1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/cont.c
Iain Barnett dce1e14e80 Use more different arguments in Fiber.yield documentation to make it clear (#2170)
https://github.com/ruby/ruby/pull/2170#issuecomment-489880700

Documentation is for those who don't know, remember, or understand (to any degree) the language, it should attempt to be clear above all other things. The example given is needlessly unclear because if you use a block it's common for arguments to be reused on every entry to the block. In Fiber's case this is not so.

First time round 10 goes in, 12 comes out.
Second time round 14 goes in, 14 comes out… was that because 14 is 12 + 2 or because it's "the return value of the call to Fiber.yield". It's the latter because it says so but why does the example need to make anyone think the former?

Using different numbers makes it immediately clear what's happening whether the description is there or not.
2019-08-17 14:24:45 +09:00

2428 lines
68 KiB
C

/**********************************************************************
cont.c -
$Author$
created at: Thu May 23 09:03:43 2007
Copyright (C) 2007 Koichi Sasada
**********************************************************************/
#include "internal.h"
#include "vm_core.h"
#include "gc.h"
#include "eval_intern.h"
#include "mjit.h"
#include COROUTINE_H
#ifndef _WIN32
#include <unistd.h>
#include <sys/mman.h>
#endif
static const int DEBUG = 0;
#define RB_PAGE_SIZE (pagesize)
#define RB_PAGE_MASK (~(RB_PAGE_SIZE - 1))
static long pagesize;
static const rb_data_type_t cont_data_type, fiber_data_type;
static VALUE rb_cContinuation;
static VALUE rb_cFiber;
static VALUE rb_eFiberError;
#ifdef RB_EXPERIMENTAL_FIBER_POOL
static VALUE rb_cFiberPool;
#endif
#define CAPTURE_JUST_VALID_VM_STACK 1
// Defined in `coroutine/$arch/Context.h`:
#ifdef COROUTINE_LIMITED_ADDRESS_SPACE
#define FIBER_POOL_ALLOCATION_FREE
#define FIBER_POOL_INITIAL_SIZE 8
#define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 32
#else
#define FIBER_POOL_INITIAL_SIZE 32
#define FIBER_POOL_ALLOCATION_MAXIMUM_SIZE 1024
#endif
enum context_type {
CONTINUATION_CONTEXT = 0,
FIBER_CONTEXT = 1
};
struct cont_saved_vm_stack {
VALUE *ptr;
#ifdef CAPTURE_JUST_VALID_VM_STACK
size_t slen; /* length of stack (head of ec->vm_stack) */
size_t clen; /* length of control frames (tail of ec->vm_stack) */
#endif
};
struct fiber_pool;
// Represents a single stack.
struct fiber_pool_stack {
// A pointer to the memory allocation (lowest address) for the stack.
void * base;
// The current stack pointer, taking into account the direction of the stack.
void * current;
// The size of the stack excluding any guard pages.
size_t size;
// The available stack capacity w.r.t. the current stack offset.
size_t available;
// The pool this stack should be allocated from.
struct fiber_pool * pool;
// If the stack is allocated, the allocation it came from.
struct fiber_pool_allocation * allocation;
};
// A linked list of vacant (unused) stacks.
// This structure is stored in the first page of a stack if it is not in use.
// @sa fiber_pool_vacancy_pointer
struct fiber_pool_vacancy {
// Details about the vacant stack:
struct fiber_pool_stack stack;
// The vacancy linked list.
#ifdef FIBER_POOL_ALLOCATION_FREE
struct fiber_pool_vacancy * previous;
#endif
struct fiber_pool_vacancy * next;
};
// Manages singly linked list of mapped regions of memory which contains 1 more more stack:
//
// base = +-------------------------------+-----------------------+ +
// |VM Stack |VM Stack | | |
// | | | | |
// | | | | |
// +-------------------------------+ | |
// |Machine Stack |Machine Stack | | |
// | | | | |
// | | | | |
// | | | . . . . | | size
// | | | | |
// | | | | |
// | | | | |
// | | | | |
// | | | | |
// +-------------------------------+ | |
// |Guard Page |Guard Page | | |
// +-------------------------------+-----------------------+ v
//
// +------------------------------------------------------->
//
// count
//
struct fiber_pool_allocation {
// A pointer to the memory mapped region.
void * base;
// The size of the individual stacks.
size_t size;
// The stride of individual stacks (including any guard pages or other accounting details).
size_t stride;
// The number of stacks that were allocated.
size_t count;
#ifdef FIBER_POOL_ALLOCATION_FREE
// The number of stacks used in this allocation.
size_t used;
#endif
struct fiber_pool * pool;
// The allocation linked list.
#ifdef FIBER_POOL_ALLOCATION_FREE
struct fiber_pool_allocation * previous;
#endif
struct fiber_pool_allocation * next;
};
// A fiber pool manages vacant stacks to reduce the overhead of creating fibers.
struct fiber_pool {
// A singly-linked list of allocations which contain 1 or more stacks each.
struct fiber_pool_allocation * allocations;
// Provides O(1) stack "allocation":
struct fiber_pool_vacancy * vacancies;
// The size of the stack allocations (excluding any guard page).
size_t size;
// The total number of stacks that have been allocated in this pool.
size_t count;
// The initial number of stacks to allocate.
size_t initial_count;
// Whether to madvise(free) the stack or not:
int free_stacks;
// The number of stacks that have been used in this pool.
size_t used;
// The amount to allocate for the vm_stack:
size_t vm_stack_size;
};
typedef struct rb_context_struct {
enum context_type type;
int argc;
VALUE self;
VALUE value;
struct cont_saved_vm_stack saved_vm_stack;
struct {
VALUE *stack;
VALUE *stack_src;
size_t stack_size;
} machine;
rb_execution_context_t saved_ec;
rb_jmpbuf_t jmpbuf;
rb_ensure_entry_t *ensure_array;
/* Pointer to MJIT info about the continuation. */
struct mjit_cont *mjit_cont;
} rb_context_t;
/*
* Fiber status:
* [Fiber.new] ------> FIBER_CREATED
* | [Fiber#resume]
* v
* +--> FIBER_RESUMED ----+
* [Fiber#resume] | | [Fiber.yield] |
* | v |
* +-- FIBER_SUSPENDED | [Terminate]
* |
* FIBER_TERMINATED <-+
*/
enum fiber_status {
FIBER_CREATED,
FIBER_RESUMED,
FIBER_SUSPENDED,
FIBER_TERMINATED
};
#define FIBER_CREATED_P(fiber) ((fiber)->status == FIBER_CREATED)
#define FIBER_RESUMED_P(fiber) ((fiber)->status == FIBER_RESUMED)
#define FIBER_SUSPENDED_P(fiber) ((fiber)->status == FIBER_SUSPENDED)
#define FIBER_TERMINATED_P(fiber) ((fiber)->status == FIBER_TERMINATED)
#define FIBER_RUNNABLE_P(fiber) (FIBER_CREATED_P(fiber) || FIBER_SUSPENDED_P(fiber))
struct rb_fiber_struct {
rb_context_t cont;
VALUE first_proc;
struct rb_fiber_struct *prev;
BITFIELD(enum fiber_status, status, 2);
/* If a fiber invokes "transfer",
* then this fiber can't "resume" any more after that.
* You shouldn't mix "transfer" and "resume".
*/
unsigned int transferred : 1;
struct coroutine_context context;
struct fiber_pool_stack stack;
};
static struct fiber_pool shared_fiber_pool = {NULL, NULL, 0, 0, 0, 0};
/*
* FreeBSD require a first (i.e. addr) argument of mmap(2) is not NULL
* if MAP_STACK is passed.
* http://www.FreeBSD.org/cgi/query-pr.cgi?pr=158755
*/
#if defined(MAP_STACK) && !defined(__FreeBSD__) && !defined(__FreeBSD_kernel__)
#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON | MAP_STACK)
#else
#define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON)
#endif
#define ERRNOMSG strerror(errno)
// Locates the stack vacancy details for the given stack.
// Requires that fiber_pool_vacancy fits within one page.
inline static struct fiber_pool_vacancy *
fiber_pool_vacancy_pointer(void * base, size_t size)
{
STACK_GROW_DIR_DETECTION;
return (struct fiber_pool_vacancy *)(
(char*)base + STACK_DIR_UPPER(0, size - RB_PAGE_SIZE)
);
}
// Reset the current stack pointer and available size of the given stack.
inline static void
fiber_pool_stack_reset(struct fiber_pool_stack * stack)
{
STACK_GROW_DIR_DETECTION;
stack->current = (char*)stack->base + STACK_DIR_UPPER(0, stack->size);
stack->available = stack->size;
}
// A pointer to the base of the current unused portion of the stack.
inline static void *
fiber_pool_stack_base(struct fiber_pool_stack * stack)
{
STACK_GROW_DIR_DETECTION;
VM_ASSERT(stack->current);
return STACK_DIR_UPPER(stack->current, (char*)stack->current - stack->available);
}
// Allocate some memory from the stack. Used to allocate vm_stack inline with machine stack.
