1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/vm.c
ko1 2b5bb8a087 add definemethod/definesmethod insn.
* insns.def: add definemethod and definesmethod (singleton method)
  instructions. Old YARV contains these instructions, but it is moved
  to methods of FrozenCore class because remove number of instructions
  can improve performance for some techniques (static stack caching
  and so on). However, we don't employ these technique and it is hard
  to optimize/analysis definition sequence. So I decide to introduce
  them (and remove definition methods). `putiseq` insn is also removed.

* vm_method.c (rb_scope_visibility_get): renamed to
  `vm_scope_visibility_get()` and make it accept `ec`.
  Same for `vm_scope_module_func_check()`.
  These fixes are result of refactoring `vm_define_method`.

* vm_insnhelper.c (rb_vm_get_cref): renamed to `vm_get_cref`
  because of consistency with other functions.


git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@67442 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2019-04-05 08:15:11 +00:00

3481 lines
93 KiB
C

/**********************************************************************
vm.c -
$Author$
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#include "internal.h"
#include "ruby/vm.h"
#include "ruby/st.h"
#define vm_exec rb_vm_exec
#include "gc.h"
#include "vm_core.h"
#include "vm_debug.h"
#include "iseq.h"
#include "eval_intern.h"
#ifndef MJIT_HEADER
#include "probes.h"
#else
#include "probes.dmyh"
#endif
#include "probes_helper.h"
VALUE rb_str_concat_literals(size_t, const VALUE*);
/* :FIXME: This #ifdef is because we build pch in case of mswin and
* not in case of other situations. That distinction might change in
* a future. We would better make it detectable in something better
* than just _MSC_VER. */
#ifdef _MSC_VER
RUBY_FUNC_EXPORTED
#else
MJIT_FUNC_EXPORTED
#endif
VALUE vm_exec(rb_execution_context_t *, int);
PUREFUNC(static inline const VALUE *VM_EP_LEP(const VALUE *));
static inline const VALUE *
VM_EP_LEP(const VALUE *ep)
{
while (!VM_ENV_LOCAL_P(ep)) {
ep = VM_ENV_PREV_EP(ep);
}
return ep;
}
static inline const rb_control_frame_t *
rb_vm_search_cf_from_ep(const rb_execution_context_t *ec, const rb_control_frame_t *cfp, const VALUE * const ep)
{
if (!ep) {
return NULL;
}
else {
const rb_control_frame_t * const eocfp = RUBY_VM_END_CONTROL_FRAME(ec); /* end of control frame pointer */
while (cfp < eocfp) {
if (cfp->ep == ep) {
return cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return NULL;
}
}
const VALUE *
rb_vm_ep_local_ep(const VALUE *ep)
{
return VM_EP_LEP(ep);
}
PUREFUNC(static inline const VALUE *VM_CF_LEP(const rb_control_frame_t * const cfp));
static inline const VALUE *
VM_CF_LEP(const rb_control_frame_t * const cfp)
{
return VM_EP_LEP(cfp->ep);
}
static inline const VALUE *
VM_CF_PREV_EP(const rb_control_frame_t * const cfp)
{
return VM_ENV_PREV_EP(cfp->ep);
}
PUREFUNC(static inline VALUE VM_CF_BLOCK_HANDLER(const rb_control_frame_t * const cfp));
static inline VALUE
VM_CF_BLOCK_HANDLER(const rb_control_frame_t * const cfp)
{
const VALUE *ep = VM_CF_LEP(cfp);
return VM_ENV_BLOCK_HANDLER(ep);
}
VALUE
rb_vm_frame_block_handler(const rb_control_frame_t *cfp)
{
return VM_CF_BLOCK_HANDLER(cfp);
}
#if VM_CHECK_MODE > 0
static int
VM_CFP_IN_HEAP_P(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
const VALUE *start = ec->vm_stack;
const VALUE *end = (VALUE *)ec->vm_stack + ec->vm_stack_size;
VM_ASSERT(start != NULL);
if (start <= (VALUE *)cfp && (VALUE *)cfp < end) {
return FALSE;
}
else {
return TRUE;
}
}
static int
VM_EP_IN_HEAP_P(const rb_execution_context_t *ec, const VALUE *ep)
{
const VALUE *start = ec->vm_stack;
const VALUE *end = (VALUE *)ec->cfp;
VM_ASSERT(start != NULL);
if (start <= ep && ep < end) {
return FALSE;
}
else {
return TRUE;
}
}
int
vm_ep_in_heap_p_(const rb_execution_context_t *ec, const VALUE *ep)
{
if (VM_EP_IN_HEAP_P(ec, ep)) {
VALUE envval = ep[VM_ENV_DATA_INDEX_ENV]; /* VM_ENV_ENVVAL(ep); */
if (envval != Qundef) {
const rb_env_t *env = (const rb_env_t *)envval;
VM_ASSERT(vm_assert_env(envval));
VM_ASSERT(VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED));
VM_ASSERT(env->ep == ep);
}
return TRUE;
}
else {
return FALSE;
}
}
int
rb_vm_ep_in_heap_p(const VALUE *ep)
{
const rb_execution_context_t *ec = GET_EC();
if (ec->vm_stack == NULL) return TRUE;
return vm_ep_in_heap_p_(ec, ep);
}
#endif
static struct rb_captured_block *
VM_CFP_TO_CAPTURED_BLOCK(const rb_control_frame_t *cfp)
{
VM_ASSERT(!VM_CFP_IN_HEAP_P(GET_EC(), cfp));
return (struct rb_captured_block *)&cfp->self;
}
static rb_control_frame_t *
VM_CAPTURED_BLOCK_TO_CFP(const struct rb_captured_block *captured)
{
rb_control_frame_t *cfp = ((rb_control_frame_t *)((VALUE *)(captured) - 3));
VM_ASSERT(!VM_CFP_IN_HEAP_P(GET_EC(), cfp));
VM_ASSERT(sizeof(rb_control_frame_t)/sizeof(VALUE) == 7 + VM_DEBUG_BP_CHECK ? 1 : 0);
return cfp;
}
static int
VM_BH_FROM_CFP_P(VALUE block_handler, const rb_control_frame_t *cfp)
{
const struct rb_captured_block *captured = VM_CFP_TO_CAPTURED_BLOCK(cfp);
return VM_TAGGED_PTR_REF(block_handler, 0x03) == captured;
}
static VALUE
vm_passed_block_handler(rb_execution_context_t *ec)
{
VALUE block_handler = ec->passed_block_handler;
ec->passed_block_handler = VM_BLOCK_HANDLER_NONE;
vm_block_handler_verify(block_handler);
return block_handler;
}
static rb_cref_t *
vm_cref_new0(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval, int use_prev_prev)
{
VALUE refinements = Qnil;
int omod_shared = FALSE;
rb_cref_t *cref;
/* scope */
union {
rb_scope_visibility_t visi;
VALUE value;
} scope_visi;
scope_visi.visi.method_visi = visi;
scope_visi.visi.module_func = module_func;
/* refinements */
if (prev_cref != NULL && prev_cref != (void *)1 /* TODO: why CREF_NEXT(cref) is 1? */) {
refinements = CREF_REFINEMENTS(prev_cref);
if (!NIL_P(refinements)) {
omod_shared = TRUE;
CREF_OMOD_SHARED_SET(prev_cref);
}
}
cref = (rb_cref_t *)rb_imemo_new(imemo_cref, klass, (VALUE)(use_prev_prev ? CREF_NEXT(prev_cref) : prev_cref), scope_visi.value, refinements);
if (pushed_by_eval) CREF_PUSHED_BY_EVAL_SET(cref);
if (omod_shared) CREF_OMOD_SHARED_SET(cref);
return cref;
}
static rb_cref_t *
vm_cref_new(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval)
{
return vm_cref_new0(klass, visi, module_func, prev_cref, pushed_by_eval, FALSE);
}
static rb_cref_t *
vm_cref_new_use_prev(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval)
{
return vm_cref_new0(klass, visi, module_func, prev_cref, pushed_by_eval, TRUE);
}
static int
ref_delete_symkey(VALUE key, VALUE value, VALUE unused)
{
return SYMBOL_P(key) ? ST_DELETE : ST_CONTINUE;
}
static rb_cref_t *
vm_cref_dup(const rb_cref_t *cref)
{
VALUE klass = CREF_CLASS(cref);
const rb_scope_visibility_t *visi = CREF_SCOPE_VISI(cref);
rb_cref_t *next_cref = CREF_NEXT(cref), *new_cref;
int pushed_by_eval = CREF_PUSHED_BY_EVAL(cref);
new_cref = vm_cref_new(klass, visi->method_visi, visi->module_func, next_cref, pushed_by_eval);
if (!NIL_P(CREF_REFINEMENTS(cref))) {
VALUE ref = rb_hash_dup(CREF_REFINEMENTS(cref));
rb_hash_foreach(ref, ref_delete_symkey, Qnil);
CREF_REFINEMENTS_SET(new_cref, ref);
CREF_OMOD_SHARED_UNSET(new_cref);
}
return new_cref;
}
static rb_cref_t *
vm_cref_new_toplevel(rb_execution_context_t *ec)
{
rb_cref_t *cref = vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE /* toplevel visibility is private */, FALSE, NULL, FALSE);
VALUE top_wrapper = rb_ec_thread_ptr(ec)->top_wrapper;
if (top_wrapper) {
cref = vm_cref_new(top_wrapper, METHOD_VISI_PRIVATE, FALSE, cref, FALSE);
}
return cref;
}
rb_cref_t *
rb_vm_cref_new_toplevel(void)
{
return vm_cref_new_toplevel(GET_EC());
}
static void
vm_cref_dump(const char *mesg, const rb_cref_t *cref)
{
fprintf(stderr, "vm_cref_dump: %s (%p)\n", mesg, (void *)cref);
while (cref) {
fprintf(stderr, "= cref| klass: %s\n", RSTRING_PTR(rb_class_path(CREF_CLASS(cref))));
cref = CREF_NEXT(cref);
}
}
void
rb_vm_block_ep_update(VALUE obj, const struct rb_block *dst, const VALUE *ep)
{
*((const VALUE **)&dst->as.captured.ep) = ep;
RB_OBJ_WRITTEN(obj, Qundef, VM_ENV_ENVVAL(ep));
}
static void
vm_bind_update_env(VALUE bindval, rb_binding_t *bind, VALUE envval)
{
const rb_env_t *env = (rb_env_t *)envval;
RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq);
rb_vm_block_ep_update(bindval, &bind->block, env->ep);
}
#if VM_COLLECT_USAGE_DETAILS
static void vm_collect_usage_operand(int insn, int n, VALUE op);
static void vm_collect_usage_insn(int insn);
static void vm_collect_usage_register(int reg, int isset);
#endif
static VALUE vm_make_env_object(const rb_execution_context_t *ec, rb_control_frame_t *cfp);
extern VALUE rb_vm_invoke_bmethod(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
int argc, const VALUE *argv, VALUE block_handler,
const rb_callable_method_entry_t *me);
static VALUE vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, VALUE block_handler);
static VALUE rb_block_param_proxy;
#include "mjit.h"
#include "vm_insnhelper.h"
#include "vm_exec.h"
#include "vm_insnhelper.c"
#ifndef MJIT_HEADER
#include "vm_exec.c"
#include "vm_method.c"
#endif /* #ifndef MJIT_HEADER */
#include "vm_eval.c"
#ifndef MJIT_HEADER
#define PROCDEBUG 0
rb_serial_t
rb_next_class_serial(void)
{
rb_serial_t class_serial = NEXT_CLASS_SERIAL();
mjit_add_class_serial(class_serial);
return class_serial;
}
VALUE rb_cRubyVM;
VALUE rb_cThread;
VALUE rb_mRubyVMFrozenCore;
#define ruby_vm_redefined_flag GET_VM()->redefined_flag
VALUE ruby_vm_const_missing_count = 0;
rb_vm_t *ruby_current_vm_ptr = NULL;
rb_execution_context_t *ruby_current_execution_context_ptr = NULL;
rb_event_flag_t ruby_vm_event_flags;
rb_event_flag_t ruby_vm_event_enabled_global_flags;
unsigned int ruby_vm_event_local_num;
rb_serial_t ruby_vm_global_method_state = 1;
rb_serial_t ruby_vm_global_constant_state = 1;
rb_serial_t ruby_vm_class_serial = 1;
static void thread_free(void *ptr);
void
rb_vm_inc_const_missing_count(void)
{
ruby_vm_const_missing_count +=1;
}
VALUE rb_class_path_no_cache(VALUE _klass);
MJIT_FUNC_EXPORTED int
rb_dtrace_setup(rb_execution_context_t *ec, VALUE klass, ID id,
struct ruby_dtrace_method_hook_args *args)
{
enum ruby_value_type type;
if (!klass) {
if (!ec) ec = GET_EC();
if (!rb_ec_frame_method_id_and_class(ec, &id, 0, &klass) || !klass)
return FALSE;
}
if (RB_TYPE_P(klass, T_ICLASS)) {
klass = RBASIC(klass)->klass;
}
else if (FL_TEST(klass, FL_SINGLETON)) {
klass = rb_attr_get(klass, id__attached__);
if (NIL_P(klass)) return FALSE;
}
type = BUILTIN_TYPE(klass);
if (type == T_CLASS || type == T_ICLASS || type == T_MODULE) {
VALUE name = rb_class_path_no_cache(klass);
const char *classname, *filename;
const char *methodname = rb_id2name(id);
if (methodname && (filename = rb_source_location_cstr(&args->line_no)) != 0) {
if (NIL_P(name) || !(classname = StringValuePtr(name)))
classname = "<unknown>";
args->classname = classname;
args->methodname = methodname;
args->filename = filename;
args->klass = klass;
args->name = name;
return TRUE;
}
}
return FALSE;
}
/*
* call-seq:
* RubyVM.stat -> Hash
* RubyVM.stat(hsh) -> hsh
* RubyVM.stat(Symbol) -> Numeric
*
* Returns a Hash containing implementation-dependent counters inside the VM.
