mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 451fe269e5
			
		
	
	
		451fe269e5
		
	
	
	
	
		
			
			* ext/openssl: make wrapper objects before allocating structs to get rid of potential memory leaks. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@50673 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			1013 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1013 lines
		
	
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * $Id$
 | |
|  * 'OpenSSL for Ruby' project
 | |
|  * Copyright (C) 2001-2002  Michal Rokos <m.rokos@sh.cvut.cz>
 | |
|  * All rights reserved.
 | |
|  */
 | |
| /*
 | |
|  * This program is licensed under the same licence as Ruby.
 | |
|  * (See the file 'LICENCE'.)
 | |
|  */
 | |
| #include "ossl.h"
 | |
| 
 | |
| #define NewCipher(klass) \
 | |
|     TypedData_Wrap_Struct((klass), &ossl_cipher_type, 0)
 | |
| #define MakeCipher(obj, klass, ctx) \
 | |
|     (obj) = TypedData_Make_Struct((klass), EVP_CIPHER_CTX, &ossl_cipher_type, (ctx))
 | |
| #define AllocCipher(obj, ctx) \
 | |
|     (DATA_PTR(obj) = (ctx) = ZALLOC(EVP_CIPHER_CTX))
 | |
| #define GetCipherInit(obj, ctx) do { \
 | |
|     TypedData_Get_Struct((obj), EVP_CIPHER_CTX, &ossl_cipher_type, (ctx)); \
 | |
| } while (0)
 | |
| #define GetCipher(obj, ctx) do { \
 | |
|     GetCipherInit((obj), (ctx)); \
 | |
|     if (!(ctx)) { \
 | |
| 	ossl_raise(rb_eRuntimeError, "Cipher not inititalized!"); \
 | |
|     } \
 | |
| } while (0)
 | |
| #define SafeGetCipher(obj, ctx) do { \
 | |
|     OSSL_Check_Kind((obj), cCipher); \
 | |
|     GetCipher((obj), (ctx)); \
 | |
| } while (0)
 | |
| 
 | |
| /*
 | |
|  * Classes
 | |
|  */
 | |
| VALUE cCipher;
 | |
| VALUE eCipherError;
 | |
| 
 | |
| static VALUE ossl_cipher_alloc(VALUE klass);
 | |
| static void ossl_cipher_free(void *ptr);
 | |
| static size_t ossl_cipher_memsize(const void *ptr);
 | |
| 
 | |
| static const rb_data_type_t ossl_cipher_type = {
 | |
|     "OpenSSL/Cipher",
 | |
|     {0, ossl_cipher_free, ossl_cipher_memsize,},
 | |
|     0, 0,
 | |
|     RUBY_TYPED_FREE_IMMEDIATELY,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * PUBLIC
 | |
|  */
 | |
| const EVP_CIPHER *
 | |
| GetCipherPtr(VALUE obj)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
| 
 | |
|     SafeGetCipher(obj, ctx);
 | |
| 
 | |
|     return EVP_CIPHER_CTX_cipher(ctx);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| ossl_cipher_new(const EVP_CIPHER *cipher)
 | |
| {
 | |
|     VALUE ret;
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
| 
 | |
|     ret = ossl_cipher_alloc(cCipher);
 | |
|     AllocCipher(ret, ctx);
 | |
|     EVP_CIPHER_CTX_init(ctx);
 | |
|     if (EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, -1) != 1)
 | |
| 	ossl_raise(eCipherError, NULL);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * PRIVATE
 | |
|  */
 | |
| static void
 | |
| ossl_cipher_free(void *ptr)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx = ptr;
 | |
|     if (ctx) {
 | |
| 	EVP_CIPHER_CTX_cleanup(ctx);
 | |
| 	ruby_xfree(ctx);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| ossl_cipher_memsize(const void *ptr)
 | |
| {
 | |
|     const EVP_CIPHER_CTX *ctx = ptr;
 | |
|     return ctx ? sizeof(*ctx) : 0;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ossl_cipher_alloc(VALUE klass)
 | |
| {
 | |
|     return NewCipher(klass);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     Cipher.new(string) -> cipher
 | |
|  *
 | |
|  *  The string must contain a valid cipher name like "AES-128-CBC" or "3DES".
 | |
|  *
 | |
|  *  A list of cipher names is available by calling OpenSSL::Cipher.ciphers.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_initialize(VALUE self, VALUE str)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     const EVP_CIPHER *cipher;
 | |
|     char *name;
 | |
|     unsigned char key[EVP_MAX_KEY_LENGTH];
 | |
| 
 | |
|     name = StringValuePtr(str);
 | |
|     GetCipherInit(self, ctx);
 | |
|     if (ctx) {
 | |
| 	ossl_raise(rb_eRuntimeError, "Cipher already inititalized!");
 | |
|     }
 | |
|     AllocCipher(self, ctx);
 | |
|     EVP_CIPHER_CTX_init(ctx);
 | |
|     if (!(cipher = EVP_get_cipherbyname(name))) {
 | |
| 	ossl_raise(rb_eRuntimeError, "unsupported cipher algorithm (%s)", name);
 | |
|     }
 | |
|     /*
 | |
|      * The EVP which has EVP_CIPH_RAND_KEY flag (such as DES3) allows
 | |
|      * uninitialized key, but other EVPs (such as AES) does not allow it.
 | |
|      * Calling EVP_CipherUpdate() without initializing key causes SEGV so we
 | |
|      * set the data filled with "\0" as the key by default.