// @sa fiber_initialize_coroutine
inline static void *
fiber_pool_stack_alloca(struct fiber_pool_stack * stack, size_t offset)
{
STACK_GROW_DIR_DETECTION;
if (DEBUG) fprintf(stderr, "fiber_pool_stack_alloca(%p): %"PRIuSIZE"/%"PRIuSIZE"\n", stack, offset, stack->available);
VM_ASSERT(stack->available >= offset);
// The pointer to the memory being allocated:
void * pointer = STACK_DIR_UPPER(stack->current, (char*)stack->current - offset);
// Move the stack pointer:
stack->current = STACK_DIR_UPPER((char*)stack->current + offset, (char*)stack->current - offset);
stack->available -= offset;
return pointer;
}
// Reset the current stack pointer and available size of the given stack.
inline static void
fiber_pool_vacancy_reset(struct fiber_pool_vacancy * vacancy)
{
fiber_pool_stack_reset(&vacancy->stack);
// Consume one page of the stack because it's used for the vacancy list:
fiber_pool_stack_alloca(&vacancy->stack, RB_PAGE_SIZE);
}
inline static struct fiber_pool_vacancy *
fiber_pool_vacancy_push(struct fiber_pool_vacancy * vacancy, struct fiber_pool_vacancy * head)
{
vacancy->next = head;
#ifdef FIBER_POOL_ALLOCATION_FREE
if (head) {
head->previous = vacancy;
}
#endif
return vacancy;
}
#ifdef FIBER_POOL_ALLOCATION_FREE
static void
fiber_pool_vacancy_remove(struct fiber_pool_vacancy * vacancy)
{
if (vacancy->next) {
vacancy->next->previous = vacancy->previous;
}
if (vacancy->previous) {
vacancy->previous->next = vacancy->next;
}
else {
// It's the head of the list:
vacancy->stack.pool->vacancies = vacancy->next;
}
}
inline static struct fiber_pool_vacancy *
fiber_pool_vacancy_pop(struct fiber_pool * pool)
{
struct fiber_pool_vacancy * vacancy = pool->vacancies;
if (vacancy) {
fiber_pool_vacancy_remove(vacancy);
}
return vacancy;
}
#else
inline static struct fiber_pool_vacancy *
fiber_pool_vacancy_pop(struct fiber_pool * pool)
{
struct fiber_pool_vacancy * vacancy = pool->vacancies;
if (vacancy) {
pool->vacancies = vacancy->next;
}
return vacancy;
}
#endif
// Initialize the vacant stack. The [base, size] allocation should not include the guard page.
// @param base The pointer to the lowest address of the allocated memory.
// @param size The size of the allocated memory.
inline static struct fiber_pool_vacancy *
fiber_pool_vacancy_initialize(struct fiber_pool * fiber_pool, struct fiber_pool_vacancy * vacancies, void * base, size_t size)
{
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, size);
vacancy->stack.base = base;
vacancy->stack.size = size;
fiber_pool_vacancy_reset(vacancy);
vacancy->stack.pool = fiber_pool;
return fiber_pool_vacancy_push(vacancy, vacancies);
}
// Allocate a maximum of count stacks, size given by stride.
// @param count the number of stacks to allocate / were allocated.
// @param stride the size of the individual stacks.
// @return [void *] the allocated memory or NULL if allocation failed.
inline static void *
fiber_pool_allocate_memory(size_t * count, size_t stride)
{
// We use a divide-by-2 strategy to try and allocate memory. We are trying
// to allocate `count` stacks. In normal situation, this won't fail. But
// if we ran out of address space, or we are allocating more memory than
// the system would allow (e.g. overcommit * physical memory + swap), we
// divide count by two and try again. This condition should only be
// encountered in edge cases, but we handle it here gracefully.
while (*count > 1) {
#if defined(_WIN32)
void * base = VirtualAlloc(0, (*count)*stride, MEM_COMMIT, PAGE_READWRITE);
if (!base) {
*count = (*count) >> 1;
}
else {
return base;
}
#else
errno = 0;
void * base = mmap(NULL, (*count)*stride, PROT_READ | PROT_WRITE, FIBER_STACK_FLAGS, -1, 0);
if (base == MAP_FAILED) {
// If the allocation fails, count = count / 2, and try again.
*count = (*count) >> 1;
}
else {
return base;
}
#endif
}
return NULL;
}
// Given an existing fiber pool, expand it by the specified number of stacks.
// @param count the maximum number of stacks to allocate.
// @return the allocated fiber pool.
// @sa fiber_pool_allocation_free
static struct fiber_pool_allocation *
fiber_pool_expand(struct fiber_pool * fiber_pool, size_t count)
{
STACK_GROW_DIR_DETECTION;
size_t size = fiber_pool->size;
size_t stride = size + RB_PAGE_SIZE;
// Allocate the memory required for the stacks:
void * base = fiber_pool_allocate_memory(&count, stride);
if (base == NULL) {
rb_raise(rb_eFiberError, "can't alloc machine stack to fiber (%"PRIuSIZE" x %"PRIuSIZE" bytes): %s", count, size, ERRNOMSG);
}
struct fiber_pool_vacancy * vacancies = fiber_pool->vacancies;
struct fiber_pool_allocation * allocation = RB_ALLOC(struct fiber_pool_allocation);
// Initialize fiber pool allocation:
allocation->base = base;
allocation->size = size;
allocation->stride = stride;
allocation->count = count;
#ifdef FIBER_POOL_ALLOCATION_FREE
allocation->used = 0;
#endif
allocation->pool = fiber_pool;
if (DEBUG) {
fprintf(stderr, "fiber_pool_expand(%"PRIuSIZE"): %p, %"PRIuSIZE"/%"PRIuSIZE" x [%"PRIuSIZE":%"PRIuSIZE"]\n",
count, fiber_pool, fiber_pool->used, fiber_pool->count, size, fiber_pool->vm_stack_size);
}
// Iterate over all stacks, initializing the vacancy list:
for (size_t i = 0; i < count; i += 1) {
void * base = (char*)allocation->base + (stride * i);
void * page = (char*)base + STACK_DIR_UPPER(size, 0);
#if defined(_WIN32)
DWORD old_protect;
if (!VirtualProtect(page, RB_PAGE_SIZE, PAGE_READWRITE | PAGE_GUARD, &old_protect)) {
VirtualFree(allocation->base, 0, MEM_RELEASE);
rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
}
#else
if (mprotect(page, RB_PAGE_SIZE, PROT_NONE) < 0) {
munmap(allocation->base, count*stride);
rb_raise(rb_eFiberError, "can't set a guard page: %s", ERRNOMSG);
}
#endif
vacancies = fiber_pool_vacancy_initialize(
fiber_pool, vacancies,
(char*)base + STACK_DIR_UPPER(0, RB_PAGE_SIZE),
size
);
#ifdef FIBER_POOL_ALLOCATION_FREE
vacancies->stack.allocation = allocation;
#endif
}
// Insert the allocation into the head of the pool:
allocation->next = fiber_pool->allocations;
#ifdef FIBER_POOL_ALLOCATION_FREE
if (allocation->next) {
allocation->next->previous = allocation;
}
allocation->previous = NULL;
#endif
fiber_pool->allocations = allocation;
fiber_pool->vacancies = vacancies;
fiber_pool->count += count;
return allocation;
}
// Initialize the specified fiber pool with the given number of stacks.
// @param vm_stack_size The size of the vm stack to allocate.
static void
fiber_pool_initialize(struct fiber_pool * fiber_pool, size_t size, size_t count, size_t vm_stack_size)
{
VM_ASSERT(vm_stack_size < size);
fiber_pool->allocations = NULL;
fiber_pool->vacancies = NULL;
fiber_pool->size = ((size / RB_PAGE_SIZE) + 1) * RB_PAGE_SIZE;
fiber_pool->count = 0;
fiber_pool->initial_count = count;
fiber_pool->free_stacks = 1;
fiber_pool->used = 0;
fiber_pool->vm_stack_size = vm_stack_size;
fiber_pool_expand(fiber_pool, count);
}
#ifdef FIBER_POOL_ALLOCATION_FREE
// Free the list of fiber pool allocations.
static void
fiber_pool_allocation_free(struct fiber_pool_allocation * allocation)
{
STACK_GROW_DIR_DETECTION;
VM_ASSERT(allocation->used == 0);
if (DEBUG) fprintf(stderr, "fiber_pool_allocation_free: %p base=%p count=%"PRIuSIZE"\n", allocation, allocation->base, allocation->count);
size_t i;
for (i = 0; i < allocation->count; i += 1) {
void * base = (char*)allocation->base + (allocation->stride * i) + STACK_DIR_UPPER(0, RB_PAGE_SIZE);
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(base, allocation->size);
// Pop the vacant stack off the free list:
fiber_pool_vacancy_remove(vacancy);
}
#ifdef _WIN32
VirtualFree(allocation->base, 0, MEM_RELEASE);
#else
munmap(allocation->base, allocation->stride * allocation->count);
#endif
if (allocation->previous) {
allocation->previous->next = allocation->next;
}
else {
// We are the head of the list, so update the pool:
allocation->pool->allocations = allocation->next;
}
if (allocation->next) {
allocation->next->previous = allocation->previous;
}
allocation->pool->count -= allocation->count;
ruby_xfree(allocation);
}
#endif
// Acquire a stack from the given fiber pool. If none are available, allocate more.
static struct fiber_pool_stack
fiber_pool_stack_acquire(struct fiber_pool * fiber_pool) {
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pop(fiber_pool);
if (DEBUG) fprintf(stderr, "fiber_pool_stack_acquire: %p used=%"PRIuSIZE"\n", fiber_pool->vacancies, fiber_pool->used);
if (!vacancy) {
const size_t maximum = FIBER_POOL_ALLOCATION_MAXIMUM_SIZE;
const size_t minimum = fiber_pool->initial_count;
size_t count = fiber_pool->count;
if (count > maximum) count = maximum;
if (count < minimum) count = minimum;
fiber_pool_expand(fiber_pool, count);
// The free list should now contain some stacks:
VM_ASSERT(fiber_pool->vacancies);
vacancy = fiber_pool_vacancy_pop(fiber_pool);
}
VM_ASSERT(vacancy);
VM_ASSERT(vacancy->stack.base);
// Take the top item from the free list:
fiber_pool->used += 1;
#ifdef FIBER_POOL_ALLOCATION_FREE
vacancy->stack.allocation->used += 1;
#endif
fiber_pool_stack_reset(&vacancy->stack);
return vacancy->stack;
}
// We advise the operating system that the stack memory pages are no longer being used.
