1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/marshal.c
Jeremy Evans 98286e9850 Ensure origins for all included, prepended, and refined modules
This fixes various issues when a module is included in or prepended
to a module or class, and then refined, or refined and then included
or prepended to a module or class.

Implement by renaming ensure_origin to rb_ensure_origin, making it
non-static, and calling it when refining a module.

Fix Module#initialize_copy to handle origins correctly.  Previously,
Module#initialize_copy did not handle origins correctly.  For example,
this code:

```ruby
module B; end
class A
  def b; 2 end
  prepend B
end
a = A.dup.new
class A
  def b; 1 end
end
p a.b
```

Printed 1 instead of 2.  This is because the super chain for
a.singleton_class was:

```
a.singleton_class
A.dup
B(iclass)
B(iclass origin)
A(origin) # not A.dup(origin)
```

The B iclasses would not be modified, so the includer entry would be
still be set to A and not A.dup.

This modifies things so that if the class/module has an origin,
all iclasses between the class/module and the origin are duplicated
and have the correct includer entry set, and the correct origin
is created.

This requires other changes to make sure all tests still pass:

* rb_undef_methods_from doesn't automatically handle classes with
  origins, so pass it the origin for Comparable when undefing
  methods in Complex. This fixed a failure in the Complex tests.

* When adding a method, the method cache was not cleared
  correctly if klass has an origin.  Clear the method cache for
  the klass before switching to the origin of klass.  This fixed
  failures in the autoload tests related to overridding require,
  without breaking the optimization tests.  Also clear the method
  cache for both the module and origin when removing a method.

* Module#include? is fixed to skip origin iclasses.

* Refinements are fixed to use the origin class of the module that
  has an origin.

* RCLASS_REFINED_BY_ANY is removed as it was only used in a single
  place and is no longer needed.

* Marshal#dump is fixed to skip iclass origins.

* rb_method_entry_make is fixed to handled overridden optimized
  methods for modules that have origins.