*
* This hash includes information about method/constant cache serials:
*
* {
* :global_method_state=>251,
* :global_constant_state=>481,
* :class_serial=>9029
* }
*
* The contents of the hash are implementation specific and may be changed in
* the future.
*
* This method is only expected to work on C Ruby.
*/
static VALUE
vm_stat(int argc, VALUE *argv, VALUE self)
{
static VALUE sym_global_method_state, sym_global_constant_state, sym_class_serial;
VALUE arg = Qnil;
VALUE hash = Qnil, key = Qnil;
if (rb_check_arity(argc, 0, 1) == 1) {
arg = argv[0];
if (SYMBOL_P(arg))
key = arg;
else if (RB_TYPE_P(arg, T_HASH))
hash = arg;
else
rb_raise(rb_eTypeError, "non-hash or symbol given");
}
else {
hash = rb_hash_new();
}
if (sym_global_method_state == 0) {
#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
S(global_method_state);
S(global_constant_state);
S(class_serial);
#undef S
}
#define SET(name, attr) \
if (key == sym_##name) \
return SERIALT2NUM(attr); \
else if (hash != Qnil) \
rb_hash_aset(hash, sym_##name, SERIALT2NUM(attr));
SET(global_method_state, ruby_vm_global_method_state);
SET(global_constant_state, ruby_vm_global_constant_state);
SET(class_serial, ruby_vm_class_serial);
#undef SET
if (!NIL_P(key)) { /* matched key should return above */
rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
}
return hash;
}
/* control stack frame */
static void
vm_set_top_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq)
{
if (iseq->body->type != ISEQ_TYPE_TOP) {
rb_raise(rb_eTypeError, "Not a toplevel InstructionSequence");
}
/* for return */
vm_push_frame(ec, iseq, VM_FRAME_MAGIC_TOP | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH, rb_ec_thread_ptr(ec)->top_self,
VM_BLOCK_HANDLER_NONE,
(VALUE)vm_cref_new_toplevel(ec), /* cref or me */
iseq->body->iseq_encoded, ec->cfp->sp,
iseq->body->local_table_size, iseq->body->stack_max);
}
static void
vm_set_eval_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq, const rb_cref_t *cref, const struct rb_block *base_block)
{
vm_push_frame(ec, iseq, VM_FRAME_MAGIC_EVAL | VM_FRAME_FLAG_FINISH,
vm_block_self(base_block), VM_GUARDED_PREV_EP(vm_block_ep(base_block)),
(VALUE)cref, /* cref or me */
iseq->body->iseq_encoded,
ec->cfp->sp, iseq->body->local_table_size,
iseq->body->stack_max);
}
static void
vm_set_main_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq)
{
VALUE toplevel_binding = rb_const_get(rb_cObject, rb_intern("TOPLEVEL_BINDING"));
rb_binding_t *bind;
GetBindingPtr(toplevel_binding, bind);
RUBY_ASSERT_MESG(bind, "TOPLEVEL_BINDING is not built");
vm_set_eval_stack(ec, iseq, 0, &bind->block);
/* save binding */
if (iseq->body->local_table_size > 0) {
vm_bind_update_env(toplevel_binding, bind, vm_make_env_object(ec, ec->cfp));
}
}
rb_control_frame_t *
rb_vm_get_binding_creatable_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
if (cfp->iseq) {
return (rb_control_frame_t *)cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
MJIT_FUNC_EXPORTED rb_control_frame_t *
rb_vm_get_ruby_level_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
if (RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) bp();
while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
if (VM_FRAME_RUBYFRAME_P(cfp)) {
return (rb_control_frame_t *)cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
#endif /* #ifndef MJIT_HEADER */
static rb_control_frame_t *
vm_get_ruby_level_caller_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
{
if (VM_FRAME_RUBYFRAME_P(cfp)) {
return (rb_control_frame_t *)cfp;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
if (VM_FRAME_RUBYFRAME_P(cfp)) {
return (rb_control_frame_t *)cfp;
}
if (VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_PASSED) == FALSE) {
break;
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
MJIT_STATIC void
rb_vm_pop_cfunc_frame(void)
{
rb_execution_context_t *ec = GET_EC();
rb_control_frame_t *cfp = ec->cfp;
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, Qnil);
RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id);
vm_pop_frame(ec, cfp, cfp->ep);
}
#ifndef MJIT_HEADER
void
rb_vm_rewind_cfp(rb_execution_context_t *ec, rb_control_frame_t *cfp)
{
/* check skipped frame */
while (ec->cfp != cfp) {
#if VMDEBUG
printf("skipped frame: %s\n", vm_frametype_name(ec->cfp));
#endif
if (VM_FRAME_TYPE(ec->cfp) != VM_FRAME_MAGIC_CFUNC) {
rb_vm_pop_frame(ec);
}
else { /* unlikely path */
rb_vm_pop_cfunc_frame();
}
}
}
/* at exit */
void
ruby_vm_at_exit(void (*func)(rb_vm_t *))
{
rb_vm_t *vm = GET_VM();
rb_at_exit_list *nl = ALLOC(rb_at_exit_list);
nl->func = func;
nl->next = vm->at_exit;
vm->at_exit = nl;
}
static void
ruby_vm_run_at_exit_hooks(rb_vm_t *vm)
{
rb_at_exit_list *l = vm->at_exit;
while (l) {
rb_at_exit_list* t = l->next;
rb_vm_at_exit_func *func = l->func;
ruby_xfree(l);
l = t;
(*func)(vm);
}
}
/* Env */
static VALUE check_env_value(const rb_env_t *env);
static int
check_env(const rb_env_t *env)
{
fprintf(stderr, "---\n");
fprintf(stderr, "envptr: %p\n", (void *)&env->ep[0]);
fprintf(stderr, "envval: %10p ", (void *)env->ep[1]);
dp(env->ep[1]);
fprintf(stderr, "ep: %10p\n", (void *)env->ep);
if (rb_vm_env_prev_env(env)) {
fprintf(stderr, ">>\n");
check_env_value(rb_vm_env_prev_env(env));
fprintf(stderr, "<<\n");
}
return 1;
}
static VALUE
check_env_value(const rb_env_t *env)
{
if (check_env(env)) {
return (VALUE)env;
}
rb_bug("invalid env");
return Qnil; /* unreachable */
}
static VALUE
vm_block_handler_escape(const rb_execution_context_t *ec, VALUE block_handler)
{
switch (vm_block_handler_type(block_handler)) {
case block_handler_type_ifunc:
case block_handler_type_iseq:
return rb_vm_make_proc(ec, VM_BH_TO_CAPT_BLOCK(block_handler), rb_cProc);
case block_handler_type_symbol:
case block_handler_type_proc:
return block_handler;
}
VM_UNREACHABLE(vm_block_handler_escape);
return Qnil;
}
static VALUE
vm_make_env_each(const rb_execution_context_t * const ec, rb_control_frame_t *const cfp)
{
const VALUE * const ep = cfp->ep;
const rb_env_t *env;
const rb_iseq_t *env_iseq;
VALUE *env_body, *env_ep;
int local_size, env_size;
if (VM_ENV_ESCAPED_P(ep)) {
return VM_ENV_ENVVAL(ep);
}
if (!VM_ENV_LOCAL_P(ep)) {
const VALUE *prev_ep = VM_ENV_PREV_EP(ep);
if (!VM_ENV_ESCAPED_P(prev_ep)) {
rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
while (prev_cfp->ep != prev_ep) {
prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(prev_cfp);
VM_ASSERT(prev_cfp->ep != NULL);
}
vm_make_env_each(ec, prev_cfp);
VM_FORCE_WRITE_SPECIAL_CONST(&ep[VM_ENV_DATA_INDEX_SPECVAL], VM_GUARDED_PREV_EP(prev_cfp->ep));
}
}
else {
VALUE block_handler = VM_ENV_BLOCK_HANDLER(ep);
if (block_handler != VM_BLOCK_HANDLER_NONE) {
VALUE blockprocval = vm_block_handler_escape(ec, block_handler);
VM_STACK_ENV_WRITE(ep, VM_ENV_DATA_INDEX_SPECVAL, blockprocval);
}
}
if (!VM_FRAME_RUBYFRAME_P(cfp)) {
local_size = VM_ENV_DATA_SIZE;
}
else {
local_size = cfp->iseq->body->local_table_size + VM_ENV_DATA_SIZE;
}
/*
* # local variables on a stack frame (N == local_size)
* [lvar1, lvar2, ..., lvarN, SPECVAL]
* ^
* ep[0]
*
* # moved local variables
* [lvar1, lvar2, ..., lvarN, SPECVAL, Envval, BlockProcval (if needed)]
* ^ ^
* env->env[0] ep[0]
*/
env_size = local_size +
1 /* envval */;
env_body = ALLOC_N(VALUE, env_size);
MEMCPY(env_body, ep - (local_size - 1 /* specval */), VALUE, local_size);
#if 0
for (i = 0; i < local_size; i++) {
if (VM_FRAME_RUBYFRAME_P(cfp)) {
/* clear value stack for GC */
ep[-local_size + i] = 0;
}
}
#endif
env_iseq = VM_FRAME_RUBYFRAME_P(cfp) ? cfp->iseq : NULL;
env_ep = &env_body[local_size - 1 /* specval */];
env = vm_env_new(env_ep, env_body, env_size, env_iseq);
cfp->ep = env_ep;
VM_ENV_FLAGS_SET(env_ep, VM_ENV_FLAG_ESCAPED | VM_ENV_FLAG_WB_REQUIRED);
VM_STACK_ENV_WRITE(ep, 0, (VALUE)env); /* GC mark */
return (VALUE)env;
}
static VALUE
vm_make_env_object(const rb_execution_context_t *ec, rb_control_frame_t *cfp)
{
VALUE envval = vm_make_env_each(ec, cfp);
if (PROCDEBUG) {
check_env_value((const rb_env_t *)envval);
}
return envval;
}
void
rb_vm_stack_to_heap(rb_execution_context_t *ec)
{
rb_control_frame_t *cfp = ec->cfp;
while ((cfp = rb_vm_get_binding_creatable_next_cfp(ec, cfp)) != 0) {
vm_make_env_object(ec, cfp);
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
}
const rb_env_t *
rb_vm_env_prev_env(const rb_env_t *env)
{
const VALUE *ep = env->ep;
if (VM_ENV_LOCAL_P(ep)) {
return NULL;
}
else {
return VM_ENV_ENVVAL_PTR(VM_ENV_PREV_EP(ep));
}
}
static int
collect_local_variables_in_iseq(const rb_iseq_t *iseq, const struct local_var_list *vars)
{
unsigned int i;
if (!iseq) return 0;
for (i = 0; i < iseq->body->local_table_size; i++) {
local_var_list_add(vars, iseq->body->local_table[i]);
}
return 1;
}
static void
collect_local_variables_in_env(const rb_env_t *env, const struct local_var_list *vars)
{
do {
collect_local_variables_in_iseq(env->iseq, vars);
} while ((env = rb_vm_env_prev_env(env)) != NULL);
}
static int
vm_collect_local_variables_in_heap(const VALUE *ep, const struct local_var_list *vars)
{
if (VM_ENV_ESCAPED_P(ep)) {
collect_local_variables_in_env(VM_ENV_ENVVAL_PTR(ep), vars);
return 1;
}
else {
return 0;
}
}
VALUE
rb_vm_env_local_variables(const rb_env_t *env)
{
struct local_var_list vars;
local_var_list_init(&vars);
collect_local_variables_in_env(env, &vars);
return local_var_list_finish(&vars);
}
VALUE
rb_iseq_local_variables(const rb_iseq_t *iseq)
{
struct local_var_list vars;
local_var_list_init(&vars);
while (collect_local_variables_in_iseq(iseq, &vars)) {
iseq = iseq->body->parent_iseq;
}
return local_var_list_finish(&vars);
}
/* Proc */
static VALUE
vm_proc_create_from_captured(VALUE klass,
const struct rb_captured_block *captured,
enum rb_block_type block_type,
int8_t is_from_method, int8_t is_lambda)
{
VALUE procval = rb_proc_alloc(klass);
rb_proc_t *proc = RTYPEDDATA_DATA(procval);
VM_ASSERT(VM_EP_IN_HEAP_P(GET_EC(), captured->ep));
/* copy block */
RB_OBJ_WRITE(procval, &proc->block.as.captured.self, captured->self);
RB_OBJ_WRITE(procval, &proc->block.as.captured.code.val, captured->code.val);
rb_vm_block_ep_update(procval, &proc->block, captured->ep);
vm_block_type_set(&proc->block, block_type);
proc->is_from_method = is_from_method;
proc->is_lambda = is_lambda;
return procval;
}
void
rb_vm_block_copy(VALUE obj, const struct rb_block *dst, const struct rb_block *src)
{
/* copy block */
switch (vm_block_type(src)) {
case block_type_iseq:
case block_type_ifunc:
RB_OBJ_WRITE(obj, &dst->as.captured.self, src->as.captured.self);
RB_OBJ_WRITE(obj, &dst->as.captured.code.val, src->as.captured.code.val);
rb_vm_block_ep_update(obj, dst, src->as.captured.ep);
break;
case block_type_symbol:
RB_OBJ_WRITE(obj, &dst->as.symbol, src->as.symbol);
break;
case block_type_proc:
RB_OBJ_WRITE(obj, &dst->as.proc, src->as.proc);
break;
}
}
static VALUE
proc_create(VALUE klass, const struct rb_block *block, int8_t is_from_method, int8_t is_lambda)
{
VALUE procval = rb_proc_alloc(klass);
rb_proc_t *proc = RTYPEDDATA_DATA(procval);
VM_ASSERT(VM_EP_IN_HEAP_P(GET_EC(), vm_block_ep(block)));
rb_vm_block_copy(procval, &proc->block, block);
vm_block_type_set(&proc->block, block->type);
proc->is_from_method = is_from_method;
proc->is_lambda = is_lambda;
return procval;
}
VALUE
rb_proc_dup(VALUE self)
{
VALUE procval;
rb_proc_t *src;
GetProcPtr(self, src);
procval = proc_create(rb_cProc, &src->block, src->is_from_method, src->is_lambda);
RB_GC_GUARD(self); /* for: body = rb_proc_dup(body) */
return procval;
}
MJIT_FUNC_EXPORTED VALUE
rb_vm_make_proc_lambda(const rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE klass, int8_t is_lambda)