// This introduce some performance overhead but allows system to relaim memory when there is pressure.
static inline void
fiber_pool_stack_free(struct fiber_pool_stack * stack)
{
void * base = fiber_pool_stack_base(stack);
size_t size = stack->available;
// If this is not true, the vacancy information will almost certainly be destroyed:
VM_ASSERT(size <= (stack->size - RB_PAGE_SIZE));
if (DEBUG) fprintf(stderr, "fiber_pool_stack_free: %p+%"PRIuSIZE" [base=%p, size=%"PRIuSIZE"]\n", base, size, stack->base, stack->size);
#if VM_CHECK_MODE > 0 && defined(MADV_DONTNEED)
// This immediately discards the pages and the memory is reset to zero.
madvise(base, size, MADV_DONTNEED);
#elif defined(MADV_FREE_REUSABLE)
madvise(base, size, MADV_FREE_REUSABLE);
#elif defined(MADV_FREE)
madvise(base, size, MADV_FREE);
#elif defined(MADV_DONTNEED)
madvise(base, size, MADV_DONTNEED);
#elif defined(_WIN32)
VirtualAlloc(base, size, MEM_RESET, PAGE_READWRITE);
// Not available in all versions of Windows.
//DiscardVirtualMemory(base, size);
#endif
}
// Release and return a stack to the vacancy list.
static void
fiber_pool_stack_release(struct fiber_pool_stack * stack)
{
struct fiber_pool * pool = stack->pool;
struct fiber_pool_vacancy * vacancy = fiber_pool_vacancy_pointer(stack->base, stack->size);
if (DEBUG) fprintf(stderr, "fiber_pool_stack_release: %p used=%"PRIuSIZE"\n", stack->base, stack->pool->used);
// Copy the stack details into the vacancy area:
vacancy->stack = *stack;
// After this point, be careful about updating/using state in stack, since it's copied to the vacancy area.
// Reset the stack pointers and reserve space for the vacancy data:
fiber_pool_vacancy_reset(vacancy);
// Push the vacancy into the vancancies list:
pool->vacancies = fiber_pool_vacancy_push(vacancy, stack->pool->vacancies);
pool->used -= 1;
#ifdef FIBER_POOL_ALLOCATION_FREE
struct fiber_pool_allocation * allocation = stack->allocation;
allocation->used -= 1;
// Release address space and/or dirty memory:
if (allocation->used == 0) {
fiber_pool_allocation_free(allocation);
}
else if (stack->pool->free_stacks) {
fiber_pool_stack_free(&vacancy->stack);
}
#else
// This is entirely optional, but clears the dirty flag from the stack memory, so it won't get swapped to disk when there is memory pressure:
if (stack->pool->free_stacks) {
fiber_pool_stack_free(&vacancy->stack);
}
#endif
}
static COROUTINE
fiber_entry(struct coroutine_context * from, struct coroutine_context * to)
{
rb_fiber_start();
}
// Initialize a fiber's coroutine's machine stack and vm stack.
static VALUE *
fiber_initialize_coroutine(rb_fiber_t *fiber, size_t * vm_stack_size)
{
struct fiber_pool * fiber_pool = fiber->stack.pool;
rb_execution_context_t *sec = &fiber->cont.saved_ec;
void * vm_stack = NULL;
STACK_GROW_DIR_DETECTION;
VM_ASSERT(fiber_pool != NULL);
fiber->stack = fiber_pool_stack_acquire(fiber_pool);
vm_stack = fiber_pool_stack_alloca(&fiber->stack, fiber_pool->vm_stack_size);
*vm_stack_size = fiber_pool->vm_stack_size;
#ifdef COROUTINE_PRIVATE_STACK
coroutine_initialize(&fiber->context, fiber_entry, fiber_pool_stack_base(&fiber->stack), fiber->stack.available, sec->machine.stack_start);
// The stack for this execution context is still the main machine stack, so don't adjust it.
// If this is not managed correctly, you will fail in `rb_ec_stack_check`.
// We limit the machine stack usage to the fiber stack size.
if (sec->machine.stack_maxsize > fiber->stack.available) {
sec->machine.stack_maxsize = fiber->stack.available;
}
#else
coroutine_initialize(&fiber->context, fiber_entry, fiber_pool_stack_base(&fiber->stack), fiber->stack.available);
// The stack for this execution context is the one we allocated:
sec->machine.stack_start = fiber->stack.current;
sec->machine.stack_maxsize = fiber->stack.available;
#endif
return vm_stack;
}
// Release the stack from the fiber, it's execution context, and return it to the fiber pool.
static void
fiber_stack_release(rb_fiber_t * fiber)
{
rb_execution_context_t *ec = &fiber->cont.saved_ec;
if (DEBUG) fprintf(stderr, "fiber_stack_release: %p, stack.base=%p\n", fiber, fiber->stack.base);
// Return the stack back to the fiber pool if it wasn't already:
if (fiber->stack.base) {
fiber_pool_stack_release(&fiber->stack);
fiber->stack.base = NULL;
}
// The stack is no longer associated with this execution context:
rb_ec_clear_vm_stack(ec);
}
static const char *
fiber_status_name(enum fiber_status s)
{
switch (s) {
case FIBER_CREATED: return "created";
case FIBER_RESUMED: return "resumed";
case FIBER_SUSPENDED: return "suspended";
case FIBER_TERMINATED: return "terminated";
}
VM_UNREACHABLE(fiber_status_name);
return NULL;
}
static void
fiber_verify(const rb_fiber_t *fiber)
{
#if VM_CHECK_MODE > 0
VM_ASSERT(fiber->cont.saved_ec.fiber_ptr == fiber);
switch (fiber->status) {
case FIBER_RESUMED:
VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
break;
case FIBER_SUSPENDED:
VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
break;
case FIBER_CREATED:
case FIBER_TERMINATED:
/* TODO */
break;
default:
VM_UNREACHABLE(fiber_verify);
}
#endif
}
inline static void
fiber_status_set(rb_fiber_t *fiber, enum fiber_status s)
{
// if (DEBUG) fprintf(stderr, "fiber: %p, status: %s -> %s\n", (void *)fiber, fiber_status_name(fiber->status), fiber_status_name(s));
VM_ASSERT(!FIBER_TERMINATED_P(fiber));
VM_ASSERT(fiber->status != s);
fiber_verify(fiber);
fiber->status = s;
}
static inline void
ec_switch(rb_thread_t *th, rb_fiber_t *fiber)
{
rb_execution_context_t *ec = &fiber->cont.saved_ec;
ruby_current_execution_context_ptr = th->ec = ec;
/*
* timer-thread may set trap interrupt on previous th->ec at any time;
* ensure we do not delay (or lose) the trap interrupt handling.