 | |
|      */
 | |
|     memset(key, 0, EVP_MAX_KEY_LENGTH);
 | |
|     if (EVP_CipherInit_ex(ctx, cipher, NULL, key, NULL, -1) != 1)
 | |
| 	ossl_raise(eCipherError, NULL);
 | |
| 
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ossl_cipher_copy(VALUE self, VALUE other)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx1, *ctx2;
 | |
| 
 | |
|     rb_check_frozen(self);
 | |
|     if (self == other) return self;
 | |
| 
 | |
|     GetCipherInit(self, ctx1);
 | |
|     if (!ctx1) {
 | |
| 	AllocCipher(self, ctx1);
 | |
|     }
 | |
|     SafeGetCipher(other, ctx2);
 | |
|     if (EVP_CIPHER_CTX_copy(ctx1, ctx2) != 1)
 | |
| 	ossl_raise(eCipherError, NULL);
 | |
| 
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_OBJ_NAME_DO_ALL_SORTED
 | |
| static void*
 | |
| add_cipher_name_to_ary(const OBJ_NAME *name, VALUE ary)
 | |
| {
 | |
|     rb_ary_push(ary, rb_str_new2(name->name));
 | |
|     return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_OBJ_NAME_DO_ALL_SORTED
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     OpenSSL::Cipher.ciphers -> array[string...]
 | |
|  *
 | |
|  *  Returns the names of all available ciphers in an array.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_s_ciphers(VALUE self)
 | |
| {
 | |
|     VALUE ary;
 | |
| 
 | |
|     ary = rb_ary_new();
 | |
|     OBJ_NAME_do_all_sorted(OBJ_NAME_TYPE_CIPHER_METH,
 | |
|                     (void(*)(const OBJ_NAME*,void*))add_cipher_name_to_ary,
 | |
|                     (void*)ary);
 | |
| 
 | |
|     return ary;
 | |
| }
 | |
| #else
 | |
| #define ossl_s_ciphers rb_f_notimplement
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.reset -> self
 | |
|  *
 | |
|  *  Fully resets the internal state of the Cipher. By using this, the same
 | |
|  *  Cipher instance may be used several times for encryption or decryption tasks.
 | |
|  *
 | |
|  *  Internally calls EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, -1).
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_reset(VALUE self)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
| 
 | |
|     GetCipher(self, ctx);
 | |
|     if (EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, -1) != 1)
 | |
| 	ossl_raise(eCipherError, NULL);
 | |
| 
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| ossl_cipher_init(int argc, VALUE *argv, VALUE self, int mode)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     unsigned char key[EVP_MAX_KEY_LENGTH], *p_key = NULL;
 | |
|     unsigned char iv[EVP_MAX_IV_LENGTH], *p_iv = NULL;
 | |
|     VALUE pass, init_v;
 | |
| 
 | |
|     if(rb_scan_args(argc, argv, "02", &pass, &init_v) > 0){
 | |
| 	/*
 | |
| 	 * oops. this code mistakes salt for IV.
 | |
| 	 * We deprecated the arguments for this method, but we decided
 | |
| 	 * keeping this behaviour for backward compatibility.
 | |
| 	 */
 | |
| 	VALUE cname  = rb_class_path(rb_obj_class(self));
 | |
| 	rb_warn("arguments for %"PRIsVALUE"#encrypt and %"PRIsVALUE"#decrypt were deprecated; "
 | |
|                 "use %"PRIsVALUE"#pkcs5_keyivgen to derive key and IV",
 | |
|                 cname, cname, cname);
 | |
| 	StringValue(pass);
 | |
| 	GetCipher(self, ctx);
 | |
| 	if (NIL_P(init_v)) memcpy(iv, "OpenSSL for Ruby rulez!", sizeof(iv));
 | |
| 	else{
 | |
| 	    StringValue(init_v);
 | |
| 	    if (EVP_MAX_IV_LENGTH > RSTRING_LEN(init_v)) {
 | |
| 		memset(iv, 0, EVP_MAX_IV_LENGTH);
 | |
| 		memcpy(iv, RSTRING_PTR(init_v), RSTRING_LEN(init_v));
 | |
| 	    }
 | |
| 	    else memcpy(iv, RSTRING_PTR(init_v), sizeof(iv));
 | |
| 	}
 | |
| 	EVP_BytesToKey(EVP_CIPHER_CTX_cipher(ctx), EVP_md5(), iv,
 | |
| 		       (unsigned char *)RSTRING_PTR(pass), RSTRING_LENINT(pass), 1, key, NULL);
 | |
| 	p_key = key;
 | |
| 	p_iv = iv;
 | |
|     }
 | |
|     else {
 | |
| 	GetCipher(self, ctx);
 | |
|     }
 | |
|     if (EVP_CipherInit_ex(ctx, NULL, NULL, p_key, p_iv, mode) != 1) {
 | |
| 	ossl_raise(eCipherError, NULL);
 | |
|     }
 | |
| 
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.encrypt -> self
 | |
|  *
 | |
|  *  Initializes the Cipher for encryption.
 | |
|  *
 | |
|  *  Make sure to call Cipher#encrypt or Cipher#decrypt before using any of the
 | |
|  *  following methods:
 | |
|  *  * [key=, iv=, random_key, random_iv, pkcs5_keyivgen]
 | |
|  *
 | |
|  *  Internally calls EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, 1).