Fixes [Bug #16852]
2020-06-03 09:50:37 -07:00

2377 lines
56 KiB
C

/**********************************************************************
marshal.c -
$Author$
created at: Thu Apr 27 16:30:01 JST 1995
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/internal/config.h"
#include <math.h>
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#include "encindex.h"
#include "id_table.h"
#include "internal.h"
#include "internal/bignum.h"
#include "internal/class.h"
#include "internal/encoding.h"
#include "internal/error.h"
#include "internal/hash.h"
#include "internal/object.h"
#include "internal/struct.h"
#include "internal/util.h"
#include "internal/vm.h"
#include "ruby/io.h"
#include "ruby/ruby.h"
#include "ruby/st.h"
#include "ruby/util.h"
#define BITSPERSHORT (2*CHAR_BIT)
#define SHORTMASK ((1<<BITSPERSHORT)-1)
#define SHORTDN(x) RSHIFT((x),BITSPERSHORT)
#if SIZEOF_SHORT == SIZEOF_BDIGIT
#define SHORTLEN(x) (x)
#else
static size_t
shortlen(size_t len, BDIGIT *ds)
{
BDIGIT num;
int offset = 0;
num = ds[len-1];
while (num) {
num = SHORTDN(num);
offset++;
}
return (len - 1)*SIZEOF_BDIGIT/2 + offset;
}
#define SHORTLEN(x) shortlen((x),d)
#endif
#define MARSHAL_MAJOR 4
#define MARSHAL_MINOR 8
#define TYPE_NIL '0'
#define TYPE_TRUE 'T'
#define TYPE_FALSE 'F'
#define TYPE_FIXNUM 'i'
#define TYPE_EXTENDED 'e'
#define TYPE_UCLASS 'C'
#define TYPE_OBJECT 'o'
#define TYPE_DATA 'd'
#define TYPE_USERDEF 'u'
#define TYPE_USRMARSHAL 'U'
#define TYPE_FLOAT 'f'
#define TYPE_BIGNUM 'l'
#define TYPE_STRING '"'
#define TYPE_REGEXP '/'
#define TYPE_ARRAY '['
#define TYPE_HASH '{'
#define TYPE_HASH_DEF '}'
#define TYPE_STRUCT 'S'
#define TYPE_MODULE_OLD 'M'
#define TYPE_CLASS 'c'
#define TYPE_MODULE 'm'
#define TYPE_SYMBOL ':'
#define TYPE_SYMLINK ';'
#define TYPE_IVAR 'I'
#define TYPE_LINK '@'
static ID s_dump, s_load, s_mdump, s_mload;
static ID s_dump_data, s_load_data, s_alloc, s_call;
static ID s_getbyte, s_read, s_write, s_binmode;
static ID s_encoding_short, s_ruby2_keywords_flag;
#define name_s_dump "_dump"
#define name_s_load "_load"
#define name_s_mdump "marshal_dump"
#define name_s_mload "marshal_load"
#define name_s_dump_data "_dump_data"
#define name_s_load_data "_load_data"
#define name_s_alloc "_alloc"
#define name_s_call "call"
#define name_s_getbyte "getbyte"
#define name_s_read "read"
#define name_s_write "write"
#define name_s_binmode "binmode"
#define name_s_encoding_short "E"
#define name_s_ruby2_keywords_flag "K"
typedef struct {
VALUE newclass;
VALUE oldclass;
VALUE (*dumper)(VALUE);
VALUE (*loader)(VALUE, VALUE);
} marshal_compat_t;
static st_table *compat_allocator_tbl;
static VALUE compat_allocator_tbl_wrapper;
static VALUE rb_marshal_dump_limited(VALUE obj, VALUE port, int limit);
static VALUE rb_marshal_load_with_proc(VALUE port, VALUE proc);
static int
mark_marshal_compat_i(st_data_t key, st_data_t value, st_data_t _)
{
marshal_compat_t *p = (marshal_compat_t *)value;
rb_gc_mark(p->newclass);
rb_gc_mark(p->oldclass);
return ST_CONTINUE;
}
static void
mark_marshal_compat_t(void *tbl)
{
if (!tbl) return;
st_foreach(tbl, mark_marshal_compat_i, 0);
}
static st_table *compat_allocator_table(void);
void
rb_marshal_define_compat(VALUE newclass, VALUE oldclass, VALUE (*dumper)(VALUE), VALUE (*loader)(VALUE, VALUE))
{
marshal_compat_t *compat;
rb_alloc_func_t allocator = rb_get_alloc_func(newclass);
if (!allocator) {
rb_raise(rb_eTypeError, "no allocator");
}
compat = ALLOC(marshal_compat_t);
compat->newclass = Qnil;
compat->oldclass = Qnil;
compat->newclass = newclass;
compat->oldclass = oldclass;
compat->dumper = dumper;
compat->loader = loader;
st_insert(compat_allocator_table(), (st_data_t)allocator, (st_data_t)compat);
}
struct dump_arg {
VALUE str, dest;
st_table *symbols;
st_table *data;
st_table *compat_tbl;
st_table *encodings;
};
struct dump_call_arg {
VALUE obj;
struct dump_arg *arg;
int limit;
};
static VALUE
check_dump_arg(VALUE ret, struct dump_arg *arg, const char *name)
{
if (!arg->symbols) {
rb_raise(rb_eRuntimeError, "Marshal.dump reentered at %s",
name);
}
return ret;
}
static VALUE
check_userdump_arg(VALUE obj, ID sym, int argc, const VALUE *argv,
struct dump_arg *arg, const char *name)
{
VALUE ret = rb_funcallv(obj, sym, argc, argv);
VALUE klass = CLASS_OF(obj);
if (CLASS_OF(ret) == klass) {
rb_raise(rb_eRuntimeError, "%"PRIsVALUE"#%s returned same class instance",
klass, name);
}
return check_dump_arg(ret, arg, name);
}
#define dump_funcall(arg, obj, sym, argc, argv) \
check_userdump_arg(obj, sym, argc, argv, arg, name_##sym)
#define dump_check_funcall(arg, obj, sym, argc, argv) \
check_dump_arg(rb_check_funcall(obj, sym, argc, argv), arg, name_##sym)
static void clear_dump_arg(struct dump_arg *arg);
static void
mark_dump_arg(void *ptr)
{
struct dump_arg *p = ptr;
if (!p->symbols)
return;
rb_mark_set(p->symbols);
rb_mark_set(p->data);
rb_mark_hash(p->compat_tbl);
rb_gc_mark(p->str);
}
static void
free_dump_arg(void *ptr)
{
clear_dump_arg(ptr);
xfree(ptr);
}
static size_t
memsize_dump_arg(const void *ptr)
{
return sizeof(struct dump_arg);
}
static const rb_data_type_t dump_arg_data = {
"dump_arg",
{mark_dump_arg, free_dump_arg, memsize_dump_arg,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
must_not_be_anonymous(const char *type, VALUE path)
{
char *n = RSTRING_PTR(path);
if (!rb_enc_asciicompat(rb_enc_get(path))) {
/* cannot occur? */
rb_raise(rb_eTypeError, "can't dump non-ascii %s name % "PRIsVALUE,
type, path);
}
if (n[0] == '#') {
rb_raise(rb_eTypeError, "can't dump anonymous %s % "PRIsVALUE,
type, path);
}
return path;
}
static VALUE
class2path(VALUE klass)
{
VALUE path = rb_class_path(klass);
must_not_be_anonymous((RB_TYPE_P(klass, T_CLASS) ? "class" : "module"), path);
if (rb_path_to_class(path) != rb_class_real(klass)) {
rb_raise(rb_eTypeError, "% "PRIsVALUE" can't be referred to", path);
}
return path;
}
int ruby_marshal_write_long(long x, char *buf);
static void w_long(long, struct dump_arg*);
static int w_encoding(VALUE encname, struct dump_call_arg *arg);
static VALUE encoding_name(VALUE obj, struct dump_arg *arg);
static void
w_nbyte(const char *s, long n, struct dump_arg *arg)
{
VALUE buf = arg->str;
rb_str_buf_cat(buf, s, n);
if (arg->dest && RSTRING_LEN(buf) >= BUFSIZ) {
rb_io_write(arg->dest, buf);
rb_str_resize(buf, 0);
}
}
static void
w_byte(char c, struct dump_arg *arg)
{
w_nbyte(&c, 1, arg);
}
static void
w_bytes(const char *s, long n, struct dump_arg *arg)
{
w_long(n, arg);
w_nbyte(s, n, arg);
}
#define w_cstr(s, arg) w_bytes((s), strlen(s), (arg))
static void
w_short(int x, struct dump_arg *arg)
{
w_byte((char)((x >> 0) & 0xff), arg);
w_byte((char)((x >> 8) & 0xff), arg);
}
static void
w_long(long x, struct dump_arg *arg)
{
char buf[sizeof(long)+1];
int i = ruby_marshal_write_long(x, buf);
if (i < 0) {
rb_raise(rb_eTypeError, "long too big to dump");
}
w_nbyte(buf, i, arg);
}
int
ruby_marshal_write_long(long x, char *buf)
{
int i;
#if SIZEOF_LONG > 4
if (!(RSHIFT(x, 31) == 0 || RSHIFT(x, 31) == -1)) {
/* big long does not fit in 4 bytes */
return -1;
}
#endif
if (x == 0) {
buf[0] = 0;
return 1;
}
if (0 < x && x < 123) {
buf[0] = (char)(x + 5);
return 1;
}
if (-124 < x && x < 0) {
buf[0] = (char)((x - 5)&0xff);