*/
if (th->vm->main_thread == th && rb_signal_buff_size() > 0) {
RUBY_VM_SET_TRAP_INTERRUPT(ec);
}
VM_ASSERT(ec->fiber_ptr->cont.self == 0 || ec->vm_stack != NULL);
}
static rb_context_t *
cont_ptr(VALUE obj)
{
rb_context_t *cont;
TypedData_Get_Struct(obj, rb_context_t, &cont_data_type, cont);
return cont;
}
static rb_fiber_t *
fiber_ptr(VALUE obj)
{
rb_fiber_t *fiber;
TypedData_Get_Struct(obj, rb_fiber_t, &fiber_data_type, fiber);
if (!fiber) rb_raise(rb_eFiberError, "uninitialized fiber");
return fiber;
}
NOINLINE(static VALUE cont_capture(volatile int *volatile stat));
#define THREAD_MUST_BE_RUNNING(th) do { \
if (!(th)->ec->tag) rb_raise(rb_eThreadError, "not running thread"); \
} while (0)
static VALUE
cont_thread_value(const rb_context_t *cont)
{
return cont->saved_ec.thread_ptr->self;
}
static void
cont_compact(void *ptr)
{
rb_context_t *cont = ptr;
cont->value = rb_gc_location(cont->value);
rb_execution_context_update(&cont->saved_ec);
}
static void
cont_mark(void *ptr)
{
rb_context_t *cont = ptr;
RUBY_MARK_ENTER("cont");
rb_gc_mark_movable(cont->value);
rb_execution_context_mark(&cont->saved_ec);
rb_gc_mark(cont_thread_value(cont));
if (cont->saved_vm_stack.ptr) {
#ifdef CAPTURE_JUST_VALID_VM_STACK
rb_gc_mark_locations(cont->saved_vm_stack.ptr,
cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
#else
rb_gc_mark_locations(cont->saved_vm_stack.ptr,
cont->saved_vm_stack.ptr, cont->saved_ec.stack_size);
#endif
}
if (cont->machine.stack) {
if (cont->type == CONTINUATION_CONTEXT) {
/* cont */
rb_gc_mark_locations(cont->machine.stack,
cont->machine.stack + cont->machine.stack_size);
}
else {
/* fiber */
const rb_fiber_t *fiber = (rb_fiber_t*)cont;
if (!FIBER_TERMINATED_P(fiber)) {
rb_gc_mark_locations(cont->machine.stack,
cont->machine.stack + cont->machine.stack_size);
}
}
}
RUBY_MARK_LEAVE("cont");
}
static int
fiber_is_root_p(const rb_fiber_t *fiber)
{
return fiber == fiber->cont.saved_ec.thread_ptr->root_fiber;
}
static void
cont_free(void *ptr)
{
rb_context_t *cont = ptr;
RUBY_FREE_ENTER("cont");
if (cont->type == CONTINUATION_CONTEXT) {
ruby_xfree(cont->saved_ec.vm_stack);
ruby_xfree(cont->ensure_array);
RUBY_FREE_UNLESS_NULL(cont->machine.stack);
}
else {
rb_fiber_t *fiber = (rb_fiber_t*)cont;
coroutine_destroy(&fiber->context);
if (!fiber_is_root_p(fiber)) {
fiber_stack_release(fiber);
}
}
RUBY_FREE_UNLESS_NULL(cont->saved_vm_stack.ptr);
if (mjit_enabled && cont->mjit_cont != NULL) {
mjit_cont_free(cont->mjit_cont);
}
/* free rb_cont_t or rb_fiber_t */
ruby_xfree(ptr);
RUBY_FREE_LEAVE("cont");
}
static size_t
cont_memsize(const void *ptr)
{
const rb_context_t *cont = ptr;
size_t size = 0;
size = sizeof(*cont);
if (cont->saved_vm_stack.ptr) {
#ifdef CAPTURE_JUST_VALID_VM_STACK
size_t n = (cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
#else
size_t n = cont->saved_ec.vm_stack_size;
#endif
size += n * sizeof(*cont->saved_vm_stack.ptr);
}
if (cont->machine.stack) {
size += cont->machine.stack_size * sizeof(*cont->machine.stack);
}
return size;
}
void
rb_fiber_update_self(rb_fiber_t *fiber)
{
if (fiber->cont.self) {
fiber->cont.self = rb_gc_location(fiber->cont.self);
}
else {
rb_execution_context_update(&fiber->cont.saved_ec);
}
}
void
rb_fiber_mark_self(const rb_fiber_t *fiber)
{
if (fiber->cont.self) {
rb_gc_mark_movable(fiber->cont.self);
}
else {
rb_execution_context_mark(&fiber->cont.saved_ec);
}
}
static void
fiber_compact(void *ptr)
{
rb_fiber_t *fiber = ptr;
fiber->first_proc = rb_gc_location(fiber->first_proc);
if (fiber->prev) rb_fiber_update_self(fiber->prev);
cont_compact(&fiber->cont);
fiber_verify(fiber);
}
static void
fiber_mark(void *ptr)
{
rb_fiber_t *fiber = ptr;
RUBY_MARK_ENTER("cont");
fiber_verify(fiber);
rb_gc_mark_movable(fiber->first_proc);
if (fiber->prev) rb_fiber_mark_self(fiber->prev);
cont_mark(&fiber->cont);
RUBY_MARK_LEAVE("cont");
}
static void
fiber_free(void *ptr)
{
rb_fiber_t *fiber = ptr;
RUBY_FREE_ENTER("fiber");
//if (DEBUG) fprintf(stderr, "fiber_free: %p[%p]\n", fiber, fiber->stack.base);
if (fiber->cont.saved_ec.local_storage) {
st_free_table(fiber->cont.saved_ec.local_storage);
}
cont_free(&fiber->cont);
RUBY_FREE_LEAVE("fiber");
}
static size_t
fiber_memsize(const void *ptr)
{
const rb_fiber_t *fiber = ptr;
size_t size = sizeof(*fiber);
const rb_execution_context_t *saved_ec = &fiber->cont.saved_ec;
const rb_thread_t *th = rb_ec_thread_ptr(saved_ec);
/*
* vm.c::thread_memsize already counts th->ec->local_storage
*/
if (saved_ec->local_storage && fiber != th->root_fiber) {
size += st_memsize(saved_ec->local_storage);
}
size += cont_memsize(&fiber->cont);
return size;
}
VALUE
rb_obj_is_fiber(VALUE obj)
{
if (rb_typeddata_is_kind_of(obj, &fiber_data_type)) {
return Qtrue;
}
else {
return Qfalse;
}
}
static void
cont_save_machine_stack(rb_thread_t *th, rb_context_t *cont)
{
size_t size;
SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
if (th->ec->machine.stack_start > th->ec->machine.stack_end) {
size = cont->machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
cont->machine.stack_src = th->ec->machine.stack_end;
}
else {
size = cont->machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
cont->machine.stack_src = th->ec->machine.stack_start;
}
if (cont->machine.stack) {
REALLOC_N(cont->machine.stack, VALUE, size);
}
else {
cont->machine.stack = ALLOC_N(VALUE, size);
}
FLUSH_REGISTER_WINDOWS;
MEMCPY(cont->machine.stack, cont->machine.stack_src, VALUE, size);
}
static const rb_data_type_t cont_data_type = {
"continuation",
{cont_mark, cont_free, cont_memsize, cont_compact},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static inline void
cont_save_thread(rb_context_t *cont, rb_thread_t *th)
{
rb_execution_context_t *sec = &cont->saved_ec;
VM_ASSERT(th->status == THREAD_RUNNABLE);
/* save thread context */
*sec = *th->ec;
/* saved_ec->machine.stack_end should be NULL */
/* because it may happen GC afterward */
sec->machine.stack_end = NULL;
}
static void
cont_init(rb_context_t *cont, rb_thread_t *th)
{
/* save thread context */
cont_save_thread(cont, th);
cont->saved_ec.thread_ptr = th;
cont->saved_ec.local_storage = NULL;
cont->saved_ec.local_storage_recursive_hash = Qnil;
cont->saved_ec.local_storage_recursive_hash_for_trace = Qnil;
if (mjit_enabled) {
cont->mjit_cont = mjit_cont_new(&cont->saved_ec);
}
}
static rb_context_t *
cont_new(VALUE klass)
{
rb_context_t *cont;
volatile VALUE contval;
rb_thread_t *th = GET_THREAD();
THREAD_MUST_BE_RUNNING(th);
contval = TypedData_Make_Struct(klass, rb_context_t, &cont_data_type, cont);
cont->self = contval;
cont_init(cont, th);
return cont;
}
#if 0
void
show_vm_stack(const rb_execution_context_t *ec)
{
VALUE *p = ec->vm_stack;
while (p < ec->cfp->sp) {
fprintf(stderr, "%3d ", (int)(p - ec->vm_stack));
rb_obj_info_dump(*p);
p++;
}
}
void
show_vm_pcs(const rb_control_frame_t *cfp,
const rb_control_frame_t *end_of_cfp)
{
int i=0;
while (cfp != end_of_cfp) {
int pc = 0;
if (cfp->iseq) {
pc = cfp->pc - cfp->iseq->body->iseq_encoded;
}
fprintf(stderr, "%2d pc: %d\n", i++, pc);
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
}
#endif
COMPILER_WARNING_PUSH
#ifdef __clang__
COMPILER_WARNING_IGNORED(-Wduplicate-decl-specifier)
#endif
static VALUE
cont_capture(volatile int *volatile stat)
{
rb_context_t *volatile cont;
rb_thread_t *th = GET_THREAD();
volatile VALUE contval;
const rb_execution_context_t *ec = th->ec;
THREAD_MUST_BE_RUNNING(th);
rb_vm_stack_to_heap(th->ec);
cont = cont_new(rb_cContinuation);
contval = cont->self;
#ifdef CAPTURE_JUST_VALID_VM_STACK
cont->saved_vm_stack.slen = ec->cfp->sp - ec->vm_stack;
cont->saved_vm_stack.clen = ec->vm_stack + ec->vm_stack_size - (VALUE*)ec->cfp;
