mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 f80616b6d2
			
		
	
	
		f80616b6d2
		
	
	
	
	
		
			
			git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@16154 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			1547 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1547 lines
		
	
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|   complex.c: Coded by Tadayoshi Funaba 2008
 | |
| 
 | |
|   This implementation is based on Keiju Ishitsuka's Complex library
 | |
|   which is written in ruby.
 | |
| */
 | |
| 
 | |
| #include "ruby.h"
 | |
| #include <math.h>
 | |
| 
 | |
| #define NDEBUG
 | |
| #include <assert.h>
 | |
| 
 | |
| #ifndef COMPLEX_NAME
 | |
| #define COMPLEX_NAME "Complex"
 | |
| #endif
 | |
| 
 | |
| #define ZERO INT2FIX(0)
 | |
| #define ONE INT2FIX(1)
 | |
| #define TWO INT2FIX(2)
 | |
| 
 | |
| VALUE rb_cComplex;
 | |
| 
 | |
| static ID id_Unify, id_abs, id_abs2, id_arg, id_atan2_bang, id_cmp,
 | |
|   id_conjugate, id_convert, id_cos, id_denominator, id_divmod,
 | |
|   id_equal_p, id_exact_p, id_exp_bang, id_expt, id_floor, id_format,
 | |
|   id_hypot, id_idiv, id_inspect, id_log_bang, id_negate, id_new, id_new_bang,
 | |
|   id_numerator, id_polar, id_quo, id_scalar_p, id_sin, id_sqrt, id_to_f,
 | |
|   id_to_i, id_to_r, id_to_s, id_truncate;
 | |
| 
 | |
| #define f_boolcast(x) ((x) ? Qtrue : Qfalse)
 | |
| 
 | |
| #define binop(n,op) \
 | |
| inline static VALUE \
 | |
| f_##n(VALUE x, VALUE y)\
 | |
| {\
 | |
|     return rb_funcall(x, op, 1, y);\
 | |
| }
 | |
| 
 | |
| #define fun1(n) \
 | |
| inline static VALUE \
 | |
| f_##n(VALUE x)\
 | |
| {\
 | |
|     return rb_funcall(x, id_##n, 0);\
 | |
| }
 | |
| 
 | |
| #define fun2(n) \
 | |
| inline static VALUE \
 | |
| f_##n(VALUE x, VALUE y)\
 | |
| {\
 | |
|     return rb_funcall(x, id_##n, 1, y);\
 | |
| }
 | |
| 
 | |
| #define math1(n) \
 | |
| inline static VALUE \
 | |
| m_##n(VALUE x)\
 | |
| {\
 | |
|     return rb_funcall(rb_mMath, id_##n, 1, x);\
 | |
| }
 | |
| 
 | |
| #define math2(n) \
 | |
| inline static VALUE \
 | |
| m_##n(VALUE x, VALUE y)\
 | |
| {\
 | |
|     return rb_funcall(rb_mMath, id_##n, 2, x, y);\
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_add(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE r;
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(y) == 0)
 | |
| 	    r = x;
 | |
| 	else
 | |
| 	    r = rb_funcall(x, '+', 1, y);
 | |
|     }
 | |
|     else if (FIXNUM_P(x)) {
 | |
| 	if (FIX2LONG(x) == 0)
 | |
| 	    r = y;
 | |
| 	else
 | |
| 	    r = rb_funcall(x, '+', 1, y);
 | |
|     }
 | |
|     else
 | |
| 	r = rb_funcall(x, '+', 1, y);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE r;
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y)) {
 | |
| 	long c = FIX2LONG(x) - FIX2LONG(y);
 | |
| 	if (c > 0)
 | |
| 	    c = 1;
 | |
| 	else if (c < 0)
 | |
| 	    c = -1;
 | |
| 	r = INT2FIX(c);
 | |
|     }
 | |
|     else
 | |
| 	r = rb_funcall(x, id_cmp, 1, y);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_div(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE r;
 | |
|     if (FIXNUM_P(y) && FIX2LONG(y) == 1)
 | |
| 	r = x;
 | |
|     else
 | |
| 	r = rb_funcall(x, '/', 1, y);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_gt_p(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE r;
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	r = f_boolcast(FIX2LONG(x) > FIX2LONG(y));
 | |
|     else
 | |
| 	r = rb_funcall(x, '>', 1, y);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_lt_p(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE r;
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	r = f_boolcast(FIX2LONG(x) < FIX2LONG(y));
 | |
|     else
 | |
| 	r = rb_funcall(x, '<', 1, y);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| binop(mod, '%')
 | |
| 
 | |
| inline static VALUE
 | |
| f_mul(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE r;
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	long _iy = FIX2LONG(y);
 | |
| 	if (_iy == 0) {
 | |
| 	    if (TYPE(x) == T_FLOAT)
 | |
| 		r = rb_float_new(0.0);
 | |
| 	    else
 | |
| 		r = ZERO;
 | |
| 	}
 | |
| 	else if (_iy == 1)
 | |
| 	    r = x;
 | |
| 	else
 | |
| 	    r = rb_funcall(x, '*', 1, y);
 | |
|     }
 | |
|     else if (FIXNUM_P(x)) {
 | |
| 	long _ix = FIX2LONG(x);
 | |
| 	if (_ix == 0) {
 | |
| 	    if (TYPE(y) == T_FLOAT)
 | |
| 		r = rb_float_new(0.0);
 | |
| 	    else
 | |
| 		r = ZERO;
 | |
| 	}
 | |
| 	else if (_ix == 1)
 | |
| 	    r = y;
 | |
| 	else
 | |
| 	    r = rb_funcall(x, '*', 1, y);
 | |
|     }
 | |
|     else
 | |
| 	r = rb_funcall(x, '*', 1, y);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_sub(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE r;
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	if (FIX2LONG(y) == 0)
 | |
| 	    r = x;
 | |
| 	else
 | |
| 	    r = rb_funcall(x, '-', 1, y);
 | |
|     }
 | |
|     else
 | |
| 	r = rb_funcall(x, '-', 1, y);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| binop(xor, '^')
 | |
| 
 | |
| fun1(abs)
 | |
| fun1(abs2)
 | |
| fun1(arg)
 | |
| fun1(conjugate)
 | |
| fun1(denominator)
 | |
| fun1(exact_p)
 | |
| fun1(floor)
 | |
| fun1(inspect)
 | |
| fun1(negate)
 | |
| fun1(numerator)
 | |
| fun1(polar)
 | |
| fun1(scalar_p)
 | |
| fun1(to_f)
 | |
| fun1(to_i)
 | |
| fun1(to_r)
 | |
| fun1(to_s)
 | |
| fun1(truncate)
 | |
| 
 | |
| fun2(divmod)
 | |
| 
 | |
| inline static VALUE
 | |
| f_equal_p(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE r;
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	r = f_boolcast(FIX2LONG(x) == FIX2LONG(y));