{
VALUE procval;
if (!VM_ENV_ESCAPED_P(captured->ep)) {
rb_control_frame_t *cfp = VM_CAPTURED_BLOCK_TO_CFP(captured);
vm_make_env_object(ec, cfp);
}
VM_ASSERT(VM_EP_IN_HEAP_P(ec, captured->ep));
VM_ASSERT(imemo_type_p(captured->code.val, imemo_iseq) ||
imemo_type_p(captured->code.val, imemo_ifunc));
procval = vm_proc_create_from_captured(klass, captured,
imemo_type(captured->code.val) == imemo_iseq ? block_type_iseq : block_type_ifunc, FALSE, is_lambda);
return procval;
}
/* Binding */
VALUE
rb_vm_make_binding(const rb_execution_context_t *ec, const rb_control_frame_t *src_cfp)
{
rb_control_frame_t *cfp = rb_vm_get_binding_creatable_next_cfp(ec, src_cfp);
rb_control_frame_t *ruby_level_cfp = rb_vm_get_ruby_level_next_cfp(ec, src_cfp);
VALUE bindval, envval;
rb_binding_t *bind;
if (cfp == 0 || ruby_level_cfp == 0) {
rb_raise(rb_eRuntimeError, "Can't create Binding Object on top of Fiber.");
}
while (1) {
envval = vm_make_env_object(ec, cfp);
if (cfp == ruby_level_cfp) {
break;
}
cfp = rb_vm_get_binding_creatable_next_cfp(ec, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));
}
bindval = rb_binding_alloc(rb_cBinding);
GetBindingPtr(bindval, bind);
vm_bind_update_env(bindval, bind, envval);
RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, cfp->self);
RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, cfp->iseq);
RB_OBJ_WRITE(bindval, &bind->pathobj, ruby_level_cfp->iseq->body->location.pathobj);
bind->first_lineno = rb_vm_get_sourceline(ruby_level_cfp);
return bindval;
}
const VALUE *
rb_binding_add_dynavars(VALUE bindval, rb_binding_t *bind, int dyncount, const ID *dynvars)
{
VALUE envval, pathobj = bind->pathobj;
VALUE path = pathobj_path(pathobj);
VALUE realpath = pathobj_realpath(pathobj);
const struct rb_block *base_block;
const rb_env_t *env;
rb_execution_context_t *ec = GET_EC();
const rb_iseq_t *base_iseq, *iseq;
rb_ast_body_t ast;
NODE tmp_node;
ID minibuf[4], *dyns = minibuf;
VALUE idtmp = 0;
if (dyncount < 0) return 0;
base_block = &bind->block;
base_iseq = vm_block_iseq(base_block);
if (dyncount >= numberof(minibuf)) dyns = ALLOCV_N(ID, idtmp, dyncount + 1);
dyns[0] = dyncount;
MEMCPY(dyns + 1, dynvars, ID, dyncount);
rb_node_init(&tmp_node, NODE_SCOPE, (VALUE)dyns, 0, 0);
ast.root = &tmp_node;
ast.compile_option = 0;
ast.line_count = -1;
if (base_iseq) {
iseq = rb_iseq_new(&ast, base_iseq->body->location.label, path, realpath, base_iseq, ISEQ_TYPE_EVAL);
}
else {
VALUE tempstr = rb_fstring_lit("<temp>");
iseq = rb_iseq_new_top(&ast, tempstr, tempstr, tempstr, NULL);
}
tmp_node.nd_tbl = 0; /* reset table */
ALLOCV_END(idtmp);
vm_set_eval_stack(ec, iseq, 0, base_block);
vm_bind_update_env(bindval, bind, envval = vm_make_env_object(ec, ec->cfp));
rb_vm_pop_frame(ec);
env = (const rb_env_t *)envval;
return env->env;
}
/* C -> Ruby: block */
static inline VALUE
invoke_block(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE self, const struct rb_captured_block *captured, const rb_cref_t *cref, VALUE type, int opt_pc)
{
int arg_size = iseq->body->param.size;
vm_push_frame(ec, iseq, type | VM_FRAME_FLAG_FINISH, self,
VM_GUARDED_PREV_EP(captured->ep),
(VALUE)cref, /* cref or method */
iseq->body->iseq_encoded + opt_pc,
ec->cfp->sp + arg_size,
iseq->body->local_table_size - arg_size,
iseq->body->stack_max);
return vm_exec(ec, TRUE);
}
static VALUE
invoke_bmethod(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE self, const struct rb_captured_block *captured, const rb_callable_method_entry_t *me, VALUE type, int opt_pc)
{
/* bmethod */
int arg_size = iseq->body->param.size;
VALUE ret;
rb_hook_list_t *hooks;
VM_ASSERT(me->def->type == VM_METHOD_TYPE_BMETHOD);
vm_push_frame(ec, iseq, type | VM_FRAME_FLAG_BMETHOD, self,
VM_GUARDED_PREV_EP(captured->ep),
(VALUE)me,
iseq->body->iseq_encoded + opt_pc,
ec->cfp->sp + arg_size,
iseq->body->local_table_size - arg_size,
iseq->body->stack_max);
RUBY_DTRACE_METHOD_ENTRY_HOOK(ec, me->owner, me->def->original_id);
EXEC_EVENT_HOOK(ec, RUBY_EVENT_CALL, self, me->def->original_id, me->called_id, me->owner, Qnil);
if (UNLIKELY((hooks = me->def->body.bmethod.hooks) != NULL) &&
hooks->events & RUBY_EVENT_CALL) {
rb_exec_event_hook_orig(ec, hooks, RUBY_EVENT_CALL, self,
me->def->original_id, me->called_id, me->owner, Qnil, FALSE);
}
VM_ENV_FLAGS_SET(ec->cfp->ep, VM_FRAME_FLAG_FINISH);
ret = vm_exec(ec, TRUE);
EXEC_EVENT_HOOK(ec, RUBY_EVENT_RETURN, self, me->def->original_id, me->called_id, me->owner, ret);
if ((hooks = me->def->body.bmethod.hooks) != NULL &&
hooks->events & RUBY_EVENT_RETURN) {
rb_exec_event_hook_orig(ec, hooks, RUBY_EVENT_RETURN, self,
me->def->original_id, me->called_id, me->owner, ret, FALSE);
}
RUBY_DTRACE_METHOD_RETURN_HOOK(ec, me->owner, me->def->original_id);
return ret;
}
ALWAYS_INLINE(static VALUE
invoke_iseq_block_from_c(rb_execution_context_t *ec, const struct rb_captured_block *captured,
VALUE self, int argc, const VALUE *argv, VALUE passed_block_handler,
const rb_cref_t *cref, int is_lambda, const rb_callable_method_entry_t *me));
static inline VALUE
invoke_iseq_block_from_c(rb_execution_context_t *ec, const struct rb_captured_block *captured,
VALUE self, int argc, const VALUE *argv, VALUE passed_block_handler,
const rb_cref_t *cref, int is_lambda, const rb_callable_method_entry_t *me)
{
const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq);
int i, opt_pc;
VALUE type = VM_FRAME_MAGIC_BLOCK | (is_lambda ? VM_FRAME_FLAG_LAMBDA : 0);
rb_control_frame_t *cfp = ec->cfp;
VALUE *sp = cfp->sp;
stack_check(ec);
CHECK_VM_STACK_OVERFLOW(cfp, argc);
vm_check_canary(ec, sp);
cfp->sp = sp + argc;
for (i=0; i<argc; i++) {
sp[i] = argv[i];
}
opt_pc = vm_yield_setup_args(ec, iseq, argc, sp, passed_block_handler,
(is_lambda ? arg_setup_method : arg_setup_block));
cfp->sp = sp;
if (me == NULL) {
return invoke_block(ec, iseq, self, captured, cref, type, opt_pc);
}
else {
return invoke_bmethod(ec, iseq, self, captured, me, type, opt_pc);
}
}
static inline VALUE
invoke_block_from_c_bh(rb_execution_context_t *ec, VALUE block_handler,
int argc, const VALUE *argv,
VALUE passed_block_handler, const rb_cref_t *cref,
int is_lambda, int force_blockarg)
{
again:
switch (vm_block_handler_type(block_handler)) {
case block_handler_type_iseq:
{
const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(block_handler);
return invoke_iseq_block_from_c(ec, captured, captured->self,
argc, argv, passed_block_handler,
cref, is_lambda, NULL);
}
case block_handler_type_ifunc:
return vm_yield_with_cfunc(ec, VM_BH_TO_IFUNC_BLOCK(block_handler),
VM_BH_TO_IFUNC_BLOCK(block_handler)->self,
argc, argv, passed_block_handler, NULL);
case block_handler_type_symbol:
return vm_yield_with_symbol(ec, VM_BH_TO_SYMBOL(block_handler),
argc, argv, passed_block_handler);
case block_handler_type_proc:
if (force_blockarg == FALSE) {
is_lambda = block_proc_is_lambda(VM_BH_TO_PROC(block_handler));
}
block_handler = vm_proc_to_block_handler(VM_BH_TO_PROC(block_handler));
goto again;
}
VM_UNREACHABLE(invoke_block_from_c_splattable);
return Qundef;
}
static inline VALUE
check_block_handler(rb_execution_context_t *ec)
{
VALUE block_handler = VM_CF_BLOCK_HANDLER(ec->cfp);
vm_block_handler_verify(block_handler);
if (UNLIKELY(block_handler == VM_BLOCK_HANDLER_NONE)) {
rb_vm_localjump_error("no block given", Qnil, 0);
}
return block_handler;
}
static VALUE
vm_yield_with_cref(rb_execution_context_t *ec, int argc, const VALUE *argv, const rb_cref_t *cref, int is_lambda)
{
return invoke_block_from_c_bh(ec, check_block_handler(ec),
argc, argv, VM_BLOCK_HANDLER_NONE,
cref, is_lambda, FALSE);
}
static VALUE
vm_yield(rb_execution_context_t *ec, int argc, const VALUE *argv)
{
return invoke_block_from_c_bh(ec, check_block_handler(ec),
argc, argv, VM_BLOCK_HANDLER_NONE,
NULL, FALSE, FALSE);
}
static VALUE
vm_yield_with_block(rb_execution_context_t *ec, int argc, const VALUE *argv, VALUE block_handler)
{
return invoke_block_from_c_bh(ec, check_block_handler(ec),
argc, argv, block_handler,
NULL, FALSE, FALSE);
}
static VALUE
vm_yield_force_blockarg(rb_execution_context_t *ec, VALUE args)
{
return invoke_block_from_c_bh(ec, check_block_handler(ec), 1, &args,
VM_BLOCK_HANDLER_NONE, NULL, FALSE, TRUE);
}
ALWAYS_INLINE(static VALUE
invoke_block_from_c_proc(rb_execution_context_t *ec, const rb_proc_t *proc,
VALUE self, int argc, const VALUE *argv,
VALUE passed_block_handler, int is_lambda,
const rb_callable_method_entry_t *me));
static inline VALUE
invoke_block_from_c_proc(rb_execution_context_t *ec, const rb_proc_t *proc,
VALUE self, int argc, const VALUE *argv,
VALUE passed_block_handler, int is_lambda,
const rb_callable_method_entry_t *me)
{
const struct rb_block *block = &proc->block;
again:
switch (vm_block_type(block)) {
case block_type_iseq:
return invoke_iseq_block_from_c(ec, &block->as.captured, self, argc, argv, passed_block_handler, NULL, is_lambda, me);
case block_type_ifunc:
return vm_yield_with_cfunc(ec, &block->as.captured, self, argc, argv, passed_block_handler, me);
case block_type_symbol:
return vm_yield_with_symbol(ec, block->as.symbol, argc, argv, passed_block_handler);
case block_type_proc:
is_lambda = block_proc_is_lambda(block->as.proc);
block = vm_proc_block(block->as.proc);
goto again;
}
VM_UNREACHABLE(invoke_block_from_c_proc);
return Qundef;
}
static VALUE
vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
int argc, const VALUE *argv, VALUE passed_block_handler)
{
return invoke_block_from_c_proc(ec, proc, self, argc, argv, passed_block_handler, proc->is_lambda, NULL);
}
MJIT_FUNC_EXPORTED VALUE
rb_vm_invoke_bmethod(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
int argc, const VALUE *argv, VALUE block_handler, const rb_callable_method_entry_t *me)
{
return invoke_block_from_c_proc(ec, proc, self, argc, argv, block_handler, TRUE, me);
}
MJIT_FUNC_EXPORTED VALUE
rb_vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc,
int argc, const VALUE *argv, VALUE passed_block_handler)
{
VALUE self = vm_block_self(&proc->block);
vm_block_handler_verify(passed_block_handler);
if (proc->is_from_method) {
return rb_vm_invoke_bmethod(ec, proc, self, argc, argv, passed_block_handler, NULL);
}
else {
return vm_invoke_proc(ec, proc, self, argc, argv, passed_block_handler);
}
}
/* special variable */
static rb_control_frame_t *
vm_normal_frame(const rb_execution_context_t *ec, rb_control_frame_t *cfp)
{
while (cfp->pc == 0) {
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
if (RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
return 0;
}
}
return cfp;
}
static VALUE
vm_cfp_svar_get(const rb_execution_context_t *ec, rb_control_frame_t *cfp, VALUE key)
{
cfp = vm_normal_frame(ec, cfp);
return lep_svar_get(ec, cfp ? VM_CF_LEP(cfp) : 0, key);
}
static void
vm_cfp_svar_set(const rb_execution_context_t *ec, rb_control_frame_t *cfp, VALUE key, const VALUE val)
{
cfp = vm_normal_frame(ec, cfp);
lep_svar_set(ec, cfp ? VM_CF_LEP(cfp) : 0, key, val);
}
static VALUE
vm_svar_get(const rb_execution_context_t *ec, VALUE key)
{
return vm_cfp_svar_get(ec, ec->cfp, key);
}
static void
vm_svar_set(const rb_execution_context_t *ec, VALUE key, VALUE val)
{
vm_cfp_svar_set(ec, ec->cfp, key, val);
}
VALUE
rb_backref_get(void)
{
return vm_svar_get(GET_EC(), VM_SVAR_BACKREF);
}
void
rb_backref_set(VALUE val)
{
vm_svar_set(GET_EC(), VM_SVAR_BACKREF, val);
}
VALUE
rb_lastline_get(void)
{
return vm_svar_get(GET_EC(), VM_SVAR_LASTLINE);
}
void
rb_lastline_set(VALUE val)
{
vm_svar_set(GET_EC(), VM_SVAR_LASTLINE, val);
}
/* misc */
/* in intern.h */
const char *
