1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/test/ruby/test_rational.rb
tadf 524c766d19 trivial changes.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@20177 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-11-10 22:59:47 +00:00

1006 lines
27 KiB
Ruby

require 'test/unit'
class RationalSub < Rational; end
class Rational_Test < Test::Unit::TestCase
def setup
@complex = defined?(Complex)
if @complex
@keiju = Complex.instance_variable_get('@RCS_ID')
end
@unify = $".grep(/mathn/).size != 0
end
def test_ratsub
c = RationalSub.__send__(:convert, 1)
assert_kind_of(Numeric, c)
if @unify
assert_instance_of(Fixnum, c)
else
assert_instance_of(RationalSub, c)
c2 = c + 1
assert_instance_of(RationalSub, c2)
c2 = c - 1
assert_instance_of(RationalSub, c2)
c3 = c - c2
assert_instance_of(RationalSub, c3)
s = Marshal.dump(c)
c5 = Marshal.load(s)
assert_equal(c, c5)
assert_instance_of(RationalSub, c5)
end
end
def test_eql_p
c = Rational(0)
c2 = Rational(0)
c3 = Rational(1)
assert_equal(true, c.eql?(c2))
assert_equal(false, c.eql?(c3))
if @unify
assert_equal(true, c.eql?(0))
else
assert_equal(false, c.eql?(0))
end
end
def test_hash
assert_instance_of(Fixnum, Rational(1,2).hash)
h = {}
h[Rational(0)] = 0
h[Rational(1,1)] = 1
h[Rational(2,1)] = 2
h[Rational(3,1)] = 3
assert_equal(4, h.size)
assert_equal(2, h[Rational(2,1)])
h[Rational(0,1)] = 9
assert_equal(4, h.size)
end
def test_freeze
c = Rational(1)
c.freeze
unless @unify
assert_equal(true, c.frozen?)
end
assert_instance_of(String, c.to_s)
end
def test_conv
c = Rational(0,1)
assert_equal(Rational(0,1), c)
c = Rational(2**32, 2**32)
assert_equal(Rational(2**32,2**32), c)
assert_equal([1,1], [c.numerator,c.denominator])
c = Rational(-2**32, 2**32)
assert_equal(Rational(-2**32,2**32), c)
assert_equal([-1,1], [c.numerator,c.denominator])
c = Rational(2**32, -2**32)
assert_equal(Rational(2**32,-2**32), c)
assert_equal([-1,1], [c.numerator,c.denominator])
c = Rational(-2**32, -2**32)
assert_equal(Rational(-2**32,-2**32), c)
assert_equal([1,1], [c.numerator,c.denominator])
c = Rational(Rational(1,2),2)
assert_equal(Rational(1,4), c)
c = Rational(2,Rational(1,2))
assert_equal(Rational(4), c)
c = Rational(Rational(1,2),Rational(1,2))
assert_equal(Rational(1), c)
if @complex && !@keiju
c = Rational(Complex(1,2),2)
assert_equal(Complex(Rational(1,2),1), c)
c = Rational(2,Complex(1,2))
assert_equal(Complex(Rational(2,5),Rational(-4,5)), c)
c = Rational(Complex(1,2),Complex(1,2))
assert_equal(Rational(1), c)
end
assert_equal(Rational(3),Rational(3))
assert_equal(Rational(1),Rational(3,3))
assert_equal(3.3.to_r,Rational(3.3))
assert_equal(1,Rational(3.3,3.3))
assert_equal(Rational(3),Rational('3'))
assert_equal(Rational(1),Rational('3.0','3.0'))
assert_equal(Rational(1),Rational('3/3','3/3'))
assert_raise(ArgumentError){Rational(nil)}
assert_raise(ArgumentError){Rational('')}
assert_raise(ArgumentError){Rational(Object.new)}
assert_raise(ArgumentError){Rational()}
assert_raise(ArgumentError){Rational(1,2,3)}
end
def test_attr
c = Rational(4)
assert_equal(4, c.numerator)
assert_equal(1, c.denominator)
c = Rational(4,5)
assert_equal(4, c.numerator)
assert_equal(5, c.denominator)
c = Rational(4)
assert_equal(4, c.numerator)
assert_equal(1, c.denominator)
c = Rational(4,5)
assert_equal(4, c.numerator)
assert_equal(5, c.denominator)
c = Rational(4)
assert_equal(4, c.numerator)
assert_equal(1, c.denominator)
c = Rational(4,5)
assert_equal(4, c.numerator)
assert_equal(5, c.denominator)
end
def test_attr2
c = Rational(1)
if @unify
=begin
assert_equal(true, c.finite?)
assert_equal(false, c.infinite?)
assert_equal(false, c.nan?)
assert_equal(true, c.integer?)
assert_equal(false, c.float?)
assert_equal(true, c.rational?)