 | |
|     else
 | |
| 	r = rb_funcall(x, id_equal_p, 1, y);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| fun2(expt)
 | |
| fun2(idiv)
 | |
| fun2(quo)
 | |
| 
 | |
| inline static VALUE
 | |
| f_negative_p(VALUE x)
 | |
| {
 | |
|     VALUE r;
 | |
|     if (FIXNUM_P(x))
 | |
| 	r = f_boolcast(FIX2LONG(x) < 0);
 | |
|     else
 | |
| 	r = rb_funcall(x, '<', 1, ZERO);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_zero_p(VALUE x)
 | |
| {
 | |
|     VALUE r;
 | |
|     if (FIXNUM_P(x))
 | |
| 	r = f_boolcast(FIX2LONG(x) == 0);
 | |
|     else
 | |
| 	r = rb_funcall(x, id_equal_p, 1, ZERO);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_one_p(VALUE x)
 | |
| {
 | |
|     VALUE r;
 | |
|     if (FIXNUM_P(x))
 | |
| 	r = f_boolcast(FIX2LONG(x) == 1);
 | |
|     else
 | |
| 	r = rb_funcall(x, id_equal_p, 1, ONE);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_kind_of_p(VALUE x, VALUE c)
 | |
| {
 | |
|     return rb_obj_is_kind_of(x, c);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_numeric_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cNumeric);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_integer_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cInteger);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_float_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cFloat);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_rational_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cRational);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| k_complex_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cComplex);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_generic_p(VALUE x)
 | |
| {
 | |
|     switch (TYPE(x)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
|       case T_RATIONAL:
 | |
| 	return Qtrue;
 | |
|       default:
 | |
| 	return Qfalse;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_s_generic_p(VALUE klass, VALUE x)
 | |
| {
 | |
|     return f_generic_p(x);
 | |
| }
 | |
| 
 | |
| #define get_dat1(x) \
 | |
|     struct RComplex *dat;\
 | |
|     dat = ((struct RComplex *)(x))
 | |
| 
 | |
| #define get_dat2(x,y) \
 | |
|     struct RComplex *adat, *bdat;\
 | |
|     adat = ((struct RComplex *)(x));\
 | |
|     bdat = ((struct RComplex *)(y))
 | |
| 
 | |
| inline static VALUE
 | |
| nucomp_s_new_internal(VALUE klass, VALUE real, VALUE image)
 | |
| {
 | |
|     NEWOBJ(obj, struct RComplex);
 | |
|     OBJSETUP(obj, klass, T_COMPLEX);
 | |
| 
 | |
|     obj->real = real;
 | |
|     obj->image = image;
 | |
| 
 | |
|     return (VALUE)obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_s_alloc(VALUE klass)
 | |
| {
 | |
|     return nucomp_s_new_internal(klass, ZERO, ZERO);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_s_new_bang(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE real, image;
 | |
| 
 | |
|     switch (rb_scan_args(argc, argv, "11", &real, &image)) {
 | |
|       case 1:
 | |
| 	if (!k_numeric_p(real))
 | |
| 	    real = f_to_i(real);
 | |
| 	image = ZERO;
 | |
| 	break;
 | |
|       default:
 | |
| 	if (!k_numeric_p(real))
 | |
| 	    real = f_to_i(real);
 | |
| 	if (!k_numeric_p(image))
 | |
| 	    image = f_to_i(image);
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     return nucomp_s_new_internal(klass, real, image);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_complex_new_bang1(VALUE klass, VALUE x)
 | |
| {
 | |
|     return nucomp_s_new_internal(klass, x, ZERO);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
 | |
| {
 | |
|     return nucomp_s_new_internal(klass, x, y);
 | |
| }
 | |
| 
 | |
| #define f_unify_p(klass) rb_const_defined(klass, id_Unify)
 | |
| 
 | |
| inline static void
 | |
| nucomp_real_check(VALUE num)
 | |
| {
 | |
|     switch (TYPE(num)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
|       case T_RATIONAL:
 | |
| 	break;
 | |
|       default:
 | |
| 	rb_raise(rb_eArgError, "not a real");
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE image)
 | |
| {
 | |
| #define CL_CANON
 | |
| #ifdef CL_CANON
 | |
|     if (f_zero_p(image) && f_unify_p(klass) &&
 | |
| 	!k_float_p(real) && !k_float_p(image))
 | |
| 	return real;
 | |
| #else
 | |
|     if (f_zero_p(image) && f_unify_p(klass))
 | |
| 	return real;
 | |
| #endif
 | |
|     else if (f_scalar_p(real) && f_scalar_p(image))
 | |
| 	return nucomp_s_new_internal(klass, real, image);
 | |
|     else if (f_scalar_p(real)) {
 | |
| 	get_dat1(image);
 | |
| 
 | |
| 	return nucomp_s_new_internal(klass,
 | |
| 				     f_sub(real, dat->image),
 | |
| 				     f_add(ZERO, dat->real));
 | |
|     }
 | |
|     else if (f_scalar_p(image)) {
 | |
| 	get_dat1(real);
 | |
| 
 | |
| 	return nucomp_s_new_internal(klass,
 | |
| 				     dat->real,
 | |
| 				     f_add(dat->image, image));
 | |
|     }
 | |
|     else {
 | |
| 	get_dat2(real, image);
 | |
| 
 | |
| 	return nucomp_s_new_internal(klass,
 | |
| 				     f_sub(adat->real, bdat->image),
 | |
| 				     f_add(adat->image, bdat->real));
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static VALUE
 | |
| nucomp_s_canonicalize(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE real, image;
 | |
| 
 | |
|     switch (rb_scan_args(argc, argv, "11", &real, &image)) {
 | |
|       case 1:
 | |
| 	image = ZERO;
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     nucomp_real_check(real);
 | |
|     nucomp_real_check(image);
 | |
| 
 | |
|     return nucomp_s_canonicalize_internal(klass, real, image);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static VALUE
 | |