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_encrypt(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return ossl_cipher_init(argc, argv, self, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.decrypt -> self
 | |
|  *
 | |
|  *  Initializes the Cipher for decryption.
 | |
|  *
 | |
|  *  Make sure to call Cipher#encrypt or Cipher#decrypt before using any of the
 | |
|  *  following methods:
 | |
|  *  * [key=, iv=, random_key, random_iv, pkcs5_keyivgen]
 | |
|  *
 | |
|  *  Internally calls EVP_CipherInit_ex(ctx, NULL, NULL, NULL, NULL, 0).
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_decrypt(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return ossl_cipher_init(argc, argv, self, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.pkcs5_keyivgen(pass [, salt [, iterations [, digest]]] ) -> nil
 | |
|  *
 | |
|  *  Generates and sets the key/IV based on a password.
 | |
|  *
 | |
|  *  WARNING: This method is only PKCS5 v1.5 compliant when using RC2, RC4-40,
 | |
|  *  or DES with MD5 or SHA1. Using anything else (like AES) will generate the
 | |
|  *  key/iv using an OpenSSL specific method. This method is deprecated and
 | |
|  *  should no longer be used. Use a PKCS5 v2 key generation method from
 | |
|  *  OpenSSL::PKCS5 instead.
 | |
|  *
 | |
|  *  === Parameters
 | |
|  *  +salt+ must be an 8 byte string if provided.
 | |
|  *  +iterations+ is a integer with a default of 2048.
 | |
|  *  +digest+ is a Digest object that defaults to 'MD5'
 | |
|  *
 | |
|  *  A minimum of 1000 iterations is recommended.
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_pkcs5_keyivgen(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     const EVP_MD *digest;
 | |
|     VALUE vpass, vsalt, viter, vdigest;
 | |
|     unsigned char key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH], *salt = NULL;
 | |
|     int iter;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "13", &vpass, &vsalt, &viter, &vdigest);
 | |
|     StringValue(vpass);
 | |
|     if(!NIL_P(vsalt)){
 | |
| 	StringValue(vsalt);
 | |
| 	if(RSTRING_LEN(vsalt) != PKCS5_SALT_LEN)
 | |
| 	    ossl_raise(eCipherError, "salt must be an 8-octet string");
 | |
| 	salt = (unsigned char *)RSTRING_PTR(vsalt);
 | |
|     }
 | |
|     iter = NIL_P(viter) ? 2048 : NUM2INT(viter);
 | |
|     digest = NIL_P(vdigest) ? EVP_md5() : GetDigestPtr(vdigest);
 | |
|     GetCipher(self, ctx);
 | |
|     EVP_BytesToKey(EVP_CIPHER_CTX_cipher(ctx), digest, salt,
 | |
| 		   (unsigned char *)RSTRING_PTR(vpass), RSTRING_LENINT(vpass), iter, key, iv);
 | |
|     if (EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, -1) != 1)
 | |
| 	ossl_raise(eCipherError, NULL);
 | |
|     OPENSSL_cleanse(key, sizeof key);
 | |
|     OPENSSL_cleanse(iv, sizeof iv);
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static int
 | |
| ossl_cipher_update_long(EVP_CIPHER_CTX *ctx, unsigned char *out, long *out_len_ptr,
 | |
| 			const unsigned char *in, long in_len)
 | |
| {
 | |
|     int out_part_len;
 | |
|     long out_len = 0;
 | |
| #define UPDATE_LENGTH_LIMIT INT_MAX
 | |
| 
 | |
| #if SIZEOF_LONG > UPDATE_LENGTH_LIMIT
 | |
|     if (in_len > UPDATE_LENGTH_LIMIT) {
 | |
| 	const int in_part_len = (UPDATE_LENGTH_LIMIT / 2 + 1) & ~1;
 | |
| 	do {
 | |
| 	    if (!EVP_CipherUpdate(ctx, out ? (out + out_len) : 0,
 | |
| 				  &out_part_len, in, in_part_len))
 | |
| 		return 0;
 | |
| 	    out_len += out_part_len;
 | |
| 	    in += in_part_len;
 | |
| 	} while ((in_len -= in_part_len) > UPDATE_LENGTH_LIMIT);
 | |
|     }
 | |
| #endif
 | |
|     if (!EVP_CipherUpdate(ctx, out ? (out + out_len) : 0,
 | |
| 			  &out_part_len, in, (int)in_len))
 | |
| 	return 0;
 | |
|     if (out_len_ptr) *out_len_ptr = out_len += out_part_len;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.update(data [, buffer]) -> string or buffer
 | |
|  *
 | |
|  *  Encrypts data in a streaming fashion. Hand consecutive blocks of data
 | |
|  *  to the +update+ method in order to encrypt it. Returns the encrypted
 | |
|  *  data chunk. When done, the output of Cipher#final should be additionally
 | |
|  *  added to the result.
 | |
|  *
 | |
|  *  === Parameters
 | |
|  *  +data+ is a nonempty string.