return 1;
}
for (i=1;i<(int)sizeof(long)+1;i++) {
buf[i] = (char)(x & 0xff);
x = RSHIFT(x,8);
if (x == 0) {
buf[0] = i;
break;
}
if (x == -1) {
buf[0] = -i;
break;
}
}
return i+1;
}
#ifdef DBL_MANT_DIG
#define DECIMAL_MANT (53-16) /* from IEEE754 double precision */
#if DBL_MANT_DIG > 32
#define MANT_BITS 32
#elif DBL_MANT_DIG > 24
#define MANT_BITS 24
#elif DBL_MANT_DIG > 16
#define MANT_BITS 16
#else
#define MANT_BITS 8
#endif
static double
load_mantissa(double d, const char *buf, long len)
{
if (!len) return d;
if (--len > 0 && !*buf++) { /* binary mantissa mark */
int e, s = d < 0, dig = 0;
unsigned long m;
modf(ldexp(frexp(fabs(d), &e), DECIMAL_MANT), &d);
do {
m = 0;
switch (len) {
default: m = *buf++ & 0xff; /* fall through */
#if MANT_BITS > 24
case 3: m = (m << 8) | (*buf++ & 0xff); /* fall through */
#endif
#if MANT_BITS > 16
case 2: m = (m << 8) | (*buf++ & 0xff); /* fall through */
#endif
#if MANT_BITS > 8
case 1: m = (m << 8) | (*buf++ & 0xff);
#endif
}
dig -= len < MANT_BITS / 8 ? 8 * (unsigned)len : MANT_BITS;
d += ldexp((double)m, dig);
} while ((len -= MANT_BITS / 8) > 0);
d = ldexp(d, e - DECIMAL_MANT);
if (s) d = -d;
}
return d;
}
#else
#define load_mantissa(d, buf, len) (d)
#endif
#ifdef DBL_DIG
#define FLOAT_DIG (DBL_DIG+2)
#else
#define FLOAT_DIG 17
#endif
static void
w_float(double d, struct dump_arg *arg)
{
char buf[FLOAT_DIG + (DECIMAL_MANT + 7) / 8 + 10];
if (isinf(d)) {
if (d < 0) w_cstr("-inf", arg);
else w_cstr("inf", arg);
}
else if (isnan(d)) {
w_cstr("nan", arg);
}
else if (d == 0.0) {
if (signbit(d)) w_cstr("-0", arg);
else w_cstr("0", arg);
}
else {
int decpt, sign, digs, len = 0;
char *e, *p = ruby_dtoa(d, 0, 0, &decpt, &sign, &e);
if (sign) buf[len++] = '-';
digs = (int)(e - p);
if (decpt < -3 || decpt > digs) {
buf[len++] = p[0];
if (--digs > 0) buf[len++] = '.';
memcpy(buf + len, p + 1, digs);
len += digs;
len += snprintf(buf + len, sizeof(buf) - len, "e%d", decpt - 1);
}
else if (decpt > 0) {
memcpy(buf + len, p, decpt);
len += decpt;
if ((digs -= decpt) > 0) {
buf[len++] = '.';
memcpy(buf + len, p + decpt, digs);
len += digs;
}
}
else {
buf[len++] = '0';
buf[len++] = '.';
if (decpt) {
memset(buf + len, '0', -decpt);
len -= decpt;
}
memcpy(buf + len, p, digs);
len += digs;
}
xfree(p);
w_bytes(buf, len, arg);
}
}
static void
w_symbol(VALUE sym, struct dump_arg *arg)
{
st_data_t num;
VALUE encname;
if (st_lookup(arg->symbols, sym, &num)) {
w_byte(TYPE_SYMLINK, arg);
w_long((long)num, arg);
}
else {
const VALUE orig_sym = sym;
sym = rb_sym2str(sym);
if (!sym) {
rb_raise(rb_eTypeError, "can't dump anonymous ID %"PRIdVALUE, sym);
}
encname = encoding_name(sym, arg);
if (NIL_P(encname) ||
rb_enc_str_coderange(sym) == ENC_CODERANGE_7BIT) {
encname = Qnil;
}
else {
w_byte(TYPE_IVAR, arg);
}
w_byte(TYPE_SYMBOL, arg);
w_bytes(RSTRING_PTR(sym), RSTRING_LEN(sym), arg);
st_add_direct(arg->symbols, orig_sym, arg->symbols->num_entries);
if (!NIL_P(encname)) {
struct dump_call_arg c_arg;
c_arg.limit = 1;
c_arg.arg = arg;
w_long(1L, arg);
w_encoding(encname, &c_arg);
}
}
}
static void
w_unique(VALUE s, struct dump_arg *arg)
{
must_not_be_anonymous("class", s);
w_symbol(rb_str_intern(s), arg);
}
static void w_object(VALUE,struct dump_arg*,int);
static int
hash_each(VALUE key, VALUE value, VALUE v)
{
struct dump_call_arg *arg = (void *)v;
w_object(key, arg->arg, arg->limit);
w_object(value, arg->arg, arg->limit);
return ST_CONTINUE;
}
#define SINGLETON_DUMP_UNABLE_P(klass) \
(rb_id_table_size(RCLASS_M_TBL(klass)) > 0 || \
(RCLASS_IV_TBL(klass) && RCLASS_IV_TBL(klass)->num_entries > 1))
static void
w_extended(VALUE klass, struct dump_arg *arg, int check)
{
if (check && FL_TEST(klass, FL_SINGLETON)) {
VALUE origin = RCLASS_ORIGIN(klass);
if (SINGLETON_DUMP_UNABLE_P(klass) ||
(origin != klass && SINGLETON_DUMP_UNABLE_P(origin))) {
rb_raise(rb_eTypeError, "singleton can't be dumped");
}
klass = RCLASS_SUPER(klass);
}
while (BUILTIN_TYPE(klass) == T_ICLASS) {
if (!FL_TEST(klass, RICLASS_IS_ORIGIN) ||
BUILTIN_TYPE(RBASIC(klass)->klass) != T_MODULE) {
VALUE path = rb_class_name(RBASIC(klass)->klass);
w_byte(TYPE_EXTENDED, arg);
w_unique(path, arg);
}
klass = RCLASS_SUPER(klass);
}
}
static void
w_class(char type, VALUE obj, struct dump_arg *arg, int check)
{
VALUE path;
st_data_t real_obj;
VALUE klass;
if (arg->compat_tbl &&
st_lookup(arg->compat_tbl, (st_data_t)obj, &real_obj)) {
obj = (VALUE)real_obj;
}
klass = CLASS_OF(obj);
w_extended(klass, arg, check);
w_byte(type, arg);
path = class2path(rb_class_real(klass));
w_unique(path, arg);
}
static void
w_uclass(VALUE obj, VALUE super, struct dump_arg *arg)
{
VALUE klass = CLASS_OF(obj);
w_extended(klass, arg, TRUE);
klass = rb_class_real(klass);
if (klass != super) {
w_byte(TYPE_UCLASS, arg);
w_unique(class2path(klass), arg);
}
}
#define to_be_skipped_id(id) (id == rb_id_encoding() || id == s_encoding_short || id == s_ruby2_keywords_flag || !rb_id2str(id))
struct w_ivar_arg {
struct dump_call_arg *dump;
st_data_t num_ivar;
};
static int
w_obj_each(st_data_t key, st_data_t val, st_data_t a)
{
ID id = (ID)key;
VALUE value = (VALUE)val;
struct w_ivar_arg *ivarg = (struct w_ivar_arg *)a;
struct dump_call_arg *arg = ivarg->dump;
if (to_be_skipped_id(id)) {
if (id == s_encoding_short) {
rb_warn("instance variable `"name_s_encoding_short"' on class %"PRIsVALUE" is not dumped",
CLASS_OF(arg->obj));
}
if (id == s_ruby2_keywords_flag) {
rb_warn("instance variable `"name_s_ruby2_keywords_flag"' on class %"PRIsVALUE" is not dumped",
CLASS_OF(arg->obj));
}
return ST_CONTINUE;
}
if (!ivarg->num_ivar) {
rb_raise(rb_eRuntimeError, "instance variable added to %"PRIsVALUE" instance",
CLASS_OF(arg->obj));
}
--ivarg->num_ivar;
w_symbol(ID2SYM(id), arg->arg);
w_object(value, arg->arg, arg->limit);
return ST_CONTINUE;
}
static int
obj_count_ivars(st_data_t key, st_data_t val, st_data_t a)
{
ID id = (ID)key;
if (!to_be_skipped_id(id)) ++*(st_index_t *)a;
return ST_CONTINUE;
}
static VALUE
encoding_name(VALUE obj, struct dump_arg *arg)
{
if (rb_enc_capable(obj)) {
int encidx = rb_enc_get_index(obj);
rb_encoding *enc = 0;
st_data_t name;
if (encidx <= 0 || !(enc = rb_enc_from_index(encidx))) {
return Qnil;
}
/* special treatment for US-ASCII and UTF-8 */
if (encidx == rb_usascii_encindex()) {
return Qfalse;
}
else if (encidx == rb_utf8_encindex()) {
return Qtrue;
}
if (arg->encodings ?
!st_lookup(arg->encodings, (st_data_t)rb_enc_name(enc), &name) :
(arg->encodings = st_init_strcasetable(), 1)) {
name = (st_data_t)rb_str_new_cstr(rb_enc_name(enc));
st_insert(arg->encodings, (st_data_t)rb_enc_name(enc), name);
}
return (VALUE)name;
}
else {
return Qnil;
}
}
static int
w_encoding(VALUE encname, struct dump_call_arg *arg)
{
int limit = arg->limit;
if (limit >= 0) ++limit;
switch (encname) {
case Qfalse:
case Qtrue:
w_symbol(ID2SYM(s_encoding_short), arg->arg);
w_object(encname, arg->arg, limit);
return 1;
case Qnil:
return 0;
}
w_symbol(ID2SYM(rb_id_encoding()), arg->arg);
w_object(encname, arg->arg, limit);
return 1;
}
static st_index_t
has_ivars(VALUE obj, VALUE encname, VALUE *ivobj)
{
st_index_t enc = !NIL_P(encname);
st_index_t num = 0;
st_index_t ruby2_keywords_flag = 0;
if (SPECIAL_CONST_P(obj)) goto generic;
switch (BUILTIN_TYPE(obj)) {
