op: (String value) -> Op
def on_op(value)
node =
Op.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# OpAssign represents assigning a value to a variable or constant using an
# operator like += or ||=.
#
# variable += value
#
class OpAssign
# [ARefField | ConstPathField | Field | TopConstField | VarField] the target
# to assign the result of the expression to
attr_reader :target
# [Op] the operator being used for the assignment
attr_reader :operator
# [untyped] the expression to be assigned
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(target:, operator:, value:, location:)
@target = target
@operator = operator
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('opassign')
q.breakable
q.pp(target)
q.breakable
q.pp(operator)
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{
type: :opassign,
target: target,
op: operator,
value: value,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_opassign: (
# (ARefField | ConstPathField | Field | TopConstField | VarField) target,
# Op operator,
# untyped value
# ) -> OpAssign
def on_opassign(target, operator, value)
OpAssign.new(
target: target,
operator: operator,
value: value,
location: target.location.to(value.location)
)
end
# def on_operator_ambiguous(value)
# value
# end
# Params represents defining parameters on a method or lambda.
#
# def method(param) end
#
class Params
# [Array[ Ident ]] any required parameters
attr_reader :requireds
# [Array[ [ Ident, untyped ] ]] any optional parameters and their default
# values
attr_reader :optionals
# [nil | ArgsForward | ExcessedComma | RestParam] the optional rest
# parameter
attr_reader :rest
# [Array[ Ident ]] any positional parameters that exist after a rest
# parameter
attr_reader :posts
# [Array[ [ Ident, nil | untyped ] ]] any keyword parameters and their
# optional default values
attr_reader :keywords
# [nil | :nil | KwRestParam] the optional keyword rest parameter
attr_reader :keyword_rest
# [nil | BlockArg] the optional block parameter
attr_reader :block
# [Location] the location of this node
attr_reader :location
def initialize(
requireds: [],
optionals: [],
rest: nil,
posts: [],
keywords: [],
keyword_rest: nil,
block: nil,
location:
)
@requireds = requireds
@optionals = optionals
@rest = rest
@posts = posts
@keywords = keywords
@keyword_rest = keyword_rest
@block = block
@location = location
end
# Params nodes are the most complicated in the tree. Occasionally you want
# to know if they are "empty", which means not having any parameters
# declared. This logic accesses every kind of parameter and determines if
# it's missing.
def empty?
requireds.empty? && optionals.empty? && !rest && posts.empty? &&
keywords.empty? && !keyword_rest && !block
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('params')
if requireds.any?
q.breakable
q.group(2, '(', ')') { q.seplist(requireds) { |name| q.pp(name) } }
end
if optionals.any?
q.breakable
q.group(2, '(', ')') do
q.seplist(optionals) do |(name, default)|
q.pp(name)
q.text('=')
q.group(2) do
q.breakable('')
q.pp(default)
end
end
end
end
if rest
q.breakable
q.pp(rest)
end
if posts.any?
q.breakable
q.group(2, '(', ')') { q.seplist(posts) { |value| q.pp(value) } }
end
if keywords.any?
q.breakable
q.group(2, '(', ')') do
q.seplist(keywords) do |(name, default)|
q.pp(name)
if default
q.text('=')
q.group(2) do
q.breakable('')
q.pp(default)
end
end
end
end
end
if keyword_rest
q.breakable
q.pp(keyword_rest)
end
if block
q.breakable
q.pp(block)
end
end
end
def to_json(*opts)
{
type: :params,
reqs: requireds,
opts: optionals,
rest: rest,
posts: posts,
keywords: keywords,
kwrest: keyword_rest,
block: block,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_params: (
# (nil | Array[Ident]) requireds,
# (nil | Array[[Ident, untyped]]) optionals,
# (nil | ArgsForward | ExcessedComma | RestParam) rest,
# (nil | Array[Ident]) posts,
# (nil | Array[[Ident, nil | untyped]]) keywords,
# (nil | :nil | KwRestParam) keyword_rest,
# (nil | BlockArg) block
# ) -> Params
def on_params(
requireds,
optionals,
rest,
posts,
keywords,
keyword_rest,
block
)
parts = [
*requireds,
*optionals&.flatten(1),
rest,
*posts,
*keywords&.flat_map { |(key, value)| [key, value || nil] },
(keyword_rest if keyword_rest != :nil),
block
].compact
location =
if parts.any?
parts[0].location.to(parts[-1].location)
else
Location.fixed(line: lineno, char: char_pos)
end
Params.new(
requireds: requireds || [],
optionals: optionals || [],
rest: rest,
posts: posts || [],
keywords: keywords || [],
keyword_rest: keyword_rest,
block: block,
location: location
)
end
# Paren represents using balanced parentheses in a couple places in a Ruby
# program. In general parentheses can be used anywhere a Ruby expression can
# be used.
#
# (1 + 2)
#
class Paren
# [LParen] the left parenthesis that opened this statement
attr_reader :lparen
# [untyped] the expression inside the parentheses
attr_reader :contents
# [Location] the location of this node
attr_reader :location
def initialize(lparen:, contents:, location:)
@lparen = lparen
@contents = contents
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('paren')
q.breakable
q.pp(contents)
end
end
def to_json(*opts)
{ type: :paren, lparen: lparen, cnts: contents, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_paren: (untyped contents) -> Paren
def on_paren(contents)
lparen = find_token(LParen)
rparen = find_token(RParen)
if contents && contents.is_a?(Params)
location = contents.location
location =
Location.new(
start_line: location.start_line,
start_char: find_next_statement_start(lparen.location.end_char),
end_line: location.end_line,
end_char: rparen.location.start_char
)
contents =
Params.new(
requireds: contents.requireds,
optionals: contents.optionals,
rest: contents.rest,
posts: contents.posts,
keywords: contents.keywords,
keyword_rest: contents.keyword_rest,
block: contents.block,
location: location
)
end
Paren.new(
lparen: lparen,
contents: contents,
location: lparen.location.to(rparen.location)
)
end
# If we encounter a parse error, just immediately bail out so that our runner
# can catch it.
def on_parse_error(error, *)
raise ParseError.new(error, lineno, column)
end
alias on_alias_error on_parse_error
alias on_assign_error on_parse_error
alias on_class_name_error on_parse_error
alias on_param_error on_parse_error
# Period represents the use of the +.+ operator. It is usually found in method
# calls.
class Period
# [String] the period
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('period')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :period, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_period: (String value) -> Period
def on_period(value)
Period.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
end
# Program represents the overall syntax tree.
class Program
# [Statements] the top-level expressions of the program
attr_reader :statements
# [Array[ Comment | EmbDoc ]] the comments inside the program
attr_reader :comments
# [Location] the location of this node
attr_reader :location
def initialize(statements:, comments:, location:)
@statements = statements
@comments = comments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('program')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :program,
stmts: statements,
comments: comments,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_program: (Statements statements) -> Program
def on_program(statements)
location =
Location.new(
start_line: 1,
start_char: 0,
end_line: lines.length,
end_char: source.length
)
statements.body << @__end__ if @__end__
statements.bind(0, source.length)
Program.new(statements: statements, comments: @comments, location: location)