 | |
|  *  +buffer+ is an optional string to store the result.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_update(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     unsigned char *in;
 | |
|     long in_len, out_len;
 | |
|     VALUE data, str;
 | |
| 
 | |
|     rb_scan_args(argc, argv, "11", &data, &str);
 | |
| 
 | |
|     StringValue(data);
 | |
|     in = (unsigned char *)RSTRING_PTR(data);
 | |
|     if ((in_len = RSTRING_LEN(data)) == 0)
 | |
|         ossl_raise(rb_eArgError, "data must not be empty");
 | |
|     GetCipher(self, ctx);
 | |
|     out_len = in_len+EVP_CIPHER_CTX_block_size(ctx);
 | |
|     if (out_len <= 0) {
 | |
| 	ossl_raise(rb_eRangeError,
 | |
| 		   "data too big to make output buffer: %ld bytes", in_len);
 | |
|     }
 | |
| 
 | |
|     if (NIL_P(str)) {
 | |
|         str = rb_str_new(0, out_len);
 | |
|     } else {
 | |
|         StringValue(str);
 | |
|         rb_str_resize(str, out_len);
 | |
|     }
 | |
| 
 | |
|     if (!ossl_cipher_update_long(ctx, (unsigned char *)RSTRING_PTR(str), &out_len, in, in_len))
 | |
| 	ossl_raise(eCipherError, NULL);
 | |
|     assert(out_len < RSTRING_LEN(str));
 | |
|     rb_str_set_len(str, out_len);
 | |
| 
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.final -> string
 | |
|  *
 | |
|  *  Returns the remaining data held in the cipher object. Further calls to
 | |
|  *  Cipher#update or Cipher#final will return garbage. This call should always
 | |
|  *  be made as the last call of an encryption or decryption operation, after
 | |
|  *  after having fed the entire plaintext or ciphertext to the Cipher instance.
 | |
|  *
 | |
|  *  If an authenticated cipher was used, a CipherError is raised if the tag
 | |
|  *  could not be authenticated successfully. Only call this method after
 | |
|  *  setting the authentication tag and passing the entire contents of the
 | |
|  *  ciphertext into the cipher.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_final(VALUE self)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     int out_len;
 | |
|     VALUE str;
 | |
| 
 | |
|     GetCipher(self, ctx);
 | |
|     str = rb_str_new(0, EVP_CIPHER_CTX_block_size(ctx));
 | |
|     if (!EVP_CipherFinal_ex(ctx, (unsigned char *)RSTRING_PTR(str), &out_len))
 | |
| 	ossl_raise(eCipherError, NULL);
 | |
|     assert(out_len <= RSTRING_LEN(str));
 | |
|     rb_str_set_len(str, out_len);
 | |
| 
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.name -> string
 | |
|  *
 | |
|  *  Returns the name of the cipher which may differ slightly from the original
 | |
|  *  name provided.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_name(VALUE self)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
| 
 | |
|     GetCipher(self, ctx);
 | |
| 
 | |
|     return rb_str_new2(EVP_CIPHER_name(EVP_CIPHER_CTX_cipher(ctx)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.key = string -> string
 | |
|  *
 | |
|  *  Sets the cipher key. To generate a key, you should either use a secure
 | |
|  *  random byte string or, if the key is to be derived from a password, you
 | |
|  *  should rely on PBKDF2 functionality provided by OpenSSL::PKCS5. To
 | |
|  *  generate a secure random-based key, Cipher#random_key may be used.
 | |
|  *
 | |
|  *  Only call this method after calling Cipher#encrypt or Cipher#decrypt.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_set_key(VALUE self, VALUE key)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
| 
 | |
|     StringValue(key);
 | |
|     GetCipher(self, ctx);
 | |
| 
 | |
|     if (RSTRING_LEN(key) < EVP_CIPHER_CTX_key_length(ctx))
 | |
|         ossl_raise(eCipherError, "key length too short");
 | |
| 
 | |
|     if (EVP_CipherInit_ex(ctx, NULL, NULL, (unsigned char *)RSTRING_PTR(key), NULL, -1) != 1)
 | |
|         ossl_raise(eCipherError, NULL);
 | |
| 
 | |
|     return key;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.iv = string -> string
 | |
|  *
 | |
|  *  Sets the cipher IV. Please note that since you should never be using ECB
 | |
|  *  mode, an IV is always explicitly required and should be set prior to
 | |
|  *  encryption. The IV itself can be safely transmitted in public, but it
 | |
|  *  should be unpredictable to prevent certain kinds of attacks. You may use
 | |
|  *  Cipher#random_iv to create a secure random IV.
 | |
|  *
 | |
|  *  Only call this method after calling Cipher#encrypt or Cipher#decrypt.
 | |
|  *
 | |
|  *  If not explicitly set, the OpenSSL default of an all-zeroes ("\\0") IV is
 | |
|  *  used.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_set_iv(VALUE self, VALUE iv)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
| 
 | |
|     StringValue(iv);
 | |
|     GetCipher(self, ctx);
 | |
| 
 | |
|     if (RSTRING_LEN(iv) < EVP_CIPHER_CTX_iv_length(ctx))
 | |
|         ossl_raise(eCipherError, "iv length too short");
 | |
| 
 | |
|     if (EVP_CipherInit_ex(ctx, NULL, NULL, NULL, (unsigned char *)RSTRING_PTR(iv), -1) != 1)
 | |
| 	ossl_raise(eCipherError, NULL);
 | |
| 
 | |
|     return iv;
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_AUTHENTICATED_ENCRYPTION
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.auth_data = string -> string
 | |
|  *
 | |
|  *  Sets the cipher's additional authenticated data. This field must be
 | |
|  *  set when using AEAD cipher modes such as GCM or CCM. If no associated
 | |
|  *  data shall be used, this method must *still* be called with a value of "".
 | |
|  *  The contents of this field should be non-sensitive data which will be
 | |
|  *  added to the ciphertext to generate the authentication tag which validates
 | |
|  *  the contents of the ciphertext.