=end
assert_equal(true, c.real?)
=begin
assert_equal(false, c.complex?)
assert_equal(true, c.exact?)
assert_equal(false, c.inexact?)
=end
else
=begin
assert_equal(true, c.finite?)
assert_equal(false, c.infinite?)
assert_equal(false, c.nan?)
assert_equal(false, c.integer?)
assert_equal(false, c.float?)
assert_equal(true, c.rational?)
=end
assert_equal(true, c.real?)
=begin
assert_equal(false, c.complex?)
assert_equal(true, c.exact?)
assert_equal(false, c.inexact?)
=end
end
=begin
assert_equal(true, Rational(0).positive?)
assert_equal(true, Rational(1).positive?)
assert_equal(false, Rational(-1).positive?)
assert_equal(false, Rational(0).negative?)
assert_equal(false, Rational(1).negative?)
assert_equal(true, Rational(-1).negative?)
assert_equal(0, Rational(0).sign)
assert_equal(1, Rational(2).sign)
assert_equal(-1, Rational(-2).sign)
=end
assert_equal(true, Rational(0).zero?)
assert_equal(true, Rational(0,1).zero?)
assert_equal(false, Rational(1,1).zero?)
assert_equal(nil, Rational(0).nonzero?)
assert_equal(nil, Rational(0,1).nonzero?)
assert_equal(Rational(1,1), Rational(1,1).nonzero?)
end
def test_uplus
assert_equal(Rational(1), +Rational(1))
assert_equal(Rational(-1), +Rational(-1))
assert_equal(Rational(1,1), +Rational(1,1))
assert_equal(Rational(-1,1), +Rational(-1,1))
assert_equal(Rational(-1,1), +Rational(1,-1))
assert_equal(Rational(1,1), +Rational(-1,-1))
end
def test_negate
assert_equal(Rational(-1), -Rational(1))
assert_equal(Rational(1), -Rational(-1))
assert_equal(Rational(-1,1), -Rational(1,1))
assert_equal(Rational(1,1), -Rational(-1,1))
assert_equal(Rational(1,1), -Rational(1,-1))
assert_equal(Rational(-1,1), -Rational(-1,-1))
=begin
assert_equal(0, Rational(0).negate)
assert_equal(-2, Rational(2).negate)
assert_equal(2, Rational(-2).negate)
=end
end
def test_add
c = Rational(1,2)
c2 = Rational(2,3)
assert_equal(Rational(7,6), c + c2)
assert_equal(Rational(5,2), c + 2)
assert_equal(2.5, c + 2.0)
end
def test_sub
c = Rational(1,2)
c2 = Rational(2,3)
assert_equal(Rational(-1,6), c - c2)
assert_equal(Rational(-3,2), c - 2)
assert_equal(-1.5, c - 2.0)
end
def test_mul
c = Rational(1,2)
c2 = Rational(2,3)
assert_equal(Rational(1,3), c * c2)
assert_equal(Rational(1,1), c * 2)
assert_equal(1.0, c * 2.0)
end
def test_div
c = Rational(1,2)
c2 = Rational(2,3)
assert_equal(Rational(3,4), c / c2)
assert_equal(Rational(1,4), c / 2)
assert_equal(0.25, c / 2.0)
assert_raise(ZeroDivisionError){Rational(1, 3) / 0}
assert_raise(ZeroDivisionError){Rational(1, 3) / Rational(0)}
end
def assert_eql(exp, act, *args)
unless Array === exp
exp = [exp]
end
unless Array === act
act = [act]
end
exp.zip(act).each do |e, a|
na = [e, a] + args
assert_equal(*na)
na = [e.class, a] + args
assert_instance_of(*na)
end
end
def test_idiv
c = Rational(1,2)
c2 = Rational(2,3)
assert_eql(0, c.div(c2))
assert_eql(0, c.div(2))
assert_eql(0, c.div(2.0))
c = Rational(301,100)
c2 = Rational(7,5)
assert_equal(2, c.div(c2))