end
# QSymbols represents a symbol literal array without interpolation.
#
# %i[one two three]
#
class QSymbols
# [Array[ TStringContent ]] the elements of the array
attr_reader :elements
# [Location] the location of this node
attr_reader :location
def initialize(elements:, location:)
@elements = elements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('qsymbols')
q.breakable
q.group(2, '(', ')') { q.seplist(elements) { |element| q.pp(element) } }
end
end
def to_json(*opts)
{ type: :qsymbols, elems: elements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_qsymbols_add: (QSymbols qsymbols, TStringContent element) -> QSymbols
def on_qsymbols_add(qsymbols, element)
QSymbols.new(
elements: qsymbols.elements << element,
location: qsymbols.location.to(element.location)
)
end
# QSymbolsBeg represents the beginning of a symbol literal array.
#
# %i[one two three]
#
# In the snippet above, QSymbolsBeg represents the "%i[" token. Note that
# these kinds of arrays can start with a lot of different delimiter types
# (e.g., %i| or %i<).
class QSymbolsBeg
# [String] the beginning of the array literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_qsymbols_beg: (String value) -> QSymbolsBeg
def on_qsymbols_beg(value)
node =
QSymbolsBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# :call-seq:
# on_qsymbols_new: () -> QSymbols
def on_qsymbols_new
qsymbols_beg = find_token(QSymbolsBeg)
QSymbols.new(elements: [], location: qsymbols_beg.location)
end
# QWords represents a string literal array without interpolation.
#
# %w[one two three]
#
class QWords
# [Array[ TStringContent ]] the elements of the array
attr_reader :elements
# [Location] the location of this node
attr_reader :location
def initialize(elements:, location:)
@elements = elements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('qwords')
q.breakable
q.group(2, '(', ')') { q.seplist(elements) { |element| q.pp(element) } }
end
end
def to_json(*opts)
{ type: :qwords, elems: elements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_qwords_add: (QWords qwords, TStringContent element) -> QWords
def on_qwords_add(qwords, element)
QWords.new(
elements: qwords.elements << element,
location: qwords.location.to(element.location)
)
end
# QWordsBeg represents the beginning of a string literal array.
#
# %w[one two three]
#
# In the snippet above, QWordsBeg represents the "%w[" token. Note that these
# kinds of arrays can start with a lot of different delimiter types (e.g.,
# %w| or %w<).
class QWordsBeg
# [String] the beginning of the array literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_qwords_beg: (String value) -> QWordsBeg
def on_qwords_beg(value)
node =
QWordsBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# :call-seq:
# on_qwords_new: () -> QWords
def on_qwords_new
qwords_beg = find_token(QWordsBeg)
QWords.new(elements: [], location: qwords_beg.location)
end
# RationalLiteral represents the use of a rational number literal.
#
# 1r
#
class RationalLiteral
# [String] the rational number literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rational')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :rational, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_rational: (String value) -> RationalLiteral
def on_rational(value)
node =
RationalLiteral.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# RBrace represents the use of a right brace, i.e., +++.
class RBrace
# [String] the right brace
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_rbrace: (String value) -> RBrace
def on_rbrace(value)
node =
RBrace.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# RBracket represents the use of a right bracket, i.e., +]+.
class RBracket
# [String] the right bracket
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_rbracket: (String value) -> RBracket
def on_rbracket(value)
node =
RBracket.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Redo represents the use of the +redo+ keyword.
#
# redo
#
class Redo
# [String] the value of the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('redo')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :redo, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_redo: () -> Redo
def on_redo
keyword = find_token(Kw, 'redo')
Redo.new(value: keyword.value, location: keyword.location)
end
# RegexpContent represents the body of a regular expression.
#
# /.+ #{pattern} .+/
#
# In the example above, a RegexpContent node represents everything contained
# within the forward slashes.
class RegexpContent
# [String] the opening of the regular expression
attr_reader :beginning
# [Array[ StringDVar | StringEmbExpr | TStringContent ]] the parts of the
# regular expression
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(beginning:, parts:, location:)
@beginning = beginning
@parts = parts
@location = location
end
end
# :call-seq:
# on_regexp_add: (
# RegexpContent regexp_content,
# (StringDVar | StringEmbExpr | TStringContent) part
# ) -> RegexpContent
def on_regexp_add(regexp_content, part)
RegexpContent.new(
beginning: regexp_content.beginning,
parts: regexp_content.parts << part,
location: regexp_content.location.to(part.location)
)
end
# RegexpBeg represents the start of a regular expression literal.
#
# /.+/
#
# In the example above, RegexpBeg represents the first / token. Regular
# expression literals can also be declared using the %r syntax, as in:
#
# %r{.+}
#
class RegexpBeg
# [String] the beginning of the regular expression
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_regexp_beg: (String value) -> RegexpBeg
def on_regexp_beg(value)
node =
RegexpBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# RegexpEnd represents the end of a regular expression literal.