 | |
|  *
 | |
|  *  The AAD must be set prior to encryption or decryption. In encryption mode,
 | |
|  *  it must be set after calling Cipher#encrypt and setting Cipher#key= and
 | |
|  *  Cipher#iv=. When decrypting, the authenticated data must be set after key,
 | |
|  *  iv and especially *after* the authentication tag has been set. I.e. set it
 | |
|  *  only after calling Cipher#decrypt, Cipher#key=, Cipher#iv= and
 | |
|  *  Cipher#auth_tag= first.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_set_auth_data(VALUE self, VALUE data)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     unsigned char *in;
 | |
|     long in_len, out_len;
 | |
| 
 | |
|     StringValue(data);
 | |
| 
 | |
|     in = (unsigned char *) RSTRING_PTR(data);
 | |
|     in_len = RSTRING_LEN(data);
 | |
| 
 | |
|     GetCipher(self, ctx);
 | |
| 
 | |
|     if (!ossl_cipher_update_long(ctx, NULL, &out_len, in, in_len))
 | |
|         ossl_raise(eCipherError, "couldn't set additional authenticated data");
 | |
| 
 | |
|     return data;
 | |
| }
 | |
| 
 | |
| #define ossl_is_gcm(nid)	(nid) == NID_aes_128_gcm || \
 | |
| 				(nid) == NID_aes_192_gcm || \
 | |
| 				(nid) == NID_aes_256_gcm
 | |
| 
 | |
| static VALUE
 | |
| ossl_get_gcm_auth_tag(EVP_CIPHER_CTX *ctx, int len)
 | |
| {
 | |
|     unsigned char *tag;
 | |
|     VALUE ret;
 | |
| 
 | |
|     tag = ALLOC_N(unsigned char, len);
 | |
| 
 | |
|     if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, len, tag))
 | |
|         ossl_raise(eCipherError, "retrieving the authentication tag failed");
 | |
| 
 | |
|     ret = rb_str_new((const char *) tag, len);
 | |
|     xfree(tag);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.auth_tag([ tag_len ] -> string
 | |
|  *
 | |
|  *  Gets the authentication tag generated by Authenticated Encryption Cipher
 | |
|  *  modes (GCM for example). This tag may be stored along with the ciphertext,
 | |
|  *  then set on the decryption cipher to authenticate the contents of the
 | |
|  *  ciphertext against changes. If the optional integer parameter +tag_len+ is
 | |
|  *  given, the returned tag will be +tag_len+ bytes long. If the parameter is
 | |
|  *  omitted, the maximum length of 16 bytes will be returned. For maximum
 | |
|  *  security, the default of 16 bytes should be chosen.
 | |
|  *
 | |
|  *  The tag may only be retrieved after calling Cipher#final.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_get_auth_tag(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     VALUE vtag_len;
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     int nid, tag_len;
 | |
| 
 | |
|     if (rb_scan_args(argc, argv, "01", &vtag_len) == 0) {
 | |
| 	tag_len = 16;
 | |
|     } else {
 | |
| 	tag_len = NUM2INT(vtag_len);
 | |
|     }
 | |
| 
 | |
|     GetCipher(self, ctx);
 | |
|     nid = EVP_CIPHER_CTX_nid(ctx);
 | |
| 
 | |
|     if (ossl_is_gcm(nid)) {
 | |
| 	return ossl_get_gcm_auth_tag(ctx, tag_len);
 | |
|     } else {
 | |
| 	ossl_raise(eCipherError, "authentication tag not supported by this cipher");
 | |
| 	return Qnil; /* dummy */
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| ossl_set_gcm_auth_tag(EVP_CIPHER_CTX *ctx, unsigned char *tag, int tag_len)
 | |
| {
 | |
|     if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, tag_len, tag))
 | |
|         ossl_raise(eCipherError, "unable to set GCM tag");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.auth_tag = string -> string
 | |
|  *
 | |
|  *  Sets the authentication tag to verify the contents of the
 | |
|  *  ciphertext. The tag must be set after calling Cipher#decrypt,
 | |
|  *  Cipher#key= and Cipher#iv=, but before assigning the associated
 | |
|  *  authenticated data using Cipher#auth_data= and of course, before
 | |
|  *  decrypting any of the ciphertext. After all decryption is
 | |
|  *  performed, the tag is verified automatically in the call to
 | |
|  *  Cipher#final.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_set_auth_tag(VALUE self, VALUE vtag)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     int nid;
 | |
|     unsigned char *tag;
 | |
|     int tag_len;
 | |
| 
 | |
|     StringValue(vtag);
 | |
|     tag = (unsigned char *) RSTRING_PTR(vtag);
 | |
|     tag_len = RSTRING_LENINT(vtag);
 | |
| 
 | |
|     GetCipher(self, ctx);
 | |
|     nid = EVP_CIPHER_CTX_nid(ctx);
 | |
| 
 | |
|     if (ossl_is_gcm(nid)) {
 | |
| 	ossl_set_gcm_auth_tag(ctx, tag, tag_len);
 | |
|     } else {
 | |
| 	ossl_raise(eCipherError, "authentication tag not supported by this cipher");
 | |
|     }
 | |
| 
 | |
|     return vtag;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.authenticated? -> boolean
 | |
|  *
 | |
|  *  Indicated whether this Cipher instance uses an Authenticated Encryption
 | |
|  *  mode.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_is_authenticated(VALUE self)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     int nid;
 | |
| 
 | |
|     GetCipher(self, ctx);
 | |
|     nid = EVP_CIPHER_CTX_nid(ctx);
 | |
| 
 | |
|     if (ossl_is_gcm(nid)) {
 | |
| 	return Qtrue;
 | |
|     } else {
 | |
| 	return Qfalse;
 | |
|     }
 | |
| }
 | |
| #else
 | |
| #define ossl_cipher_set_auth_data rb_f_notimplement
 | |
| #define ossl_cipher_get_auth_tag rb_f_notimplement
 | |
| #define ossl_cipher_set_auth_tag rb_f_notimplement
 | |
| #define ossl_cipher_is_authenticated rb_f_notimplement
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.key_len = integer -> integer
 | |
|  *
 | |
|  *  Sets the key length of the cipher.  If the cipher is a fixed length cipher
 | |
|  *  then attempting to set the key length to any value other than the fixed
 | |
|  *  value is an error.