assert_equal(-3, c.div(-c2))
assert_equal(-3, (-c).div(c2))
assert_equal(2, (-c).div(-c2))
c = Rational(301,100)
c2 = Rational(2)
assert_equal(1, c.div(c2))
assert_equal(-2, c.div(-c2))
assert_equal(-2, (-c).div(c2))
assert_equal(1, (-c).div(-c2))
unless @unify
c = Rational(11)
c2 = Rational(3)
assert_equal(3, c.div(c2))
assert_equal(-4, c.div(-c2))
assert_equal(-4, (-c).div(c2))
assert_equal(3, (-c).div(-c2))
end
end
def test_modulo
c = Rational(1,2)
c2 = Rational(2,3)
assert_eql(Rational(1,2), c.modulo(c2))
assert_eql(Rational(1,2), c.modulo(2))
assert_eql(0.5, c.modulo(2.0))
c = Rational(301,100)
c2 = Rational(7,5)
assert_equal(Rational(21,100), c.modulo(c2))
assert_equal(Rational(-119,100), c.modulo(-c2))
assert_equal(Rational(119,100), (-c).modulo(c2))
assert_equal(Rational(-21,100), (-c).modulo(-c2))
c = Rational(301,100)
c2 = Rational(2)
assert_equal(Rational(101,100), c.modulo(c2))
assert_equal(Rational(-99,100), c.modulo(-c2))
assert_equal(Rational(99,100), (-c).modulo(c2))
assert_equal(Rational(-101,100), (-c).modulo(-c2))
unless @unify
c = Rational(11)
c2 = Rational(3)
assert_equal(2, c.modulo(c2))
assert_equal(-1, c.modulo(-c2))
assert_equal(1, (-c).modulo(c2))
assert_equal(-2, (-c).modulo(-c2))
end
end
def test_divmod
c = Rational(1,2)
c2 = Rational(2,3)
assert_eql([0, Rational(1,2)], c.divmod(c2))
assert_eql([0, Rational(1,2)], c.divmod(2))
assert_eql([0, 0.5], c.divmod(2.0))
c = Rational(301,100)
c2 = Rational(7,5)
assert_equal([2, Rational(21,100)], c.divmod(c2))
assert_equal([-3, Rational(-119,100)], c.divmod(-c2))
assert_equal([-3, Rational(119,100)], (-c).divmod(c2))
assert_equal([2, Rational(-21,100)], (-c).divmod(-c2))
c = Rational(301,100)
c2 = Rational(2)
assert_equal([1, Rational(101,100)], c.divmod(c2))
assert_equal([-2, Rational(-99,100)], c.divmod(-c2))
assert_equal([-2, Rational(99,100)], (-c).divmod(c2))
assert_equal([1, Rational(-101,100)], (-c).divmod(-c2))
unless @unify
c = Rational(11)
c2 = Rational(3)
assert_equal([3,2], c.divmod(c2))
assert_equal([-4,-1], c.divmod(-c2))
assert_equal([-4,1], (-c).divmod(c2))
assert_equal([3,-2], (-c).divmod(-c2))
end
end
=begin
def test_quot
c = Rational(1,2)
c2 = Rational(2,3)
assert_eql(0, c.quot(c2))
assert_eql(0, c.quot(2))
assert_eql(0, c.quot(2.0))
c = Rational(301,100)
c2 = Rational(7,5)
assert_equal(2, c.quot(c2))
assert_equal(-2, c.quot(-c2))
assert_equal(-2, (-c).quot(c2))
assert_equal(2, (-c).quot(-c2))
c = Rational(301,100)
c2 = Rational(2)
assert_equal(1, c.quot(c2))
assert_equal(-1, c.quot(-c2))
assert_equal(-1, (-c).quot(c2))
assert_equal(1, (-c).quot(-c2))
unless @unify
c = Rational(11)
c2 = Rational(3)
assert_equal(3, c.quot(c2))
assert_equal(-3, c.quot(-c2))
assert_equal(-3, (-c).quot(c2))
assert_equal(3, (-c).quot(-c2))
end
end
=end
def test_remainder
c = Rational(1,2)
c2 = Rational(2,3)
assert_eql(Rational(1,2), c.remainder(c2))
assert_eql(Rational(1,2), c.remainder(2))
assert_eql(0.5, c.remainder(2.0))