#
# /.+/m
#
# In the example above, the RegexpEnd event represents the /m at the end of
# the regular expression literal. You can also declare regular expression
# literals using %r, as in:
#
# %r{.+}m
#
class RegexpEnd
# [String] the end of the regular expression
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_regexp_end: (String value) -> RegexpEnd
def on_regexp_end(value)
RegexpEnd.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
end
# RegexpLiteral represents a regular expression literal.
#
# /.+/
#
class RegexpLiteral
# [String] the beginning of the regular expression literal
attr_reader :beginning
# [String] the ending of the regular expression literal
attr_reader :ending
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# regular expression literal
attr_reader :parts
# [Locatione] the location of this node
attr_reader :location
def initialize(beginning:, ending:, parts:, location:)
@beginning = beginning
@ending = ending
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('regexp_literal')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{
type: :regexp_literal,
beging: beginning,
ending: ending,
parts: parts,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_regexp_literal: (
# RegexpContent regexp_content,
# RegexpEnd ending
# ) -> RegexpLiteral
def on_regexp_literal(regexp_content, ending)
RegexpLiteral.new(
beginning: regexp_content.beginning,
ending: ending.value,
parts: regexp_content.parts,
location: regexp_content.location.to(ending.location)
)
end
# :call-seq:
# on_regexp_new: () -> RegexpContent
def on_regexp_new
regexp_beg = find_token(RegexpBeg)
RegexpContent.new(
beginning: regexp_beg.value,
parts: [],
location: regexp_beg.location
)
end
# RescueEx represents the list of exceptions being rescued in a rescue clause.
#
# begin
# rescue Exception => exception
# end
#
class RescueEx
# [untyped] the list of exceptions being rescued
attr_reader :exceptions
# [nil | Field | VarField] the expression being used to capture the raised
# exception
attr_reader :variable
# [Location] the location of this node
attr_reader :location
def initialize(exceptions:, variable:, location:)
@exceptions = exceptions
@variable = variable
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rescue_ex')
q.breakable
q.pp(exceptions)
q.breakable
q.pp(variable)
end
end
def to_json(*opts)
{
type: :rescue_ex,
extns: exceptions,
var: variable,
loc: location
}.to_json(*opts)
end
end
# Rescue represents the use of the rescue keyword inside of a BodyStmt node.
#
# begin
# rescue
# end
#
class Rescue
# [RescueEx] the exceptions being rescued
attr_reader :exception
# [Statements] the expressions to evaluate when an error is rescued
attr_reader :statements
# [nil | Rescue] the optional next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(exception:, statements:, consequent:, location:)
@exception = exception
@statements = statements
@consequent = consequent
@location = location
end
def bind_end(end_char)
@location =
Location.new(
start_line: location.start_line,
start_char: location.start_char,
end_line: location.end_line,
end_char: end_char
)
if consequent
consequent.bind_end(end_char)
statements.bind_end(consequent.location.start_char)
else
statements.bind_end(end_char)
end
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rescue')
if exception
q.breakable
q.pp(exception)
end
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :rescue,
extn: exception,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_rescue: (
# (nil | [untyped] | MRHS | MRHSAddStar) exceptions,
# (nil | Field | VarField) variable,
# Statements statements,
# (nil | Rescue) consequent
# ) -> Rescue
def on_rescue(exceptions, variable, statements, consequent)
keyword = find_token(Kw, 'rescue')
exceptions = exceptions[0] if exceptions.is_a?(Array)
last_node = variable || exceptions || keyword
statements.bind(
find_next_statement_start(last_node.location.end_char),
char_pos
)
# We add an additional inner node here that ripper doesn't provide so that
# we have a nice place to attach inline comments. But we only need it if we
# have an exception or a variable that we're rescuing.
rescue_ex =
if exceptions || variable
RescueEx.new(
exceptions: exceptions,
variable: variable,
location:
Location.new(
start_line: keyword.location.start_line,
start_char: keyword.location.end_char + 1,
end_line: last_node.location.end_line,
end_char: last_node.location.end_char
)
)
end
Rescue.new(
exception: rescue_ex,
statements: statements,
consequent: consequent,
location:
Location.new(
start_line: keyword.location.start_line,
start_char: keyword.location.start_char,
end_line: lineno,
end_char: char_pos
)
)
end
# RescueMod represents the use of the modifier form of a +rescue+ clause.
#
# expression rescue value
#
class RescueMod
# [untyped] the expression to execute
attr_reader :statement
# [untyped] the value to use if the executed expression raises an error
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(statement:, value:, location:)
@statement = statement
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rescue_mod')
q.breakable
q.pp(statement)
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{
type: :rescue_mod,
stmt: statement,
value: value,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_rescue_mod: (untyped statement, untyped value) -> RescueMod
def on_rescue_mod(statement, value)
find_token(Kw, 'rescue')
RescueMod.new(
statement: statement,
value: value,
location: statement.location.to(value.location)
)
end
# RestParam represents defining a parameter in a method definition that
# accepts all remaining positional parameters.
#
# def method(*rest) end
#
class RestParam
# [nil | Ident] the name of the parameter
attr_reader :name
# [Location] the location of this node
attr_reader :location
def initialize(name:, location:)
@name = name
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('rest_param')
q.breakable
q.pp(name)
end
end
def to_json(*opts)
{ type: :rest_param, name: name, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_rest_param: ((nil | Ident) name) -> RestParam
def on_rest_param(name)
location = find_token(Op, '*').location
location = location.to(name.location) if name
RestParam.new(name: name, location: location)
end
# Retry represents the use of the +retry+ keyword.
#
# retry
#
class Retry
# [String] the value of the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('retry')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :retry, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_retry: () -> Retry
def on_retry
keyword = find_token(Kw, 'retry')
Retry.new(value: keyword.value, location: keyword.location)
end
# Return represents using the +return+ keyword with arguments.
#
# return value
#
class Return
# [Args | ArgsAddBlock] the arguments being passed to the keyword
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('return')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :return, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_return: ((Args | ArgsAddBlock) arguments) -> Return
def on_return(arguments)
keyword = find_token(Kw, 'return')
Return.new(
arguments: arguments,
location: keyword.location.to(arguments.location)
)
end
# Return0 represents the bare +return+ keyword with no arguments.
#
# return
#
class Return0
# [String] the value of the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('return0')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :return0, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_return0: () -> Return0
def on_return0
keyword = find_token(Kw, 'return')
Return0.new(value: keyword.value, location: keyword.location)
end
# RParen represents the use of a right parenthesis, i.e., +)+.
class RParen
# [String] the parenthesis
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_rparen: (String value) -> RParen
def on_rparen(value)
node =
RParen.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# SClass represents a block of statements that should be evaluated within the