 | |
|  *
 | |
|  *  Under normal circumstances you do not need to call this method (and probably shouldn't).
 | |
|  *
 | |
|  *  See EVP_CIPHER_CTX_set_key_length for further information.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_set_key_length(VALUE self, VALUE key_length)
 | |
| {
 | |
|     int len = NUM2INT(key_length);
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
| 
 | |
|     GetCipher(self, ctx);
 | |
|     if (EVP_CIPHER_CTX_set_key_length(ctx, len) != 1)
 | |
|         ossl_raise(eCipherError, NULL);
 | |
| 
 | |
|     return key_length;
 | |
| }
 | |
| 
 | |
| #if defined(HAVE_EVP_CIPHER_CTX_SET_PADDING)
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.padding = integer -> integer
 | |
|  *
 | |
|  *  Enables or disables padding. By default encryption operations are padded using standard block padding and the
 | |
|  *  padding is checked and removed when decrypting. If the pad parameter is zero then no padding is performed, the
 | |
|  *  total amount of data encrypted or decrypted must then be a multiple of the block size or an error will occur.
 | |
|  *
 | |
|  *  See EVP_CIPHER_CTX_set_padding for further information.
 | |
|  */
 | |
| static VALUE
 | |
| ossl_cipher_set_padding(VALUE self, VALUE padding)
 | |
| {
 | |
|     EVP_CIPHER_CTX *ctx;
 | |
|     int pad = NUM2INT(padding);
 | |
| 
 | |
|     GetCipher(self, ctx);
 | |
|     if (EVP_CIPHER_CTX_set_padding(ctx, pad) != 1)
 | |
| 	ossl_raise(eCipherError, NULL);
 | |
|     return padding;
 | |
| }
 | |
| #else
 | |
| #define ossl_cipher_set_padding rb_f_notimplement
 | |
| #endif
 | |
| 
 | |
| #define CIPHER_0ARG_INT(func)					\
 | |
|     static VALUE						\
 | |
|     ossl_cipher_##func(VALUE self)				\
 | |
|     {								\
 | |
| 	EVP_CIPHER_CTX *ctx;					\
 | |
| 	GetCipher(self, ctx);					\
 | |
| 	return INT2NUM(EVP_CIPHER_##func(EVP_CIPHER_CTX_cipher(ctx)));	\
 | |
|     }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.key_len -> integer
 | |
|  *
 | |
|  *  Returns the key length in bytes of the Cipher.
 | |
|  */
 | |
| CIPHER_0ARG_INT(key_length)
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.iv_len -> integer
 | |
|  *
 | |
|  *  Returns the expected length in bytes for an IV for this Cipher.
 | |
|  */
 | |
| CIPHER_0ARG_INT(iv_length)
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cipher.block_size -> integer
 | |
|  *
 | |
|  *  Returns the size in bytes of the blocks on which this Cipher operates on.
 | |
|  */
 | |
| CIPHER_0ARG_INT(block_size)
 | |
| 
 | |
| /*
 | |
|  * INIT
 | |
|  */
 | |
| void
 | |
| Init_ossl_cipher(void)
 | |
| {
 | |
| #if 0
 | |
|     mOSSL = rb_define_module("OpenSSL"); /* let rdoc know about mOSSL */
 | |
| #endif
 | |
| 
 | |
|     /* Document-class: OpenSSL::Cipher
 | |
|      *
 | |
|      * Provides symmetric algorithms for encryption and decryption. The
 | |
|      * algorithms that are available depend on the particular version
 | |
|      * of OpenSSL that is installed.
 | |
|      *
 | |
|      * === Listing all supported algorithms
 | |
|      *
 | |
|      * A list of supported algorithms can be obtained by
 | |
|      *
 | |
|      *   puts OpenSSL::Cipher.ciphers
 | |
|      *
 | |
|      * === Instantiating a Cipher
 | |
|      *
 | |
|      * There are several ways to create a Cipher instance. Generally, a
 | |
|      * Cipher algorithm is categorized by its name, the key length in bits
 | |
|      * and the cipher mode to be used. The most generic way to create a
 | |
|      * Cipher is the following
 | |
|      *
 | |
|      *   cipher = OpenSSL::Cipher.new('<name>-<key length>-<mode>')
 | |
|      *
 | |
|      * That is, a string consisting of the hyphenated concatenation of the
 | |
|      * individual components name, key length and mode. Either all uppercase
 | |
|      * or all lowercase strings may be used, for example:
 | |
|      *
 | |
|      *  cipher = OpenSSL::Cipher.new('AES-128-CBC')
 | |
|      *
 | |
|      * For each algorithm supported, there is a class defined under the
 | |
|      * Cipher class that goes by the name of the cipher, e.g. to obtain an
 | |
|      * instance of AES, you could also use
 | |
|      *
 | |
|      *   # these are equivalent
 | |
|      *   cipher = OpenSSL::Cipher::AES.new(128, :CBC)
 | |
|      *   cipher = OpenSSL::Cipher::AES.new(128, 'CBC')
 | |
|      *   cipher = OpenSSL::Cipher::AES.new('128-CBC')
 | |
|      *
 | |
|      * Finally, due to its wide-spread use, there are also extra classes
 | |
|      * defined for the different key sizes of AES
 | |
|      *
 | |
|      *   cipher = OpenSSL::Cipher::AES128.new(:CBC)
 | |
|      *   cipher = OpenSSL::Cipher::AES192.new(:CBC)
 | |
|      *   cipher = OpenSSL::Cipher::AES256.new(:CBC)
 | |
|      *
 | |
|      * === Choosing either encryption or decryption mode
 | |
|      *
 | |
|      * Encryption and decryption are often very similar operations for
 | |
|      * symmetric algorithms, this is reflected by not having to choose
 | |
|      * different classes for either operation, both can be done using the
 | |
|      * same class. Still, after obtaining a Cipher instance, we need to
 | |
|      * tell the instance what it is that we intend to do with it, so we
 | |
|      * need to call either
 | |
|      *
 | |
|      *   cipher.encrypt
 | |
|      *
 | |
|      * or
 | |
|      *
 | |
|      *   cipher.decrypt
 | |
|      *
 | |
|      * on the Cipher instance. This should be the first call after creating
 | |
|      * the instance, otherwise configuration that has already been set could
 | |
|      * get lost in the process.