| nucomp_s_new(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE real, image;
 | |
| 
 | |
|     switch (rb_scan_args(argc, argv, "11", &real, &image)) {
 | |
|       case 1:
 | |
| 	image = ZERO;
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     nucomp_real_check(real);
 | |
|     nucomp_real_check(image);
 | |
| 
 | |
|     return nucomp_s_canonicalize_internal(klass, real, image);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_complex_new1(VALUE klass, VALUE x)
 | |
| {
 | |
|     assert(!k_complex_p(x));
 | |
|     return nucomp_s_canonicalize_internal(klass, x, ZERO);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_complex_new2(VALUE klass, VALUE x, VALUE y)
 | |
| {
 | |
|     assert(!k_complex_p(x));
 | |
|     return nucomp_s_canonicalize_internal(klass, x, y);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     return rb_funcall2(rb_cComplex, id_convert, argc, argv);
 | |
| }
 | |
| 
 | |
| extern VALUE math_atan2(VALUE obj, VALUE x, VALUE y);
 | |
| extern VALUE math_cos(VALUE obj, VALUE x);
 | |
| extern VALUE math_cosh(VALUE obj, VALUE x);
 | |
| extern VALUE math_exp(VALUE obj, VALUE x);
 | |
| extern VALUE math_hypot(VALUE obj, VALUE x, VALUE y);
 | |
| extern VALUE math_log(int argc, VALUE *argv);
 | |
| extern VALUE math_sin(VALUE obj, VALUE x);
 | |
| extern VALUE math_sinh(VALUE obj, VALUE x);
 | |
| extern VALUE math_sqrt(VALUE obj, VALUE x);
 | |
| 
 | |
| #define m_atan2_bang(x,y) math_atan2(Qnil,x,y)
 | |
| #define m_cos_bang(x) math_cos(Qnil,x)
 | |
| #define m_cosh_bang(x) math_cosh(Qnil,x)
 | |
| #define m_exp_bang(x) math_exp(Qnil,x)
 | |
| #define m_hypot(x,y) math_hypot(Qnil,x,y)
 | |
| 
 | |
| static VALUE
 | |
| m_log_bang(VALUE x)
 | |
| {
 | |
|   return math_log(1, &x);
 | |
| }
 | |
| 
 | |
| #define m_sin_bang(x) math_sin(Qnil,x)
 | |
| #define m_sinh_bang(x) math_sinh(Qnil,x)
 | |
| #define m_sqrt_bang(x) math_sqrt(Qnil,x)
 | |
| 
 | |
| static VALUE
 | |
| m_cos(VALUE x)
 | |
| {
 | |
|     get_dat1(x);
 | |
| 
 | |
|     if (f_generic_p(x))
 | |
| 	return m_cos_bang(x);
 | |
|     else
 | |
| 	return f_complex_new2(rb_cComplex,
 | |
| 			      f_mul(m_cos_bang(dat->real),
 | |
| 				    m_cosh_bang(dat->image)),
 | |
| 			      f_mul(f_negate(m_sin_bang(dat->real)),
 | |
| 				    m_sinh_bang(dat->image)));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| m_sin(VALUE x)
 | |
| {
 | |
|     get_dat1(x);
 | |
| 
 | |
|     if (f_generic_p(x))
 | |
| 	return m_sin_bang(x);
 | |
|     else
 | |
| 	return f_complex_new2(rb_cComplex,
 | |
| 			      f_mul(m_sin_bang(dat->real),
 | |
| 				    m_cosh_bang(dat->image)),
 | |
| 			      f_mul(m_cos_bang(dat->real),
 | |
| 				    m_sinh_bang(dat->image)));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| m_sqrt(VALUE x)
 | |
| {
 | |
|     if (f_generic_p(x)) {
 | |
| 	if (!f_negative_p(x))
 | |
| 	    return m_sqrt_bang(x);
 | |
| 	else
 | |
| 	    return f_complex_new2(rb_cComplex, ZERO, m_sqrt_bang(f_negate(x)));
 | |
|     }
 | |
|     else {
 | |
| 	get_dat1(x);
 | |
| 
 | |
| 	if (f_negative_p(dat->image))
 | |
| 	    return f_conjugate(m_sqrt(f_conjugate(x)));
 | |
| 	else {
 | |
| 	    VALUE a = f_abs(x);
 | |
| 	    return f_complex_new2(rb_cComplex,
 | |
| 				  m_sqrt_bang(f_div(f_add(a, dat->real), TWO)),
 | |
| 				  m_sqrt_bang(f_div(f_sub(a, dat->real), TWO)));
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_s_polar(VALUE klass, VALUE abs, VALUE arg)
 | |
| {
 | |
|     return f_complex_new2(klass,
 | |
| 			  f_mul(abs, m_cos(arg)),
 | |
| 			  f_mul(abs, m_sin(arg)));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_real(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return dat->real;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_image(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return dat->image;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_add(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_complex_new2(CLASS_OF(self),
 | |
| 				  f_add(dat->real, other), dat->image);
 | |
| 	}
 | |
|       case T_COMPLEX:
 | |
| 	{
 | |
| 	    VALUE real, image;
 | |
| 
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    real = f_add(adat->real, bdat->real);
 | |
| 	    image = f_add(adat->image, bdat->image);
 | |
| 
 | |
| 	    return f_complex_new2(CLASS_OF(self), real, image);
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(self, other, '+');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_sub(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_complex_new2(CLASS_OF(self),
 | |
| 				  f_sub(dat->real, other), dat->image);
 | |
| 	}
 | |
|       case T_COMPLEX:
 | |
| 	{
 | |
| 	    VALUE real, image;
 | |
| 
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    real = f_sub(adat->real, bdat->real);
 | |
| 	    image = f_sub(adat->image, bdat->image);
 | |
| 
 | |
| 	    return f_complex_new2(CLASS_OF(self), real, image);
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(self, other, '-');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_mul(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_complex_new2(CLASS_OF(self),
 | |
| 				  f_mul(dat->real, other),
 | |
| 				  f_mul(dat->image, other));
 | |
| 	}
 | |
|       case T_COMPLEX:
 | |
| 	{
 | |
| 	    VALUE real, image;
 | |
| 
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    real = f_sub(f_mul(adat->real, bdat->real),
 | |
| 			 f_mul(adat->image, bdat->image));
 | |
| 	    image = f_add(f_mul(adat->real, bdat->image),
 | |
| 			  f_mul(adat->image, bdat->real));
 | |
| 
 | |
| 	    return f_complex_new2(CLASS_OF(self), real, image);