# context of the singleton class of an object. It's frequently used to define
# singleton methods.
#
# class << self
# end
#
class SClass
# [untyped] the target of the singleton class to enter
attr_reader :target
# [BodyStmt] the expressions to be executed
attr_reader :bodystmt
# [Location] the location of this node
attr_reader :location
def initialize(target:, bodystmt:, location:)
@target = target
@bodystmt = bodystmt
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('sclass')
q.breakable
q.pp(target)
q.breakable
q.pp(bodystmt)
end
end
def to_json(*opts)
{
type: :sclass,
target: target,
bodystmt: bodystmt,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_sclass: (untyped target, BodyStmt bodystmt) -> SClass
def on_sclass(target, bodystmt)
beginning = find_token(Kw, 'class')
ending = find_token(Kw, 'end')
bodystmt.bind(
find_next_statement_start(target.location.end_char),
ending.location.start_char
)
SClass.new(
target: target,
bodystmt: bodystmt,
location: beginning.location.to(ending.location)
)
end
# def on_semicolon(value)
# value
# end
# def on_sp(value)
# value
# end
# stmts_add is a parser event that represents a single statement inside a
# list of statements within any lexical block. It accepts as arguments the
# parent stmts node as well as an stmt which can be any expression in
# Ruby.
def on_stmts_add(statements, statement)
statements << statement
end
# Everything that has a block of code inside of it has a list of statements.
# Normally we would just track those as a node that has an array body, but we
# have some special handling in order to handle empty statement lists. They
# need to have the right location information, so all of the parent node of
# stmts nodes will report back down the location information. We then
# propagate that onto void_stmt nodes inside the stmts in order to make sure
# all comments get printed appropriately.
class Statements
# [SyntaxTree] the parser that created this node
attr_reader :parser
# [Array[ untyped ]] the list of expressions contained within this node
attr_reader :body
# [Location] the location of this node
attr_reader :location
def initialize(parser:, body:, location:)
@parser = parser
@body = body
@location = location
end
def bind(start_char, end_char)
@location =
Location.new(
start_line: location.start_line,
start_char: start_char,
end_line: location.end_line,
end_char: end_char
)
if body[0].is_a?(VoidStmt)
location = body[0].location
location =
Location.new(
start_line: location.start_line,
start_char: start_char,
end_line: location.end_line,
end_char: start_char
)
body[0] = VoidStmt.new(location: location)
end
attach_comments(start_char, end_char)
end
def bind_end(end_char)
@location =
Location.new(
start_line: location.start_line,
start_char: location.start_char,
end_line: location.end_line,
end_char: end_char
)
end
def <<(statement)
@location =
body.any? ? location.to(statement.location) : statement.location
body << statement
self
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('statements')
q.breakable
q.seplist(body) { |statement| q.pp(statement) }
end
end
def to_json(*opts)
{ type: :statements, body: body, loc: location }.to_json(*opts)
end
private
def attach_comments(start_char, end_char)
attachable =
parser.comments.select do |comment|
!comment.inline? && start_char <= comment.location.start_char &&
end_char >= comment.location.end_char &&
!comment.value.include?('prettier-ignore')
end
return if attachable.empty?
parser.comments -= attachable
@body = (body + attachable).sort_by! { |node| node.location.start_char }
end
end
# :call-seq:
# on_stmts_new: () -> Statements
def on_stmts_new
Statements.new(
parser: self,
body: [],
location: Location.fixed(line: lineno, char: char_pos)
)
end
# StringContent represents the contents of a string-like value.
#
# "string"
#
class StringContent
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# string
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
end
# :call-seq:
# on_string_add: (
# String string,
# (StringEmbExpr | StringDVar | TStringContent) part
# ) -> StringContent
def on_string_add(string, part)
location =
string.parts.any? ? string.location.to(part.location) : part.location
StringContent.new(parts: string.parts << part, location: location)
end
# StringConcat represents concatenating two strings together using a backward
# slash.
#
# "first" \
# "second"
#
class StringConcat
# [StringConcat | StringLiteral] the left side of the concatenation
attr_reader :left
# [StringLiteral] the right side of the concatenation
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, right:, location:)
@left = left
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('string_concat')
q.breakable
q.pp(left)
q.breakable
q.pp(right)
end
end
def to_json(*opts)
{ type: :string_concat, left: left, right: right, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_string_concat: (
# (StringConcat | StringLiteral) left,
# StringLiteral right
# ) -> StringConcat
def on_string_concat(left, right)
StringConcat.new(
left: left,
right: right,
location: left.location.to(right.location)
)
end
# :call-seq:
# on_string_content: () -> StringContent
def on_string_content
StringContent.new(
parts: [],
location: Location.fixed(line: lineno, char: char_pos)
)
end
# StringDVar represents shorthand interpolation of a variable into a string.
# It allows you to take an instance variable, class variable, or global
# variable and omit the braces when interpolating.
#
# "#@variable"
#
class StringDVar
# [Backref | VarRef] the variable being interpolated
attr_reader :variable
# [Location] the location of this node
attr_reader :location
def initialize(variable:, location:)
@variable = variable
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('string_dvar')
q.breakable
q.pp(variable)
end
end
def to_json(*opts)
{ type: :string_dvar, var: variable, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_string_dvar: ((Backref | VarRef) variable) -> StringDVar
def on_string_dvar(variable)
embvar = find_token(EmbVar)
StringDVar.new(
variable: variable,
location: embvar.location.to(variable.location)
)
end
# StringEmbExpr represents interpolated content. It can be contained within a
# couple of different parent nodes, including regular expressions, strings,
# and dynamic symbols.
#
# "string #{expression}"
#
class StringEmbExpr
# [Statements] the expressions to be interpolated
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(statements:, location:)
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('string_embexpr')
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{ type: :string_embexpr, stmts: statements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_string_embexpr: (Statements statements) -> StringEmbExpr
def on_string_embexpr(statements)
embexpr_beg = find_token(EmbExprBeg)
embexpr_end = find_token(EmbExprEnd)
statements.bind(
embexpr_beg.location.end_char,
embexpr_end.location.start_char
)
StringEmbExpr.new(
statements: statements,
location: embexpr_beg.location.to(embexpr_end.location)
)
end
# StringLiteral represents a string literal.
#
# "string"
#
class StringLiteral
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# string literal
attr_reader :parts
# [String] which quote was used by the string literal
attr_reader :quote
# [Location] the location of this node
attr_reader :location
def initialize(parts:, quote:, location:)
@parts = parts
@quote = quote
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('string_literal')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{
type: :string_literal,
parts: parts,
quote: quote,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_string_literal: (String string) -> Heredoc | StringLiteral
def on_string_literal(string)
heredoc = @heredocs[-1]
if heredoc && heredoc.ending
heredoc = @heredocs.pop
Heredoc.new(
beginning: heredoc.beginning,
ending: heredoc.ending,
parts: string.parts,
location: heredoc.location
)
else
tstring_beg = find_token(TStringBeg)
tstring_end = find_token(TStringEnd)
StringLiteral.new(
parts: string.parts,
quote: tstring_beg.value,
location: tstring_beg.location.to(tstring_end.location)
)