 | |
|      *
 | |
|      * === Choosing a key
 | |
|      *
 | |
|      * Symmetric encryption requires a key that is the same for the encrypting
 | |
|      * and for the decrypting party and after initial key establishment should
 | |
|      * be kept as private information. There are a lot of ways to create
 | |
|      * insecure keys, the most notable is to simply take a password as the key
 | |
|      * without processing the password further. A simple and secure way to
 | |
|      * create a key for a particular Cipher is
 | |
|      *
 | |
|      *  cipher = OpenSSL::AES256.new(:CFB)
 | |
|      *  cipher.encrypt
 | |
|      *  key = cipher.random_key # also sets the generated key on the Cipher
 | |
|      *
 | |
|      * If you absolutely need to use passwords as encryption keys, you
 | |
|      * should use Password-Based Key Derivation Function 2 (PBKDF2) by
 | |
|      * generating the key with the help of the functionality provided by
 | |
|      * OpenSSL::PKCS5.pbkdf2_hmac_sha1 or OpenSSL::PKCS5.pbkdf2_hmac.
 | |
|      *
 | |
|      * Although there is Cipher#pkcs5_keyivgen, its use is deprecated and
 | |
|      * it should only be used in legacy applications because it does not use
 | |
|      * the newer PKCS#5 v2 algorithms.
 | |
|      *
 | |
|      * === Choosing an IV
 | |
|      *
 | |
|      * The cipher modes CBC, CFB, OFB and CTR all need an "initialization
 | |
|      * vector", or short, IV. ECB mode is the only mode that does not require
 | |
|      * an IV, but there is almost no legitimate use case for this mode
 | |
|      * because of the fact that it does not sufficiently hide plaintext
 | |
|      * patterns. Therefore
 | |
|      *
 | |
|      * <b>You should never use ECB mode unless you are absolutely sure that
 | |
|      * you absolutely need it</b>
 | |
|      *
 | |
|      * Because of this, you will end up with a mode that explicitly requires
 | |
|      * an IV in any case. Note that for backwards compatibility reasons,
 | |
|      * setting an IV is not explicitly mandated by the Cipher API. If not
 | |
|      * set, OpenSSL itself defaults to an all-zeroes IV ("\\0", not the
 | |
|      * character). Although the IV can be seen as public information, i.e.
 | |
|      * it may be transmitted in public once generated, it should still stay
 | |
|      * unpredictable to prevent certain kinds of attacks. Therefore, ideally
 | |
|      *
 | |
|      * <b>Always create a secure random IV for every encryption of your
 | |
|      * Cipher</b>
 | |
|      *
 | |
|      * A new, random IV should be created for every encryption of data. Think
 | |
|      * of the IV as a nonce (number used once) - it's public but random and
 | |
|      * unpredictable. A secure random IV can be created as follows
 | |
|      *
 | |
|      *  cipher = ...
 | |
|      *  cipher.encrypt
 | |
|      *  key = cipher.random_key
 | |
|      *  iv = cipher.random_iv # also sets the generated IV on the Cipher
 | |
|      *
 | |
|      *  Although the key is generally a random value, too, it is a bad choice
 | |
|      *  as an IV. There are elaborate ways how an attacker can take advantage
 | |
|      *  of such an IV. As a general rule of thumb, exposing the key directly
 | |
|      *  or indirectly should be avoided at all cost and exceptions only be
 | |
|      *  made with good reason.
 | |
|      *
 | |
|      * === Calling Cipher#final
 | |
|      *
 | |
|      * ECB (which should not be used) and CBC are both block-based modes.
 | |
|      * This means that unlike for the other streaming-based modes, they
 | |
|      * operate on fixed-size blocks of data, and therefore they require a
 | |
|      * "finalization" step to produce or correctly decrypt the last block of
 | |
|      * data by appropriately handling some form of padding. Therefore it is
 | |
|      * essential to add the output of OpenSSL::Cipher#final to your
 | |
|      * encryption/decryption buffer or you will end up with decryption errors
 | |
|      * or truncated data.
 | |
|      *
 | |
|      * Although this is not really necessary for streaming-mode ciphers, it is
 | |
|      * still recommended to apply the same pattern of adding the output of
 | |
|      * Cipher#final there as well - it also enables you to switch between
 | |
|      * modes more easily in the future.