c = Rational(301,100)
c2 = Rational(7,5)
assert_equal(Rational(21,100), c.remainder(c2))
assert_equal(Rational(21,100), c.remainder(-c2))
assert_equal(Rational(-21,100), (-c).remainder(c2))
assert_equal(Rational(-21,100), (-c).remainder(-c2))
c = Rational(301,100)
c2 = Rational(2)
assert_equal(Rational(101,100), c.remainder(c2))
assert_equal(Rational(101,100), c.remainder(-c2))
assert_equal(Rational(-101,100), (-c).remainder(c2))
assert_equal(Rational(-101,100), (-c).remainder(-c2))
unless @unify
c = Rational(11)
c2 = Rational(3)
assert_equal(2, c.remainder(c2))
assert_equal(2, c.remainder(-c2))
assert_equal(-2, (-c).remainder(c2))
assert_equal(-2, (-c).remainder(-c2))
end
end
=begin
def test_quotrem
c = Rational(1,2)
c2 = Rational(2,3)
assert_eql([0, Rational(1,2)], c.quotrem(c2))
assert_eql([0, Rational(1,2)], c.quotrem(2))
assert_eql([0, 0.5], c.quotrem(2.0))
c = Rational(301,100)
c2 = Rational(7,5)
assert_equal([2, Rational(21,100)], c.quotrem(c2))
assert_equal([-2, Rational(21,100)], c.quotrem(-c2))
assert_equal([-2, Rational(-21,100)], (-c).quotrem(c2))
assert_equal([2, Rational(-21,100)], (-c).quotrem(-c2))
c = Rational(301,100)
c2 = Rational(2)
assert_equal([1, Rational(101,100)], c.quotrem(c2))
assert_equal([-1, Rational(101,100)], c.quotrem(-c2))
assert_equal([-1, Rational(-101,100)], (-c).quotrem(c2))
assert_equal([1, Rational(-101,100)], (-c).quotrem(-c2))
unless @unify
c = Rational(11)
c2 = Rational(3)
assert_equal([3,2], c.quotrem(c2))
assert_equal([-3,2], c.quotrem(-c2))
assert_equal([-3,-2], (-c).quotrem(c2))
assert_equal([3,-2], (-c).quotrem(-c2))
end
end
=end
def test_quo
c = Rational(1,2)
c2 = Rational(2,3)
assert_equal(Rational(3,4), c.quo(c2))
assert_equal(Rational(1,4), c.quo(2))
assert_equal(0.25, c.quo(2.0))
end
def test_fdiv
c = Rational(1,2)
c2 = Rational(2,3)
assert_equal(0.75, c.fdiv(c2))
assert_equal(0.25, c.fdiv(2))
assert_equal(0.25, c.fdiv(2.0))
end
def test_expt
c = Rational(1,2)
c2 = Rational(2,3)
r = c ** c2
assert_in_delta(0.6299, r, 0.001)
assert_equal(Rational(1,4), c ** 2)
assert_equal(Rational(4), c ** -2)
assert_equal(Rational(1,4), (-c) ** 2)
assert_equal(Rational(4), (-c) ** -2)
assert_equal(0.25, c ** 2.0)
assert_equal(4.0, c ** -2.0)
assert_equal(Rational(1,4), c ** Rational(2))
assert_equal(Rational(4), c ** Rational(-2))
assert_equal(Rational(1), 0 ** Rational(0))
assert_equal(Rational(1), Rational(0) ** 0)
assert_equal(Rational(1), Rational(0) ** Rational(0))
# p ** p
x = 2 ** Rational(2)
assert_equal(Rational(4), x)
unless @unify
assert_instance_of(Rational, x)
end
assert_equal(4, x.numerator)
assert_equal(1, x.denominator)
x = Rational(2) ** 2
assert_equal(Rational(4), x)
unless @unify
assert_instance_of(Rational, x)
end
assert_equal(4, x.numerator)
assert_equal(1, x.denominator)
x = Rational(2) ** Rational(2)
assert_equal(Rational(4), x)
unless @unify
assert_instance_of(Rational, x)
end
assert_equal(4, x.numerator)
assert_equal(1, x.denominator)