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(self, other, '*');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_div(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_complex_new2(CLASS_OF(self),
 | |
| 				  f_div(dat->real, other),
 | |
| 				  f_div(dat->image, other));
 | |
| 	}
 | |
|       case T_COMPLEX:
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    if (TYPE(adat->real)  == T_FLOAT ||
 | |
| 		TYPE(adat->image) == T_FLOAT ||
 | |
| 		TYPE(bdat->real)  == T_FLOAT ||
 | |
| 		TYPE(bdat->image) == T_FLOAT) {
 | |
| 		VALUE magn = m_hypot(bdat->real, bdat->image);
 | |
| 		VALUE tmp = f_complex_new_bang2(CLASS_OF(self),
 | |
| 						f_div(bdat->real, magn),
 | |
| 						f_div(bdat->image, magn));
 | |
| 		return f_div(f_mul(self, f_conjugate(tmp)), magn);
 | |
| 	    }
 | |
| 	    return f_div(f_mul(self, f_conjugate(other)), f_abs2(other));
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(self, other, '/');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_quo(VALUE self, VALUE other)
 | |
| {
 | |
|     get_dat1(self);
 | |
| 
 | |
|     return f_div(f_complex_new2(CLASS_OF(self),
 | |
| 				f_quo(dat->real, ONE),
 | |
| 				f_quo(dat->image, ONE)), other);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_fdiv(VALUE self, VALUE other)
 | |
| {
 | |
|     get_dat1(self);
 | |
| 
 | |
|     return f_div(f_complex_new2(CLASS_OF(self),
 | |
| 				f_to_f(dat->real),
 | |
| 				f_to_f(dat->image)), other);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_expt(VALUE self, VALUE other)
 | |
| {
 | |
|     if (f_zero_p(other))
 | |
| 	return f_complex_new_bang1(CLASS_OF(self), ONE);
 | |
| 
 | |
|     if (k_rational_p(other) && f_one_p(f_denominator(other)))
 | |
| 	other = f_numerator(other); /* good? */
 | |
| 
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	if (f_gt_p(other, ZERO)) {
 | |
| 	    VALUE x, z, n;
 | |
| 
 | |
| 	    x = self;
 | |
| 	    z = x;
 | |
| 	    n = f_sub(other, ONE);
 | |
| 
 | |
| 	    while (!f_zero_p(n)) {
 | |
| 		VALUE a;
 | |
| 
 | |
| 		while (a = f_divmod(n, TWO),
 | |
| 		       f_zero_p(RARRAY_PTR(a)[1])) {
 | |
| 		    get_dat1(x);
 | |
| 
 | |
| 		    x = f_complex_new2(CLASS_OF(self),
 | |
| 				       f_sub(f_mul(dat->real, dat->real),
 | |
| 					     f_mul(dat->image, dat->image)),
 | |
| 				       f_mul(f_mul(TWO, dat->real), dat->image));
 | |
| 		    n = RARRAY_PTR(a)[0];
 | |
| 		}
 | |
| 		z = f_mul(z, x);
 | |
| 		n = f_sub(n, ONE);
 | |
| 	    }
 | |
| 	    return z;
 | |
| 	}
 | |
| 	else {
 | |
| 	    return f_expt(f_div(f_to_r(ONE), self), f_negate(other));
 | |
| 	}
 | |
|       case T_FLOAT:
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    VALUE a, r, theta;
 | |
| 
 | |
| 	    a = f_polar(self);
 | |
| 	    r = RARRAY_PTR(a)[0];
 | |
| 	    theta = RARRAY_PTR(a)[1];
 | |
| 	    return nucomp_s_polar(CLASS_OF(self), f_expt(r, other),
 | |
| 				  f_mul(theta, other));
 | |
| 	}
 | |
|       case T_COMPLEX:
 | |
| 	{
 | |
| 	    VALUE a, r, theta, ore, oim, nr, ntheta;
 | |
| 
 | |
| 	    get_dat1(other);
 | |
| 
 | |
| 	    a = f_polar(self);
 | |
| 	    r = RARRAY_PTR(a)[0];
 | |
| 	    theta = RARRAY_PTR(a)[1];
 | |
| 
 | |
| 	    ore = dat->real;
 | |
| 	    oim = dat->image;
 | |
| 	    nr = m_exp_bang(f_sub(f_mul(ore, m_log_bang(r)),
 | |
| 				  f_mul(oim, theta)));
 | |
| 	    ntheta = f_add(f_mul(theta, ore), f_mul(oim, m_log_bang(r)));
 | |
| 	    return nucomp_s_polar(CLASS_OF(self), nr, ntheta);
 | |
| 	}
 | |
|       default:
 | |
| 	return rb_num_coerce_bin(self, other, id_expt);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_equal_p(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_boolcast(f_equal_p(dat->real, other) && f_zero_p(dat->image));
 | |
| 	}
 | |
|       case T_COMPLEX:
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    return f_boolcast(f_equal_p(adat->real, bdat->real) &&
 | |
| 			      f_equal_p(adat->image, bdat->image));
 | |
| 	}
 | |
|       default:
 | |
| 	return f_equal_p(other, self);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_coerce(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
|       case T_RATIONAL:
 | |
| 	return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
 | |
|     }
 | |
| 
 | |
|     rb_raise(rb_eTypeError, "%s can't be coerced into %s",
 | |
| 	     rb_obj_classname(other), rb_obj_classname(self));
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_abs(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return m_hypot(dat->real, dat->image);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_abs2(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return f_add(f_mul(dat->real, dat->real),
 | |
| 		 f_mul(dat->image, dat->image));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_arg(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return m_atan2_bang(dat->image, dat->real);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_polar(VALUE self)
 | |
| {
 | |
|     return rb_assoc_new(f_abs(self), f_arg(self));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_conjugate(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->image));
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static VALUE
 | |
| nucomp_real_p(VALUE self)
 | |
| {
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_complex_p(VALUE self)
 | |
| {
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_exact_p(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return f_boolcast(f_exact_p(dat->real) && f_exact_p(dat->image));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_inexact_p(VALUE self)
 | |
| {
 | |