rb_sourcefile(void)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
if (cfp) {
return RSTRING_PTR(rb_iseq_path(cfp->iseq));
}
else {
return 0;
}
}
/* in intern.h */
int
rb_sourceline(void)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
if (cfp) {
return rb_vm_get_sourceline(cfp);
}
else {
return 0;
}
}
VALUE
rb_source_location(int *pline)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
if (cfp && cfp->iseq) {
if (pline) *pline = rb_vm_get_sourceline(cfp);
return rb_iseq_path(cfp->iseq);
}
else {
if (pline) *pline = 0;
return Qnil;
}
}
MJIT_FUNC_EXPORTED const char *
rb_source_location_cstr(int *pline)
{
VALUE path = rb_source_location(pline);
if (NIL_P(path)) return NULL;
return RSTRING_PTR(path);
}
rb_cref_t *
rb_vm_cref(void)
{
const rb_execution_context_t *ec = GET_EC();
return vm_ec_cref(ec);
}
rb_cref_t *
rb_vm_cref_replace_with_duplicated_cref(void)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
rb_cref_t *cref = vm_cref_replace_with_duplicated_cref(cfp->ep);
return cref;
}
const rb_cref_t *
rb_vm_cref_in_context(VALUE self, VALUE cbase)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
const rb_cref_t *cref;
if (cfp->self != self) return NULL;
if (!vm_env_cref_by_cref(cfp->ep)) return NULL;
cref = vm_get_cref(cfp->ep);
if (CREF_CLASS(cref) != cbase) return NULL;
return cref;
}
#if 0
void
debug_cref(rb_cref_t *cref)
{
while (cref) {
dp(CREF_CLASS(cref));
printf("%ld\n", CREF_VISI(cref));
cref = CREF_NEXT(cref);
}
}
#endif
VALUE
rb_vm_cbase(void)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
if (cfp == 0) {
rb_raise(rb_eRuntimeError, "Can't call on top of Fiber or Thread");
}
return vm_get_cbase(cfp->ep);
}
/* jump */
static VALUE
make_localjump_error(const char *mesg, VALUE value, int reason)
{
extern VALUE rb_eLocalJumpError;
VALUE exc = rb_exc_new2(rb_eLocalJumpError, mesg);
ID id;
switch (reason) {
case TAG_BREAK:
CONST_ID(id, "break");
break;
case TAG_REDO:
CONST_ID(id, "redo");
break;
case TAG_RETRY:
CONST_ID(id, "retry");
break;
case TAG_NEXT:
CONST_ID(id, "next");
break;
case TAG_RETURN:
CONST_ID(id, "return");
break;
default:
CONST_ID(id, "noreason");
break;
}
rb_iv_set(exc, "@exit_value", value);
rb_iv_set(exc, "@reason", ID2SYM(id));
return exc;
}
MJIT_FUNC_EXPORTED void
rb_vm_localjump_error(const char *mesg, VALUE value, int reason)
{
VALUE exc = make_localjump_error(mesg, value, reason);
rb_exc_raise(exc);
}
VALUE
rb_vm_make_jump_tag_but_local_jump(int state, VALUE val)
{
const char *mesg;
switch (state) {
case TAG_RETURN:
mesg = "unexpected return";
break;
case TAG_BREAK:
mesg = "unexpected break";
break;
case TAG_NEXT:
mesg = "unexpected next";
break;
case TAG_REDO:
mesg = "unexpected redo";
val = Qnil;
break;
case TAG_RETRY:
mesg = "retry outside of rescue clause";
val = Qnil;
break;
default:
return Qnil;
}
if (val == Qundef) {
val = GET_EC()->tag->retval;
}
return make_localjump_error(mesg, val, state);
}
#if 0
void
rb_vm_jump_tag_but_local_jump(int state)
{
VALUE exc = rb_vm_make_jump_tag_but_local_jump(state, Qundef);
if (!NIL_P(exc)) rb_exc_raise(exc);
EC_JUMP_TAG(GET_EC(), state);
}
#endif
static rb_control_frame_t *
next_not_local_frame(rb_control_frame_t *cfp)
{
while (VM_ENV_LOCAL_P(cfp->ep)) {
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return cfp;
}
NORETURN(static void vm_iter_break(rb_execution_context_t *ec, VALUE val));
static void
vm_iter_break(rb_execution_context_t *ec, VALUE val)
{
rb_control_frame_t *cfp = next_not_local_frame(ec->cfp);
const VALUE *ep = VM_CF_PREV_EP(cfp);
const rb_control_frame_t *target_cfp = rb_vm_search_cf_from_ep(ec, cfp, ep);
#if 0 /* raise LocalJumpError */
if (!target_cfp) {
rb_vm_localjump_error("unexpected break", val, TAG_BREAK);
}
#endif
ec->errinfo = (VALUE)THROW_DATA_NEW(val, target_cfp, TAG_BREAK);
EC_JUMP_TAG(ec, TAG_BREAK);
}
void
rb_iter_break(void)
{
vm_iter_break(GET_EC(), Qnil);
}
void
rb_iter_break_value(VALUE val)
{
vm_iter_break(GET_EC(), val);
}
/* optimization: redefine management */
static st_table *vm_opt_method_table = 0;
static int
vm_redefinition_check_flag(VALUE klass)
{
if (klass == rb_cInteger) return INTEGER_REDEFINED_OP_FLAG;
if (klass == rb_cFloat) return FLOAT_REDEFINED_OP_FLAG;
if (klass == rb_cString) return STRING_REDEFINED_OP_FLAG;
if (klass == rb_cArray) return ARRAY_REDEFINED_OP_FLAG;
if (klass == rb_cHash) return HASH_REDEFINED_OP_FLAG;
if (klass == rb_cSymbol) return SYMBOL_REDEFINED_OP_FLAG;
if (klass == rb_cTime) return TIME_REDEFINED_OP_FLAG;
if (klass == rb_cRegexp) return REGEXP_REDEFINED_OP_FLAG;
if (klass == rb_cNilClass) return NIL_REDEFINED_OP_FLAG;
if (klass == rb_cTrueClass) return TRUE_REDEFINED_OP_FLAG;
if (klass == rb_cFalseClass) return FALSE_REDEFINED_OP_FLAG;
if (klass == rb_cProc) return PROC_REDEFINED_OP_FLAG;
return 0;
}
static int
vm_redefinition_check_method_type(const rb_method_definition_t *def)
{
switch (def->type) {
case VM_METHOD_TYPE_CFUNC:
case VM_METHOD_TYPE_OPTIMIZED:
return TRUE;
default:
return FALSE;
}
}
static void
rb_vm_check_redefinition_opt_method(const rb_method_entry_t *me, VALUE klass)
{
st_data_t bop;
if (RB_TYPE_P(klass, T_ICLASS) && FL_TEST(klass, RICLASS_IS_ORIGIN)) {
klass = RBASIC_CLASS(klass);
}
if (vm_redefinition_check_method_type(me->def)) {
if (st_lookup(vm_opt_method_table, (st_data_t)me, &bop)) {
int flag = vm_redefinition_check_flag(klass);
ruby_vm_redefined_flag[bop] |= flag;
}
}
}
static enum rb_id_table_iterator_result
check_redefined_method(ID mid, VALUE value, void *data)
{
VALUE klass = (VALUE)data;
const rb_method_entry_t *me = (rb_method_entry_t *)value;
const rb_method_entry_t *newme = rb_method_entry(klass, mid);
if (newme != me) rb_vm_check_redefinition_opt_method(me, me->owner);
return ID_TABLE_CONTINUE;
}
void
rb_vm_check_redefinition_by_prepend(VALUE klass)
{
if (!vm_redefinition_check_flag(klass)) return;
rb_id_table_foreach(RCLASS_M_TBL(RCLASS_ORIGIN(klass)), check_redefined_method, (void *)klass);
}
static void
add_opt_method(VALUE klass, ID mid, VALUE bop)
{
const rb_method_entry_t *me = rb_method_entry_at(klass, mid);
if (me && vm_redefinition_check_method_type(me->def)) {
st_insert(vm_opt_method_table, (st_data_t)me, (st_data_t)bop);
}
else {
rb_bug("undefined optimized method: %s", rb_id2name(mid));
}
}
static void
vm_init_redefined_flag(void)
{
ID mid;
VALUE bop;
vm_opt_method_table = st_init_numtable();
#define OP(mid_, bop_) (mid = id##mid_, bop = BOP_##bop_, ruby_vm_redefined_flag[bop] = 0)
#define C(k) add_opt_method(rb_c##k, mid, bop)
OP(PLUS, PLUS), (C(Integer), C(Float), C(String), C(Array));
OP(MINUS, MINUS), (C(Integer), C(Float));
OP(MULT, MULT), (C(Integer), C(Float));
OP(DIV, DIV), (C(Integer), C(Float));
OP(MOD, MOD), (C(Integer), C(Float));
OP(Eq, EQ), (C(Integer), C(Float), C(String), C(Symbol));
OP(Eqq, EQQ), (C(Integer), C(Float), C(Symbol), C(String),
C(NilClass), C(TrueClass), C(FalseClass));
OP(LT, LT), (C(Integer), C(Float));
OP(LE, LE), (C(Integer), C(Float));
OP(GT, GT), (C(Integer), C(Float));
OP(GE, GE), (C(Integer), C(Float));
OP(LTLT, LTLT), (C(String), C(Array));
OP(AREF, AREF), (C(Array), C(Hash));
OP(ASET, ASET), (C(Array), C(Hash));
OP(Length, LENGTH), (C(Array), C(String), C(Hash));
OP(Size, SIZE), (C(Array), C(String), C(Hash));
OP(EmptyP, EMPTY_P), (C(Array), C(String), C(Hash));
OP(Succ, SUCC), (C(Integer), C(String), C(Time));
OP(EqTilde, MATCH), (C(Regexp), C(String));
OP(Freeze, FREEZE), (C(String));
OP(UMinus, UMINUS), (C(String));
OP(Max, MAX), (C(Array));
OP(Min, MIN), (C(Array));
OP(Call, CALL), (C(Proc));
OP(And, AND), (C(Integer));
OP(Or, OR), (C(Integer));
#undef C
#undef OP
}
/* for vm development */
#if VMDEBUG
static const char *
vm_frametype_name(const rb_control_frame_t *cfp)
{
switch (VM_FRAME_TYPE(cfp)) {
case VM_FRAME_MAGIC_METHOD: return "method";
case VM_FRAME_MAGIC_BLOCK: return "block";
case VM_FRAME_MAGIC_CLASS: return "class";
case VM_FRAME_MAGIC_TOP: return "top";
case VM_FRAME_MAGIC_CFUNC: return "cfunc";
case VM_FRAME_MAGIC_IFUNC: return "ifunc";
case VM_FRAME_MAGIC_EVAL: return "eval";
case VM_FRAME_MAGIC_RESCUE: return "rescue";
default:
rb_bug("unknown frame");
}
}
#endif
static VALUE
frame_return_value(const struct vm_throw_data *err)
{
if (THROW_DATA_P(err) &&
THROW_DATA_STATE(err) == TAG_BREAK &&
THROW_DATA_CONSUMED_P(err) == FALSE) {
return THROW_DATA_VAL(err);
}
else {
return Qnil;
}
}
#if 0
/* for debug */
static const char *
frame_name(const rb_control_frame_t *cfp)
{
unsigned long type = VM_FRAME_TYPE(cfp);
#define C(t) if (type == VM_FRAME_MAGIC_##t) return #t
C(METHOD);
C(BLOCK);
C(CLASS);
C(TOP);
C(CFUNC);
C(PROC);
C(IFUNC);
C(EVAL);
C(LAMBDA);
C(RESCUE);
C(DUMMY);
#undef C
return "unknown";
}
#endif
static void
hook_before_rewind(rb_execution_context_t *ec, const rb_control_frame_t *cfp,
int will_finish_vm_exec, int state, struct vm_throw_data *err)
{
if (state == TAG_RAISE && RBASIC_CLASS(err) == rb_eSysStackError) {
return;
}
else {
const rb_iseq_t *iseq = cfp->iseq;
rb_hook_list_t *local_hooks = iseq->aux.exec.local_hooks;
switch (VM_FRAME_TYPE(ec->cfp)) {
case VM_FRAME_MAGIC_METHOD:
RUBY_DTRACE_METHOD_RETURN_HOOK(ec, 0, 0);
EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err));
if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_RETURN)) {
rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_RETURN,
ec->cfp->self, 0, 0, 0, frame_return_value(err), TRUE);
}
THROW_DATA_CONSUMED_SET(err);
break;
case VM_FRAME_MAGIC_BLOCK:
if (VM_FRAME_BMETHOD_P(ec->cfp)) {
EXEC_EVENT_HOOK(ec, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err));
if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_B_RETURN)) {
rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_B_RETURN,
ec->cfp->self, 0, 0, 0, frame_return_value(err), FALSE);
}
if (!will_finish_vm_exec) {
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(ec->cfp);
/* kick RUBY_EVENT_RETURN at invoke_block_from_c() for bmethod */
EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_RETURN, ec->cfp->self,
rb_vm_frame_method_entry(ec->cfp)->def->original_id,
rb_vm_frame_method_entry(ec->cfp)->called_id,
rb_vm_frame_method_entry(ec->cfp)->owner,
frame_return_value(err));
VM_ASSERT(me->def->type == VM_METHOD_TYPE_BMETHOD);
local_hooks = me->def->body.bmethod.hooks;
if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_RETURN)) {
rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_RETURN, ec->cfp->self,
rb_vm_frame_method_entry(ec->cfp)->def->original_id,
rb_vm_frame_method_entry(ec->cfp)->called_id,
rb_vm_frame_method_entry(ec->cfp)->owner,
frame_return_value(err), TRUE);
}
}
THROW_DATA_CONSUMED_SET(err);
}
else {
EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err));
if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_B_RETURN)) {
rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_B_RETURN,
ec->cfp->self, 0, 0, 0, frame_return_value(err), TRUE);
}
THROW_DATA_CONSUMED_SET(err);
}
break;
case VM_FRAME_MAGIC_CLASS:
EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_END, ec->cfp->self, 0, 0, 0, Qnil);
break;
}
}
}
/* evaluator body */
/* finish
VMe (h1) finish
VM finish F1 F2
cfunc finish F1 F2 C1
rb_funcall finish F1 F2 C1
VMe finish F1 F2 C1
VM finish F1 F2 C1 F3
F1 - F3 : pushed by VM
C1 : pushed by send insn (CFUNC)
struct CONTROL_FRAME {
VALUE *pc; // cfp[0], program counter
VALUE *sp; // cfp[1], stack pointer
rb_iseq_t *iseq; // cfp[2], iseq
VALUE self; // cfp[3], self
const VALUE *ep; // cfp[4], env pointer
const void *block_code; // cfp[5], block code
};
struct rb_captured_block {
VALUE self;
VALUE *ep;
union code;
};
struct METHOD_ENV {
VALUE param0;
...
