mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
287a34ae0d
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@22784 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
240 lines
8.1 KiB
Ruby
240 lines
8.1 KiB
Ruby
#
|
|
# This demonstration illustrates how Tcl/Tk can be used to construct
|
|
# simulations of physical systems.
|
|
# (called by 'widget')
|
|
#
|
|
# based on Tcl/Tk8.5a2 widget demos
|
|
|
|
# destroy toplevel widget for this demo script
|
|
if defined?($pendulum_demo) && $pendulum_demo
|
|
$pendulum_demo.destroy
|
|
$pendulum_demo = nil
|
|
end
|
|
|
|
# create toplevel widget
|
|
$pendulum_demo = TkToplevel.new {|w|
|
|
title("Pendulum Animation Demonstration")
|
|
iconname("pendulum")
|
|
positionWindow(w)
|
|
}
|
|
|
|
base_frame = TkFrame.new($pendulum_demo).pack(:fill=>:both, :expand=>true)
|
|
|
|
# create label
|
|
msg = TkLabel.new(base_frame) {
|
|
font $font
|
|
wraplength '4i'
|
|
justify 'left'
|
|
text 'This demonstration shows how Ruby/Tk can be used to carry out animations that are linked to simulations of physical systems. In the left canvas is a graphical representation of the physical system itself, a simple pendulum, and in the right canvas is a graph of the phase space of the system, which is a plot of the angle (relative to the vertical) against the angular velocity. The pendulum bob may be repositioned by clicking and dragging anywhere on the left canvas.'
|
|
}
|
|
msg.pack('side'=>'top')
|
|
|
|
# create frame
|
|
TkFrame.new(base_frame) {|frame|
|
|
TkButton.new(frame) {
|
|
text 'Dismiss'
|
|
command proc{
|
|
tmppath = $pendulum_demo
|
|
$pendulum_demo = nil
|
|
tmppath.destroy
|
|
}
|
|
}.pack('side'=>'left', 'expand'=>'yes')
|
|
|
|
TkButton.new(frame) {
|
|
text 'See Code'
|
|
command proc{showCode 'pendulum'}
|
|
}.pack('side'=>'left', 'expand'=>'yes')
|
|
|
|
}.pack('side'=>'bottom', 'fill'=>'x', 'pady'=>'2m')
|
|
|
|
# animated wave
|
|
class PendulumAnimationDemo
|
|
def initialize(frame)
|
|
# Create some structural widgets
|
|
@pane = TkPanedWindow.new(frame, :orient=>:horizontal).pack(:fill=>:both, :expand=>true)
|
|
# @pane.add(@lf1 = TkLabelFrame.new(@pane, :text=>'Pendulum Simulation'))
|
|
# @pane.add(@lf2 = TkLabelFrame.new(@pane, :text=>'Phase Space'))
|
|
@lf1 = TkLabelFrame.new(@pane, :text=>'Pendulum Simulation')
|
|
@lf2 = TkLabelFrame.new(@pane, :text=>'Phase Space')
|
|
|
|
# Create the canvas containing the graphical representation of the
|
|
# simulated system.
|
|
@c = TkCanvas.new(@lf1, :width=>320, :height=>200, :background=>'white',
|
|
:borderwidth=>2, :relief=>:sunken)
|
|
TkcText.new(@c, 5, 5, :anchor=>:nw,
|
|
:text=>'Click to Adjust Bob Start Position')
|
|
# Coordinates of these items don't matter; they will be set properly below
|
|
@plate = TkcLine.new(@c, 0, 25, 320, 25, :width=>2, :fill=>'grey50')
|
|
@rod = TkcLine.new(@c, 1, 1, 1, 1, :width=>3, :fill=>'black')
|
|
@bob = TkcOval.new(@c, 1, 1, 2, 2,
|
|
:width=>3, :fill=>'yellow', :outline=>'black')
|
|
TkcOval.new(@c, 155, 20, 165, 30, :fill=>'grey50', :outline=>'')
|
|
|
|
# pack
|
|
@c.pack(:fill=>:both, :expand=>true)