case T_OBJECT:
case T_CLASS:
case T_MODULE:
break; /* counted elsewhere */
case T_HASH:
ruby2_keywords_flag = RHASH(obj)->basic.flags & RHASH_PASS_AS_KEYWORDS ? 1 : 0;
/* fall through */
default:
generic:
rb_ivar_foreach(obj, obj_count_ivars, (st_data_t)&num);
if (ruby2_keywords_flag || num) *ivobj = obj;
}
return num + enc + ruby2_keywords_flag;
}
static void
w_ivar_each(VALUE obj, st_index_t num, struct dump_call_arg *arg)
{
struct w_ivar_arg ivarg = {arg, num};
if (!num) return;
rb_ivar_foreach(obj, w_obj_each, (st_data_t)&ivarg);
if (ivarg.num_ivar) {
rb_raise(rb_eRuntimeError, "instance variable removed from %"PRIsVALUE" instance",
CLASS_OF(arg->obj));
}
}
static void
w_ivar(st_index_t num, VALUE ivobj, VALUE encname, struct dump_call_arg *arg)
{
w_long(num, arg->arg);
num -= w_encoding(encname, arg);
if (RB_TYPE_P(ivobj, T_HASH) && (RHASH(ivobj)->basic.flags & RHASH_PASS_AS_KEYWORDS)) {
int limit = arg->limit;
if (limit >= 0) ++limit;
w_symbol(ID2SYM(s_ruby2_keywords_flag), arg->arg);
w_object(Qtrue, arg->arg, limit);
num--;
}
if (ivobj != Qundef && num) {
w_ivar_each(ivobj, num, arg);
}
}
static void
w_objivar(VALUE obj, struct dump_call_arg *arg)
{
st_data_t num = 0;
rb_ivar_foreach(obj, obj_count_ivars, (st_data_t)&num);
w_long(num, arg->arg);
w_ivar_each(obj, num, arg);
}
static void
w_object(VALUE obj, struct dump_arg *arg, int limit)
{
struct dump_call_arg c_arg;
VALUE ivobj = Qundef;
st_data_t num;
st_index_t hasiv = 0;
VALUE encname = Qnil;
if (limit == 0) {
rb_raise(rb_eArgError, "exceed depth limit");
}
if (limit > 0) limit--;
c_arg.limit = limit;
c_arg.arg = arg;
c_arg.obj = obj;
if (st_lookup(arg->data, obj, &num)) {
w_byte(TYPE_LINK, arg);
w_long((long)num, arg);
return;
}
if (obj == Qnil) {
w_byte(TYPE_NIL, arg);
}
else if (obj == Qtrue) {
w_byte(TYPE_TRUE, arg);
}
else if (obj == Qfalse) {
w_byte(TYPE_FALSE, arg);
}
else if (FIXNUM_P(obj)) {
#if SIZEOF_LONG <= 4
w_byte(TYPE_FIXNUM, arg);
w_long(FIX2INT(obj), arg);
#else
if (RSHIFT((long)obj, 31) == 0 || RSHIFT((long)obj, 31) == -1) {
w_byte(TYPE_FIXNUM, arg);
w_long(FIX2LONG(obj), arg);
}
else {
w_object(rb_int2big(FIX2LONG(obj)), arg, limit);
}
#endif
}
else if (SYMBOL_P(obj)) {
w_symbol(obj, arg);
}
else if (FLONUM_P(obj)) {
st_add_direct(arg->data, obj, arg->data->num_entries);
w_byte(TYPE_FLOAT, arg);
w_float(RFLOAT_VALUE(obj), arg);
}
else {
VALUE v;
if (!RBASIC_CLASS(obj)) {
rb_raise(rb_eTypeError, "can't dump internal %s",
rb_builtin_type_name(BUILTIN_TYPE(obj)));
}
if (rb_obj_respond_to(obj, s_mdump, TRUE)) {
st_add_direct(arg->data, obj, arg->data->num_entries);
v = dump_funcall(arg, obj, s_mdump, 0, 0);
w_class(TYPE_USRMARSHAL, obj, arg, FALSE);
w_object(v, arg, limit);
return;
}
if (rb_obj_respond_to(obj, s_dump, TRUE)) {
VALUE ivobj2 = Qundef;
st_index_t hasiv2;
VALUE encname2;
v = INT2NUM(limit);
v = dump_funcall(arg, obj, s_dump, 1, &v);
if (!RB_TYPE_P(v, T_STRING)) {
rb_raise(rb_eTypeError, "_dump() must return string");
}
hasiv = has_ivars(obj, (encname = encoding_name(obj, arg)), &ivobj);
hasiv2 = has_ivars(v, (encname2 = encoding_name(v, arg)), &ivobj2);
if (hasiv2) {
hasiv = hasiv2;
ivobj = ivobj2;
encname = encname2;
}
if (hasiv) w_byte(TYPE_IVAR, arg);
w_class(TYPE_USERDEF, obj, arg, FALSE);
w_bytes(RSTRING_PTR(v), RSTRING_LEN(v), arg);
if (hasiv) {
w_ivar(hasiv, ivobj, encname, &c_arg);
}
st_add_direct(arg->data, obj, arg->data->num_entries);
return;
}
st_add_direct(arg->data, obj, arg->data->num_entries);
hasiv = has_ivars(obj, (encname = encoding_name(obj, arg)), &ivobj);
{
st_data_t compat_data;
rb_alloc_func_t allocator = rb_get_alloc_func(RBASIC(obj)->klass);
if (st_lookup(compat_allocator_tbl,
(st_data_t)allocator,
&compat_data)) {
marshal_compat_t *compat = (marshal_compat_t*)compat_data;
VALUE real_obj = obj;
obj = compat->dumper(real_obj);
if (!arg->compat_tbl) {
arg->compat_tbl = rb_init_identtable();
}
st_insert(arg->compat_tbl, (st_data_t)obj, (st_data_t)real_obj);
if (obj != real_obj && ivobj == Qundef) hasiv = 0;
}
}
if (hasiv) w_byte(TYPE_IVAR, arg);
switch (BUILTIN_TYPE(obj)) {
case T_CLASS:
if (FL_TEST(obj, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "singleton class can't be dumped");
}
w_byte(TYPE_CLASS, arg);
{
VALUE path = class2path(obj);
w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg);
RB_GC_GUARD(path);
}
break;
case T_MODULE:
w_byte(TYPE_MODULE, arg);
{
VALUE path = class2path(obj);
w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg);
RB_GC_GUARD(path);
}
break;
case T_FLOAT:
w_byte(TYPE_FLOAT, arg);
w_float(RFLOAT_VALUE(obj), arg);
break;
case T_BIGNUM:
w_byte(TYPE_BIGNUM, arg);
{
char sign = BIGNUM_SIGN(obj) ? '+' : '-';
size_t len = BIGNUM_LEN(obj);
size_t slen;
size_t j;
BDIGIT *d = BIGNUM_DIGITS(obj);
slen = SHORTLEN(len);
if (LONG_MAX < slen) {
rb_raise(rb_eTypeError, "too big Bignum can't be dumped");
}
w_byte(sign, arg);
w_long((long)slen, arg);
for (j = 0; j < len; j++) {
#if SIZEOF_BDIGIT > SIZEOF_SHORT
BDIGIT num = *d;
int i;
for (i=0; i<SIZEOF_BDIGIT; i+=SIZEOF_SHORT) {
w_short(num & SHORTMASK, arg);
num = SHORTDN(num);
if (j == len - 1 && num == 0) break;
}
#else
w_short(*d, arg);
#endif
d++;
}
}
break;
case T_STRING:
w_uclass(obj, rb_cString, arg);
w_byte(TYPE_STRING, arg);
w_bytes(RSTRING_PTR(obj), RSTRING_LEN(obj), arg);
break;
case T_REGEXP:
w_uclass(obj, rb_cRegexp, arg);
w_byte(TYPE_REGEXP, arg);
{
int opts = rb_reg_options(obj);
w_bytes(RREGEXP_SRC_PTR(obj), RREGEXP_SRC_LEN(obj), arg);
w_byte((char)opts, arg);
}
break;
case T_ARRAY:
w_uclass(obj, rb_cArray, arg);
w_byte(TYPE_ARRAY, arg);
{
long i, len = RARRAY_LEN(obj);
w_long(len, arg);
for (i=0; i<RARRAY_LEN(obj); i++) {
w_object(RARRAY_AREF(obj, i), arg, limit);
if (len != RARRAY_LEN(obj)) {
rb_raise(rb_eRuntimeError, "array modified during dump");
}
}
}
break;
case T_HASH:
w_uclass(obj, rb_cHash, arg);
if (NIL_P(RHASH_IFNONE(obj))) {
w_byte(TYPE_HASH, arg);
}
else if (FL_TEST(obj, RHASH_PROC_DEFAULT)) {
rb_raise(rb_eTypeError, "can't dump hash with default proc");
}
else {
w_byte(TYPE_HASH_DEF, arg);
}
w_long(rb_hash_size_num(obj), arg);
rb_hash_foreach(obj, hash_each, (st_data_t)&c_arg);
if (!NIL_P(RHASH_IFNONE(obj))) {
w_object(RHASH_IFNONE(obj), arg, limit);
}
break;
case T_STRUCT:
w_class(TYPE_STRUCT, obj, arg, TRUE);
{
long len = RSTRUCT_LEN(obj);
VALUE mem;
long i;
w_long(len, arg);
mem = rb_struct_members(obj);
for (i=0; i<len; i++) {
w_symbol(RARRAY_AREF(mem, i), arg);
w_object(RSTRUCT_GET(obj, i), arg, limit);
}
}
break;
case T_OBJECT:
w_class(TYPE_OBJECT, obj, arg, TRUE);
w_objivar(obj, &c_arg);
break;
case T_DATA:
{
VALUE v;
if (!rb_obj_respond_to(obj, s_dump_data, TRUE)) {
rb_raise(rb_eTypeError,
"no _dump_data is defined for class %"PRIsVALUE,
rb_obj_class(obj));
}
v = dump_funcall(arg, obj, s_dump_data, 0, 0);
w_class(TYPE_DATA, obj, arg, TRUE);
w_object(v, arg, limit);
}
break;
default:
rb_raise(rb_eTypeError, "can't dump %"PRIsVALUE,
rb_obj_class(obj));
break;
}
RB_GC_GUARD(obj);
}
if (hasiv) {
w_ivar(hasiv, ivobj, encname, &c_arg);
}
}
static void
clear_dump_arg(struct dump_arg *arg)
{
if (!arg->symbols) return;
st_free_table(arg->symbols);
arg->symbols = 0;
st_free_table(arg->data);
arg->data = 0;
if (arg->compat_tbl) {