|     return f_boolcast(!nucomp_exact_p(self));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern VALUE rb_lcm(VALUE x, VALUE y);
 | |
| 
 | |
| static VALUE
 | |
| nucomp_denominator(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return rb_lcm(f_denominator(dat->real), f_denominator(dat->image));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_numerator(VALUE self)
 | |
| {
 | |
|     VALUE cd;
 | |
| 
 | |
|     get_dat1(self);
 | |
| 
 | |
|     cd = f_denominator(self);
 | |
|     return f_complex_new2(CLASS_OF(self),
 | |
| 			  f_mul(f_numerator(dat->real),
 | |
| 				f_div(cd, f_denominator(dat->real))),
 | |
| 			  f_mul(f_numerator(dat->image),
 | |
| 				f_div(cd, f_denominator(dat->image))));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_hash(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return f_xor(dat->real, dat->image);
 | |
| }
 | |
| 
 | |
| #ifndef HAVE_SIGNBIT
 | |
| #ifdef signbit
 | |
| #define HAVE_SIGNBIT 1
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| inline static VALUE
 | |
| f_signbit(VALUE x)
 | |
| {
 | |
|     switch (TYPE(x)) {
 | |
|       case T_FLOAT:
 | |
| #ifdef HAVE_SIGNBIT
 | |
| 	return f_boolcast(signbit(RFLOAT_VALUE(x)));
 | |
| #else
 | |
| 	{
 | |
| 	    char s[2];
 | |
| 
 | |
| 	    (void)snprintf(s, sizeof s, "%.0f", RFLOAT_VALUE(x));
 | |
| 
 | |
| 	    return f_boolcast(s[0] == '-');
 | |
| 	}
 | |
| #endif
 | |
|     }
 | |
|     return f_negative_p(x);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_tzero_p(VALUE x)
 | |
| {
 | |
|     return f_boolcast(f_zero_p(x) && !f_signbit(x));
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_tpositive_p(VALUE x)
 | |
| {
 | |
|     return f_boolcast(!f_signbit(x));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_to_s(VALUE self)
 | |
| {
 | |
|     VALUE s, rezero, impos;
 | |
| 
 | |
|     get_dat1(self);
 | |
| 
 | |
|     rezero = f_tzero_p(dat->real);
 | |
|     impos = f_tpositive_p(dat->image);
 | |
| 
 | |
|     if (rezero)
 | |
| 	s = rb_str_new2("");
 | |
|     else {
 | |
| 	s = f_to_s(dat->real);
 | |
| 	rb_str_cat2(s, !impos ? "-" : "+");
 | |
|     }
 | |
| 
 | |
|     if (k_rational_p(dat->image) &&
 | |
| 	!f_one_p(f_denominator(dat->image))) {
 | |
| 	rb_str_cat2(s, "(");
 | |
| 	rb_str_concat(s, f_to_s(rezero ? dat->image : f_abs(dat->image)));
 | |
| 	rb_str_cat2(s, ")i");
 | |
|     }
 | |
|     else {
 | |
| 	rb_str_concat(s, f_to_s(rezero ? dat->image : f_abs(dat->image)));
 | |
| 	rb_str_cat2(s, "i");
 | |
|     }
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_inspect(VALUE self)
 | |
| {
 | |
|     VALUE s;
 | |
| 
 | |
|     get_dat1(self);
 | |
| 
 | |
|     s = rb_str_new2("Complex(");
 | |
|     rb_str_concat(s, f_inspect(dat->real));
 | |
|     rb_str_cat2(s, ", ");
 | |
|     rb_str_concat(s, f_inspect(dat->image));
 | |
|     rb_str_cat2(s, ")");
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_marshal_dump(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return rb_assoc_new(dat->real, dat->image);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_marshal_load(VALUE self, VALUE a)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     dat->real = RARRAY_PTR(a)[0];
 | |
|     dat->image = RARRAY_PTR(a)[1];
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /* --- */
 | |
| 
 | |
| VALUE
 | |
| rb_complex_raw(VALUE x, VALUE y)
 | |
| {
 | |
|     return nucomp_s_new_internal(rb_cComplex, x, y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_complex_new(VALUE x, VALUE y)
 | |
| {
 | |
|     return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
 | |
| }
 | |
| 
 | |
| static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
 | |
| 
 | |
| VALUE
 | |
| rb_Complex(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE a[2];
 | |
|     a[0] = x;
 | |
|     a[1] = y;
 | |
|     return nucomp_s_convert(2, a, rb_cComplex);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_scalar_p(VALUE self)
 | |
| {
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_to_i(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
| 
 | |
|     if (k_float_p(dat->image) || !f_zero_p(dat->image)) {
 | |
| 	VALUE s = f_to_s(self);
 | |
| 	rb_raise(rb_eRangeError, "can't convert %s into Integer",
 | |
| 		 StringValuePtr(s));
 | |
|     }
 | |
|     return f_to_i(dat->real);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_to_f(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
| 
 | |
|     if (k_float_p(dat->image) || !f_zero_p(dat->image)) {
 | |
| 	VALUE s = f_to_s(self);
 | |
| 	rb_raise(rb_eRangeError, "can't convert %s into Integer",
 | |
| 		 StringValuePtr(s));
 | |
|     }
 | |
|     return f_to_f(dat->real);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_to_r(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
| 
 | |
|     if (k_float_p(dat->image) || !f_zero_p(dat->image)) {
 | |
| 	VALUE s = f_to_s(self);
 | |
| 	rb_raise(rb_eRangeError, "can't convert %s into Integer",
 | |
| 		 StringValuePtr(s));
 | |
|     }
 | |
|     return f_to_r(dat->real);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nilclass_to_c(VALUE self)
 | |
| {
 | |
|     return rb_complex_new1(INT2FIX(0));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| numeric_to_c(VALUE self)
 | |
| {
 | |
|     return rb_complex_new1(self);
 | |
| }
 | |
| 
 | |
| static VALUE comp_pat1, comp_pat2, a_slash, a_dot_and_an_e,
 | |
|     image_garbages_pat, null_string, underscores_pat, an_underscore;
 | |
| 
 | |
| #define DIGITS "(?:\\d(?:_\\d|\\d)*)"
 | |
| #define NUMERATOR "(?:" DIGITS "?\\.)?" DIGITS "(?:[eE][-+]?" DIGITS ")?"