# -p ** p
x = (-2) ** Rational(2)
assert_equal(Rational(4), x)
unless @unify
assert_instance_of(Rational, x)
end
assert_equal(4, x.numerator)
assert_equal(1, x.denominator)
x = Rational(-2) ** 2
assert_equal(Rational(4), x)
unless @unify
assert_instance_of(Rational, x)
end
assert_equal(4, x.numerator)
assert_equal(1, x.denominator)
x = Rational(-2) ** Rational(2)
assert_equal(Rational(4), x)
unless @unify
assert_instance_of(Rational, x)
end
assert_equal(4, x.numerator)
assert_equal(1, x.denominator)
# p ** -p
x = 2 ** Rational(-2)
assert_equal(Rational(1,4), x)
assert_instance_of(Rational, x)
assert_equal(1, x.numerator)
assert_equal(4, x.denominator)
x = Rational(2) ** -2
assert_equal(Rational(1,4), x)
assert_instance_of(Rational, x)
assert_equal(1, x.numerator)
assert_equal(4, x.denominator)
x = Rational(2) ** Rational(-2)
assert_equal(Rational(1,4), x)
assert_instance_of(Rational, x)
assert_equal(1, x.numerator)
assert_equal(4, x.denominator)
# -p ** -p
x = (-2) ** Rational(-2)
assert_equal(Rational(1,4), x)
assert_instance_of(Rational, x)
assert_equal(1, x.numerator)
assert_equal(4, x.denominator)
x = Rational(-2) ** -2
assert_equal(Rational(1,4), x)
assert_instance_of(Rational, x)
assert_equal(1, x.numerator)
assert_equal(4, x.denominator)
x = Rational(-2) ** Rational(-2)
assert_equal(Rational(1,4), x)
assert_instance_of(Rational, x)
assert_equal(1, x.numerator)
assert_equal(4, x.denominator)
unless @unify # maybe bug mathn
assert_raise(ZeroDivisionError){0 ** -1}
end
end
def test_cmp
assert_equal(-1, Rational(-1) <=> Rational(0))
assert_equal(0, Rational(0) <=> Rational(0))
assert_equal(+1, Rational(+1) <=> Rational(0))
assert_equal(-1, Rational(-1) <=> 0)
assert_equal(0, Rational(0) <=> 0)
assert_equal(+1, Rational(+1) <=> 0)
assert_equal(-1, Rational(-1) <=> 0.0)
assert_equal(0, Rational(0) <=> 0.0)
assert_equal(+1, Rational(+1) <=> 0.0)
assert_equal(-1, Rational(1,2) <=> Rational(2,3))
assert_equal(0, Rational(2,3) <=> Rational(2,3))
assert_equal(+1, Rational(2,3) <=> Rational(1,2))
f = 2**30-1
b = 2**30
assert_equal(0, Rational(f) <=> Rational(f))
assert_equal(-1, Rational(f) <=> Rational(b))
assert_equal(+1, Rational(b) <=> Rational(f))
assert_equal(0, Rational(b) <=> Rational(b))
assert_equal(-1, Rational(f-1) <=> Rational(f))
assert_equal(+1, Rational(f) <=> Rational(f-1))
assert_equal(-1, Rational(b-1) <=> Rational(b))
assert_equal(+1, Rational(b) <=> Rational(b-1))
assert_equal(false, Rational(0) < Rational(0))
assert_equal(true, Rational(0) <= Rational(0))
assert_equal(true, Rational(0) >= Rational(0))
assert_equal(false, Rational(0) > Rational(0))
end
def test_equal
assert(Rational(1,1) == Rational(1))
assert(Rational(-1,1) == Rational(-1))
assert_equal(false, Rational(2,1) == Rational(1))
assert_equal(true, Rational(2,1) != Rational(1))
assert_equal(false, Rational(1) == nil)
assert_equal(false, Rational(1) == '')
end
def test_unify
if @unify
assert_instance_of(Fixnum, Rational(1,2) + Rational(1,2))