st_free_table(arg->compat_tbl);
arg->compat_tbl = 0;
}
if (arg->encodings) {
st_free_table(arg->encodings);
arg->encodings = 0;
}
}
NORETURN(static inline void io_needed(void));
static inline void
io_needed(void)
{
rb_raise(rb_eTypeError, "instance of IO needed");
}
/*
* call-seq:
* dump( obj [, anIO] , limit=-1 ) -> anIO
*
* Serializes obj and all descendant objects. If anIO is
* specified, the serialized data will be written to it, otherwise the
* data will be returned as a String. If limit is specified, the
* traversal of subobjects will be limited to that depth. If limit is
* negative, no checking of depth will be performed.
*
* class Klass
* def initialize(str)
* @str = str
* end
* def say_hello
* @str
* end
* end
*
* (produces no output)
*
* o = Klass.new("hello\n")
* data = Marshal.dump(o)
* obj = Marshal.load(data)
* obj.say_hello #=> "hello\n"
*
* Marshal can't dump following objects:
* * anonymous Class/Module.
* * objects which are related to system (ex: Dir, File::Stat, IO, File, Socket
* and so on)
* * an instance of MatchData, Data, Method, UnboundMethod, Proc, Thread,
* ThreadGroup, Continuation
* * objects which define singleton methods
*/
static VALUE
marshal_dump(int argc, VALUE *argv, VALUE _)
{
VALUE obj, port, a1, a2;
int limit = -1;
port = Qnil;
rb_scan_args(argc, argv, "12", &obj, &a1, &a2);
if (argc == 3) {
if (!NIL_P(a2)) limit = NUM2INT(a2);
if (NIL_P(a1)) io_needed();
port = a1;
}
else if (argc == 2) {
if (FIXNUM_P(a1)) limit = FIX2INT(a1);
else if (NIL_P(a1)) io_needed();
else port = a1;
}
return rb_marshal_dump_limited(obj, port, limit);
}
VALUE
rb_marshal_dump_limited(VALUE obj, VALUE port, int limit)
{
struct dump_arg *arg;
VALUE wrapper; /* used to avoid memory leak in case of exception */
wrapper = TypedData_Make_Struct(0, struct dump_arg, &dump_arg_data, arg);
arg->dest = 0;
arg->symbols = st_init_numtable();
arg->data = rb_init_identtable();
arg->compat_tbl = 0;
arg->encodings = 0;
arg->str = rb_str_buf_new(0);
if (!NIL_P(port)) {
if (!rb_respond_to(port, s_write)) {
io_needed();
}
arg->dest = port;
dump_check_funcall(arg, port, s_binmode, 0, 0);
}
else {
port = arg->str;
}
w_byte(MARSHAL_MAJOR, arg);
w_byte(MARSHAL_MINOR, arg);
w_object(obj, arg, limit);
if (arg->dest) {
rb_io_write(arg->dest, arg->str);
rb_str_resize(arg->str, 0);
}
clear_dump_arg(arg);
RB_GC_GUARD(wrapper);
return port;
}
struct load_arg {
VALUE src;
char *buf;
long buflen;
long readable;
long offset;
st_table *symbols;
st_table *data;
VALUE proc;
st_table *compat_tbl;
};
static VALUE
check_load_arg(VALUE ret, struct load_arg *arg, const char *name)
{
if (!arg->symbols) {
rb_raise(rb_eRuntimeError, "Marshal.load reentered at %s",
name);
}
return ret;
}
#define load_funcall(arg, obj, sym, argc, argv) \
check_load_arg(rb_funcallv(obj, sym, argc, argv), arg, name_##sym)
static void clear_load_arg(struct load_arg *arg);
static void
mark_load_arg(void *ptr)
{
struct load_arg *p = ptr;
if (!p->symbols)
return;
rb_mark_tbl(p->symbols);
rb_mark_tbl(p->data);
rb_mark_hash(p->compat_tbl);
}
static void
free_load_arg(void *ptr)
{
clear_load_arg(ptr);
xfree(ptr);
}
static size_t
memsize_load_arg(const void *ptr)
{
return sizeof(struct load_arg);
}
static const rb_data_type_t load_arg_data = {
"load_arg",
{mark_load_arg, free_load_arg, memsize_load_arg,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
#define r_entry(v, arg) r_entry0((v), (arg)->data->num_entries, (arg))
static VALUE r_entry0(VALUE v, st_index_t num, struct load_arg *arg);
static VALUE r_object(struct load_arg *arg);
static VALUE r_symbol(struct load_arg *arg);
static VALUE path2class(VALUE path);
NORETURN(static void too_short(void));
static void
too_short(void)
{
rb_raise(rb_eArgError, "marshal data too short");
}
static st_index_t
r_prepare(struct load_arg *arg)
{
st_index_t idx = arg->data->num_entries;
st_insert(arg->data, (st_data_t)idx, (st_data_t)Qundef);
return idx;
}
static unsigned char
r_byte1_buffered(struct load_arg *arg)
{
if (arg->buflen == 0) {
long readable = arg->readable < BUFSIZ ? arg->readable : BUFSIZ;
VALUE str, n = LONG2NUM(readable);
str = load_funcall(arg, arg->src, s_read, 1, &n);
if (NIL_P(str)) too_short();
StringValue(str);
memcpy(arg->buf, RSTRING_PTR(str), RSTRING_LEN(str));
arg->offset = 0;
arg->buflen = RSTRING_LEN(str);
}
arg->buflen--;
return arg->buf[arg->offset++];
}
static int
r_byte(struct load_arg *arg)
{
int c;
if (RB_TYPE_P(arg->src, T_STRING)) {
if (RSTRING_LEN(arg->src) > arg->offset) {
c = (unsigned char)RSTRING_PTR(arg->src)[arg->offset++];
}
else {
too_short();
}
}
else {
if (arg->readable >0 || arg->buflen > 0) {
c = r_byte1_buffered(arg);
}
else {
VALUE v = load_funcall(arg, arg->src, s_getbyte, 0, 0);
if (NIL_P(v)) rb_eof_error();
c = (unsigned char)NUM2CHR(v);
}
}
return c;
}
NORETURN(static void long_toobig(int size));
static void
long_toobig(int size)
{
rb_raise(rb_eTypeError, "long too big for this architecture (size "
STRINGIZE(SIZEOF_LONG)", given %d)", size);
}
static long
r_long(struct load_arg *arg)
{
register long x;
int c = (signed char)r_byte(arg);
long i;
if (c == 0) return 0;
if (c > 0) {
if (4 < c && c < 128) {
return c - 5;
}
if (c > (int)sizeof(long)) long_toobig(c);
x = 0;
for (i=0;i<c;i++) {
x |= (long)r_byte(arg) << (8*i);
}
}
else {
if (-129 < c && c < -4) {
return c + 5;
}
c = -c;
if (c > (int)sizeof(long)) long_toobig(c);
x = -1;
for (i=0;i<c;i++) {
x &= ~((long)0xff << (8*i));
x |= (long)r_byte(arg) << (8*i);
}
}
return x;
}
long
ruby_marshal_read_long(const char **buf, long len)
{
long x;
struct RString src;
struct load_arg arg;
memset(&arg, 0, sizeof(arg));
arg.src = rb_setup_fake_str(&src, *buf, len, 0);
x = r_long(&arg);
*buf += arg.offset;
return x;
}
static VALUE
r_bytes1(long len, struct load_arg *arg)
{
VALUE str, n = LONG2NUM(len);
str = load_funcall(arg, arg->src, s_read, 1, &n);
if (NIL_P(str)) too_short();
StringValue(str);
if (RSTRING_LEN(str) != len) too_short();
return str;
}
static VALUE
r_bytes1_buffered(long len, struct load_arg *arg)
{
VALUE str;
if (len <= arg->buflen) {
str = rb_str_new(arg->buf+arg->offset, len);
arg->offset += len;
arg->buflen -= len;
}
else {
long buflen = arg->buflen;
long readable = arg->readable + 1;
long tmp_len, read_len, need_len = len - buflen;
VALUE tmp, n;
readable = readable < BUFSIZ ? readable : BUFSIZ;
read_len = need_len > readable ? need_len : readable;
n = LONG2NUM(read_len);
tmp = load_funcall(arg, arg->src, s_read, 1, &n);
if (NIL_P(tmp)) too_short();
StringValue(tmp);
tmp_len = RSTRING_LEN(tmp);
if (tmp_len < need_len) too_short();
str = rb_str_new(arg->buf+arg->offset, buflen);
rb_str_cat(str, RSTRING_PTR(tmp), need_len);
if (tmp_len > need_len) {
buflen = tmp_len - need_len;
memcpy(arg->buf, RSTRING_PTR(tmp)+need_len, buflen);
arg->buflen = buflen;
}
else {
arg->buflen = 0;
}
arg->offset = 0;
}
return str;
}
#define r_bytes(arg) r_bytes0(r_long(arg), (arg))
static VALUE
r_bytes0(long len, struct load_arg *arg)
{
VALUE str;
if (len == 0) return rb_str_new(0, 0);
if (RB_TYPE_P(arg->src, T_STRING)) {
if (RSTRING_LEN(arg->src) - arg->offset >= len) {
str = rb_str_new(RSTRING_PTR(arg->src)+arg->offset, len);
arg->offset += len;
}
else {
too_short();
}
}
else {
if (arg->readable > 0 || arg->buflen > 0) {