 | |
| #define DENOMINATOR "[-+]?" DIGITS
 | |
| #define NUMBER "[-+]?" NUMERATOR "(?:\\/" DENOMINATOR ")?"
 | |
| #define NUMBERNOS NUMERATOR "(?:\\/" DENOMINATOR ")?"
 | |
| #define PATTERN1 "\\A(" NUMBER "|\\(" NUMBER "\\))[iIjJ]"
 | |
| #define PATTERN2 "\\A(" NUMBER ")([-+](?:" NUMBERNOS "|\\(" NUMBER "\\))[iIjJ])?"
 | |
| 
 | |
| static void
 | |
| make_patterns(void)
 | |
| {
 | |
|     static char comp_pat1_source[] = PATTERN1;
 | |
|     static char comp_pat2_source[] = PATTERN2;
 | |
|     static char image_garbages_pat_source[] = "[+\\(\\)iIjJ]";
 | |
|     static char underscores_pat_source[] = "_+";
 | |
| 
 | |
|     comp_pat1 = rb_reg_new(comp_pat1_source, sizeof comp_pat1_source - 1, 0);
 | |
|     rb_global_variable(&comp_pat1);
 | |
| 
 | |
|     comp_pat2 = rb_reg_new(comp_pat2_source, sizeof comp_pat2_source - 1, 0);
 | |
|     rb_global_variable(&comp_pat2);
 | |
| 
 | |
|     a_slash = rb_str_new2("/");
 | |
|     rb_global_variable(&a_slash);
 | |
| 
 | |
|     a_dot_and_an_e = rb_str_new2(".eE");
 | |
|     rb_global_variable(&a_dot_and_an_e);
 | |
| 
 | |
|     image_garbages_pat = rb_reg_new(image_garbages_pat_source,
 | |
| 				    sizeof image_garbages_pat_source - 1, 0);
 | |
|     rb_global_variable(&image_garbages_pat);
 | |
| 
 | |
|     null_string = rb_str_new2("");
 | |
|     rb_global_variable(&null_string);
 | |
| 
 | |
|     underscores_pat = rb_reg_new(underscores_pat_source,
 | |
| 				 sizeof underscores_pat_source - 1, 0);
 | |
|     rb_global_variable(&underscores_pat);
 | |
| 
 | |
|     an_underscore = rb_str_new2("_");
 | |
|     rb_global_variable(&an_underscore);
 | |
| }
 | |
| 
 | |
| #define id_strip rb_intern("strip")
 | |
| #define f_strip(x) rb_funcall(x, id_strip, 0)
 | |
| 
 | |
| #define id_match rb_intern("match")
 | |
| #define f_match(x,y) rb_funcall(x, id_match, 1, y)
 | |
| 
 | |
| #define id_aref rb_intern("[]")
 | |
| #define f_aref(x,y) rb_funcall(x, id_aref, 1, y)
 | |
| 
 | |
| #define id_post_match rb_intern("post_match")
 | |
| #define f_post_match(x) rb_funcall(x, id_post_match, 0)
 | |
| 
 | |
| #define id_split rb_intern("split")
 | |
| #define f_split(x,y) rb_funcall(x, id_split, 1, y)
 | |
| 
 | |
| #define id_include_p rb_intern("include?")
 | |
| #define f_include_p(x,y) rb_funcall(x, id_include_p, 1, y)
 | |
| 
 | |
| #define id_count rb_intern("count")
 | |
| #define f_count(x,y) rb_funcall(x, id_count, 1, y)
 | |
| 
 | |
| #define id_gsub_bang rb_intern("gsub!")
 | |
| #define f_gsub_bang(x,y,z) rb_funcall(x, id_gsub_bang, 2, y, z)
 | |
| 
 | |
| static VALUE
 | |
| string_to_c_internal(VALUE self)
 | |
| {
 | |
|     VALUE s;
 | |
| 
 | |
|     s = f_strip(self);
 | |
| 
 | |
|     if (RSTRING_LEN(s) == 0)
 | |
| 	return rb_assoc_new(Qnil, self);
 | |
| 
 | |
|     {
 | |
| 	VALUE m, sr, si, re, r, i;
 | |
| 
 | |
| 	m = f_match(comp_pat1, s);
 | |
| 	if (!NIL_P(m)) {
 | |
| 	    sr = Qnil;
 | |
| 	    si = f_aref(m, INT2FIX(1));
 | |
| 	    re = f_post_match(m);
 | |
| 	}
 | |
| 	if (NIL_P(m)) {
 | |
| 	    m = f_match(comp_pat2, s);
 | |
| 	    if (NIL_P(m))
 | |
| 		return rb_assoc_new(Qnil, self);
 | |
| 	    sr = f_aref(m, INT2FIX(1));
 | |
| 	    si = f_aref(m, INT2FIX(2));
 | |
| 	    re = f_post_match(m);
 | |
| 	}
 | |
| 	r = INT2FIX(0);
 | |
| 	i = INT2FIX(0);
 | |
| 	if (!NIL_P(sr)) {
 | |
| 	    if (f_include_p(sr, a_slash))
 | |
| 		r = f_to_r(sr);
 | |
| 	    else if (f_gt_p(f_count(sr, a_dot_and_an_e), INT2FIX(0)))
 | |
| 		r = f_to_f(sr);
 | |
| 	    else
 | |
| 		r = f_to_i(sr);
 | |
| 	}
 | |
| 	if (!NIL_P(si)) {
 | |
| 	    f_gsub_bang(si, image_garbages_pat, null_string);
 | |
| 	    if (f_include_p(si, a_slash))
 | |
| 		i = f_to_r(si);
 | |
| 	    else if (f_gt_p(f_count(si, a_dot_and_an_e), INT2FIX(0)))
 | |
| 		i = f_to_f(si);
 | |
| 	    else
 | |
| 		i = f_to_i(si);
 | |
| 	}
 | |
| 	return rb_assoc_new(rb_complex_new2(r, i), re);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| string_to_c_strict(VALUE self)
 | |
| {
 | |
|     VALUE a = string_to_c_internal(self);
 | |
|     if (NIL_P(RARRAY_PTR(a)[0]) || RSTRING_LEN(RARRAY_PTR(a)[1]) > 0) {
 | |
| 	VALUE s = f_inspect(self);
 | |
| 	rb_raise(rb_eArgError, "invalid value for Complex: %s",
 | |
| 		 StringValuePtr(s));
 | |
|     }
 | |
|     return RARRAY_PTR(a)[0];
 | |
| }
 | |
| 
 | |
| #define id_gsub rb_intern("gsub")
 | |
| #define f_gsub(x,y,z) rb_funcall(x, id_gsub, 2, y, z)
 | |
| 
 | |
| static VALUE
 | |
| string_to_c(VALUE self)
 | |
| {
 | |
|     VALUE s = f_gsub(self, underscores_pat, an_underscore);
 | |
|     VALUE a = string_to_c_internal(s);
 | |
|     if (!NIL_P(RARRAY_PTR(a)[0]))
 | |
| 	return RARRAY_PTR(a)[0];
 | |
|     return rb_complex_new1(INT2FIX(0));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE a1, a2;
 | |
| 