assert_instance_of(Fixnum, Rational(1,2) - Rational(1,2))
assert_instance_of(Fixnum, Rational(1,2) * 2)
assert_instance_of(Fixnum, Rational(1,2) / Rational(1,2))
assert_instance_of(Fixnum, Rational(1,2).div(Rational(1,2)))
assert_instance_of(Fixnum, Rational(1,2).quo(Rational(1,2)))
assert_instance_of(Fixnum, Rational(1,2) ** -2)
end
end
def test_math
assert_equal(Rational(1,2), Rational(1,2).abs)
assert_equal(Rational(1,2), Rational(-1,2).abs)
if @complex && !@keiju
assert_equal(Rational(1,2), Rational(1,2).magnitude)
assert_equal(Rational(1,2), Rational(-1,2).magnitude)
end
assert_equal(1, Rational(1,2).numerator)
assert_equal(2, Rational(1,2).denominator)
end
def test_trunc
[[Rational(13, 5), [ 2, 3, 2, 3]], # 2.6
[Rational(5, 2), [ 2, 3, 2, 3]], # 2.5
[Rational(12, 5), [ 2, 3, 2, 2]], # 2.4
[Rational(-12,5), [-3, -2, -2, -2]], # -2.4
[Rational(-5, 2), [-3, -2, -2, -3]], # -2.5
[Rational(-13, 5), [-3, -2, -2, -3]], # -2.6
].each do |i, a|
assert_equal(a[0], i.floor)
assert_equal(a[1], i.ceil)
assert_equal(a[2], i.truncate)
assert_equal(a[3], i.round)
end
end
def test_to_s
c = Rational(1,2)
assert_instance_of(String, c.to_s)
assert_equal('1/2', c.to_s)
if @unify
assert_equal('0', Rational(0,2).to_s)
assert_equal('0', Rational(0,-2).to_s)
else
assert_equal('0/1', Rational(0,2).to_s)
assert_equal('0/1', Rational(0,-2).to_s)
end
assert_equal('1/2', Rational(1,2).to_s)
assert_equal('-1/2', Rational(-1,2).to_s)
assert_equal('1/2', Rational(-1,-2).to_s)
assert_equal('-1/2', Rational(1,-2).to_s)
assert_equal('1/2', Rational(-1,-2).to_s)
end
def test_inspect
c = Rational(1,2)
assert_instance_of(String, c.inspect)
assert_equal('(1/2)', c.inspect)
end
def test_marshal
c = Rational(1,2)
c.instance_eval{@ivar = 9}
s = Marshal.dump(c)
c2 = Marshal.load(s)
assert_equal(c, c2)
assert_equal(9, c2.instance_variable_get(:@ivar))
assert_instance_of(Rational, c2)
assert_raise(ZeroDivisionError){
Marshal.load("\x04\bU:\rRational[\ai\x06i\x05")
}
end
def test_parse
assert_equal(Rational(5), '5'.to_r)
assert_equal(Rational(-5), '-5'.to_r)
assert_equal(Rational(5,3), '5/3'.to_r)
assert_equal(Rational(-5,3), '-5/3'.to_r)
# assert_equal(Rational(5,-3), '5/-3'.to_r)
# assert_equal(Rational(-5,-3), '-5/-3'.to_r)
assert_equal(Rational(5), '5.0'.to_r)
assert_equal(Rational(-5), '-5.0'.to_r)
assert_equal(Rational(5,3), '5.0/3'.to_r)
assert_equal(Rational(-5,3), '-5.0/3'.to_r)
# assert_equal(Rational(5,-3), '5.0/-3'.to_r)
# assert_equal(Rational(-5,-3), '-5.0/-3'.to_r)
assert_equal(Rational(5), '5e0'.to_r)
assert_equal(Rational(-5), '-5e0'.to_r)
assert_equal(Rational(5,3), '5e0/3'.to_r)
assert_equal(Rational(-5,3), '-5e0/3'.to_r)
# assert_equal(Rational(5,-3), '5e0/-3'.to_r)
# assert_equal(Rational(-5,-3), '-5e0/-3'.to_r)
assert_equal(Rational(33,100), '.33'.to_r)
assert_equal(Rational(33,100), '0.33'.to_r)
assert_equal(Rational(-33,100), '-.33'.to_r)
assert_equal(Rational(-33,100), '-0.33'.to_r)