cont->saved_vm_stack.ptr = ALLOC_N(VALUE, cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
MEMCPY(cont->saved_vm_stack.ptr,
ec->vm_stack,
VALUE, cont->saved_vm_stack.slen);
MEMCPY(cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
(VALUE*)ec->cfp,
VALUE,
cont->saved_vm_stack.clen);
#else
cont->saved_vm_stack.ptr = ALLOC_N(VALUE, ec->vm_stack_size);
MEMCPY(cont->saved_vm_stack.ptr, ec->vm_stack, VALUE, ec->vm_stack_size);
#endif
// At this point, `cfp` is valid but `vm_stack` should be cleared:
rb_ec_set_vm_stack(&cont->saved_ec, NULL, 0);
VM_ASSERT(cont->saved_ec.cfp != NULL);
cont_save_machine_stack(th, cont);
/* backup ensure_list to array for search in another context */
{
rb_ensure_list_t *p;
int size = 0;
rb_ensure_entry_t *entry;
for (p=th->ec->ensure_list; p; p=p->next)
size++;
entry = cont->ensure_array = ALLOC_N(rb_ensure_entry_t,size+1);
for (p=th->ec->ensure_list; p; p=p->next) {
if (!p->entry.marker)
p->entry.marker = rb_ary_tmp_new(0); /* dummy object */
*entry++ = p->entry;
}
entry->marker = 0;
}
if (ruby_setjmp(cont->jmpbuf)) {
VALUE value;
VAR_INITIALIZED(cont);
value = cont->value;
if (cont->argc == -1) rb_exc_raise(value);
cont->value = Qnil;
*stat = 1;
return value;
}
else {
*stat = 0;
return contval;
}
}
COMPILER_WARNING_POP
static inline void
fiber_restore_thread(rb_thread_t *th, rb_fiber_t *fiber)
{
ec_switch(th, fiber);
VM_ASSERT(th->ec->fiber_ptr == fiber);
}
static inline void
cont_restore_thread(rb_context_t *cont)
{
rb_thread_t *th = GET_THREAD();
/* restore thread context */
if (cont->type == CONTINUATION_CONTEXT) {
/* continuation */
rb_execution_context_t *sec = &cont->saved_ec;
rb_fiber_t *fiber = NULL;
if (sec->fiber_ptr != NULL) {
fiber = sec->fiber_ptr;
}
else if (th->root_fiber) {
fiber = th->root_fiber;
}
if (fiber && th->ec != &fiber->cont.saved_ec) {
ec_switch(th, fiber);
}
if (th->ec->trace_arg != sec->trace_arg) {
rb_raise(rb_eRuntimeError, "can't call across trace_func");
}
/* copy vm stack */
#ifdef CAPTURE_JUST_VALID_VM_STACK
MEMCPY(th->ec->vm_stack,
cont->saved_vm_stack.ptr,
VALUE, cont->saved_vm_stack.slen);
MEMCPY(th->ec->vm_stack + th->ec->vm_stack_size - cont->saved_vm_stack.clen,
cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
VALUE, cont->saved_vm_stack.clen);
#else
MEMCPY(th->ec->vm_stack, cont->saved_vm_stack.ptr, VALUE, sec->vm_stack_size);
#endif
/* other members of ec */
th->ec->cfp = sec->cfp;
th->ec->raised_flag = sec->raised_flag;
th->ec->tag = sec->tag;
th->ec->protect_tag = sec->protect_tag;
th->ec->root_lep = sec->root_lep;
th->ec->root_svar = sec->root_svar;
th->ec->ensure_list = sec->ensure_list;
th->ec->errinfo = sec->errinfo;
VM_ASSERT(th->ec->vm_stack != NULL);
}
else {
/* fiber */
fiber_restore_thread(th, (rb_fiber_t*)cont);
}
}
NOINLINE(static void fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber));
static void
fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber)
{
rb_thread_t *th = GET_THREAD();
/* save old_fiber's machine stack - to ensure efficient garbage collection */
if (!FIBER_TERMINATED_P(old_fiber)) {
STACK_GROW_DIR_DETECTION;
SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
if (STACK_DIR_UPPER(0, 1)) {
old_fiber->cont.machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
old_fiber->cont.machine.stack = th->ec->machine.stack_end;
}
else {
old_fiber->cont.machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
old_fiber->cont.machine.stack = th->ec->machine.stack_start;
}
}
/* exchange machine_stack_start between old_fiber and new_fiber */
old_fiber->cont.saved_ec.machine.stack_start = th->ec->machine.stack_start;
/* old_fiber->machine.stack_end should be NULL */
old_fiber->cont.saved_ec.machine.stack_end = NULL;
/* restore thread context */
fiber_restore_thread(th, new_fiber);
// if (DEBUG) fprintf(stderr, "fiber_setcontext: %p[%p] -> %p[%p]\n", old_fiber, old_fiber->stack.base, new_fiber, new_fiber->stack.base);
/* swap machine context */
coroutine_transfer(&old_fiber->context, &new_fiber->context);
// It's possible to get here, and new_fiber is already freed.
// if (DEBUG) fprintf(stderr, "fiber_setcontext: %p[%p] <- %p[%p]\n", old_fiber, old_fiber->stack.base, new_fiber, new_fiber->stack.base);
}
NOINLINE(NORETURN(static void cont_restore_1(rb_context_t *)));
static void
cont_restore_1(rb_context_t *cont)
{
cont_restore_thread(cont);
/* restore machine stack */
#ifdef _M_AMD64
{
/* workaround for x64 SEH */
jmp_buf buf;
setjmp(buf);
((_JUMP_BUFFER*)(&cont->jmpbuf))->Frame =
((_JUMP_BUFFER*)(&buf))->Frame;
}
#endif
if (cont->machine.stack_src) {
FLUSH_REGISTER_WINDOWS;
MEMCPY(cont->machine.stack_src, cont->machine.stack,
VALUE, cont->machine.stack_size);
}
ruby_longjmp(cont->jmpbuf, 1);
}
NORETURN(NOINLINE(static void cont_restore_0(rb_context_t *, VALUE *)));
static void
cont_restore_0(rb_context_t *cont, VALUE *addr_in_prev_frame)
{
if (cont->machine.stack_src) {
#ifdef HAVE_ALLOCA
#define STACK_PAD_SIZE 1
#else
#define STACK_PAD_SIZE 1024
#endif
VALUE space[STACK_PAD_SIZE];
#if !STACK_GROW_DIRECTION
if (addr_in_prev_frame > &space[0]) {
/* Stack grows downward */
#endif
#if STACK_GROW_DIRECTION <= 0
volatile VALUE *const end = cont->machine.stack_src;
if (&space[0] > end) {
# ifdef HAVE_ALLOCA
volatile VALUE *sp = ALLOCA_N(VALUE, &space[0] - end);
space[0] = *sp;
# else
cont_restore_0(cont, &space[0]);
# endif
}
#endif
#if !STACK_GROW_DIRECTION
}
else {
/* Stack grows upward */
#endif
#if STACK_GROW_DIRECTION >= 0
volatile VALUE *const end = cont->machine.stack_src + cont->machine.stack_size;
if (&space[STACK_PAD_SIZE] < end) {
# ifdef HAVE_ALLOCA
volatile VALUE *sp = ALLOCA_N(VALUE, end - &space[STACK_PAD_SIZE]);
space[0] = *sp;
# else
cont_restore_0(cont, &space[STACK_PAD_SIZE-1]);
# endif
}
#endif
#if !STACK_GROW_DIRECTION
}
#endif
}
cont_restore_1(cont);
}
/*
* Document-class: Continuation
*
* Continuation objects are generated by Kernel#callcc,
* after having +require+d <i>continuation</i>. They hold
* a return address and execution context, allowing a nonlocal return
* to the end of the #callcc block from anywhere within a
* program. Continuations are somewhat analogous to a structured
* version of C's <code>setjmp/longjmp</code> (although they contain
* more state, so you might consider them closer to threads).
*
* For instance:
*
* require "continuation"
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
* callcc{|cc| $cc = cc}
* puts(message = arr.shift)
* $cc.call unless message =~ /Max/
*
* <em>produces:</em>
*
* Freddie
* Herbie
* Ron
* Max
*
* Also you can call callcc in other methods:
*
* require "continuation"
*
* def g
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
* cc = callcc { |cc| cc }
* puts arr.shift
* return cc, arr.size
* end
*
* def f
* c, size = g
* c.call(c) if size > 1
* end
*
* f
*
* This (somewhat contrived) example allows the inner loop to abandon
* processing early:
*
* require "continuation"
* callcc {|cont|
* for i in 0..4
* print "#{i}: "
* for j in i*5...(i+1)*5
* cont.call() if j == 17
* printf "%3d", j
* end
* end
* }
* puts
*
* <em>produces:</em>
*
* 0: 0 1 2 3 4
* 1: 5 6 7 8 9
* 2: 10 11 12 13 14
* 3: 15 16
*/
/*
* call-seq:
* callcc {|cont| block } -> obj
*
* Generates a Continuation object, which it passes to
* the associated block. You need to <code>require
* 'continuation'</code> before using this method. Performing a
* <em>cont</em><code>.call</code> will cause the #callcc
* to return (as will falling through the end of the block). The
* value returned by the #callcc is the value of the
* block, or the value passed to <em>cont</em><code>.call</code>. See
* class Continuation for more details. Also see
* Kernel#throw for an alternative mechanism for
* unwinding a call stack.