 | |
|     a1 = Qnil;
 | |
|     a2 = Qnil;
 | |
|     rb_scan_args(argc, argv, "02", &a1, &a2);
 | |
| 
 | |
|     switch (TYPE(a1)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
| 	break;
 | |
|       case T_STRING:
 | |
| 	a1 = string_to_c_strict(a1);
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     switch (TYPE(a2)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
|       case T_FLOAT:
 | |
| 	break;
 | |
|       case T_STRING:
 | |
| 	a2 = string_to_c_strict(a2);
 | |
| 	break;
 | |
|     }
 | |
| 
 | |
|     switch (TYPE(a1)) {
 | |
|       case T_COMPLEX:
 | |
| 	{
 | |
| 	    get_dat1(a1);
 | |
| 
 | |
| 	    if (!k_float_p(dat->image) && f_zero_p(dat->image))
 | |
| 		a1 = dat->real;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     switch (TYPE(a2)) {
 | |
|       case T_COMPLEX:
 | |
| 	{
 | |
| 	    get_dat1(a2);
 | |
| 
 | |
| 	    if (!k_float_p(dat->image) && f_zero_p(dat->image))
 | |
| 		a2 = dat->real;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     switch (TYPE(a1)) {
 | |
|       case T_COMPLEX:
 | |
| 	if (NIL_P(a2) || f_zero_p(a2))
 | |
| 	    return a1;
 | |
|     }
 | |
| 
 | |
|     {
 | |
| 	VALUE argv2[2];
 | |
| 	argv2[0] = a1;
 | |
| 	argv2[1] = a2;
 | |
| 	return nucomp_s_new(argc, argv2, klass);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* --- */
 | |
| 
 | |
| #define id_Complex rb_intern("Complex")
 | |
| 
 | |
| static VALUE
 | |
| numeric_re(VALUE self)
 | |
| {
 | |
|     return rb_Complex1(self);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| numeric_im(VALUE self)
 | |
| {
 | |
|     return rb_Complex2(ZERO, self);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| numeric_real(VALUE self)
 | |
| {
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| numeric_image(VALUE self)
 | |
| {
 | |
|     return INT2FIX(0);
 | |
| }
 | |
| 
 | |
| #define id_PI rb_intern("PI")
 | |
| 
 | |
| static VALUE
 | |
| numeric_arg(VALUE self)
 | |
| {
 | |
|     if (!f_negative_p(self))
 | |
| 	return INT2FIX(0);
 | |
|     return rb_const_get(rb_mMath, id_PI);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| numeric_polar(VALUE self)
 | |
| {
 | |
|     return rb_assoc_new(f_abs(self), f_arg(self));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| numeric_conjugate(VALUE self)
 | |
| {
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| void
 | |
| Init_Complex(void)
 | |
| {
 | |
|     assert(fprintf(stderr, "assert() is now active\n"));
 | |
| 
 | |
|     id_Unify = rb_intern("Unify");
 | |
|     id_abs = rb_intern("abs");
 | |
|     id_abs2 = rb_intern("abs2");
 | |
|     id_arg = rb_intern("arg");
 | |
|     id_atan2_bang = rb_intern("atan2!");
 | |
|     id_cmp = rb_intern("<=>");
 | |
|     id_conjugate = rb_intern("conjugate");
 | |
|     id_convert = rb_intern("convert");
 | |
|     id_cos = rb_intern("cos");
 | |
|     id_denominator = rb_intern("denominator");
 | |
|     id_divmod = rb_intern("divmod");
 | |
|     id_equal_p = rb_intern("==");
 | |
|     id_exact_p = rb_intern("exact?");
 | |
|     id_exp_bang = rb_intern("exp!");
 | |
|     id_expt = rb_intern("**");
 | |
|     id_floor = rb_intern("floor");
 | |
|     id_format = rb_intern("format");
 | |
|     id_hypot = rb_intern("hypot");
 | |
|     id_idiv = rb_intern("div");
 | |
|     id_inspect = rb_intern("inspect");
 | |
|     id_log_bang = rb_intern("log!");
 | |
|     id_negate = rb_intern("-@");
 | |
|     id_new = rb_intern("new");
 | |
|     id_new_bang = rb_intern("new!");
 | |
|     id_numerator = rb_intern("numerator");
 | |
|     id_polar = rb_intern("polar");
 | |
|     id_quo = rb_intern("quo");
 | |
|     id_scalar_p = rb_intern("scalar?");
 | |
|     id_sin = rb_intern("sin");
 | |
|     id_sqrt = rb_intern("sqrt");
 | |
|     id_to_f = rb_intern("to_f");
 | |
|     id_to_i = rb_intern("to_i");
 | |
|     id_to_r = rb_intern("to_r");
 | |
|     id_to_s = rb_intern("to_s");
 | |
|     id_truncate = rb_intern("truncate");
 | |
| 
 | |
|     rb_cComplex = rb_define_class(COMPLEX_NAME, rb_cNumeric);
 | |
| 
 | |
|     rb_define_alloc_func(rb_cComplex, nucomp_s_alloc);
 | |
|     rb_funcall(rb_cComplex, rb_intern("private_class_method"), 1,
 | |
| 	       ID2SYM(rb_intern("allocate")));
 | |
| 
 | |
|     rb_define_singleton_method(rb_cComplex, "generic?", nucomp_s_generic_p, 1);
 | |
| 
 | |
|     rb_define_singleton_method(rb_cComplex, "new!", nucomp_s_new_bang, -1);
 | |
|     rb_funcall(rb_cComplex, rb_intern("private_class_method"), 1,
 | |
| 	       ID2SYM(rb_intern("new!")));
 | |
| 
 | |
|     rb_define_singleton_method(rb_cComplex, "new", nucomp_s_new, -1);
 | |
|     rb_funcall(rb_cComplex, rb_intern("private_class_method"), 1,
 | |
| 	       ID2SYM(rb_intern("new")));
 | |
| 
 | |
| #if 0
 | |
|     rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1);