VALUE paramN;
VALUE lvar1;
...
VALUE lvarM;
VALUE cref; // ep[-2]
VALUE special; // ep[-1]
VALUE flags; // ep[ 0] == lep[0]
};
struct BLOCK_ENV {
VALUE block_param0;
...
VALUE block_paramN;
VALUE block_lvar1;
...
VALUE block_lvarM;
VALUE cref; // ep[-2]
VALUE special; // ep[-1]
VALUE flags; // ep[ 0]
};
struct CLASS_ENV {
VALUE class_lvar0;
...
VALUE class_lvarN;
VALUE cref;
VALUE prev_ep; // for frame jump
VALUE flags;
};
struct C_METHOD_CONTROL_FRAME {
VALUE *pc; // 0
VALUE *sp; // stack pointer
rb_iseq_t *iseq; // cmi
VALUE self; // ?
VALUE *ep; // ep == lep
void *code; //
};
struct C_BLOCK_CONTROL_FRAME {
VALUE *pc; // point only "finish" insn
VALUE *sp; // sp
rb_iseq_t *iseq; // ?
VALUE self; //
VALUE *ep; // ep
void *code; //
};
If mjit_exec is already called before calling vm_exec, `mjit_enable_p` should
be FALSE to avoid calling `mjit_exec` twice.
*/
static inline VALUE
vm_exec_handle_exception(rb_execution_context_t *ec, enum ruby_tag_type state,
VALUE errinfo, VALUE *initial);
VALUE
vm_exec(rb_execution_context_t *ec, int mjit_enable_p)
{
enum ruby_tag_type state;
VALUE result = Qundef;
VALUE initial = 0;
EC_PUSH_TAG(ec);
_tag.retval = Qnil;
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
if (!mjit_enable_p || (result = mjit_exec(ec)) == Qundef) {
result = vm_exec_core(ec, initial);
}
goto vm_loop_start; /* fallback to the VM */
}
else {
result = ec->errinfo;
rb_ec_raised_reset(ec, RAISED_STACKOVERFLOW);
while ((result = vm_exec_handle_exception(ec, state, result, &initial)) == Qundef) {
/* caught a jump, exec the handler */
result = vm_exec_core(ec, initial);
vm_loop_start:
VM_ASSERT(ec->tag == &_tag);
/* when caught `throw`, `tag.state` is set. */
if ((state = _tag.state) == TAG_NONE) break;
_tag.state = TAG_NONE;
}
}
EC_POP_TAG();
return result;
}
static inline VALUE
vm_exec_handle_exception(rb_execution_context_t *ec, enum ruby_tag_type state,
VALUE errinfo, VALUE *initial)
{
struct vm_throw_data *err = (struct vm_throw_data *)errinfo;
for (;;) {
unsigned int i;
const struct iseq_catch_table_entry *entry;
const struct iseq_catch_table *ct;
unsigned long epc, cont_pc, cont_sp;
const rb_iseq_t *catch_iseq;
rb_control_frame_t *cfp;
VALUE type;
const rb_control_frame_t *escape_cfp;
cont_pc = cont_sp = 0;
catch_iseq = NULL;
while (ec->cfp->pc == 0 || ec->cfp->iseq == 0) {
if (UNLIKELY(VM_FRAME_TYPE(ec->cfp) == VM_FRAME_MAGIC_CFUNC)) {
EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_C_RETURN, ec->cfp->self,
rb_vm_frame_method_entry(ec->cfp)->def->original_id,
rb_vm_frame_method_entry(ec->cfp)->called_id,
rb_vm_frame_method_entry(ec->cfp)->owner, Qnil);
RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec,
rb_vm_frame_method_entry(ec->cfp)->owner,
rb_vm_frame_method_entry(ec->cfp)->def->original_id);
}
rb_vm_pop_frame(ec);
}
cfp = ec->cfp;
epc = cfp->pc - cfp->iseq->body->iseq_encoded;
escape_cfp = NULL;
if (state == TAG_BREAK || state == TAG_RETURN) {
escape_cfp = THROW_DATA_CATCH_FRAME(err);
if (cfp == escape_cfp) {
if (state == TAG_RETURN) {
if (!VM_FRAME_FINISHED_P(cfp)) {
THROW_DATA_CATCH_FRAME_SET(err, cfp + 1);
THROW_DATA_STATE_SET(err, state = TAG_BREAK);
}
else {
ct = cfp->iseq->body->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = &ct->entries[i];
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
}
}
if (catch_iseq == NULL) {
ec->errinfo = Qnil;
THROW_DATA_CATCH_FRAME_SET(err, cfp + 1);
hook_before_rewind(ec, ec->cfp, TRUE, state, err);
rb_vm_pop_frame(ec);
return THROW_DATA_VAL(err);
}
}
/* through */
}
else {
/* TAG_BREAK */
#if OPT_STACK_CACHING
*initial = THROW_DATA_VAL(err);
#else
*ec->cfp->sp++ = THROW_DATA_VAL(err);
#endif
ec->errinfo = Qnil;
return Qundef;
}
}
}
if (state == TAG_RAISE) {
ct = cfp->iseq->body->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = &ct->entries[i];
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_RESCUE ||
entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
}
}
}
else if (state == TAG_RETRY) {
ct = cfp->iseq->body->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = &ct->entries[i];
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
else if (entry->type == CATCH_TYPE_RETRY) {
const rb_control_frame_t *escape_cfp;
escape_cfp = THROW_DATA_CATCH_FRAME(err);
if (cfp == escape_cfp) {
cfp->pc = cfp->iseq->body->iseq_encoded + entry->cont;
ec->errinfo = Qnil;
return Qundef;
}
}
}
}
}
else if (state == TAG_BREAK && !escape_cfp) {
type = CATCH_TYPE_BREAK;
search_restart_point:
ct = cfp->iseq->body->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = &ct->entries[i];
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
else if (entry->type == type) {
cfp->pc = cfp->iseq->body->iseq_encoded + entry->cont;
cfp->sp = vm_base_ptr(cfp) + entry->sp;
if (state != TAG_REDO) {
#if OPT_STACK_CACHING
*initial = THROW_DATA_VAL(err);
#else
*ec->cfp->sp++ = THROW_DATA_VAL(err);
#endif
}
ec->errinfo = Qnil;
VM_ASSERT(ec->tag->state == TAG_NONE);
return Qundef;
}
}
}
}
else if (state == TAG_REDO) {
type = CATCH_TYPE_REDO;
goto search_restart_point;
}
else if (state == TAG_NEXT) {
type = CATCH_TYPE_NEXT;
goto search_restart_point;
}
else {
ct = cfp->iseq->body->catch_table;
if (ct) for (i = 0; i < ct->size; i++) {
entry = &ct->entries[i];
if (entry->start < epc && entry->end >= epc) {
if (entry->type == CATCH_TYPE_ENSURE) {
catch_iseq = entry->iseq;
cont_pc = entry->cont;
cont_sp = entry->sp;
break;
}
}
}
}
if (catch_iseq != NULL) { /* found catch table */
/* enter catch scope */
const int arg_size = 1;
rb_iseq_check(catch_iseq);
cfp->sp = vm_base_ptr(cfp) + cont_sp;
cfp->pc = cfp->iseq->body->iseq_encoded + cont_pc;
/* push block frame */
cfp->sp[0] = (VALUE)err;
vm_push_frame(ec, catch_iseq, VM_FRAME_MAGIC_RESCUE,
cfp->self,
VM_GUARDED_PREV_EP(cfp->ep),
0, /* cref or me */
catch_iseq->body->iseq_encoded,
cfp->sp + arg_size /* push value */,
catch_iseq->body->local_table_size - arg_size,
catch_iseq->body->stack_max);
state = 0;
ec->tag->state = TAG_NONE;
ec->errinfo = Qnil;
return Qundef;
}
else {
hook_before_rewind(ec, ec->cfp, FALSE, state, err);
if (VM_FRAME_FINISHED_P(ec->cfp)) {
rb_vm_pop_frame(ec);
ec->errinfo = (VALUE)err;
ec->tag = ec->tag->prev;
EC_JUMP_TAG(ec, state);
}
else {
rb_vm_pop_frame(ec);
}
}
}
}
/* misc */
VALUE
rb_iseq_eval(const rb_iseq_t *iseq)
{
rb_execution_context_t *ec = GET_EC();
VALUE val;
vm_set_top_stack(ec, iseq);
val = vm_exec(ec, TRUE);
return val;
}
VALUE
rb_iseq_eval_main(const rb_iseq_t *iseq)
{
rb_execution_context_t *ec = GET_EC();
VALUE val;
vm_set_main_stack(ec, iseq);
val = vm_exec(ec, TRUE);
return val;
}
int
rb_vm_control_frame_id_and_class(const rb_control_frame_t *cfp, ID *idp, ID *called_idp, VALUE *klassp)
{
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
if (me) {
if (idp) *idp = me->def->original_id;
if (called_idp) *called_idp = me->called_id;
if (klassp) *klassp = me->owner;
return TRUE;
}
else {
return FALSE;
}
}
int
rb_ec_frame_method_id_and_class(const rb_execution_context_t *ec, ID *idp, ID *called_idp, VALUE *klassp)
{
return rb_vm_control_frame_id_and_class(ec->cfp, idp, called_idp, klassp);
}
int
rb_frame_method_id_and_class(ID *idp, VALUE *klassp)
{
return rb_ec_frame_method_id_and_class(GET_EC(), idp, 0, klassp);
}
VALUE
rb_vm_call_cfunc(VALUE recv, VALUE (*func)(VALUE), VALUE arg,
VALUE block_handler, VALUE filename)
{
rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *reg_cfp = ec->cfp;
const rb_iseq_t *iseq = rb_iseq_new(0, filename, filename, Qnil, 0, ISEQ_TYPE_TOP);
VALUE val;
vm_push_frame(ec, iseq, VM_FRAME_MAGIC_TOP | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH,
recv, block_handler,
(VALUE)vm_cref_new_toplevel(ec), /* cref or me */
0, reg_cfp->sp, 0, 0);
val = (*func)(arg);
rb_vm_pop_frame(ec);
return val;
}
/* vm */
void
rb_vm_mark(void *ptr)
{
RUBY_MARK_ENTER("vm");
RUBY_GC_INFO("-------------------------------------------------\n");
if (ptr) {
rb_vm_t *vm = ptr;
rb_thread_t *th = 0;
list_for_each(&vm->living_threads, th, vmlt_node) {
rb_gc_mark(th->self);
}
rb_gc_mark(vm->thgroup_default);
rb_gc_mark(vm->mark_object_ary);
rb_gc_mark(vm->load_path);
rb_gc_mark(vm->load_path_snapshot);
RUBY_MARK_UNLESS_NULL(vm->load_path_check_cache);
rb_gc_mark(vm->expanded_load_path);
rb_gc_mark(vm->loaded_features);
rb_gc_mark(vm->loaded_features_snapshot);
rb_gc_mark(vm->top_self);
RUBY_MARK_UNLESS_NULL(vm->coverages);
rb_gc_mark(vm->defined_module_hash);
if (vm->loading_table) {
rb_mark_tbl(vm->loading_table);
}
rb_hook_list_mark(&vm->global_hooks);
rb_gc_mark_values(RUBY_NSIG, vm->trap_list.cmd);
mjit_mark();
}
RUBY_MARK_LEAVE("vm");
}
#undef rb_vm_register_special_exception