*/
static VALUE
rb_callcc(VALUE self)
{
volatile int called;
volatile VALUE val = cont_capture(&called);
if (called) {
return val;
}
else {
return rb_yield(val);
}
}
static VALUE
make_passing_arg(int argc, const VALUE *argv)
{
switch (argc) {
case -1:
return argv[0];
case 0:
return Qnil;
case 1:
return argv[0];
default:
return rb_ary_new4(argc, argv);
}
}
/* CAUTION!! : Currently, error in rollback_func is not supported */
/* same as rb_protect if set rollback_func to NULL */
void
ruby_register_rollback_func_for_ensure(VALUE (*ensure_func)(ANYARGS), VALUE (*rollback_func)(ANYARGS))
{
st_table **table_p = &GET_VM()->ensure_rollback_table;
if (UNLIKELY(*table_p == NULL)) {
*table_p = st_init_numtable();
}
st_insert(*table_p, (st_data_t)ensure_func, (st_data_t)rollback_func);
}
static inline VALUE
lookup_rollback_func(VALUE (*ensure_func)(ANYARGS))
{
st_table *table = GET_VM()->ensure_rollback_table;
st_data_t val;
if (table && st_lookup(table, (st_data_t)ensure_func, &val))
return (VALUE) val;
return Qundef;
}
static inline void
rollback_ensure_stack(VALUE self,rb_ensure_list_t *current,rb_ensure_entry_t *target)
{
rb_ensure_list_t *p;
rb_ensure_entry_t *entry;
size_t i, j;
size_t cur_size;
size_t target_size;
size_t base_point;
VALUE (*func)(ANYARGS);
cur_size = 0;
for (p=current; p; p=p->next)
cur_size++;
target_size = 0;
for (entry=target; entry->marker; entry++)
target_size++;
/* search common stack point */
p = current;
base_point = cur_size;
while (base_point) {
if (target_size >= base_point &&
p->entry.marker == target[target_size - base_point].marker)
break;
base_point --;
p = p->next;
}
/* rollback function check */
for (i=0; i < target_size - base_point; i++) {
if (!lookup_rollback_func(target[i].e_proc)) {
rb_raise(rb_eRuntimeError, "continuation called from out of critical rb_ensure scope");
}
}
/* pop ensure stack */
while (cur_size > base_point) {
/* escape from ensure block */
(*current->entry.e_proc)(current->entry.data2);
current = current->next;
cur_size--;
}
/* push ensure stack */
for (j = 0; j < i; j++) {
func = (VALUE (*)(ANYARGS)) lookup_rollback_func(target[i - j - 1].e_proc);
if ((VALUE)func != Qundef) {
(*func)(target[i - j - 1].data2);
}
}
}
/*
* call-seq:
* cont.call(args, ...)
* cont[args, ...]
*
* Invokes the continuation. The program continues from the end of
* the #callcc block. If no arguments are given, the original #callcc
* returns +nil+. If one argument is given, #callcc returns
* it. Otherwise, an array containing <i>args</i> is returned.
*
* callcc {|cont| cont.call } #=> nil
* callcc {|cont| cont.call 1 } #=> 1
* callcc {|cont| cont.call 1, 2, 3 } #=> [1, 2, 3]
*/
static VALUE
rb_cont_call(int argc, VALUE *argv, VALUE contval)
{
rb_context_t *cont = cont_ptr(contval);
rb_thread_t *th = GET_THREAD();
if (cont_thread_value(cont) != th->self) {
rb_raise(rb_eRuntimeError, "continuation called across threads");
}
if (cont->saved_ec.protect_tag != th->ec->protect_tag) {
rb_raise(rb_eRuntimeError, "continuation called across stack rewinding barrier");
}
if (cont->saved_ec.fiber_ptr) {
if (th->ec->fiber_ptr != cont->saved_ec.fiber_ptr) {
rb_raise(rb_eRuntimeError, "continuation called across fiber");
}
}
rollback_ensure_stack(contval, th->ec->ensure_list, cont->ensure_array);
cont->argc = argc;
cont->value = make_passing_arg(argc, argv);
cont_restore_0(cont, &contval);
return Qnil; /* unreachable */
}
/*********/
/* fiber */
/*********/
/*
* Document-class: Fiber
*
* Fibers are primitives for implementing light weight cooperative
* concurrency in Ruby. Basically they are a means of creating code blocks
* that can be paused and resumed, much like threads. The main difference
* is that they are never preempted and that the scheduling must be done by
* the programmer and not the VM.
*
* As opposed to other stackless light weight concurrency models, each fiber
* comes with a stack. This enables the fiber to be paused from deeply
* nested function calls within the fiber block. See the ruby(1)
* manpage to configure the size of the fiber stack(s).
*
* When a fiber is created it will not run automatically. Rather it must
* be explicitly asked to run using the Fiber#resume method.
* The code running inside the fiber can give up control by calling
* Fiber.yield in which case it yields control back to caller (the
* caller of the Fiber#resume).
*
* Upon yielding or termination the Fiber returns the value of the last
* executed expression
*
* For instance:
*
* fiber = Fiber.new do
* Fiber.yield 1
* 2
* end
*
* puts fiber.resume
* puts fiber.resume
* puts fiber.resume
*
* <em>produces</em>
*
* 1
* 2
* FiberError: dead fiber called
*
* The Fiber#resume method accepts an arbitrary number of parameters,
* if it is the first call to #resume then they will be passed as
* block arguments. Otherwise they will be the return value of the
* call to Fiber.yield
*
* Example:
*
* fiber = Fiber.new do |first|
* second = Fiber.yield first + 2
* end
*
* puts fiber.resume 10
* puts fiber.resume 1_000_000
* puts fiber.resume "The fiber will be dead before I can cause trouble"
*
* <em>produces</em>
*
* 12
* 1000000
* FiberError: dead fiber called
*
*/
static const rb_data_type_t fiber_data_type = {
"fiber",
{fiber_mark, fiber_free, fiber_memsize, fiber_compact,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
fiber_alloc(VALUE klass)
{
return TypedData_Wrap_Struct(klass, &fiber_data_type, 0);
}
static rb_fiber_t*
fiber_t_alloc(VALUE fiber_value)
{
rb_fiber_t *fiber;
rb_thread_t *th = GET_THREAD();
if (DATA_PTR(fiber_value) != 0) {
rb_raise(rb_eRuntimeError, "cannot initialize twice");
}
THREAD_MUST_BE_RUNNING(th);
fiber = ZALLOC(rb_fiber_t);
fiber->cont.self = fiber_value;
fiber->cont.type = FIBER_CONTEXT;
cont_init(&fiber->cont, th);
fiber->cont.saved_ec.fiber_ptr = fiber;
rb_ec_clear_vm_stack(&fiber->cont.saved_ec);
fiber->prev = NULL;
/* fiber->status == 0 == CREATED
* So that we don't need to set status: fiber_status_set(fiber, FIBER_CREATED); */
VM_ASSERT(FIBER_CREATED_P(fiber));
DATA_PTR(fiber_value) = fiber;
return fiber;
}
static VALUE
fiber_initialize(VALUE self, VALUE proc, struct fiber_pool * fiber_pool)
{
rb_fiber_t *fiber = fiber_t_alloc(self);
fiber->first_proc = proc;
fiber->stack.base = NULL;
fiber->stack.pool = fiber_pool;
return self;
}
static void
fiber_prepare_stack(rb_fiber_t *fiber)
{
rb_context_t *cont = &fiber->cont;
rb_execution_context_t *sec = &cont->saved_ec;
size_t vm_stack_size = 0;
VALUE *vm_stack = fiber_initialize_coroutine(fiber, &vm_stack_size);
/* initialize cont */
cont->saved_vm_stack.ptr = NULL;
rb_ec_initialize_vm_stack(sec, vm_stack, vm_stack_size / sizeof(VALUE));
sec->tag = NULL;
sec->local_storage = NULL;
sec->local_storage_recursive_hash = Qnil;
sec->local_storage_recursive_hash_for_trace = Qnil;
}
/* :nodoc: */
static VALUE
rb_fiber_initialize(int argc, VALUE* argv, VALUE self)
{
return fiber_initialize(self, rb_block_proc(), &shared_fiber_pool);
}
VALUE
rb_fiber_new(VALUE (*func)(ANYARGS), VALUE obj)
{
return fiber_initialize(fiber_alloc(rb_cFiber), rb_proc_new(func, obj), &shared_fiber_pool);
}
static void rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt);
void
rb_fiber_start(void)
{
rb_thread_t * volatile th = GET_THREAD();
rb_fiber_t *fiber = th->ec->fiber_ptr;
rb_proc_t *proc;
enum ruby_tag_type state;
int need_interrupt = TRUE;
VM_ASSERT(th->ec == ruby_current_execution_context_ptr);
VM_ASSERT(FIBER_RESUMED_P(fiber));
EC_PUSH_TAG(th->ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
rb_context_t *cont = &VAR_FROM_MEMORY(fiber)->cont;
int argc;
const VALUE *argv, args = cont->value;
GetProcPtr(fiber->first_proc, proc);
argv = (argc = cont->argc) > 1 ? RARRAY_CONST_PTR(args) : &args;
cont->value = Qnil;
th->ec->errinfo = Qnil;
th->ec->root_lep = rb_vm_proc_local_ep(fiber->first_proc);
th->ec->root_svar = Qfalse;
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
cont->value = rb_vm_invoke_proc(th->ec, proc, argc, argv, VM_BLOCK_HANDLER_NONE);