assert_equal(Rational(-33,100), '-0.3_3'.to_r)
assert_equal(Rational(1,2), '5e-1'.to_r)
assert_equal(Rational(50), '5e+1'.to_r)
assert_equal(Rational(1,2), '5.0e-1'.to_r)
assert_equal(Rational(50), '5.0e+1'.to_r)
assert_equal(Rational(50), '5e1'.to_r)
assert_equal(Rational(50), '5E1'.to_r)
assert_equal(Rational(500), '5e2'.to_r)
assert_equal(Rational(5000), '5e3'.to_r)
assert_equal(Rational(500000000000), '5e1_1'.to_r)
assert_equal(Rational(5), Rational('5'))
assert_equal(Rational(-5), Rational('-5'))
assert_equal(Rational(5,3), Rational('5/3'))
assert_equal(Rational(-5,3), Rational('-5/3'))
# assert_equal(Rational(5,-3), Rational('5/-3'))
# assert_equal(Rational(-5,-3), Rational('-5/-3'))
assert_equal(Rational(5), Rational('5.0'))
assert_equal(Rational(-5), Rational('-5.0'))
assert_equal(Rational(5,3), Rational('5.0/3'))
assert_equal(Rational(-5,3), Rational('-5.0/3'))
# assert_equal(Rational(5,-3), Rational('5.0/-3'))
# assert_equal(Rational(-5,-3), Rational('-5.0/-3'))
assert_equal(Rational(5), Rational('5e0'))
assert_equal(Rational(-5), Rational('-5e0'))
assert_equal(Rational(5,3), Rational('5e0/3'))
assert_equal(Rational(-5,3), Rational('-5e0/3'))
# assert_equal(Rational(5,-3), Rational('5e0/-3'))
# assert_equal(Rational(-5,-3), Rational('-5e0/-3'))
assert_equal(Rational(33,100), Rational('.33'))
assert_equal(Rational(33,100), Rational('0.33'))
assert_equal(Rational(-33,100), Rational('-.33'))
assert_equal(Rational(-33,100), Rational('-0.33'))
assert_equal(Rational(-33,100), Rational('-0.3_3'))
assert_equal(Rational(1,2), Rational('5e-1'))
assert_equal(Rational(50), Rational('5e+1'))
assert_equal(Rational(1,2), Rational('5.0e-1'))
assert_equal(Rational(50), Rational('5.0e+1'))
assert_equal(Rational(50), Rational('5e1'))
assert_equal(Rational(50), Rational('5E1'))
assert_equal(Rational(500), Rational('5e2'))
assert_equal(Rational(5000), Rational('5e3'))
assert_equal(Rational(500000000000), Rational('5e1_1'))
assert_equal(Rational(0), ''.to_r)
assert_equal(Rational(0), ' '.to_r)
assert_equal(Rational(5), "\f\n\r\t\v5\0".to_r)
assert_equal(Rational(0), '_'.to_r)
assert_equal(Rational(0), '_5'.to_r)
assert_equal(Rational(5), '5_'.to_r)
assert_equal(Rational(5), '5x'.to_r)
assert_equal(Rational(5), '5/_3'.to_r)
assert_equal(Rational(5,3), '5/3_'.to_r)
assert_equal(Rational(5,3), '5/3.3'.to_r)
assert_equal(Rational(5,3), '5/3x'.to_r)
assert_raise(ArgumentError){ Rational('')}
assert_raise(ArgumentError){ Rational('_')}
assert_raise(ArgumentError){ Rational("\f\n\r\t\v5\0")}
assert_raise(ArgumentError){ Rational('_5')}
assert_raise(ArgumentError){ Rational('5_')}
assert_raise(ArgumentError){ Rational('5x')}
assert_raise(ArgumentError){ Rational('5/_3')}
assert_raise(ArgumentError){ Rational('5/3_')}
assert_raise(ArgumentError){ Rational('5/3.3')}
assert_raise(ArgumentError){ Rational('5/3x')}
end
=begin
def test_reciprocal
assert_equal(Rational(1,9), Rational(9,1).reciprocal)
assert_equal(Rational(9,1), Rational(1,9).reciprocal)