void
rb_vm_register_special_exception_str(enum ruby_special_exceptions sp, VALUE cls, VALUE mesg)
{
rb_vm_t *vm = GET_VM();
VALUE exc = rb_exc_new3(cls, rb_obj_freeze(mesg));
OBJ_TAINT(exc);
OBJ_FREEZE(exc);
((VALUE *)vm->special_exceptions)[sp] = exc;
rb_gc_register_mark_object(exc);
}
int
rb_vm_add_root_module(ID id, VALUE module)
{
rb_vm_t *vm = GET_VM();
rb_hash_aset(vm->defined_module_hash, ID2SYM(id), module);
return TRUE;
}
static int
free_loading_table_entry(st_data_t key, st_data_t value, st_data_t arg)
{
xfree((char *)key);
return ST_DELETE;
}
int
ruby_vm_destruct(rb_vm_t *vm)
{
RUBY_FREE_ENTER("vm");
if (vm) {
rb_thread_t *th = vm->main_thread;
struct rb_objspace *objspace = vm->objspace;
vm->main_thread = 0;
if (th) {
rb_fiber_reset_root_local_storage(th);
thread_free(th);
}
rb_vm_living_threads_init(vm);
ruby_vm_run_at_exit_hooks(vm);
if (vm->loading_table) {
st_foreach(vm->loading_table, free_loading_table_entry, 0);
st_free_table(vm->loading_table);
vm->loading_table = 0;
}
if (vm->frozen_strings) {
st_free_table(vm->frozen_strings);
vm->frozen_strings = 0;
}
rb_vm_gvl_destroy(vm);
RB_ALTSTACK_FREE(vm->main_altstack);
if (objspace) {
rb_objspace_free(objspace);
}
/* after freeing objspace, you *can't* use ruby_xfree() */
ruby_mimfree(vm);
ruby_current_vm_ptr = NULL;
}
RUBY_FREE_LEAVE("vm");
return 0;
}
static size_t
vm_memsize(const void *ptr)
{
const rb_vm_t *vmobj = ptr;
size_t size = sizeof(rb_vm_t);
size += vmobj->living_thread_num * sizeof(rb_thread_t);
if (vmobj->defined_strings) {
size += DEFINED_EXPR * sizeof(VALUE);
}
return size;
}
static const rb_data_type_t vm_data_type = {
"VM",
{NULL, NULL, vm_memsize,},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
vm_default_params(void)
{
rb_vm_t *vm = GET_VM();
VALUE result = rb_hash_new();
#define SET(name) rb_hash_aset(result, ID2SYM(rb_intern(#name)), SIZET2NUM(vm->default_params.name));
SET(thread_vm_stack_size);
SET(thread_machine_stack_size);
SET(fiber_vm_stack_size);
SET(fiber_machine_stack_size);
#undef SET
rb_obj_freeze(result);
return result;
}
static size_t
get_param(const char *name, size_t default_value, size_t min_value)
{
const char *envval;
size_t result = default_value;
if ((envval = getenv(name)) != 0) {
long val = atol(envval);
if (val < (long)min_value) {
val = (long)min_value;
}
result = (size_t)(((val -1 + RUBY_VM_SIZE_ALIGN) / RUBY_VM_SIZE_ALIGN) * RUBY_VM_SIZE_ALIGN);
}
if (0) fprintf(stderr, "%s: %"PRIuSIZE"\n", name, result); /* debug print */
return result;
}
static void
check_machine_stack_size(size_t *sizep)
{
#ifdef PTHREAD_STACK_MIN
size_t size = *sizep;
#endif
#ifdef PTHREAD_STACK_MIN
if (size < PTHREAD_STACK_MIN) {
*sizep = PTHREAD_STACK_MIN * 2;
}
#endif
}
static void
vm_default_params_setup(rb_vm_t *vm)
{
vm->default_params.thread_vm_stack_size =
get_param("RUBY_THREAD_VM_STACK_SIZE",
RUBY_VM_THREAD_VM_STACK_SIZE,
RUBY_VM_THREAD_VM_STACK_SIZE_MIN);
vm->default_params.thread_machine_stack_size =
get_param("RUBY_THREAD_MACHINE_STACK_SIZE",
RUBY_VM_THREAD_MACHINE_STACK_SIZE,
RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN);
vm->default_params.fiber_vm_stack_size =
get_param("RUBY_FIBER_VM_STACK_SIZE",
RUBY_VM_FIBER_VM_STACK_SIZE,
RUBY_VM_FIBER_VM_STACK_SIZE_MIN);
vm->default_params.fiber_machine_stack_size =
get_param("RUBY_FIBER_MACHINE_STACK_SIZE",
RUBY_VM_FIBER_MACHINE_STACK_SIZE,
RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN);
/* environment dependent check */
check_machine_stack_size(&vm->default_params.thread_machine_stack_size);
check_machine_stack_size(&vm->default_params.fiber_machine_stack_size);
}
static void
vm_init2(rb_vm_t *vm)
{
MEMZERO(vm, rb_vm_t, 1);
rb_vm_living_threads_init(vm);
vm->thread_report_on_exception = 1;
vm->src_encoding_index = -1;
vm_default_params_setup(vm);
}
/* Thread */
#define USE_THREAD_DATA_RECYCLE 1
#if USE_THREAD_DATA_RECYCLE
#define RECYCLE_MAX 64
static VALUE *thread_recycle_stack_slot[RECYCLE_MAX];
static int thread_recycle_stack_count = 0;
#endif /* USE_THREAD_DATA_RECYCLE */
VALUE *
rb_thread_recycle_stack(size_t size)
{
#if USE_THREAD_DATA_RECYCLE
if (thread_recycle_stack_count > 0) {
/* TODO: check stack size if stack sizes are variable */
return thread_recycle_stack_slot[--thread_recycle_stack_count];
}
#endif /* USE_THREAD_DATA_RECYCLE */
return ALLOC_N(VALUE, size);
}
void
rb_thread_recycle_stack_release(VALUE *stack)
{
VM_ASSERT(stack != NULL);
#if USE_THREAD_DATA_RECYCLE
if (thread_recycle_stack_count < RECYCLE_MAX) {
thread_recycle_stack_slot[thread_recycle_stack_count++] = stack;
return;
}
#endif
ruby_xfree(stack);
}
void
rb_execution_context_mark(const rb_execution_context_t *ec)
{
#if VM_CHECK_MODE > 0
void rb_ec_verify(const rb_execution_context_t *ec); /* cont.c */
rb_ec_verify(ec);
#endif
/* mark VM stack */
if (ec->vm_stack) {
VALUE *p = ec->vm_stack;
VALUE *sp = ec->cfp->sp;
rb_control_frame_t *cfp = ec->cfp;
rb_control_frame_t *limit_cfp = (void *)(ec->vm_stack + ec->vm_stack_size);
rb_gc_mark_values((long)(sp - p), p);
while (cfp != limit_cfp) {
const VALUE *ep = cfp->ep;
VM_ASSERT(!!VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED) == vm_ep_in_heap_p_(ec, ep));
rb_gc_mark(cfp->self);
rb_gc_mark((VALUE)cfp->iseq);
rb_gc_mark((VALUE)cfp->block_code);
if (!VM_ENV_LOCAL_P(ep)) {
const VALUE *prev_ep = VM_ENV_PREV_EP(ep);
if (VM_ENV_FLAGS(prev_ep, VM_ENV_FLAG_ESCAPED)) {
rb_gc_mark(prev_ep[VM_ENV_DATA_INDEX_ENV]);
}
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
}
/* mark machine stack */
if (ec->machine.stack_start && ec->machine.stack_end &&
ec != GET_EC() /* marked for current ec at the first stage of marking */
) {
rb_gc_mark_machine_stack(ec);
rb_gc_mark_locations((VALUE *)&ec->machine.regs,
(VALUE *)(&ec->machine.regs) +
sizeof(ec->machine.regs) / sizeof(VALUE));
}
RUBY_MARK_UNLESS_NULL(ec->errinfo);
RUBY_MARK_UNLESS_NULL(ec->root_svar);
rb_mark_tbl(ec->local_storage);
RUBY_MARK_UNLESS_NULL(ec->local_storage_recursive_hash);
RUBY_MARK_UNLESS_NULL(ec->local_storage_recursive_hash_for_trace);
RUBY_MARK_UNLESS_NULL(ec->private_const_reference);
}
void rb_fiber_mark_self(rb_fiber_t *fib);
void rb_threadptr_root_fiber_setup(rb_thread_t *th);
void rb_threadptr_root_fiber_release(rb_thread_t *th);
static void
thread_mark(void *ptr)
{
rb_thread_t *th = ptr;
RUBY_MARK_ENTER("thread");
rb_fiber_mark_self(th->ec->fiber_ptr);
/* mark ruby objects */
switch (th->invoke_type) {
case thread_invoke_type_proc:
RUBY_MARK_UNLESS_NULL(th->invoke_arg.proc.proc);
RUBY_MARK_UNLESS_NULL(th->invoke_arg.proc.args);
break;
case thread_invoke_type_func:
rb_gc_mark_maybe((VALUE)th->invoke_arg.func.arg);
break;
default:
break;
}
RUBY_MARK_UNLESS_NULL(th->thgroup);
RUBY_MARK_UNLESS_NULL(th->value);
RUBY_MARK_UNLESS_NULL(th->pending_interrupt_queue);
RUBY_MARK_UNLESS_NULL(th->pending_interrupt_mask_stack);
RUBY_MARK_UNLESS_NULL(th->top_self);
RUBY_MARK_UNLESS_NULL(th->top_wrapper);
if (th->root_fiber) rb_fiber_mark_self(th->root_fiber);
RUBY_MARK_UNLESS_NULL(th->stat_insn_usage);
RUBY_MARK_UNLESS_NULL(th->last_status);
RUBY_MARK_UNLESS_NULL(th->locking_mutex);
RUBY_MARK_UNLESS_NULL(th->name);
RUBY_MARK_LEAVE("thread");
}
static void
thread_free(void *ptr)
{
rb_thread_t *th = ptr;
RUBY_FREE_ENTER("thread");
if (th->locking_mutex != Qfalse) {
rb_bug("thread_free: locking_mutex must be NULL (%p:%p)", (void *)th, (void *)th->locking_mutex);
}
if (th->keeping_mutexes != NULL) {
rb_bug("thread_free: keeping_mutexes must be NULL (%p:%p)", (void *)th, (void *)th->keeping_mutexes);
}
rb_threadptr_root_fiber_release(th);
if (th->vm && th->vm->main_thread == th) {
RUBY_GC_INFO("main thread\n");
}
else {
ruby_xfree(ptr);
}
RUBY_FREE_LEAVE("thread");
}
static size_t
thread_memsize(const void *ptr)
{
const rb_thread_t *th = ptr;
size_t size = sizeof(rb_thread_t);
if (!th->root_fiber) {
size += th->ec->vm_stack_size * sizeof(VALUE);
}
if (th->ec->local_storage) {
size += st_memsize(th->ec->local_storage);
}
return size;
}
#define thread_data_type ruby_threadptr_data_type
const rb_data_type_t ruby_threadptr_data_type = {
"VM/thread",
{
thread_mark,
thread_free,
thread_memsize,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
VALUE
rb_obj_is_thread(VALUE obj)
{
if (rb_typeddata_is_kind_of(obj, &thread_data_type)) {
return Qtrue;
}
else {
return Qfalse;
}
}
static VALUE
thread_alloc(VALUE klass)
{
VALUE obj;
rb_thread_t *th;
obj = TypedData_Make_Struct(klass, rb_thread_t, &thread_data_type, th);
return obj;
}
static void
th_init(rb_thread_t *th, VALUE self)
{
th->self = self;
rb_threadptr_root_fiber_setup(th);
{
/* vm_stack_size is word number.