end
end
# Super represents using the +super+ keyword with arguments. It can optionally
# use parentheses.
#
# super(value)
#
class Super
# [ArgParen | Args | ArgsAddBlock] the arguments to the keyword
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('super')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :super, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_super: ((ArgParen | Args | ArgsAddBlock) arguments) -> Super
def on_super(arguments)
keyword = find_token(Kw, 'super')
Super.new(
arguments: arguments,
location: keyword.location.to(arguments.location)
)
end
# SymBeg represents the beginning of a symbol literal.
#
# :symbol
#
# SymBeg is also used for dynamic symbols, as in:
#
# :"symbol"
#
# Finally, SymBeg is also used for symbols using the %s syntax, as in:
#
# %s[symbol]
#
# The value of this node is a string. In most cases (as in the first example
# above) it will contain just ":". In the case of dynamic symbols it will
# contain ":'" or ":\"". In the case of %s symbols, it will contain the start
# of the symbol including the %s and the delimiter.
class SymBeg
# [String] the beginning of the symbol
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# symbeg is a token that represents the beginning of a symbol literal.
# In most cases it will contain just ":" as in the value, but if its a dynamic
# symbol being defined it will contain ":'" or ":\"".
def on_symbeg(value)
node =
SymBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# SymbolContent represents symbol contents and is always the child of a
# SymbolLiteral node.
#
# :symbol
#
class SymbolContent
# [Backtick | Const | CVar | GVar | Ident | IVar | Kw | Op] the value of the
# symbol
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_symbol: (
# (Backtick | Const | CVar | GVar | Ident | IVar | Kw | Op) value
# ) -> SymbolContent
def on_symbol(value)
tokens.pop
SymbolContent.new(value: value, location: value.location)
end
# SymbolLiteral represents a symbol in the system with no interpolation
# (as opposed to a DynaSymbol which has interpolation).
#
# :symbol
#
class SymbolLiteral
# [Backtick | Const | CVar | GVar | Ident | IVar | Kw | Op] the value of the
# symbol
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('symbol_literal')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :symbol_literal, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_symbol_literal: (
# (
# Backtick | Const | CVar | GVar | Ident |
# IVar | Kw | Op | SymbolContent
# ) value
# ) -> SymbolLiteral
def on_symbol_literal(value)
if tokens[-1] == value
SymbolLiteral.new(value: tokens.pop, location: value.location)
else
symbeg = find_token(SymBeg)
SymbolLiteral.new(
value: value.value,
location: symbeg.location.to(value.location)
)
end
end
# Symbols represents a symbol array literal with interpolation.
#
# %I[one two three]
#
class Symbols
# [Array[ Word ]] the words in the symbol array literal
attr_reader :elements
# [Location] the location of this node
attr_reader :location
def initialize(elements:, location:)
@elements = elements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('symbols')
q.breakable
q.group(2, '(', ')') { q.seplist(elements) { |element| q.pp(element) } }
end
end
def to_json(*opts)
{ type: :symbols, elems: elements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_symbols_add: (Symbols symbols, Word word) -> Symbols
def on_symbols_add(symbols, word)
Symbols.new(
elements: symbols.elements << word,
location: symbols.location.to(word.location)
)
end
# SymbolsBeg represents the start of a symbol array literal with
# interpolation.
#
# %I[one two three]
#
# In the snippet above, SymbolsBeg represents the "%I[" token. Note that these
# kinds of arrays can start with a lot of different delimiter types
# (e.g., %I| or %I<).
class SymbolsBeg
# [String] the beginning of the symbol literal array
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_symbols_beg: (String value) -> SymbolsBeg
def on_symbols_beg(value)
node =
SymbolsBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# :call-seq:
# on_symbols_new: () -> Symbols
def on_symbols_new
symbols_beg = find_token(SymbolsBeg)
Symbols.new(elements: [], location: symbols_beg.location)
end
# TLambda represents the beginning of a lambda literal.
#
# -> { value }
#
# In the example above the TLambda represents the +->+ operator.
class TLambda
# [String] the beginning of the lambda literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_tlambda: (String value) -> TLambda
def on_tlambda(value)
node =
TLambda.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# TLamBeg represents the beginning of the body of a lambda literal using
# braces.
#
# -> { value }
#
# In the example above the TLamBeg represents the +{+ operator.
class TLamBeg
# [String] the beginning of the body of the lambda literal
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_tlambeg: (String value) -> TLamBeg
def on_tlambeg(value)
node =
TLamBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# TopConstField is always the child node of some kind of assignment. It
# represents when you're assigning to a constant that is being referenced at
# the top level.
#
# ::Constant = value
#
class TopConstField
# [Const] the constant being assigned
attr_reader :constant
# [Location] the location of this node
attr_reader :location
def initialize(constant:, location:)
@constant = constant
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('top_const_field')
q.breakable
q.pp(constant)
end
end
def to_json(*opts)
{ type: :top_const_field, constant: constant, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_top_const_field: (Const constant) -> TopConstRef
def on_top_const_field(constant)
operator = find_colon2_before(constant)
TopConstField.new(
constant: constant,
location: operator.location.to(constant.location)
)
end
# TopConstRef is very similar to TopConstField except that it is not involved
# in an assignment.
#
# ::Constant
#
class TopConstRef
# [Const] the constant being referenced
attr_reader :constant
# [Location] the location of this node
attr_reader :location
def initialize(constant:, location:)
@constant = constant
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('top_const_ref')
q.breakable
q.pp(constant)
end
end
def to_json(*opts)
{ type: :top_const_ref, constant: constant, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_top_const_ref: (Const constant) -> TopConstRef
def on_top_const_ref(constant)
operator = find_colon2_before(constant)
TopConstRef.new(
constant: constant,
location: operator.location.to(constant.location)
)
end
# TStringBeg represents the beginning of a string literal.
#
# "string"
#
# In the example above, TStringBeg represents the first set of quotes. Strings
# can also use single quotes. They can also be declared using the +%q+ and
# +%Q+ syntax, as in:
#
# %q{string}
#
class TStringBeg
# [String] the beginning of the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_tstring_beg: (String value) -> TStringBeg
def on_tstring_beg(value)
node =
TStringBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# TStringContent represents plain characters inside of an entity that accepts
# string content like a string, heredoc, command string, or regular
# expression.
#
# "string"
#
# In the example above, TStringContent represents the +string+ token contained
# within the string.
class TStringContent
# [String] the content of the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('tstring_content')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{
type: :tstring_content,
value: value.force_encoding('UTF-8'),
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_tstring_content: (String value) -> TStringContent
def on_tstring_content(value)
TStringContent.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
end
# TStringEnd represents the end of a string literal.
#
# "string"
#
# In the example above, TStringEnd represents the second set of quotes.
# Strings can also use single quotes. They can also be declared using the +%q+
# and +%Q+ syntax, as in:
#
# %q{string}
#
class TStringEnd
# [String] the end of the string
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_tstring_end: (String value) -> TStringEnd
def on_tstring_end(value)
node =
TStringEnd.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# Not represents the unary +not+ method being called on an expression.