str = r_bytes1_buffered(len, arg);
}
else {
str = r_bytes1(len, arg);
}
}
return str;
}
static inline int
name_equal(const char *name, size_t nlen, const char *p, long l)
{
if ((size_t)l != nlen || *p != *name) return 0;
return nlen == 1 || memcmp(p+1, name+1, nlen-1) == 0;
}
static int
sym2encidx(VALUE sym, VALUE val)
{
static const char name_encoding[8] = "encoding";
const char *p;
long l;
if (rb_enc_get_index(sym) != ENCINDEX_US_ASCII) return -1;
RSTRING_GETMEM(sym, p, l);
if (l <= 0) return -1;
if (name_equal(name_encoding, sizeof(name_encoding), p, l)) {
int idx = rb_enc_find_index(StringValueCStr(val));
return idx;
}
if (name_equal(name_s_encoding_short, rb_strlen_lit(name_s_encoding_short), p, l)) {
if (val == Qfalse) return rb_usascii_encindex();
else if (val == Qtrue) return rb_utf8_encindex();
/* bogus ignore */
}
return -1;
}
static int
ruby2_keywords_flag_check(VALUE sym)
{
const char *p;
long l;
RSTRING_GETMEM(sym, p, l);
if (l <= 0) return 0;
if (name_equal(name_s_ruby2_keywords_flag, rb_strlen_lit(name_s_ruby2_keywords_flag), p, 1)) {
return 1;
}
return 0;
}
static VALUE
r_symlink(struct load_arg *arg)
{
st_data_t sym;
long num = r_long(arg);
if (!st_lookup(arg->symbols, num, &sym)) {
rb_raise(rb_eArgError, "bad symbol");
}
return (VALUE)sym;
}
static VALUE
r_symreal(struct load_arg *arg, int ivar)
{
VALUE s = r_bytes(arg);
VALUE sym;
int idx = -1;
st_index_t n = arg->symbols->num_entries;
if (rb_enc_str_asciionly_p(s)) rb_enc_associate_index(s, ENCINDEX_US_ASCII);
st_insert(arg->symbols, (st_data_t)n, (st_data_t)s);
if (ivar) {
long num = r_long(arg);
while (num-- > 0) {
sym = r_symbol(arg);
idx = sym2encidx(sym, r_object(arg));
}
}
if (idx > 0) rb_enc_associate_index(s, idx);
return s;
}
static VALUE
r_symbol(struct load_arg *arg)
{
int type, ivar = 0;
again:
switch ((type = r_byte(arg))) {
default:
rb_raise(rb_eArgError, "dump format error for symbol(0x%x)", type);
case TYPE_IVAR:
ivar = 1;
goto again;
case TYPE_SYMBOL:
return r_symreal(arg, ivar);
case TYPE_SYMLINK:
if (ivar) {
rb_raise(rb_eArgError, "dump format error (symlink with encoding)");
}
return r_symlink(arg);
}
}
static VALUE
r_unique(struct load_arg *arg)
{
return r_symbol(arg);
}
static VALUE
r_string(struct load_arg *arg)
{
return r_bytes(arg);
}
static VALUE
r_entry0(VALUE v, st_index_t num, struct load_arg *arg)
{
st_data_t real_obj = (VALUE)Qundef;
if (arg->compat_tbl && st_lookup(arg->compat_tbl, v, &real_obj)) {
st_insert(arg->data, num, (st_data_t)real_obj);
}
else {
st_insert(arg->data, num, (st_data_t)v);
}
return v;
}
static VALUE
r_fixup_compat(VALUE v, struct load_arg *arg)
{
st_data_t data;
st_data_t key = (st_data_t)v;
if (arg->compat_tbl && st_delete(arg->compat_tbl, &key, &data)) {
VALUE real_obj = (VALUE)data;
rb_alloc_func_t allocator = rb_get_alloc_func(CLASS_OF(real_obj));
if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &data)) {
marshal_compat_t *compat = (marshal_compat_t*)data;
compat->loader(real_obj, v);
}
v = real_obj;
}
return v;
}
static VALUE
r_post_proc(VALUE v, struct load_arg *arg)
{
if (arg->proc) {
v = load_funcall(arg, arg->proc, s_call, 1, &v);
}
return v;
}
static VALUE
r_leave(VALUE v, struct load_arg *arg)
{
v = r_fixup_compat(v, arg);
v = r_post_proc(v, arg);
return v;
}
static int
copy_ivar_i(st_data_t key, st_data_t val, st_data_t arg)
{
VALUE obj = (VALUE)arg, value = (VALUE)val;
ID vid = (ID)key;
if (!rb_ivar_defined(obj, vid))
rb_ivar_set(obj, vid, value);
return ST_CONTINUE;
}
static VALUE
r_copy_ivar(VALUE v, VALUE data)
{
rb_ivar_foreach(data, copy_ivar_i, (st_data_t)v);
return v;
}
static void
r_ivar(VALUE obj, int *has_encoding, struct load_arg *arg)
{
long len;
len = r_long(arg);
if (len > 0) {
do {
VALUE sym = r_symbol(arg);
VALUE val = r_object(arg);
int idx = sym2encidx(sym, val);
if (idx >= 0) {
if (rb_enc_capable(obj)) {
rb_enc_associate_index(obj, idx);
}
else {
rb_raise(rb_eArgError, "%"PRIsVALUE" is not enc_capable", obj);
}
if (has_encoding) *has_encoding = TRUE;
}
else if (ruby2_keywords_flag_check(sym)) {
if (RB_TYPE_P(obj, T_HASH)) {
RHASH(obj)->basic.flags |= RHASH_PASS_AS_KEYWORDS;
}
else {
rb_raise(rb_eArgError, "ruby2_keywords flag is given but %"PRIsVALUE" is not a Hash", obj);
}
}
else {
rb_ivar_set(obj, rb_intern_str(sym), val);
}
} while (--len > 0);
}
}
static VALUE
path2class(VALUE path)
{
VALUE v = rb_path_to_class(path);
if (!RB_TYPE_P(v, T_CLASS)) {
rb_raise(rb_eArgError, "%"PRIsVALUE" does not refer to class", path);
}
return v;
}
#define path2module(path) must_be_module(rb_path_to_class(path), path)
static VALUE
must_be_module(VALUE v, VALUE path)
{
if (!RB_TYPE_P(v, T_MODULE)) {
rb_raise(rb_eArgError, "%"PRIsVALUE" does not refer to module", path);
}
return v;
}
static VALUE
obj_alloc_by_klass(VALUE klass, struct load_arg *arg, VALUE *oldclass)
{
st_data_t data;
rb_alloc_func_t allocator;
allocator = rb_get_alloc_func(klass);
if (st_lookup(compat_allocator_tbl, (st_data_t)allocator, &data)) {
marshal_compat_t *compat = (marshal_compat_t*)data;
VALUE real_obj = rb_obj_alloc(klass);
VALUE obj = rb_obj_alloc(compat->oldclass);
if (oldclass) *oldclass = compat->oldclass;
if (!arg->compat_tbl) {
arg->compat_tbl = rb_init_identtable();
}
st_insert(arg->compat_tbl, (st_data_t)obj, (st_data_t)real_obj);
return obj;
}
return rb_obj_alloc(klass);
}
static VALUE
obj_alloc_by_path(VALUE path, struct load_arg *arg)
{
return obj_alloc_by_klass(path2class(path), arg, 0);
}
static VALUE
append_extmod(VALUE obj, VALUE extmod)
{
long i = RARRAY_LEN(extmod);
while (i > 0) {
VALUE m = RARRAY_AREF(extmod, --i);
rb_extend_object(obj, m);
}
return obj;
}
#define prohibit_ivar(type, str) do { \
if (!ivp || !*ivp) break; \
rb_raise(rb_eTypeError, \
"can't override instance variable of "type" `%"PRIsVALUE"'", \
(str)); \
} while (0)
static VALUE
r_object0(struct load_arg *arg, int *ivp, VALUE extmod)
{
VALUE v = Qnil;
int type = r_byte(arg);
long id;
st_data_t link;
switch (type) {
case TYPE_LINK:
id = r_long(arg);
if (!st_lookup(arg->data, (st_data_t)id, &link)) {
rb_raise(rb_eArgError, "dump format error (unlinked)");
}
v = (VALUE)link;
v = r_post_proc(v, arg);
break;
case TYPE_IVAR:
{
int ivar = TRUE;
v = r_object0(arg, &ivar, extmod);
if (ivar) r_ivar(v, NULL, arg);
}
break;
case TYPE_EXTENDED:
{
VALUE path = r_unique(arg);
VALUE m = rb_path_to_class(path);
if (NIL_P(extmod)) extmod = rb_ary_tmp_new(0);
if (RB_TYPE_P(m, T_CLASS)) { /* prepended */
VALUE c;
v = r_object0(arg, 0, Qnil);
c = CLASS_OF(v);
if (c != m || FL_TEST(c, FL_SINGLETON)) {
rb_raise(rb_eArgError,
"prepended class %"PRIsVALUE" differs from class %"PRIsVALUE,
path, rb_class_name(c));
}
c = rb_singleton_class(v);
while (RARRAY_LEN(extmod) > 0) {
m = rb_ary_pop(extmod);
rb_prepend_module(c, m);
}
}
else {
must_be_module(m, path);
rb_ary_push(extmod, m);
v = r_object0(arg, 0, extmod);
while (RARRAY_LEN(extmod) > 0) {
m = rb_ary_pop(extmod);
rb_extend_object(v, m);
}
}
}
break;
case TYPE_UCLASS:
{
VALUE c = path2class(r_unique(arg));
if (FL_TEST(c, FL_SINGLETON)) {
rb_raise(rb_eTypeError, "singleton can't be loaded");
}
v = r_object0(arg, 0, extmod);
if (rb_special_const_p(v) || RB_TYPE_P(v, T_OBJECT) || RB_TYPE_P(v, T_CLASS)) {
format_error:
rb_raise(rb_eArgError, "dump format error (user class)");
}
if (RB_TYPE_P(v, T_MODULE) || !RTEST(rb_class_inherited_p(c, RBASIC(v)->klass))) {
VALUE tmp = rb_obj_alloc(c);
if (TYPE(v) != TYPE(tmp)) goto format_error;
}
RBASIC_SET_CLASS(v, c);
}
break;
case TYPE_NIL:
v = Qnil;
v = r_leave(v, arg);
break;
case TYPE_TRUE:
v = Qtrue;
v = r_leave(v, arg);
break;
case TYPE_FALSE:
v = Qfalse;
v = r_leave(v, arg);
break;
case TYPE_FIXNUM:
{
long i = r_long(arg);
v = LONG2FIX(i);
}
v = r_leave(v, arg);
break;
case TYPE_FLOAT:
{
double d;
VALUE str = r_bytes(arg);
const char *ptr = RSTRING_PTR(str);
if (strcmp(ptr, "nan") == 0) {
d = nan("");
}
else if (strcmp(ptr, "inf") == 0) {
d = HUGE_VAL;
}
else if (strcmp(ptr, "-inf") == 0) {
d = -HUGE_VAL;
}
else {
char *e;
d = strtod(ptr, &e);
d = load_mantissa(d, e, RSTRING_LEN(str) - (e - ptr));
}
v = DBL2NUM(d);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_BIGNUM:
{
long len;
VALUE data;
int sign;
sign = r_byte(arg);
len = r_long(arg);
data = r_bytes0(len * 2, arg);
v = rb_integer_unpack(RSTRING_PTR(data), len, 2, 0,
INTEGER_PACK_LITTLE_ENDIAN | (sign == '-' ? INTEGER_PACK_NEGATIVE : 0));
rb_str_resize(data, 0L);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_STRING:
v = r_entry(r_string(arg), arg);
v = r_leave(v, arg);
break;
case TYPE_REGEXP:
{
VALUE str = r_bytes(arg);
int options = r_byte(arg);
int has_encoding = FALSE;
st_index_t idx = r_prepare(arg);
if (ivp) {
r_ivar(str, &has_encoding, arg);
*ivp = FALSE;
}
if (!has_encoding) {
/* 1.8 compatibility; remove escapes undefined in 1.8 */
char *ptr = RSTRING_PTR(str), *dst = ptr, *src = ptr;
long len = RSTRING_LEN(str);
long bs = 0;
for (; len-- > 0; *dst++ = *src++) {
switch (*src) {
case '\\': bs++; break;
case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
case 'm': case 'o': case 'p': case 'q': case 'u': case 'y':
case 'E': case 'F': case 'H': case 'I': case 'J': case 'K':
case 'L': case 'N': case 'O': case 'P': case 'Q': case 'R':
case 'S': case 'T': case 'U': case 'V': case 'X': case 'Y':
if (bs & 1) --dst;
/* fall through */
default: bs = 0; break;
}
}
rb_str_set_len(str, dst - ptr);
}
v = r_entry0(rb_reg_new_str(str, options), idx, arg);
v = r_leave(v, arg);
}
break;
case TYPE_ARRAY:
{
long len = r_long(arg);
v = rb_ary_new2(len);
v = r_entry(v, arg);
arg->readable += len - 1;
while (len--) {
rb_ary_push(v, r_object(arg));
arg->readable--;
}
v = r_leave(v, arg);
arg->readable++;
}
break;
case TYPE_HASH:
case TYPE_HASH_DEF:
{
long len = r_long(arg);
v = rb_hash_new_with_size(len);
v = r_entry(v, arg);
arg->readable += (len - 1) * 2;
while (len--) {
VALUE key = r_object(arg);
VALUE value = r_object(arg);
rb_hash_aset(v, key, value);
arg->readable -= 2;
}
arg->readable += 2;
if (type == TYPE_HASH_DEF) {
RHASH_SET_IFNONE(v, r_object(arg));
}
v = r_leave(v, arg);
}
break;
case TYPE_STRUCT:
{
VALUE mem, values;
long i;
VALUE slot;
st_index_t idx = r_prepare(arg);
VALUE klass = path2class(r_unique(arg));
long len = r_long(arg);
v = rb_obj_alloc(klass);
if (!RB_TYPE_P(v, T_STRUCT)) {
rb_raise(rb_eTypeError, "class %"PRIsVALUE" not a struct", rb_class_name(klass));
}
mem = rb_struct_s_members(klass);
if (RARRAY_LEN(mem) != len) {
rb_raise(rb_eTypeError, "struct %"PRIsVALUE" not compatible (struct size differs)",
rb_class_name(klass));
}
arg->readable += (len - 1) * 2;
v = r_entry0(v, idx, arg);
values = rb_ary_new2(len);
{
VALUE keywords = Qfalse;
if (RTEST(rb_struct_s_keyword_init(klass))) {
keywords = rb_hash_new();
rb_ary_push(values, keywords);
}
for (i=0; i<len; i++) {
VALUE n = rb_sym2str(RARRAY_AREF(mem, i));
slot = r_symbol(arg);
if (!rb_str_equal(n, slot)) {
rb_raise(rb_eTypeError, "struct %"PRIsVALUE" not compatible (:%"PRIsVALUE" for :%"PRIsVALUE")",
rb_class_name(klass),
slot, n);
}
if (keywords) {
rb_hash_aset(keywords, RARRAY_AREF(mem, i), r_object(arg));
}
else {
rb_ary_push(values, r_object(arg));
}
arg->readable -= 2;
}
}
rb_struct_initialize(v, values);
v = r_leave(v, arg);
arg->readable += 2;
}
break;
case TYPE_USERDEF:
{
VALUE name = r_unique(arg);
VALUE klass = path2class(name);
VALUE data;
st_data_t d;
if (!rb_obj_respond_to(klass, s_load, TRUE)) {
rb_raise(rb_eTypeError, "class %"PRIsVALUE" needs to have method `_load'",
name);
}
data = r_string(arg);
if (ivp) {
r_ivar(data, NULL, arg);
*ivp = FALSE;
}
v = load_funcall(arg, klass, s_load, 1, &data);
v = r_entry(v, arg);
if (st_lookup(compat_allocator_tbl, (st_data_t)rb_get_alloc_func(klass), &d)) {
marshal_compat_t *compat = (marshal_compat_t*)d;
v = compat->loader(klass, v);
}
v = r_post_proc(v, arg);
}
break;
case TYPE_USRMARSHAL:
{
VALUE name = r_unique(arg);
VALUE klass = path2class(name);
VALUE oldclass = 0;
VALUE data;
v = obj_alloc_by_klass(klass, arg, &oldclass);
if (!NIL_P(extmod)) {
/* for the case marshal_load is overridden */
append_extmod(v, extmod);
}
if (!rb_obj_respond_to(v, s_mload, TRUE)) {
rb_raise(rb_eTypeError, "instance of %"PRIsVALUE" needs to have method `marshal_load'",
name);
}
v = r_entry(v, arg);
data = r_object(arg);
load_funcall(arg, v, s_mload, 1, &data);
v = r_fixup_compat(v, arg);
v = r_copy_ivar(v, data);
v = r_post_proc(v, arg);
if (!NIL_P(extmod)) {
if (oldclass) append_extmod(v, extmod);
rb_ary_clear(extmod);
}
}
break;
case TYPE_OBJECT:
{
st_index_t idx = r_prepare(arg);
v = obj_alloc_by_path(r_unique(arg), arg);
if (!RB_TYPE_P(v, T_OBJECT)) {
rb_raise(rb_eArgError, "dump format error");
}
v = r_entry0(v, idx, arg);
r_ivar(v, NULL, arg);
v = r_leave(v, arg);
}
break;
case TYPE_DATA:
{
VALUE name = r_unique(arg);
VALUE klass = path2class(name);
VALUE oldclass = 0;
VALUE r;
v = obj_alloc_by_klass(klass, arg, &oldclass);
if (!RB_TYPE_P(v, T_DATA)) {
rb_raise(rb_eArgError, "dump format error");
}
v = r_entry(v, arg);
if (!rb_obj_respond_to(v, s_load_data, TRUE)) {
rb_raise(rb_eTypeError,
"class %"PRIsVALUE" needs to have instance method `_load_data'",
name);
}
r = r_object0(arg, 0, extmod);
load_funcall(arg, v, s_load_data, 1, &r);
v = r_leave(v, arg);
}
break;
case TYPE_MODULE_OLD:
{
VALUE str = r_bytes(arg);
v = rb_path_to_class(str);
prohibit_ivar("class/module", str);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_CLASS:
{
VALUE str = r_bytes(arg);
v = path2class(str);
prohibit_ivar("class", str);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_MODULE:
{
VALUE str = r_bytes(arg);
v = path2module(str);
prohibit_ivar("module", str);
v = r_entry(v, arg);
v = r_leave(v, arg);
}
break;
case TYPE_SYMBOL:
if (ivp) {
v = r_symreal(arg, *ivp);
*ivp = FALSE;
}
else {
v = r_symreal(arg, 0);
}
v = rb_str_intern(v);
v = r_leave(v, arg);
break;
case TYPE_SYMLINK:
v = rb_str_intern(r_symlink(arg));
break;
default:
rb_raise(rb_eArgError, "dump format error(0x%x)", type);
break;
}
if (v == Qundef) {
rb_raise(rb_eArgError, "dump format error (bad link)");
}
return v;
}
static VALUE
r_object(struct load_arg *arg)
{
return r_object0(arg, 0, Qnil);
}
static void
clear_load_arg(struct load_arg *arg)
{
if (arg->buf) {
xfree(arg->buf);
arg->buf = 0;
}
arg->buflen = 0;
arg->offset = 0;
arg->readable = 0;
if (!arg->symbols) return;
st_free_table(arg->symbols);
arg->symbols = 0;
st_free_table(arg->data);
arg->data = 0;
if (arg->compat_tbl) {
st_free_table(arg->compat_tbl);