 | |
|      *
 | |
|      * === Encrypting and decrypting some data
 | |
|      *
 | |
|      *   data = "Very, very confidential data"
 | |
|      *
 | |
|      *   cipher = OpenSSL::Cipher::AES.new(128, :CBC)
 | |
|      *   cipher.encrypt
 | |
|      *   key = cipher.random_key
 | |
|      *   iv = cipher.random_iv
 | |
|      *
 | |
|      *   encrypted = cipher.update(data) + cipher.final
 | |
|      *   ...
 | |
|      *   decipher = OpenSSL::Cipher::AES.new(128, :CBC)
 | |
|      *   decipher.decrypt
 | |
|      *   decipher.key = key
 | |
|      *   decipher.iv = iv
 | |
|      *
 | |
|      *   plain = decipher.update(encrypted) + decipher.final
 | |
|      *
 | |
|      *   puts data == plain #=> true
 | |
|      *
 | |
|      * === Authenticated Encryption and Associated Data (AEAD)
 | |
|      *
 | |
|      * If the OpenSSL version used supports it, an Authenticated Encryption
 | |
|      * mode (such as GCM or CCM) should always be preferred over any
 | |
|      * unauthenticated mode. Currently, OpenSSL supports AE only in combination
 | |
|      * with Associated Data (AEAD) where additional associated data is included
 | |
|      * in the encryption process to compute a tag at the end of the encryption.
 | |
|      * This tag will also be used in the decryption process and by verifying
 | |
|      * its validity, the authenticity of a given ciphertext is established.
 | |
|      *
 | |
|      * This is superior to unauthenticated modes in that it allows to detect
 | |
|      * if somebody effectively changed the ciphertext after it had been
 | |
|      * encrypted. This prevents malicious modifications of the ciphertext that
 | |
|      * could otherwise be exploited to modify ciphertexts in ways beneficial to
 | |
|      * potential attackers.
 | |
|      *
 | |
|      * If no associated data is needed for encryption and later decryption,
 | |
|      * the OpenSSL library still requires a value to be set - "" may be used in
 | |
|      * case none is available. An example using the GCM (Galois Counter Mode):
 | |
|      *
 | |
|      *   cipher = OpenSSL::Cipher::AES.new(128, :GCM)
 | |
|      *   cipher.encrypt
 | |
|      *   key = cipher.random_key
 | |
|      *   iv = cipher.random_iv
 | |
|      *   cipher.auth_data = ""
 | |
|      *
 | |
|      *   encrypted = cipher.update(data) + cipher.final
 | |
|      *   tag = cipher.auth_tag
 | |
|      *
 | |
|      *   decipher = OpenSSL::Cipher::AES.new(128, :GCM)
 | |
|      *   decipher.decrypt
 | |
|      *   decipher.key = key
 | |
|      *   decipher.iv = iv
 | |
|      *   decipher.auth_tag = tag
 | |
|      *   decipher.auth_data = ""
 | |
|      *
 | |
|      *   plain = decipher.update(encrypted) + decipher.final
 | |
|      *
 | |
|      *   puts data == plain #=> true
 | |
|      */
 | |
|     cCipher = rb_define_class_under(mOSSL, "Cipher", rb_cObject);
 | |
|     eCipherError = rb_define_class_under(cCipher, "CipherError", eOSSLError);
 | |
| 
 | |
|     rb_define_alloc_func(cCipher, ossl_cipher_alloc);
 | |
|     rb_define_copy_func(cCipher, ossl_cipher_copy);
 | |
|     rb_define_module_function(cCipher, "ciphers", ossl_s_ciphers, 0);
 | |
|     rb_define_method(cCipher, "initialize", ossl_cipher_initialize, 1);
 | |
|     rb_define_method(cCipher, "reset", ossl_cipher_reset, 0);
 | |
|     rb_define_method(cCipher, "encrypt", ossl_cipher_encrypt, -1);
 | |
|     rb_define_method(cCipher, "decrypt", ossl_cipher_decrypt, -1);
 | |
|     rb_define_method(cCipher, "pkcs5_keyivgen", ossl_cipher_pkcs5_keyivgen, -1);
 | |
|     rb_define_method(cCipher, "update", ossl_cipher_update, -1);
 | |
|     rb_define_method(cCipher, "final", ossl_cipher_final, 0);
 | |
|     rb_define_method(cCipher, "name", ossl_cipher_name, 0);
 | |
|     rb_define_method(cCipher, "key=", ossl_cipher_set_key, 1);
 | |
|     rb_define_method(cCipher, "auth_data=", ossl_cipher_set_auth_data, 1);
 | |
|     rb_define_method(cCipher, "auth_tag=", ossl_cipher_set_auth_tag, 1);
 | |
|     rb_define_method(cCipher, "auth_tag", ossl_cipher_get_auth_tag, -1);
 | |
|     rb_define_method(cCipher, "authenticated?", ossl_cipher_is_authenticated, 0);
 | |
|     rb_define_method(cCipher, "key_len=", ossl_cipher_set_key_length, 1);
 | |
|     rb_define_method(cCipher, "key_len", ossl_cipher_key_length, 0);
 | |
|     rb_define_method(cCipher, "iv=", ossl_cipher_set_iv, 1);
 | |
|     rb_define_method(cCipher, "iv_len", ossl_cipher_iv_length, 0);
 | |
|     rb_define_method(cCipher, "block_size", ossl_cipher_block_size, 0);
 | |
|     rb_define_method(cCipher, "padding=", ossl_cipher_set_padding, 1);
 | |
| }
 | |
| 
 |