}
EC_POP_TAG();
if (state) {
VALUE err = th->ec->errinfo;
VM_ASSERT(FIBER_RESUMED_P(fiber));
if (state == TAG_RAISE || state == TAG_FATAL) {
rb_threadptr_pending_interrupt_enque(th, err);
}
else {
err = rb_vm_make_jump_tag_but_local_jump(state, err);
if (!NIL_P(err)) {
rb_threadptr_pending_interrupt_enque(th, err);
}
}
need_interrupt = TRUE;
}
rb_fiber_terminate(fiber, need_interrupt);
VM_UNREACHABLE(rb_fiber_start);
}
static rb_fiber_t *
root_fiber_alloc(rb_thread_t *th)
{
VALUE fiber_value = fiber_alloc(rb_cFiber);
rb_fiber_t *fiber = th->ec->fiber_ptr;
VM_ASSERT(DATA_PTR(fiber_value) == NULL);
VM_ASSERT(fiber->cont.type == FIBER_CONTEXT);
VM_ASSERT(fiber->status == FIBER_RESUMED);
th->root_fiber = fiber;
DATA_PTR(fiber_value) = fiber;
fiber->cont.self = fiber_value;
#ifdef COROUTINE_PRIVATE_STACK
fiber->stack = fiber_pool_stack_acquire(&shared_fiber_pool);
coroutine_initialize_main(&fiber->context, fiber_pool_stack_base(&fiber->stack), fiber->stack.available, th->ec->machine.stack_start);
#else
coroutine_initialize_main(&fiber->context);
#endif
return fiber;
}
void
rb_threadptr_root_fiber_setup(rb_thread_t *th)
{
rb_fiber_t *fiber = ruby_mimmalloc(sizeof(rb_fiber_t));
MEMZERO(fiber, rb_fiber_t, 1);
fiber->cont.type = FIBER_CONTEXT;
fiber->cont.saved_ec.fiber_ptr = fiber;
fiber->cont.saved_ec.thread_ptr = th;
fiber_status_set(fiber, FIBER_RESUMED); /* skip CREATED */
th->ec = &fiber->cont.saved_ec;
}
void
rb_threadptr_root_fiber_release(rb_thread_t *th)
{
if (th->root_fiber) {
/* ignore. A root fiber object will free th->ec */
}
else {
VM_ASSERT(th->ec->fiber_ptr->cont.type == FIBER_CONTEXT);
VM_ASSERT(th->ec->fiber_ptr->cont.self == 0);
fiber_free(th->ec->fiber_ptr);
if (th->ec == ruby_current_execution_context_ptr) {
ruby_current_execution_context_ptr = NULL;
}
th->ec = NULL;
}
}
void
rb_threadptr_root_fiber_terminate(rb_thread_t *th)
{
rb_fiber_t *fiber = th->ec->fiber_ptr;
fiber->status = FIBER_TERMINATED;
// The vm_stack is `alloca`ed on the thread stack, so it's gone too:
rb_ec_clear_vm_stack(th->ec);
}
static inline rb_fiber_t*
fiber_current(void)
{
rb_execution_context_t *ec = GET_EC();
if (ec->fiber_ptr->cont.self == 0) {
root_fiber_alloc(rb_ec_thread_ptr(ec));
}
return ec->fiber_ptr;
}
static inline rb_fiber_t*
return_fiber(void)
{
rb_fiber_t *fiber = fiber_current();
rb_fiber_t *prev = fiber->prev;
if (!prev) {
rb_thread_t *th = GET_THREAD();
rb_fiber_t *root_fiber = th->root_fiber;
VM_ASSERT(root_fiber != NULL);
if (root_fiber == fiber) {
rb_raise(rb_eFiberError, "can't yield from root fiber");
}
return root_fiber;
}
else {
fiber->prev = NULL;
return prev;
}
}
VALUE
rb_fiber_current(void)
{
return fiber_current()->cont.self;
}
// Prepare to execute next_fiber on the given thread.
static inline VALUE
fiber_store(rb_fiber_t *next_fiber, rb_thread_t *th)
{
rb_fiber_t *fiber;
if (th->ec->fiber_ptr != NULL) {
fiber = th->ec->fiber_ptr;
}
else {
/* create root fiber */
fiber = root_fiber_alloc(th);
}
if (FIBER_CREATED_P(next_fiber)) {
fiber_prepare_stack(next_fiber);
}
VM_ASSERT(FIBER_RESUMED_P(fiber) || FIBER_TERMINATED_P(fiber));
VM_ASSERT(FIBER_RUNNABLE_P(next_fiber));
if (FIBER_RESUMED_P(fiber)) fiber_status_set(fiber, FIBER_SUSPENDED);
fiber_status_set(next_fiber, FIBER_RESUMED);
fiber_setcontext(next_fiber, fiber);
fiber = th->ec->fiber_ptr;
/* Raise an exception if that was the result of executing the fiber */
if (fiber->cont.argc == -1) rb_exc_raise(fiber->cont.value);
return fiber->cont.value;
}
static inline VALUE
fiber_switch(rb_fiber_t *fiber, int argc, const VALUE *argv, int is_resume)
{
VALUE value;
rb_context_t *cont = &fiber->cont;
rb_thread_t *th = GET_THREAD();
/* make sure the root_fiber object is available */
if (th->root_fiber == NULL) root_fiber_alloc(th);
if (th->ec->fiber_ptr == fiber) {
/* ignore fiber context switch
* because destination fiber is same as current fiber
*/
return make_passing_arg(argc, argv);
}
if (cont_thread_value(cont) != th->self) {
rb_raise(rb_eFiberError, "fiber called across threads");
}
else if (cont->saved_ec.protect_tag != th->ec->protect_tag) {
rb_raise(rb_eFiberError, "fiber called across stack rewinding barrier");
}
else if (FIBER_TERMINATED_P(fiber)) {
value = rb_exc_new2(rb_eFiberError, "dead fiber called");
if (!FIBER_TERMINATED_P(th->ec->fiber_ptr)) {
rb_exc_raise(value);
VM_UNREACHABLE(fiber_switch);
}
else {
/* th->ec->fiber_ptr is also dead => switch to root fiber */
/* (this means we're being called from rb_fiber_terminate, */
/* and the terminated fiber's return_fiber() is already dead) */
VM_ASSERT(FIBER_SUSPENDED_P(th->root_fiber));
cont = &th->root_fiber->cont;
cont->argc = -1;
cont->value = value;
fiber_setcontext(th->root_fiber, th->ec->fiber_ptr);
VM_UNREACHABLE(fiber_switch);
}
}
if (is_resume) {
fiber->prev = fiber_current();
}
VM_ASSERT(FIBER_RUNNABLE_P(fiber));
cont->argc = argc;
cont->value = make_passing_arg(argc, argv);
value = fiber_store(fiber, th);
if (is_resume && FIBER_TERMINATED_P(fiber)) {
fiber_stack_release(fiber);
}
RUBY_VM_CHECK_INTS(th->ec);
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
return value;
}
VALUE
rb_fiber_transfer(VALUE fiber_value, int argc, const VALUE *argv)
{
return fiber_switch(fiber_ptr(fiber_value), argc, argv, 0);
}
void
rb_fiber_close(rb_fiber_t *fiber)
{
fiber_status_set(fiber, FIBER_TERMINATED);
}
static void
rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt)
{
VALUE value = fiber->cont.value;
rb_fiber_t *next_fiber;
VM_ASSERT(FIBER_RESUMED_P(fiber));
rb_fiber_close(fiber);
coroutine_destroy(&fiber->context);
fiber->cont.machine.stack = NULL;
fiber->cont.machine.stack_size = 0;
next_fiber = return_fiber();
if (need_interrupt) RUBY_VM_SET_INTERRUPT(&next_fiber->cont.saved_ec);
fiber_switch(next_fiber, 1, &value, 0);
}
VALUE
rb_fiber_resume(VALUE fiber_value, int argc, const VALUE *argv)
{
rb_fiber_t *fiber = fiber_ptr(fiber_value);
if (argc == -1 && FIBER_CREATED_P(fiber)) {
rb_raise(rb_eFiberError, "cannot raise exception on unborn fiber");
}
if (fiber->prev != 0 || fiber_is_root_p(fiber)) {
rb_raise(rb_eFiberError, "double resume");
}
if (fiber->transferred != 0) {
rb_raise(rb_eFiberError, "cannot resume transferred Fiber");
}
return fiber_switch(fiber, argc, argv, 1);
}
VALUE
rb_fiber_yield(int argc, const VALUE *argv)
{
return fiber_switch(return_fiber(), argc, argv, 0);
}
void
rb_fiber_reset_root_local_storage(rb_thread_t *th)
{
if (th->root_fiber && th->root_fiber != th->ec->fiber_ptr) {
th->ec->local_storage = th->root_fiber->cont.saved_ec.local_storage;
}
}
/*
* call-seq:
* fiber.alive? -> true or false
*
* Returns true if the fiber can still be resumed (or transferred
* to). After finishing execution of the fiber block this method will
* always return false. You need to <code>require 'fiber'</code>
* before using this method.
*/
VALUE
rb_fiber_alive_p(VALUE fiber_value)
{
return FIBER_TERMINATED_P(fiber_ptr(fiber_value)) ? Qfalse : Qtrue;
}
/*
* call-seq:
* fiber.resume(args, ...) -> obj
*
* Resumes the fiber from the point at which the last Fiber.yield was
* called, or starts running it if it is the first call to
* #resume. Arguments passed to resume will be the value of the
* Fiber.yield expression or will be passed as block parameters to
* the fiber's block if this is the first #resume.
*
* Alternatively, when resume is called it evaluates to the arguments passed
* to the next Fiber.yield statement inside the fiber's block
* or to the block value if it runs to completion without any
* Fiber.yield
*/
static VALUE
rb_fiber_m_resume(int argc, VALUE *argv, VALUE fiber)
{
return rb_fiber_resume(fiber, argc, argv);
}
/*
* call-seq:
* fiber.raise -> obj
* fiber.raise(string) -> obj
* fiber.raise(exception [, string [, array]]) -> obj
*
* Raises an exception in the fiber at the point at which the last
* Fiber.yield was called, or at the start if neither +resume+
* nor +raise+ were called before.