arg->compat_tbl = 0;
}
}
/*
* call-seq:
* load( source [, proc] ) -> obj
* restore( source [, proc] ) -> obj
*
* Returns the result of converting the serialized data in source into a
* Ruby object (possibly with associated subordinate objects). source
* may be either an instance of IO or an object that responds to
* to_str. If proc is specified, each object will be passed to the proc, as the object
* is being deserialized.
*
* Never pass untrusted data (including user supplied input) to this method.
* Please see the overview for further details.
*/
static VALUE
marshal_load(int argc, VALUE *argv, VALUE _)
{
VALUE port, proc;
rb_check_arity(argc, 1, 2);
port = argv[0];
proc = argc > 1 ? argv[1] : Qnil;
return rb_marshal_load_with_proc(port, proc);
}
VALUE
rb_marshal_load_with_proc(VALUE port, VALUE proc)
{
int major, minor;
VALUE v;
VALUE wrapper; /* used to avoid memory leak in case of exception */
struct load_arg *arg;
v = rb_check_string_type(port);
if (!NIL_P(v)) {
port = v;
}
else if (rb_respond_to(port, s_getbyte) && rb_respond_to(port, s_read)) {
rb_check_funcall(port, s_binmode, 0, 0);
}
else {
io_needed();
}
wrapper = TypedData_Make_Struct(0, struct load_arg, &load_arg_data, arg);
arg->src = port;
arg->offset = 0;
arg->symbols = st_init_numtable();
arg->data = rb_init_identtable();
arg->compat_tbl = 0;
arg->proc = 0;
arg->readable = 0;
if (NIL_P(v))
arg->buf = xmalloc(BUFSIZ);
else
arg->buf = 0;
major = r_byte(arg);
minor = r_byte(arg);
if (major != MARSHAL_MAJOR || minor > MARSHAL_MINOR) {
clear_load_arg(arg);
rb_raise(rb_eTypeError, "incompatible marshal file format (can't be read)\n\
\tformat version %d.%d required; %d.%d given",
MARSHAL_MAJOR, MARSHAL_MINOR, major, minor);
}
if (RTEST(ruby_verbose) && minor != MARSHAL_MINOR) {
rb_warn("incompatible marshal file format (can be read)\n\
\tformat version %d.%d required; %d.%d given",
MARSHAL_MAJOR, MARSHAL_MINOR, major, minor);
}
if (!NIL_P(proc)) arg->proc = proc;
v = r_object(arg);
clear_load_arg(arg);
RB_GC_GUARD(wrapper);
return v;
}
/*
* The marshaling library converts collections of Ruby objects into a
* byte stream, allowing them to be stored outside the currently
* active script. This data may subsequently be read and the original
* objects reconstituted.
*
* Marshaled data has major and minor version numbers stored along
* with the object information. In normal use, marshaling can only
* load data written with the same major version number and an equal
* or lower minor version number. If Ruby's ``verbose'' flag is set
* (normally using -d, -v, -w, or --verbose) the major and minor
* numbers must match exactly. Marshal versioning is independent of
* Ruby's version numbers. You can extract the version by reading the
* first two bytes of marshaled data.
*
* str = Marshal.dump("thing")
* RUBY_VERSION #=> "1.9.0"
* str[0].ord #=> 4
* str[1].ord #=> 8
*
* Some objects cannot be dumped: if the objects to be dumped include
* bindings, procedure or method objects, instances of class IO, or
* singleton objects, a TypeError will be raised.
*
* If your class has special serialization needs (for example, if you
* want to serialize in some specific format), or if it contains
* objects that would otherwise not be serializable, you can implement
* your own serialization strategy.
*
* There are two methods of doing this, your object can define either
* marshal_dump and marshal_load or _dump and _load. marshal_dump will take
* precedence over _dump if both are defined. marshal_dump may result in
* smaller Marshal strings.
*
* == Security considerations
*
* By design, Marshal.load can deserialize almost any class loaded into the
* Ruby process. In many cases this can lead to remote code execution if the
* Marshal data is loaded from an untrusted source.
*
* As a result, Marshal.load is not suitable as a general purpose serialization
* format and you should never unmarshal user supplied input or other untrusted
* data.
*
* If you need to deserialize untrusted data, use JSON or another serialization
* format that is only able to load simple, 'primitive' types such as String,
* Array, Hash, etc. Never allow user input to specify arbitrary types to
* deserialize into.
*
* == marshal_dump and marshal_load
*
* When dumping an object the method marshal_dump will be called.
* marshal_dump must return a result containing the information necessary for
* marshal_load to reconstitute the object. The result can be any object.
*
* When loading an object dumped using marshal_dump the object is first
* allocated then marshal_load is called with the result from marshal_dump.
* marshal_load must recreate the object from the information in the result.
*
* Example:
*
* class MyObj
* def initialize name, version, data
* @name = name
* @version = version
* @data = data
* end
*
* def marshal_dump
* [@name, @version]
* end
*
* def marshal_load array
* @name, @version = array
* end
* end
*
* == _dump and _load
*
* Use _dump and _load when you need to allocate the object you're restoring
* yourself.
*
* When dumping an object the instance method _dump is called with an Integer
* which indicates the maximum depth of objects to dump (a value of -1 implies
* that you should disable depth checking). _dump must return a String
* containing the information necessary to reconstitute the object.
*
* The class method _load should take a String and use it to return an object
* of the same class.
*
* Example:
*
* class MyObj
* def initialize name, version, data
* @name = name
* @version = version
* @data = data
* end
*
* def _dump level
* [@name, @version].join ':'
* end
*
* def self._load args
* new(*args.split(':'))
* end
* end
*
* Since Marshal.dump outputs a string you can have _dump return a Marshal
* string which is Marshal.loaded in _load for complex objects.
*/
void
Init_marshal(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
VALUE rb_mMarshal = rb_define_module("Marshal");
#define set_id(sym) sym = rb_intern_const(name_##sym)
set_id(s_dump);
set_id(s_load);
set_id(s_mdump);
set_id(s_mload);
set_id(s_dump_data);
set_id(s_load_data);
set_id(s_alloc);
set_id(s_call);
set_id(s_getbyte);
set_id(s_read);
set_id(s_write);
set_id(s_binmode);
set_id(s_encoding_short);
set_id(s_ruby2_keywords_flag);
rb_define_module_function(rb_mMarshal, "dump", marshal_dump, -1);
rb_define_module_function(rb_mMarshal, "load", marshal_load, -1);
rb_define_module_function(rb_mMarshal, "restore", marshal_load, -1);
/* major version */
rb_define_const(rb_mMarshal, "MAJOR_VERSION", INT2FIX(MARSHAL_MAJOR));
/* minor version */
rb_define_const(rb_mMarshal, "MINOR_VERSION", INT2FIX(MARSHAL_MINOR));
}
static st_table *
compat_allocator_table(void)
{
if (compat_allocator_tbl) return compat_allocator_tbl;
compat_allocator_tbl = st_init_numtable();
#undef RUBY_UNTYPED_DATA_WARNING
#define RUBY_UNTYPED_DATA_WARNING 0
compat_allocator_tbl_wrapper =
Data_Wrap_Struct(0, mark_marshal_compat_t, 0, compat_allocator_tbl);
rb_gc_register_mark_object(compat_allocator_tbl_wrapper);
return compat_allocator_tbl;
}
VALUE
rb_marshal_dump(VALUE obj, VALUE port)
{
return rb_marshal_dump_limited(obj, port, -1);
}
VALUE
rb_marshal_load(VALUE port)
{
return rb_marshal_load_with_proc(port, Qnil);
}