#
# not value
#
class Not
# [untyped] the statement on which to operate
attr_reader :statement
# [boolean] whether or not parentheses were used
attr_reader :parentheses
# [Location] the location of this node
attr_reader :location
def initialize(statement:, parentheses:, location:)
@statement = statement
@parentheses = parentheses
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('not')
q.breakable
q.pp(statement)
end
end
def to_json(*opts)
{
type: :not,
value: statement,
paren: parentheses,
loc: location
}.to_json(*opts)
end
end
# Unary represents a unary method being called on an expression, as in +!+ or
# +~+.
#
# !value
#
class Unary
# [String] the operator being used
attr_reader :operator
# [untyped] the statement on which to operate
attr_reader :statement
# [Location] the location of this node
attr_reader :location
def initialize(operator:, statement:, location:)
@operator = operator
@statement = statement
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('unary')
q.breakable
q.pp(operator)
q.breakable
q.pp(statement)
end
end
def to_json(*opts)
{ type: :unary, op: operator, value: statement, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_unary: (:not operator, untyped statement) -> Not
# | (Symbol operator, untyped statement) -> Unary
def on_unary(operator, statement)
if operator == :not
# We have somewhat special handling of the not operator since if it has
# parentheses they don't get reported as a paren node for some reason.
beginning = find_token(Kw, 'not')
ending = statement
range = beginning.location.end_char...statement.location.start_char
paren = source[range].include?('(')
if paren
find_token(LParen)
ending = find_token(RParen)
end
Not.new(
statement: statement,
parentheses: paren,
location: beginning.location.to(ending.location)
)
else
# Special case instead of using find_token here. It turns out that
# if you have a range that goes from a negative number to a negative
# number then you can end up with a .. or a ... that's higher in the
# stack. So we need to explicitly disallow those operators.
index =
tokens.rindex do |token|
token.is_a?(Op) &&
token.location.start_char < statement.location.start_char &&
!%w[.. ...].include?(token.value)
end
beginning = tokens.delete_at(index)
Unary.new(
operator: operator[0], # :+@ -> "+"
statement: statement,
location: beginning.location.to(statement.location)
)
end
end
# Undef represents the use of the +undef+ keyword.
#
# undef method
#
class Undef
# [Array[ DynaSymbol | SymbolLiteral ]] the symbols to undefine
attr_reader :symbols
# [Location] the location of this node
attr_reader :location
def initialize(symbols:, location:)
@symbols = symbols
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('undef')
q.breakable
q.group(2, '(', ')') { q.seplist(symbols) { |symbol| q.pp(symbol) } }
end
end
def to_json(*opts)
{ type: :undef, syms: symbols, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_undef: (Array[DynaSymbol | SymbolLiteral] symbols) -> Undef
def on_undef(symbols)
keyword = find_token(Kw, 'undef')
Undef.new(
symbols: symbols,
location: keyword.location.to(symbols.last.location)
)
end
# Unless represents the first clause in an +unless+ chain.
#
# unless predicate
# end
#
class Unless
# [untyped] the expression to be checked
attr_reader :predicate
# [Statements] the expressions to be executed
attr_reader :statements
# [nil, Elsif, Else] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, statements:, consequent:, location:)
@predicate = predicate
@statements = statements
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('unless')
q.breakable
q.pp(predicate)
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :unless,
pred: predicate,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_unless: (
# untyped predicate,
# Statements statements,
# ((nil | Elsif | Else) consequent)
# ) -> Unless
def on_unless(predicate, statements, consequent)
beginning = find_token(Kw, 'unless')
ending = consequent || find_token(Kw, 'end')
statements.bind(predicate.location.end_char, ending.location.start_char)
Unless.new(
predicate: predicate,
statements: statements,
consequent: consequent,
location: beginning.location.to(ending.location)
)
end
# UnlessMod represents the modifier form of an +unless+ statement.
#
# expression unless predicate
#
class UnlessMod
# [untyped] the expression to be executed
attr_reader :statement
# [untyped] the expression to be checked
attr_reader :predicate
# [Location] the location of this node
attr_reader :location
def initialize(statement:, predicate:, location:)
@statement = statement
@predicate = predicate
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('unless_mod')
q.breakable
q.pp(statement)
q.breakable
q.pp(predicate)
end
end
def to_json(*opts)
{
type: :unless_mod,
stmt: statement,
pred: predicate,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_unless_mod: (untyped predicate, untyped statement) -> UnlessMod
def on_unless_mod(predicate, statement)
find_token(Kw, 'unless')
UnlessMod.new(
statement: statement,
predicate: predicate,
location: statement.location.to(predicate.location)
)
end
# Until represents an +until+ loop.
#
# until predicate
# end
#
class Until
# [untyped] the expression to be checked
attr_reader :predicate
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, statements:, location:)
@predicate = predicate
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('until')
q.breakable
q.pp(predicate)
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :until,
pred: predicate,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_until: (untyped predicate, Statements statements) -> Until
def on_until(predicate, statements)
beginning = find_token(Kw, 'until')
ending = find_token(Kw, 'end')
# Consume the do keyword if it exists so that it doesn't get confused for
# some other block
keyword = find_token(Kw, 'do', consume: false)
if keyword && keyword.location.start_char > predicate.location.end_char &&
keyword.location.end_char < ending.location.start_char
tokens.delete(keyword)
end
# Update the Statements location information
statements.bind(predicate.location.end_char, ending.location.start_char)
Until.new(
predicate: predicate,
statements: statements,
location: beginning.location.to(ending.location)
)