*
* With no arguments, raises a +RuntimeError+. With a single +String+
* argument, raises a +RuntimeError+ with the string as a message. Otherwise,
* the first parameter should be the name of an +Exception+ class (or an
* object that returns an +Exception+ object when sent an +exception+
* message). The optional second parameter sets the message associated with
* the exception, and the third parameter is an array of callback information.
* Exceptions are caught by the +rescue+ clause of <code>begin...end</code>
* blocks.
*/
static VALUE
rb_fiber_raise(int argc, VALUE *argv, VALUE fiber)
{
VALUE exc = rb_make_exception(argc, argv);
return rb_fiber_resume(fiber, -1, &exc);
}
/*
* call-seq:
* fiber.transfer(args, ...) -> obj
*
* Transfer control to another fiber, resuming it from where it last
* stopped or starting it if it was not resumed before. The calling
* fiber will be suspended much like in a call to
* Fiber.yield. You need to <code>require 'fiber'</code>
* before using this method.
*
* The fiber which receives the transfer call is treats it much like
* a resume call. Arguments passed to transfer are treated like those
* passed to resume.
*
* You cannot resume a fiber that transferred control to another one.
* This will cause a double resume error. You need to transfer control
* back to this fiber before it can yield and resume.
*
* Example:
*
* fiber1 = Fiber.new do
* puts "In Fiber 1"
* Fiber.yield
* end
*
* fiber2 = Fiber.new do
* puts "In Fiber 2"
* fiber1.transfer
* puts "Never see this message"
* end
*
* fiber3 = Fiber.new do
* puts "In Fiber 3"
* end
*
* fiber2.resume
* fiber3.resume
*
* <em>produces</em>
*
* In fiber 2
* In fiber 1
* In fiber 3
*
*/
static VALUE
rb_fiber_m_transfer(int argc, VALUE *argv, VALUE fiber_value)
{
rb_fiber_t *fiber = fiber_ptr(fiber_value);
fiber->transferred = 1;
return fiber_switch(fiber, argc, argv, 0);
}
/*
* call-seq:
* Fiber.yield(args, ...) -> obj
*
* Yields control back to the context that resumed the fiber, passing
* along any arguments that were passed to it. The fiber will resume
* processing at this point when #resume is called next.
* Any arguments passed to the next #resume will be the value that
* this Fiber.yield expression evaluates to.
*/
static VALUE
rb_fiber_s_yield(int argc, VALUE *argv, VALUE klass)
{
return rb_fiber_yield(argc, argv);
}
/*
* call-seq:
* Fiber.current() -> fiber
*
* Returns the current fiber. You need to <code>require 'fiber'</code>
* before using this method. If you are not running in the context of
* a fiber this method will return the root fiber.
*/
static VALUE
rb_fiber_s_current(VALUE klass)
{
return rb_fiber_current();
}
/*
* call-seq:
* fiber.to_s -> string
*
* Returns fiber information string.
*
*/
static VALUE
fiber_to_s(VALUE fiber_value)
{
const rb_fiber_t *fiber = fiber_ptr(fiber_value);
const rb_proc_t *proc;
char status_info[0x10];
snprintf(status_info, 0x10, " (%s)", fiber_status_name(fiber->status));
if (!rb_obj_is_proc(fiber->first_proc)) {
VALUE str = rb_any_to_s(fiber_value);
strlcat(status_info, ">", sizeof(status_info));
rb_str_set_len(str, RSTRING_LEN(str)-1);
rb_str_cat_cstr(str, status_info);
return str;
}
GetProcPtr(fiber->first_proc, proc);
return rb_block_to_s(fiber_value, &proc->block, status_info);
}
#ifdef HAVE_WORKING_FORK
void
rb_fiber_atfork(rb_thread_t *th)
{
if (th->root_fiber) {
if (&th->root_fiber->cont.saved_ec != th->ec) {
th->root_fiber = th->ec->fiber_ptr;
}
th->root_fiber->prev = 0;
}
}
#endif
#ifdef RB_EXPERIMENTAL_FIBER_POOL
static void
fiber_pool_free(void *ptr)
{
struct fiber_pool * fiber_pool = ptr;
RUBY_FREE_ENTER("fiber_pool");
fiber_pool_free_allocations(fiber_pool->allocations);
ruby_xfree(fiber_pool);
RUBY_FREE_LEAVE("fiber_pool");
}
static size_t
fiber_pool_memsize(const void *ptr)
{
const struct fiber_pool * fiber_pool = ptr;
size_t size = sizeof(*fiber_pool);
size += fiber_pool->count * fiber_pool->size;
return size;
}
static const rb_data_type_t FiberPoolDataType = {
"fiber_pool",
{NULL, fiber_pool_free, fiber_pool_memsize,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
fiber_pool_alloc(VALUE klass)
{
struct fiber_pool * fiber_pool = RB_ALLOC(struct fiber_pool);
return TypedData_Wrap_Struct(klass, &FiberPoolDataType, fiber_pool);
}
static VALUE
rb_fiber_pool_initialize(int argc, VALUE* argv, VALUE self)
{
rb_thread_t *th = GET_THREAD();
VALUE size = Qnil, count = Qnil, vm_stack_size = Qnil;
struct fiber_pool * fiber_pool = NULL;
// Maybe these should be keyworkd arguments.
rb_scan_args(argc, argv, "03", &size, &count, &vm_stack_size);
if (NIL_P(size)) {
size = INT2NUM(th->vm->default_params.fiber_machine_stack_size);
}
if (NIL_P(count)) {
count = INT2NUM(128);
}
if (NIL_P(vm_stack_size)) {
vm_stack_size = INT2NUM(th->vm->default_params.fiber_vm_stack_size);
}
TypedData_Get_Struct(self, struct fiber_pool, &FiberPoolDataType, fiber_pool);
fiber_pool_initialize(fiber_pool, NUM2SIZET(size), NUM2SIZET(count), NUM2SIZET(vm_stack_size));
return self;
}
#endif
/*
* Document-class: FiberError
*
* Raised when an invalid operation is attempted on a Fiber, in
* particular when attempting to call/resume a dead fiber,
* attempting to yield from the root fiber, or calling a fiber across
* threads.
*
* fiber = Fiber.new{}
* fiber.resume #=> nil
* fiber.resume #=> FiberError: dead fiber called
*/
void
Init_Cont(void)
{
rb_thread_t *th = GET_THREAD();
size_t vm_stack_size = th->vm->default_params.fiber_vm_stack_size;
size_t machine_stack_size = th->vm->default_params.fiber_machine_stack_size;
size_t stack_size = machine_stack_size + vm_stack_size;
#ifdef _WIN32
SYSTEM_INFO info;
GetSystemInfo(&info);
pagesize = info.dwPageSize;
#else /* not WIN32 */
pagesize = sysconf(_SC_PAGESIZE);
#endif
SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
fiber_pool_initialize(&shared_fiber_pool, stack_size, FIBER_POOL_INITIAL_SIZE, vm_stack_size);
char * fiber_shared_fiber_pool_free_stacks = getenv("RUBY_SHARED_FIBER_POOL_FREE_STACKS");
if (fiber_shared_fiber_pool_free_stacks) {
shared_fiber_pool.free_stacks = atoi(fiber_shared_fiber_pool_free_stacks);
}
rb_cFiber = rb_define_class("Fiber", rb_cObject);
rb_define_alloc_func(rb_cFiber, fiber_alloc);
rb_eFiberError = rb_define_class("FiberError", rb_eStandardError);
rb_define_singleton_method(rb_cFiber, "yield", rb_fiber_s_yield, -1);
rb_define_method(rb_cFiber, "initialize", rb_fiber_initialize, -1);
rb_define_method(rb_cFiber, "resume", rb_fiber_m_resume, -1);
rb_define_method(rb_cFiber, "raise", rb_fiber_raise, -1);
rb_define_method(rb_cFiber, "to_s", fiber_to_s, 0);
rb_define_alias(rb_cFiber, "inspect", "to_s");
#ifdef RB_EXPERIMENTAL_FIBER_POOL
rb_cFiberPool = rb_define_class("Pool", rb_cFiber);
rb_define_alloc_func(rb_cFiberPool, fiber_pool_alloc);
rb_define_method(rb_cFiberPool, "initialize", rb_fiber_pool_initialize, -1);
#endif
}
RUBY_SYMBOL_EXPORT_BEGIN
void
ruby_Init_Continuation_body(void)
{
rb_cContinuation = rb_define_class("Continuation", rb_cObject);
rb_undef_alloc_func(rb_cContinuation);
rb_undef_method(CLASS_OF(rb_cContinuation), "new");
rb_define_method(rb_cContinuation, "call", rb_cont_call, -1);
rb_define_method(rb_cContinuation, "[]", rb_cont_call, -1);
rb_define_global_function("callcc", rb_callcc, 0);
}
void
ruby_Init_Fiber_as_Coroutine(void)
{
rb_define_method(rb_cFiber, "transfer", rb_fiber_m_transfer, -1);
rb_define_method(rb_cFiber, "alive?", rb_fiber_alive_p, 0);
rb_define_singleton_method(rb_cFiber, "current", rb_fiber_s_current, 0);
}
RUBY_SYMBOL_EXPORT_END