assert_equal(Rational(-1,9), Rational(-9,1).reciprocal)
assert_equal(Rational(-9,1), Rational(-1,9).reciprocal)
assert_equal(Rational(1,9), Rational(9,1).inverse)
assert_equal(Rational(9,1), Rational(1,9).inverse)
assert_equal(Rational(-1,9), Rational(-9,1).inverse)
assert_equal(Rational(-9,1), Rational(-1,9).inverse)
end
=end
def test_to_i
assert_equal(1, Rational(3,2).to_i)
assert_equal(1, Integer(Rational(3,2)))
end
def test_to_f
assert_equal(1.5, Rational(3,2).to_f)
assert_equal(1.5, Float(Rational(3,2)))
end
def test_to_c
if @complex && !@keiju
if @unify
assert_equal(Rational(3,2), Rational(3,2).to_c)
assert_equal(Rational(3,2), Complex(Rational(3,2)))
else
assert_equal(Complex(Rational(3,2)), Rational(3,2).to_c)
assert_equal(Complex(Rational(3,2)), Complex(Rational(3,2)))
end
end
end
def test_to_r
c = nil.to_r
assert_equal([0,1] , [c.numerator, c.denominator])
c = 0.to_r
assert_equal([0,1] , [c.numerator, c.denominator])
c = 1.to_r
assert_equal([1,1] , [c.numerator, c.denominator])
c = 1.1.to_r
assert_equal([2476979795053773, 2251799813685248],
[c.numerator, c.denominator])
c = Rational(1,2).to_r
assert_equal([1,2] , [c.numerator, c.denominator])
if @complex
if @keiju
assert_raise(NoMethodError){Complex(1,2).to_r}
else
assert_raise(RangeError){Complex(1,2).to_r}
end
end
end
def test_gcdlcm
assert_equal(7, 91.gcd(-49))
assert_equal(5, 5.gcd(0))
assert_equal(5, 0.gcd(5))
assert_equal(70, 14.lcm(35))
assert_equal(0, 5.lcm(0))
assert_equal(0, 0.lcm(5))
assert_equal([5,0], 0.gcdlcm(5))
assert_equal([5,0], 5.gcdlcm(0))
assert_equal(1, 1073741827.gcd(1073741789))
assert_equal(1152921470247108503, 1073741827.lcm(1073741789))
assert_equal(1, 1073741789.gcd(1073741827))
assert_equal(1152921470247108503, 1073741789.lcm(1073741827))
end
def test_supp
assert_equal(true, 1.real?)
assert_equal(true, 1.1.real?)
assert_equal(1, 1.numerator)
assert_equal(9, 9.numerator)
assert_equal(1, 1.denominator)
assert_equal(1, 9.denominator)
assert_equal(1.0, 1.0.numerator)
assert_equal(9.0, 9.0.numerator)
assert_equal(1.0, 1.0.denominator)
assert_equal(1.0, 9.0.denominator)
=begin
assert_equal(Rational(1,9), 9.reciprocal)
assert_in_delta(0.1111, 9.0.reciprocal, 0.001)
assert_equal(Rational(1,9), 9.inverse)
assert_in_delta(0.1111, 9.0.inverse, 0.001)
=end
assert_equal(Rational(1,2), 1.quo(2))
assert_equal(Rational(5000000000), 10000000000.quo(2))
assert_equal(0.5, 1.0.quo(2))
assert_equal(Rational(1,4), Rational(1,2).quo(2))
assert_equal(0.5, 1.fdiv(2))
assert_equal(5000000000.0, 10000000000.fdiv(2))
assert_equal(0.5, 1.0.fdiv(2))
assert_equal(0.25, Rational(1,2).fdiv(2))
end
def test_ruby19
assert_raise(NoMethodError){ Rational.new(1) }
assert_raise(NoMethodError){ Rational.new!(1) }
end
def test_fixed_bug
if @unify
assert_instance_of(Fixnum, Rational(1,2) ** 0) # mathn's bug
end
n = Float::MAX.to_i * 2
assert_equal(1.0, Rational(n + 2, n + 1).to_f, '[ruby-dev:33852]')
end
def test_known_bug
end
end