end
# UntilMod represents the modifier form of a +until+ loop.
#
# expression until predicate
#
class UntilMod
# [untyped] the expression to be executed
attr_reader :statement
# [untyped] the expression to be checked
attr_reader :predicate
# [Location] the location of this node
attr_reader :location
def initialize(statement:, predicate:, location:)
@statement = statement
@predicate = predicate
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('until_mod')
q.breakable
q.pp(statement)
q.breakable
q.pp(predicate)
end
end
def to_json(*opts)
{
type: :until_mod,
stmt: statement,
pred: predicate,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_until_mod: (untyped predicate, untyped statement) -> UntilMod
def on_until_mod(predicate, statement)
find_token(Kw, 'until')
UntilMod.new(
statement: statement,
predicate: predicate,
location: statement.location.to(predicate.location)
)
end
# VarAlias represents when you're using the +alias+ keyword with global
# variable arguments.
#
# alias $new $old
#
class VarAlias
# [GVar] the new alias of the variable
attr_reader :left
# [Backref | GVar] the current name of the variable to be aliased
attr_reader :right
# [Location] the location of this node
attr_reader :location
def initialize(left:, right:, location:)
@left = left
@right = right
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('var_alias')
q.breakable
q.pp(left)
q.breakable
q.pp(right)
end
end
def to_json(*opts)
{ type: :var_alias, left: left, right: right, loc: location }.to_json(
*opts
)
end
end
# :call-seq:
# on_var_alias: (GVar left, (Backref | GVar) right) -> VarAlias
def on_var_alias(left, right)
keyword = find_token(Kw, 'alias')
VarAlias.new(
left: left,
right: right,
location: keyword.location.to(right.location)
)
end
# VarField represents a variable that is being assigned a value. As such, it
# is always a child of an assignment type node.
#
# variable = value
#
# In the example above, the VarField node represents the +variable+ token.
class VarField
# [nil | Const | CVar | GVar | Ident | IVar] the target of this node
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('var_field')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :var_field, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_var_field: (
# (nil | Const | CVar | GVar | Ident | IVar) value
# ) -> VarField
def on_var_field(value)
location =
if value
value.location
else
# You can hit this pattern if you're assigning to a splat using pattern
# matching syntax in Ruby 2.7+
Location.fixed(line: lineno, char: char_pos)
end
VarField.new(value: value, location: location)
end
# VarRef represents a variable reference.
#
# true
#
# This can be a plain local variable like the example above. It can also be a
# constant, a class variable, a global variable, an instance variable, a
# keyword (like +self+, +nil+, +true+, or +false+), or a numbered block
# variable.
class VarRef
# [Const | CVar | GVar | Ident | IVar | Kw] the value of this node
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('var_ref')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :var_ref, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_var_ref: ((Const | CVar | GVar | Ident | IVar | Kw) value) -> VarRef
def on_var_ref(value)
VarRef.new(value: value, location: value.location)
end
# AccessCtrl represents a call to a method visibility control, i.e., +public+,
# +protected+, or +private+.
#
# private
#
class AccessCtrl
# [Ident] the value of this expression
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('access_ctrl')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :access_ctrl, value: value, loc: location }.to_json(*opts)
end
end
# VCall represent any plain named object with Ruby that could be either a
# local variable or a method call.
#
# variable
#
class VCall
# [Ident] the value of this expression
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('vcall')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :vcall, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_vcall: (Ident ident) -> AccessCtrl | VCall
def on_vcall(ident)
@controls ||= %w[private protected public].freeze
if @controls.include?(ident.value) && ident.value == lines[lineno - 1].strip
# Access controls like private, protected, and public are reported as
# vcall nodes since they're technically method calls. We want to be able
# add new lines around them as necessary, so here we're going to
# explicitly track those as a different node type.
AccessCtrl.new(value: ident, location: ident.location)
else
VCall.new(value: ident, location: ident.location)
end
end
# VoidStmt represents an empty lexical block of code.
#
# ;;
#
class VoidStmt
# [Location] the location of this node
attr_reader :location
def initialize(location:)
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') { q.text('void_stmt') }
end
def to_json(*opts)
{ type: :void_stmt, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_void_stmt: () -> VoidStmt
def on_void_stmt
VoidStmt.new(location: Location.fixed(line: lineno, char: char_pos))
end
# When represents a +when+ clause in a +case+ chain.
#
# case value
# when predicate
# end
#
class When
# [untyped] the arguments to the when clause
attr_reader :arguments
# [Statements] the expressions to be executed
attr_reader :statements
# [nil | Else | When] the next clause in the chain
attr_reader :consequent
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, statements:, consequent:, location:)
@arguments = arguments
@statements = statements
@consequent = consequent
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('when')
q.breakable
q.pp(arguments)
q.breakable
q.pp(statements)
if consequent
q.breakable
q.pp(consequent)
end
end
end
def to_json(*opts)
{
type: :when,
args: arguments,
stmts: statements,
cons: consequent,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_when: (
# untyped arguments,
# Statements statements,
# (nil | Else | When) consequent
# ) -> When
def on_when(arguments, statements, consequent)
beginning = find_token(Kw, 'when')
ending = consequent || find_token(Kw, 'end')
statements.bind(arguments.location.end_char, ending.location.start_char)
When.new(
arguments: arguments,
statements: statements,
consequent: consequent,
location: beginning.location.to(ending.location)
)
end
# While represents a +while+ loop.
#
# while predicate
# end
#
class While
# [untyped] the expression to be checked
attr_reader :predicate
# [Statements] the expressions to be executed
attr_reader :statements
# [Location] the location of this node
attr_reader :location
def initialize(predicate:, statements:, location:)
@predicate = predicate
@statements = statements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('while')
q.breakable
q.pp(predicate)
q.breakable
q.pp(statements)
end
end
def to_json(*opts)
{
type: :while,
pred: predicate,
stmts: statements,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_while: (untyped predicate, Statements statements) -> While
def on_while(predicate, statements)
beginning = find_token(Kw, 'while')
ending = find_token(Kw, 'end')
# Consume the do keyword if it exists so that it doesn't get confused for
# some other block
keyword = find_token(Kw, 'do', consume: false)
if keyword && keyword.location.start_char > predicate.location.end_char &&
keyword.location.end_char < ending.location.start_char
tokens.delete(keyword)
end
# Update the Statements location information
statements.bind(predicate.location.end_char, ending.location.start_char)
While.new(
predicate: predicate,
statements: statements,
location: beginning.location.to(ending.location)
)