* th->vm->default_params.thread_vm_stack_size is byte size. */
size_t size = th->vm->default_params.thread_vm_stack_size / sizeof(VALUE);
rb_ec_set_vm_stack(th->ec, rb_thread_recycle_stack(size), size);
}
th->ec->cfp = (void *)(th->ec->vm_stack + th->ec->vm_stack_size);
vm_push_frame(th->ec, 0 /* dummy iseq */, VM_FRAME_MAGIC_DUMMY | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH | VM_FRAME_FLAG_CFRAME /* dummy frame */,
Qnil /* dummy self */, VM_BLOCK_HANDLER_NONE /* dummy block ptr */,
0 /* dummy cref/me */,
0 /* dummy pc */, th->ec->vm_stack, 0, 0);
th->status = THREAD_RUNNABLE;
th->last_status = Qnil;
th->ec->errinfo = Qnil;
th->ec->root_svar = Qfalse;
th->ec->local_storage_recursive_hash = Qnil;
th->ec->local_storage_recursive_hash_for_trace = Qnil;
#ifdef NON_SCALAR_THREAD_ID
th->thread_id_string[0] = '\0';
#endif
#if OPT_CALL_THREADED_CODE
th->retval = Qundef;
#endif
th->name = Qnil;
th->report_on_exception = th->vm->thread_report_on_exception;
}
static VALUE
ruby_thread_init(VALUE self)
{
rb_thread_t *th = rb_thread_ptr(self);
rb_vm_t *vm = GET_THREAD()->vm;
th->vm = vm;
th_init(th, self);
rb_ivar_set(self, rb_intern("locals"), rb_hash_new());
th->top_wrapper = 0;
th->top_self = rb_vm_top_self();
th->ec->root_svar = Qfalse;
return self;
}
VALUE
rb_thread_alloc(VALUE klass)
{
VALUE self = thread_alloc(klass);
ruby_thread_init(self);
return self;
}
#define REWIND_CFP(expr) do { \
rb_execution_context_t *ec__ = GET_EC(); \
VALUE *const curr_sp = (ec__->cfp++)->sp; \
VALUE *const saved_sp = ec__->cfp->sp; \
ec__->cfp->sp = curr_sp; \
expr; \
(ec__->cfp--)->sp = saved_sp; \
} while (0)
static VALUE
m_core_set_method_alias(VALUE self, VALUE cbase, VALUE sym1, VALUE sym2)
{
REWIND_CFP({
rb_alias(cbase, SYM2ID(sym1), SYM2ID(sym2));
});
return Qnil;
}
static VALUE
m_core_set_variable_alias(VALUE self, VALUE sym1, VALUE sym2)
{
REWIND_CFP({
rb_alias_variable(SYM2ID(sym1), SYM2ID(sym2));
});
return Qnil;
}
static VALUE
m_core_undef_method(VALUE self, VALUE cbase, VALUE sym)
{
REWIND_CFP({
rb_undef(cbase, SYM2ID(sym));
rb_clear_method_cache_by_class(self);
});
return Qnil;
}
static VALUE
m_core_set_postexe(VALUE self)
{
rb_set_end_proc(rb_call_end_proc, rb_block_proc());
return Qnil;
}
static VALUE core_hash_merge_kwd(VALUE hash, VALUE kw);
static VALUE
core_hash_merge(VALUE hash, long argc, const VALUE *argv)
{
Check_Type(hash, T_HASH);
VM_ASSERT(argc % 2 == 0);
rb_hash_bulk_insert(argc, argv, hash);
return hash;
}
static VALUE
m_core_hash_merge_ptr(int argc, VALUE *argv, VALUE recv)
{
VALUE hash = argv[0];
REWIND_CFP(core_hash_merge(hash, argc-1, argv+1));
return hash;
}
static void
kw_check_symbol(VALUE key)
{
if (!SYMBOL_P(key)) {
rb_raise(rb_eTypeError, "hash key %+"PRIsVALUE" is not a Symbol",
key);
}
}
static int
kwmerge_i(VALUE key, VALUE value, VALUE hash)
{
kw_check_symbol(key);
rb_hash_aset(hash, key, value);
return ST_CONTINUE;
}
static VALUE
m_core_hash_merge_kwd(VALUE recv, VALUE hash, VALUE kw)
{
REWIND_CFP(hash = core_hash_merge_kwd(hash, kw));
return hash;
}
static VALUE
core_hash_merge_kwd(VALUE hash, VALUE kw)
{
rb_hash_foreach(rb_to_hash_type(kw), kwmerge_i, hash);
return hash;
}
/* Returns true if JIT is enabled */
static VALUE
mjit_enabled_p(void)
{
return mjit_enabled ? Qtrue : Qfalse;
}
static VALUE
mjit_pause_m(int argc, VALUE *argv, RB_UNUSED_VAR(VALUE self))
{
VALUE options = Qnil;
VALUE wait = Qtrue;
rb_scan_args(argc, argv, "0:", &options);
if (!NIL_P(options)) {
static ID keyword_ids[1];
if (!keyword_ids[0])
keyword_ids[0] = rb_intern("wait");
rb_get_kwargs(options, keyword_ids, 0, 1, &wait);
}
return mjit_pause(RTEST(wait));
}
extern VALUE *rb_gc_stack_start;
extern size_t rb_gc_stack_maxsize;
#ifdef __ia64
extern VALUE *rb_gc_register_stack_start;
#endif
/* debug functions */
/* :nodoc: */
static VALUE
sdr(void)
{
rb_vm_bugreport(NULL);
return Qnil;
}
/* :nodoc: */
static VALUE
nsdr(void)
{
VALUE ary = rb_ary_new();
#if HAVE_BACKTRACE
#include <execinfo.h>
#define MAX_NATIVE_TRACE 1024
static void *trace[MAX_NATIVE_TRACE];
int n = (int)backtrace(trace, MAX_NATIVE_TRACE);
char **syms = backtrace_symbols(trace, n);
int i;
if (syms == 0) {
rb_memerror();
}
for (i=0; i<n; i++) {
rb_ary_push(ary, rb_str_new2(syms[i]));
}
free(syms); /* OK */
#endif
return ary;
}
#if VM_COLLECT_USAGE_DETAILS
static VALUE usage_analysis_insn_stop(VALUE self);
static VALUE usage_analysis_operand_stop(VALUE self);
static VALUE usage_analysis_register_stop(VALUE self);
#endif
/*
* Document-method: RubyVM::resolve_feature_path
* call-seq:
* RubyVM.resolve_feature_path(feature) -> [:rb or :so, path]
*
* Identifies the file that will be loaded by "require(feature)".
* This API is experimental and just for internal use.
*
* RubyVM.resolve_feature_path("set")
* #=> [:rb, "/path/to/set.rb"]
*/
VALUE rb_resolve_feature_path(VALUE klass, VALUE fname);
void
Init_VM(void)
{
VALUE opts;
VALUE klass;
VALUE fcore;
VALUE mjit;
/*
* Document-class: RubyVM
*
* The RubyVM module provides some access to Ruby internals.
* This module is for very limited purposes, such as debugging,
* prototyping, and research. Normal users must not use it.
*/
rb_cRubyVM = rb_define_class("RubyVM", rb_cObject);
rb_undef_alloc_func(rb_cRubyVM);
rb_undef_method(CLASS_OF(rb_cRubyVM), "new");
rb_define_singleton_method(rb_cRubyVM, "stat", vm_stat, -1);
/* FrozenCore (hidden) */
fcore = rb_class_new(rb_cBasicObject);
RBASIC(fcore)->flags = T_ICLASS;
klass = rb_singleton_class(fcore);
rb_define_method_id(klass, id_core_set_method_alias, m_core_set_method_alias, 3);
rb_define_method_id(klass, id_core_set_variable_alias, m_core_set_variable_alias, 2);
rb_define_method_id(klass, id_core_undef_method, m_core_undef_method, 2);
rb_define_method_id(klass, id_core_set_postexe, m_core_set_postexe, 0);
rb_define_method_id(klass, id_core_hash_merge_ptr, m_core_hash_merge_ptr, -1);
rb_define_method_id(klass, id_core_hash_merge_kwd, m_core_hash_merge_kwd, 2);
rb_define_method_id(klass, idProc, rb_block_proc, 0);
rb_define_method_id(klass, idLambda, rb_block_lambda, 0);
rb_obj_freeze(fcore);
RBASIC_CLEAR_CLASS(klass);
rb_obj_freeze(klass);
rb_gc_register_mark_object(fcore);
rb_mRubyVMFrozenCore = fcore;
/* RubyVM::MJIT */
mjit = rb_define_module_under(rb_cRubyVM, "MJIT");
rb_define_singleton_method(mjit, "enabled?", mjit_enabled_p, 0);
rb_define_singleton_method(mjit, "pause", mjit_pause_m, -1);
rb_define_singleton_method(mjit, "resume", mjit_resume, 0);
/*
* Document-class: Thread
*
* Threads are the Ruby implementation for a concurrent programming model.
*
* Programs that require multiple threads of execution are a perfect
* candidate for Ruby's Thread class.
*
* For example, we can create a new thread separate from the main thread's
* execution using ::new.
*
* thr = Thread.new { puts "Whats the big deal" }
*
* Then we are able to pause the execution of the main thread and allow
* our new thread to finish, using #join:
*
* thr.join #=> "Whats the big deal"
*
* If we don't call +thr.join+ before the main thread terminates, then all
* other threads including +thr+ will be killed.
*
* Alternatively, you can use an array for handling multiple threads at
* once, like in the following example:
*
* threads = []
* threads << Thread.new { puts "Whats the big deal" }
* threads << Thread.new { 3.times { puts "Threads are fun!" } }
*
* After creating a few threads we wait for them all to finish
* consecutively.
*
* threads.each { |thr| thr.join }
*
* === Thread initialization
*
* In order to create new threads, Ruby provides ::new, ::start, and
* ::fork. A block must be provided with each of these methods, otherwise
* a ThreadError will be raised.
*
* When subclassing the Thread class, the +initialize+ method of your
* subclass will be ignored by ::start and ::fork. Otherwise, be sure to
* call super in your +initialize+ method.
*
* === Thread termination
*
* For terminating threads, Ruby provides a variety of ways to do this.
*
* The class method ::kill, is meant to exit a given thread:
*
* thr = Thread.new { ... }
* Thread.kill(thr) # sends exit() to thr
*
* Alternatively, you can use the instance method #exit, or any of its
* aliases #kill or #terminate.
*
* thr.exit
*
* === Thread status
*
* Ruby provides a few instance methods for querying the state of a given
* thread. To get a string with the current thread's state use #status
*
* thr = Thread.new { sleep }
* thr.status # => "sleep"
* thr.exit
* thr.status # => false
*
* You can also use #alive? to tell if the thread is running or sleeping,
* and #stop? if the thread is dead or sleeping.
*
* === Thread variables and scope
*
* Since threads are created with blocks, the same rules apply to other
* Ruby blocks for variable scope. Any local variables created within this
* block are accessible to only this thread.
*
* ==== Fiber-local vs. Thread-local
*
* Each fiber has its own bucket for Thread#[] storage. When you set a
* new fiber-local it is only accessible within this Fiber. To illustrate:
*
* Thread.new {
* Thread.current[:foo] = "bar"
* Fiber.new {
* p Thread.current[:foo] # => nil
* }.resume
* }.join
*
* This example uses #[] for getting and #[]= for setting fiber-locals,
* you can also use #keys to list the fiber-locals for a given
* thread and #key? to check if a fiber-local exists.
*
* When it comes to thread-locals, they are accessible within the entire
* scope of the thread. Given the following example:
*
* Thread.new{
* Thread.current.thread_variable_set(:foo, 1)
* p Thread.current.thread_variable_get(:foo) # => 1
* Fiber.new{
* Thread.current.thread_variable_set(:foo, 2)
* p Thread.current.thread_variable_get(:foo) # => 2
* }.resume
* p Thread.current.thread_variable_get(:foo) # => 2
* }.join
*
* You can see that the thread-local +:foo+ carried over into the fiber
* and was changed to +2+ by the end of the thread.
*
* This example makes use of #thread_variable_set to create new
* thread-locals, and #thread_variable_get to reference them.
*
* There is also #thread_variables to list all thread-locals, and
* #thread_variable? to check if a given thread-local exists.
*
* === Exception handling
*
* Any thread can raise an exception using the #raise instance method,
* which operates similarly to Kernel#raise.
*
* However, it's important to note that an exception that occurs in any
* thread except the main thread depends on #abort_on_exception. This
* option is +false+ by default, meaning that any unhandled exception will
* cause the thread to terminate silently when waited on by either #join
* or #value. You can change this default by either #abort_on_exception=
* +true+ or setting $DEBUG to +true+.
*
* With the addition of the class method ::handle_interrupt, you can now
* handle exceptions asynchronously with threads.
*
* === Scheduling
*
* Ruby provides a few ways to support scheduling threads in your program.
*
* The first way is by using the class method ::stop, to put the current
* running thread to sleep and schedule the execution of another thread.
*
* Once a thread is asleep, you can use the instance method #wakeup to
* mark your thread as eligible for scheduling.
*
* You can also try ::pass, which attempts to pass execution to another
* thread but is dependent on the OS whether a running thread will switch
* or not. The same goes for #priority, which lets you hint to the thread
* scheduler which threads you want to take precedence when passing
* execution. This method is also dependent on the OS and may be ignored
* on some platforms.