|
|
|
|
# Create the canvas containing the phase space graph; this consists of
|
|
# a line that gets gradually paler as it ages, which is an extremely
|
|
# effective visual trick.
|
|
@k = TkCanvas.new(@lf2, :width=>320, :height=>200, :background=>'white',
|
|
:borderwidth=>2, :relief=>:sunken)
|
|
@y_axis = TkcLine.new(@k, 160, 200, 160, 0, :fill=>'grey75', :arrow=>:last)
|
|
@x_axis = TkcLine.new(@k, 0, 100, 320, 100, :fill=>'grey75', :arrow=>:last)
|
|
|
|
@graph = {}
|
|
90.step(0, -10){|i|
|
|
# Coordinates of these items don't matter;
|
|
# they will be set properly below
|
|
@graph[i] = TkcLine.new(@k, 0, 0, 1, 1, :smooth=>true, :fill=>"grey#{i}")
|
|
}
|
|
|
|
# labels
|
|
@label_theta = TkcText.new(@k, 0, 0, :anchor=>:ne,
|
|
:text=>'q', :font=>'Symbol 8')
|
|
@label_dtheta = TkcText.new(@k, 0, 0, :anchor=>:ne,
|
|
:text=>'dq', :font=>'Symbol 8')
|
|
|
|
# pack
|
|
@k.pack(:fill=>:both, :expand=>true)
|
|
|
|
# Initialize some variables
|
|
@points = []
|
|
@theta = 45.0
|
|
@dTheta = 0.0
|
|
@length = 150
|
|
|
|
# animation loop
|
|
@timer = TkTimer.new(15){ repeat }
|
|
|
|
# binding
|
|
@c.bindtags_unshift(btag = TkBindTag.new)
|
|
btag.bind('Destroy'){ @timer.stop }
|
|
btag.bind('1', proc{|x, y| @timer.stop; showPendulum(x.to_i, y.to_i)},
|
|
'%x %y')
|
|
btag.bind('B1-Motion', proc{|x, y| showPendulum(x.to_i, y.to_i)}, '%x %y')
|
|
btag.bind('ButtonRelease-1',
|
|
proc{|x, y| showPendulum(x.to_i, y.to_i); @timer.start },
|
|
'%x %y')
|
|
|
|
btag.bind('Configure', proc{|w| @plate.coords(0, 25, w.to_i, 25)}, '%w')
|
|
|
|
@k.bind('Configure', proc{|h, w|
|
|
h = h.to_i
|
|
w = w.to_i
|
|
@psh = h/2;
|
|
@psw = w/2
|
|
@x_axis.coords(2, @psh, w-2, @psh)
|
|
@y_axis.coords(@psw, h-2, @psw, 2)
|
|
@label_theta.coords(@psw-4, 6)
|
|
@label_dtheta.coords(w-6, @psh+4)
|
|
}, '%h %w')
|
|
|
|
# add
|
|
Tk.update
|
|
@pane.add(@lf1)
|
|
@pane.add(@lf2)
|
|
|
|
# init display
|
|
showPendulum
|
|
|
|
# animation start
|
|
@timer.start(500)
|
|
end
|
|
|
|
# This procedure makes the pendulum appear at the correct place on the
|
|
# canvas. If the additional arguments x, y are passed instead of computing
|
|
# the position of the pendulum from the length of the pendulum rod and its
|
|
# angle, the length and angle are computed in reverse from the given
|
|
# location (which is taken to be the centre of the pendulum bob.)
|
|
def showPendulum(x=nil, y=nil)
|
|
if x && y && (x != 160 || y != 25)
|
|
@dTheta = 0.0
|
|
x2 = x - 160
|
|
y2 = y - 25
|
|
@length = Math.hypot(x2, y2)
|
|
@theta = Math.atan2(x2,y2)*180/Math::PI
|
|
else
|
|
angle = @theta*Math::PI/180
|
|
x = 160 + @length*Math.sin(angle)
|
|
y = 25 + @length*Math.cos(angle)
|
|
end
|
|
|
|
@rod.coords(160, 25, x, y)
|
|
@bob.coords(x-15, y-15, x+15, y+15)
|
|
end
|
|
|
|
# Update the phase-space graph according to the current angle and the
|
|
# rate at which the angle is changing (the first derivative with
|
|
# respect to time.)
|
|
def showPhase
|
|
unless @psw && @psh
|
|
@psw = @k.width/2
|
|
@psh = @k.height/2
|
|
end
|
|
@points << @theta + @psw << -20*@dTheta + @psh
|
|
if @points.length > 100
|
|
@points = @points[-100..-1]
|
|
end
|
|
(0...100).step(10){|i|
|
|
first = - i
|
|
last = 11 - i
|
|
last = -1 if last >= 0
|
|
next if first > last
|
|
lst = @points[first..last]
|
|
@graph[i].coords(lst) if lst && lst.length >= 4
|
|
}
|
|
end
|
|
|
|
# This procedure is the "business" part of the simulation that does
|
|
# simple numerical integration of the formula for a simple rotational
|
|
# pendulum.
|
|
def recomputeAngle
|
|
scaling = 3000.0/@length/@length
|
|
|
|
# To estimate the integration accurately, we really need to
|
|
# compute the end-point of our time-step. But to do *that*, we
|
|
# need to estimate the integration accurately! So we try this
|
|
# technique, which is inaccurate, but better than doing it in a
|
|
# single step. What we really want is bound up in the
|
|
# differential equation:
|
|
# .. - sin theta
|
|
# theta + theta = -----------
|
|
# length
|
|
# But my math skills are not good enough to solve this!
|
|
|
|
# first estimate
|
|
firstDDTheta = -Math.sin(@theta * Math::PI/180) * scaling
|
|
midDTheta = @dTheta + firstDDTheta
|
|
midTheta = @theta + (@dTheta + midDTheta)/2
|
|
# second estimate
|
|
midDDTheta = -Math.sin(midTheta * Math::PI/180) * scaling
|
|
midDTheta = @dTheta + (firstDDTheta + midDDTheta)/2
|
|
midTheta = @theta + (@dTheta + midDTheta)/2
|
|
# Now we do a double-estimate approach for getting the final value
|
|
# first estimate
|
|
midDDTheta = -Math.sin(midTheta * Math::PI/180) * scaling
|
|
lastDTheta = midDTheta + midDDTheta
|
|
lastTheta = midTheta + (midDTheta+ lastDTheta)/2
|
|
# second estimate
|
|
lastDDTheta = -Math.sin(lastTheta * Math::PI/180) * scaling
|
|
lastDTheta = midDTheta + (midDDTheta + lastDDTheta)/2
|
|
lastTheta = midTheta + (midDTheta + lastDTheta)/2
|
|
# Now put the values back in our globals
|
|
@dTheta = lastDTheta
|
|
@theta = lastTheta
|
|
end
|
|
|
|
# This method ties together the simulation engine and the graphical
|
|
# display code that visualizes it.
|
|
def repeat
|
|
# Simulate
|
|
recomputeAngle
|
|
|
|
# Update the display
|
|
showPendulum
|
|
showPhase
|
|
end
|
|
end
|
|
|
|
# Start the animation processing
|
|
PendulumAnimationDemo.new(base_frame)
|