end
# WhileMod represents the modifier form of a +while+ loop.
#
# expression while predicate
#
class WhileMod
# [untyped] the expression to be executed
attr_reader :statement
# [untyped] the expression to be checked
attr_reader :predicate
# [Location] the location of this node
attr_reader :location
def initialize(statement:, predicate:, location:)
@statement = statement
@predicate = predicate
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('while_mod')
q.breakable
q.pp(statement)
q.breakable
q.pp(predicate)
end
end
def to_json(*opts)
{
type: :while_mod,
stmt: statement,
pred: predicate,
loc: location
}.to_json(*opts)
end
end
# :call-seq:
# on_while_mod: (untyped predicate, untyped statement) -> WhileMod
def on_while_mod(predicate, statement)
find_token(Kw, 'while')
WhileMod.new(
statement: statement,
predicate: predicate,
location: statement.location.to(predicate.location)
)
end
# Word represents an element within a special array literal that accepts
# interpolation.
#
# %W[a#{b}c xyz]
#
# In the example above, there would be two Word nodes within a parent Words
# node.
class Word
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# word
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('word')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :word, parts: parts, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_word_add: (
# Word word,
# (StringEmbExpr | StringDVar | TStringContent) part
# ) -> Word
def on_word_add(word, part)
location =
word.parts.empty? ? part.location : word.location.to(part.location)
Word.new(parts: word.parts << part, location: location)
end
# :call-seq:
# on_word_new: () -> Word
def on_word_new
Word.new(parts: [], location: Location.fixed(line: lineno, char: char_pos))
end
# Words represents a string literal array with interpolation.
#
# %W[one two three]
#
class Words
# [Array[ Word ]] the elements of this array
attr_reader :elements
# [Location] the location of this node
attr_reader :location
def initialize(elements:, location:)
@elements = elements
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('words')
q.breakable
q.group(2, '(', ')') { q.seplist(elements) { |element| q.pp(element) } }
end
end
def to_json(*opts)
{ type: :words, elems: elements, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_words_add: (Words words, Word word) -> Words
def on_words_add(words, word)
Words.new(
elements: words.elements << word,
location: words.location.to(word.location)
)
end
# WordsBeg represents the beginning of a string literal array with
# interpolation.
#
# %W[one two three]
#
# In the snippet above, a WordsBeg would be created with the value of "%W[".
# Note that these kinds of arrays can start with a lot of different delimiter
# types (e.g., %W| or %W<).
class WordsBeg
# [String] the start of the word literal array
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
end
# :call-seq:
# on_words_beg: (String value) -> WordsBeg
def on_words_beg(value)
node =
WordsBeg.new(
value: value,
location: Location.token(line: lineno, char: char_pos, size: value.size)
)
tokens << node
node
end
# :call-seq:
# on_words_new: () -> Words
def on_words_new
words_beg = find_token(WordsBeg)
Words.new(elements: [], location: words_beg.location)
end
# def on_words_sep(value)
# value
# end
# XString represents the contents of an XStringLiteral.
#
# `ls`
#
class XString
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# xstring
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
end
# :call-seq:
# on_xstring_add: (
# XString xstring,
# (StringEmbExpr | StringDVar | TStringContent) part
# ) -> XString
def on_xstring_add(xstring, part)
XString.new(
parts: xstring.parts << part,
location: xstring.location.to(part.location)
)
end
# :call-seq:
# on_xstring_new: () -> XString
def on_xstring_new
heredoc = @heredocs[-1]
location =
if heredoc && heredoc.beginning.value.include?('`')
heredoc.location
else
find_token(Backtick).location
end
XString.new(parts: [], location: location)
end
# XStringLiteral represents a string that gets executed.
#
# `ls`
#
class XStringLiteral
# [Array[ StringEmbExpr | StringDVar | TStringContent ]] the parts of the
# xstring
attr_reader :parts
# [Location] the location of this node
attr_reader :location
def initialize(parts:, location:)
@parts = parts
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('xstring_literal')
q.breakable
q.group(2, '(', ')') { q.seplist(parts) { |part| q.pp(part) } }
end
end
def to_json(*opts)
{ type: :xstring_literal, parts: parts, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_xstring_literal: (XString xstring) -> Heredoc | XStringLiteral
def on_xstring_literal(xstring)
heredoc = @heredocs[-1]
if heredoc && heredoc.beginning.value.include?('`')
Heredoc.new(
beginning: heredoc.beginning,
ending: heredoc.ending,
parts: xstring.parts,
location: heredoc.location
)
else
ending = find_token(TStringEnd)
XStringLiteral.new(
parts: xstring.parts,
location: xstring.location.to(ending.location)
)
end
end
# Yield represents using the +yield+ keyword with arguments.
#
# yield value
#
class Yield
# [ArgsAddBlock | Paren] the arguments passed to the yield
attr_reader :arguments
# [Location] the location of this node
attr_reader :location
def initialize(arguments:, location:)
@arguments = arguments
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('yield')
q.breakable
q.pp(arguments)
end
end
def to_json(*opts)
{ type: :yield, args: arguments, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_yield: ((ArgsAddBlock | Paren) arguments) -> Yield
def on_yield(arguments)
keyword = find_token(Kw, 'yield')
Yield.new(
arguments: arguments,
location: keyword.location.to(arguments.location)
)
end
# Yield0 represents the bare +yield+ keyword with no arguments.
#
# yield
#
class Yield0
# [String] the value of the keyword
attr_reader :value
# [Location] the location of this node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('yield0')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :yield0, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_yield0: () -> Yield0
def on_yield0
keyword = find_token(Kw, 'yield')
Yield0.new(value: keyword.value, location: keyword.location)
end
# ZSuper represents the bare +super+ keyword with no arguments.
#
# super
#
class ZSuper
# [String] the value of the keyword
attr_reader :value
# [Location] the location of the node
attr_reader :location
def initialize(value:, location:)
@value = value
@location = location
end
def pretty_print(q)
q.group(2, '(', ')') do
q.text('zsuper')
q.breakable
q.pp(value)
end
end
def to_json(*opts)
{ type: :zsuper, value: value, loc: location }.to_json(*opts)
end
end
# :call-seq:
# on_zsuper: () -> ZSuper
def on_zsuper
keyword = find_token(Kw, 'super')
ZSuper.new(value: keyword.value, location: keyword.location)
end
end