 | |
|     rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1);
 | |
| #endif
 | |
|     rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, 2);
 | |
| 
 | |
|     rb_define_global_function(COMPLEX_NAME, nucomp_f_complex, -1);
 | |
| 
 | |
|     rb_undef_method(rb_cComplex, "<");
 | |
|     rb_undef_method(rb_cComplex, "<=");
 | |
|     rb_undef_method(rb_cComplex, "<=>");
 | |
|     rb_undef_method(rb_cComplex, ">");
 | |
|     rb_undef_method(rb_cComplex, ">=");
 | |
|     rb_undef_method(rb_cComplex, "between?");
 | |
|     rb_undef_method(rb_cComplex, "divmod");
 | |
|     rb_undef_method(rb_cComplex, "floor");
 | |
|     rb_undef_method(rb_cComplex, "ceil");
 | |
|     rb_undef_method(rb_cComplex, "modulo");
 | |
|     rb_undef_method(rb_cComplex, "round");
 | |
|     rb_undef_method(rb_cComplex, "step");
 | |
|     rb_undef_method(rb_cComplex, "truncate");
 | |
| 
 | |
| #if NUBY
 | |
|     rb_undef_method(rb_cComplex, "//");
 | |
| #endif
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "real", nucomp_real, 0);
 | |
|     rb_define_method(rb_cComplex, "image", nucomp_image, 0);
 | |
|     rb_define_method(rb_cComplex, "imag", nucomp_image, 0);
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "+", nucomp_add, 1);
 | |
|     rb_define_method(rb_cComplex, "-", nucomp_sub, 1);
 | |
|     rb_define_method(rb_cComplex, "*", nucomp_mul, 1);
 | |
|     rb_define_method(rb_cComplex, "/", nucomp_div, 1);
 | |
|     rb_define_method(rb_cComplex, "quo", nucomp_quo, 1);
 | |
|     rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
 | |
|     rb_define_method(rb_cComplex, "**", nucomp_expt, 1);
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "==", nucomp_equal_p, 1);
 | |
|     rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "abs", nucomp_abs, 0);
 | |
| #if 0
 | |
|     rb_define_method(rb_cComplex, "magnitude", nucomp_abs, 0);
 | |
| #endif
 | |
|     rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0);
 | |
|     rb_define_method(rb_cComplex, "arg", nucomp_arg, 0);
 | |
|     rb_define_method(rb_cComplex, "angle", nucomp_arg, 0);
 | |
|     rb_define_method(rb_cComplex, "polar", nucomp_polar, 0);
 | |
|     rb_define_method(rb_cComplex, "conjugate", nucomp_conjugate, 0);
 | |
|     rb_define_method(rb_cComplex, "conj", nucomp_conjugate, 0);
 | |
| #if 0
 | |
|     rb_define_method(rb_cComplex, "~", nucomp_conjugate, 0); /* gcc */
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
|     rb_define_method(rb_cComplex, "real?", nucomp_real_p, 0);
 | |
|     rb_define_method(rb_cComplex, "complex?", nucomp_complex_p, 0);
 | |
|     rb_define_method(rb_cComplex, "exact?", nucomp_exact_p, 0);
 | |
|     rb_define_method(rb_cComplex, "inexact?", nucomp_inexact_p, 0);
 | |
| #endif
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
 | |
|     rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "hash", nucomp_hash, 0);
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0);
 | |
|     rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0);
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0);
 | |
|     rb_define_method(rb_cComplex, "marshal_load", nucomp_marshal_load, 1);
 | |
| 
 | |
|     /* --- */
 | |
| 
 | |
|     rb_define_method(rb_cComplex, "scalar?", nucomp_scalar_p, 0);
 | |
|     rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
 | |
|     rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
 | |
|     rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
 | |
|     rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
 | |
|     rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
 | |
| 
 | |
|     make_patterns();
 | |
| 
 | |
|     rb_define_method(rb_cString, "to_c", string_to_c, 0);
 | |
| 
 | |
|     rb_define_singleton_method(rb_cComplex, "convert", nucomp_s_convert, -1);
 | |
|     rb_funcall(rb_cComplex, rb_intern("private_class_method"), 1,
 | |
| 	       ID2SYM(rb_intern("convert")));
 | |
| 
 | |
|     /* --- */
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "re", numeric_re, 0);
 | |
|     rb_define_method(rb_cNumeric, "im", numeric_im, 0);
 | |
|     rb_define_method(rb_cNumeric, "real", numeric_real, 0);
 | |
|     rb_define_method(rb_cNumeric, "image", numeric_image, 0);
 | |
|     rb_define_method(rb_cNumeric, "imag", numeric_image, 0);
 | |
|     rb_define_method(rb_cNumeric, "arg", numeric_arg, 0);
 | |
|     rb_define_method(rb_cNumeric, "angle", numeric_arg, 0);
 | |
|     rb_define_method(rb_cNumeric, "polar", numeric_polar, 0);
 | |
|     rb_define_method(rb_cNumeric, "conjugate", numeric_conjugate, 0);
 | |
|     rb_define_method(rb_cNumeric, "conj", numeric_conjugate, 0);
 | |
| 
 | |
|     rb_define_const(rb_cComplex, "I",
 | |
| 		    f_complex_new_bang2(rb_cComplex, ZERO, ONE));
 | |
| }
 |