*
*/
rb_cThread = rb_define_class("Thread", rb_cObject);
rb_undef_alloc_func(rb_cThread);
#if VM_COLLECT_USAGE_DETAILS
/* ::RubyVM::USAGE_ANALYSIS_* */
#define define_usage_analysis_hash(name) /* shut up rdoc -C */ \
rb_define_const(rb_cRubyVM, "USAGE_ANALYSIS_" #name, rb_hash_new())
define_usage_analysis_hash(INSN);
define_usage_analysis_hash(REGS);
define_usage_analysis_hash(INSN_BIGRAM);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_STOP", usage_analysis_insn_stop, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_STOP", usage_analysis_operand_stop, 0);
rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_STOP", usage_analysis_register_stop, 0);
#endif
/* ::RubyVM::OPTS, which shows vm build options */
rb_define_const(rb_cRubyVM, "OPTS", opts = rb_ary_new());
#if OPT_DIRECT_THREADED_CODE
rb_ary_push(opts, rb_str_new2("direct threaded code"));
#elif OPT_TOKEN_THREADED_CODE
rb_ary_push(opts, rb_str_new2("token threaded code"));
#elif OPT_CALL_THREADED_CODE
rb_ary_push(opts, rb_str_new2("call threaded code"));
#endif
#if OPT_STACK_CACHING
rb_ary_push(opts, rb_str_new2("stack caching"));
#endif
#if OPT_OPERANDS_UNIFICATION
rb_ary_push(opts, rb_str_new2("operands unification"));
#endif
#if OPT_INSTRUCTIONS_UNIFICATION
rb_ary_push(opts, rb_str_new2("instructions unification"));
#endif
#if OPT_INLINE_METHOD_CACHE
rb_ary_push(opts, rb_str_new2("inline method cache"));
#endif
#if OPT_BLOCKINLINING
rb_ary_push(opts, rb_str_new2("block inlining"));
#endif
/* ::RubyVM::INSTRUCTION_NAMES */
rb_define_const(rb_cRubyVM, "INSTRUCTION_NAMES", rb_insns_name_array());
/* ::RubyVM::DEFAULT_PARAMS
* This constant variable shows VM's default parameters.
* Note that changing these values does not affect VM execution.
* Specification is not stable and you should not depend on this value.
* Of course, this constant is MRI specific.
*/
rb_define_const(rb_cRubyVM, "DEFAULT_PARAMS", vm_default_params());
/* debug functions ::RubyVM::SDR(), ::RubyVM::NSDR() */
#if VMDEBUG
rb_define_singleton_method(rb_cRubyVM, "SDR", sdr, 0);
rb_define_singleton_method(rb_cRubyVM, "NSDR", nsdr, 0);
#else
(void)sdr;
(void)nsdr;
#endif
/* VM bootstrap: phase 2 */
{
rb_vm_t *vm = ruby_current_vm_ptr;
rb_thread_t *th = GET_THREAD();
VALUE filename = rb_fstring_lit("<main>");
const rb_iseq_t *iseq = rb_iseq_new(0, filename, filename, Qnil, 0, ISEQ_TYPE_TOP);
volatile VALUE th_self;
/* create vm object */
vm->self = TypedData_Wrap_Struct(rb_cRubyVM, &vm_data_type, vm);
/* create main thread */
th_self = th->self = TypedData_Wrap_Struct(rb_cThread, &thread_data_type, th);
rb_iv_set(th_self, "locals", rb_hash_new());
vm->main_thread = th;
vm->running_thread = th;
th->vm = vm;
th->top_wrapper = 0;
th->top_self = rb_vm_top_self();
rb_thread_set_current(th);
rb_vm_living_threads_insert(vm, th);
rb_gc_register_mark_object((VALUE)iseq);
th->ec->cfp->iseq = iseq;
th->ec->cfp->pc = iseq->body->iseq_encoded;
th->ec->cfp->self = th->top_self;
VM_ENV_FLAGS_UNSET(th->ec->cfp->ep, VM_FRAME_FLAG_CFRAME);
VM_STACK_ENV_WRITE(th->ec->cfp->ep, VM_ENV_DATA_INDEX_ME_CREF, (VALUE)vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE, FALSE, NULL, FALSE));
/*
* The Binding of the top level scope
*/
rb_define_global_const("TOPLEVEL_BINDING", rb_binding_new());
}
vm_init_redefined_flag();
rb_block_param_proxy = rb_obj_alloc(rb_cObject);
rb_add_method(rb_singleton_class(rb_block_param_proxy), idCall, VM_METHOD_TYPE_OPTIMIZED,
(void *)OPTIMIZED_METHOD_TYPE_BLOCK_CALL, METHOD_VISI_PUBLIC);
rb_obj_freeze(rb_block_param_proxy);
rb_gc_register_mark_object(rb_block_param_proxy);
/* vm_backtrace.c */
Init_vm_backtrace();
rb_define_singleton_method(rb_cRubyVM, "resolve_feature_path", rb_resolve_feature_path, 1);
}
void
rb_vm_set_progname(VALUE filename)
{
rb_thread_t *th = GET_VM()->main_thread;
rb_control_frame_t *cfp = (void *)(th->ec->vm_stack + th->ec->vm_stack_size);
--cfp;
rb_iseq_pathobj_set(cfp->iseq, rb_str_dup(filename), rb_iseq_realpath(cfp->iseq));
}
extern const struct st_hash_type rb_fstring_hash_type;
void
Init_BareVM(void)
{
/* VM bootstrap: phase 1 */
rb_vm_t * vm = ruby_mimmalloc(sizeof(*vm));
rb_thread_t * th = ruby_mimmalloc(sizeof(*th));
if (!vm || !th) {
fprintf(stderr, "[FATAL] failed to allocate memory\n");
exit(EXIT_FAILURE);
}
MEMZERO(th, rb_thread_t, 1);
vm_init2(vm);
vm->objspace = rb_objspace_alloc();
ruby_current_vm_ptr = vm;
Init_native_thread(th);
th->vm = vm;
th_init(th, 0);
rb_thread_set_current_raw(th);
ruby_thread_init_stack(th);
}
void
Init_vm_objects(void)
{
rb_vm_t *vm = GET_VM();
vm->defined_module_hash = rb_hash_new();
/* initialize mark object array, hash */
vm->mark_object_ary = rb_ary_tmp_new(128);
vm->loading_table = st_init_strtable();
vm->frozen_strings = st_init_table_with_size(&rb_fstring_hash_type, 1000);
}
/* top self */
static VALUE
main_to_s(VALUE obj)
{
return rb_str_new2("main");
}
VALUE
rb_vm_top_self(void)
{
return GET_VM()->top_self;
}
void
Init_top_self(void)
{
rb_vm_t *vm = GET_VM();
vm->top_self = rb_obj_alloc(rb_cObject);
rb_define_singleton_method(rb_vm_top_self(), "to_s", main_to_s, 0);
rb_define_alias(rb_singleton_class(rb_vm_top_self()), "inspect", "to_s");
}
static VALUE *
ruby_vm_verbose_ptr(rb_vm_t *vm)
{
return &vm->verbose;
}
static VALUE *
ruby_vm_debug_ptr(rb_vm_t *vm)
{
return &vm->debug;
}
VALUE *
rb_ruby_verbose_ptr(void)
{
return ruby_vm_verbose_ptr(GET_VM());
}
VALUE *
rb_ruby_debug_ptr(void)
{
return ruby_vm_debug_ptr(GET_VM());
}
/* iseq.c */
VALUE rb_insn_operand_intern(const rb_iseq_t *iseq,
VALUE insn, int op_no, VALUE op,
int len, size_t pos, VALUE *pnop, VALUE child);
st_table *
rb_vm_fstring_table(void)
{
return GET_VM()->frozen_strings;
}
#if VM_COLLECT_USAGE_DETAILS
#define HASH_ASET(h, k, v) rb_hash_aset((h), (st_data_t)(k), (st_data_t)(v))
/* uh = {
* insn(Fixnum) => ihash(Hash)
* }
* ihash = {
* -1(Fixnum) => count, # insn usage
* 0(Fixnum) => ophash, # operand usage
* }
* ophash = {
* val(interned string) => count(Fixnum)
* }
*/
static void
vm_analysis_insn(int insn)
{
ID usage_hash;
ID bigram_hash;
static int prev_insn = -1;
VALUE uh;
VALUE ihash;
VALUE cv;
CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
CONST_ID(bigram_hash, "USAGE_ANALYSIS_INSN_BIGRAM");
uh = rb_const_get(rb_cRubyVM, usage_hash);
if ((ihash = rb_hash_aref(uh, INT2FIX(insn))) == Qnil) {
ihash = rb_hash_new();
HASH_ASET(uh, INT2FIX(insn), ihash);
}
if ((cv = rb_hash_aref(ihash, INT2FIX(-1))) == Qnil) {
cv = INT2FIX(0);
}
HASH_ASET(ihash, INT2FIX(-1), INT2FIX(FIX2INT(cv) + 1));
/* calc bigram */
if (prev_insn != -1) {
VALUE bi;
VALUE ary[2];
VALUE cv;
ary[0] = INT2FIX(prev_insn);
ary[1] = INT2FIX(insn);
bi = rb_ary_new4(2, &ary[0]);
uh = rb_const_get(rb_cRubyVM, bigram_hash);
if ((cv = rb_hash_aref(uh, bi)) == Qnil) {
cv = INT2FIX(0);
}
HASH_ASET(uh, bi, INT2FIX(FIX2INT(cv) + 1));
}
prev_insn = insn;
}
static void
vm_analysis_operand(int insn, int n, VALUE op)
{
ID usage_hash;
VALUE uh;
VALUE ihash;
VALUE ophash;
VALUE valstr;
VALUE cv;
CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
uh = rb_const_get(rb_cRubyVM, usage_hash);
if ((ihash = rb_hash_aref(uh, INT2FIX(insn))) == Qnil) {
ihash = rb_hash_new();
HASH_ASET(uh, INT2FIX(insn), ihash);
}
if ((ophash = rb_hash_aref(ihash, INT2FIX(n))) == Qnil) {
ophash = rb_hash_new();
HASH_ASET(ihash, INT2FIX(n), ophash);
}
/* intern */
valstr = rb_insn_operand_intern(GET_EC()->cfp->iseq, insn, n, op, 0, 0, 0, 0);
/* set count */
if ((cv = rb_hash_aref(ophash, valstr)) == Qnil) {
cv = INT2FIX(0);
}
HASH_ASET(ophash, valstr, INT2FIX(FIX2INT(cv) + 1));
}
static void
vm_analysis_register(int reg, int isset)
{
ID usage_hash;
VALUE uh;
VALUE valstr;
static const char regstrs[][5] = {
"pc", /* 0 */
"sp", /* 1 */
"ep", /* 2 */
"cfp", /* 3 */
"self", /* 4 */
"iseq", /* 5 */
};
static const char getsetstr[][4] = {
"get",
"set",
};
static VALUE syms[sizeof(regstrs) / sizeof(regstrs[0])][2];
VALUE cv;
CONST_ID(usage_hash, "USAGE_ANALYSIS_REGS");
if (syms[0] == 0) {
char buff[0x10];
int i;
for (i = 0; i < (int)(sizeof(regstrs) / sizeof(regstrs[0])); i++) {
int j;
for (j = 0; j < 2; j++) {
snprintf(buff, 0x10, "%d %s %-4s", i, getsetstr[j], regstrs[i]);
syms[i][j] = ID2SYM(rb_intern(buff));
}
}
}
valstr = syms[reg][isset];
uh = rb_const_get(rb_cRubyVM, usage_hash);
if ((cv = rb_hash_aref(uh, valstr)) == Qnil) {
cv = INT2FIX(0);
}
HASH_ASET(uh, valstr, INT2FIX(FIX2INT(cv) + 1));
}
#undef HASH_ASET
static void (*ruby_vm_collect_usage_func_insn)(int insn) = vm_analysis_insn;
static void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op) = vm_analysis_operand;
static void (*ruby_vm_collect_usage_func_register)(int reg, int isset) = vm_analysis_register;
/* :nodoc: */
static VALUE
usage_analysis_insn_stop(VALUE self)
{
ruby_vm_collect_usage_func_insn = 0;
return Qnil;
}
/* :nodoc: */
static VALUE
usage_analysis_operand_stop(VALUE self)
{
ruby_vm_collect_usage_func_operand = 0;
return Qnil;
}
/* :nodoc: */
static VALUE
usage_analysis_register_stop(VALUE self)
{
ruby_vm_collect_usage_func_register = 0;
return Qnil;
}
#else
MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_insn)(int insn)) = NULL;
MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op)) = NULL;
MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_register)(int reg, int isset)) = NULL;
#endif
#if VM_COLLECT_USAGE_DETAILS
/* @param insn instruction number */
static void
vm_collect_usage_insn(int insn)
{
if (RUBY_DTRACE_INSN_ENABLED()) {
RUBY_DTRACE_INSN(rb_insns_name(insn));
}
if (ruby_vm_collect_usage_func_insn)
(*ruby_vm_collect_usage_func_insn)(insn);
}
/* @param insn instruction number
* @param n n-th operand
* @param op operand value
*/
static void
vm_collect_usage_operand(int insn, int n, VALUE op)
{
if (RUBY_DTRACE_INSN_OPERAND_ENABLED()) {
VALUE valstr;
valstr = rb_insn_operand_intern(GET_EC()->cfp->iseq, insn, n, op, 0, 0, 0, 0);
RUBY_DTRACE_INSN_OPERAND(RSTRING_PTR(valstr), rb_insns_name(insn));
RB_GC_GUARD(valstr);
}
if (ruby_vm_collect_usage_func_operand)
(*ruby_vm_collect_usage_func_operand)(insn, n, op);
}
/* @param reg register id. see code of vm_analysis_register() */
/* @param isset 0: read, 1: write */
static void
vm_collect_usage_register(int reg, int isset)
{
if (ruby_vm_collect_usage_func_register)
(*ruby_vm_collect_usage_func_register)(reg, isset);
}
#endif
#endif /* #ifndef MJIT_HEADER */
#include "vm_call_iseq_optimized.inc" /* required from vm_insnhelper.c */