1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/proc.c
2021-08-03 10:56:50 +09:00

4249 lines
117 KiB
C

/**********************************************************************
proc.c - Proc, Binding, Env
$Author$
created at: Wed Jan 17 12:13:14 2007
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#include "eval_intern.h"
#include "gc.h"
#include "internal.h"
#include "internal/class.h"
#include "internal/error.h"
#include "internal/eval.h"
#include "internal/object.h"
#include "internal/proc.h"
#include "internal/symbol.h"
#include "method.h"
#include "iseq.h"
#include "vm_core.h"
#if !defined(__GNUC__) || __GNUC__ < 5 || defined(__MINGW32__)
# define NO_CLOBBERED(v) (*(volatile VALUE *)&(v))
#else
# define NO_CLOBBERED(v) (v)
#endif
#define UPDATE_TYPED_REFERENCE(_type, _ref) *(_type*)&_ref = (_type)rb_gc_location((VALUE)_ref)
#define UPDATE_REFERENCE(_ref) UPDATE_TYPED_REFERENCE(VALUE, _ref)
const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase);
struct METHOD {
const VALUE recv;
const VALUE klass;
const VALUE iclass;
const rb_method_entry_t * const me;
/* for bound methods, `me' should be rb_callable_method_entry_t * */
};
VALUE rb_cUnboundMethod;
VALUE rb_cMethod;
VALUE rb_cBinding;
VALUE rb_cProc;
static rb_block_call_func bmcall;
static int method_arity(VALUE);
static int method_min_max_arity(VALUE, int *max);
static VALUE proc_binding(VALUE self);
#define attached id__attached__
/* Proc */
#define IS_METHOD_PROC_IFUNC(ifunc) ((ifunc)->func == bmcall)
/* :FIXME: The way procs are cloned has been historically different from the
* way everything else are. @shyouhei is not sure for the intention though.
*/
#undef CLONESETUP
static inline void
CLONESETUP(VALUE clone, VALUE obj)
{
RBIMPL_ASSERT_OR_ASSUME(! RB_SPECIAL_CONST_P(obj));
RBIMPL_ASSERT_OR_ASSUME(! RB_SPECIAL_CONST_P(clone));
const VALUE flags = RUBY_FL_PROMOTED0 | RUBY_FL_PROMOTED1 | RUBY_FL_FINALIZE;
rb_obj_setup(clone, rb_singleton_class_clone(obj),
RB_FL_TEST_RAW(obj, ~flags));
rb_singleton_class_attached(RBASIC_CLASS(clone), clone);
if (RB_FL_TEST(obj, RUBY_FL_EXIVAR)) rb_copy_generic_ivar(clone, obj);
}
static void
block_mark(const struct rb_block *block)
{
switch (vm_block_type(block)) {
case block_type_iseq:
case block_type_ifunc:
{
const struct rb_captured_block *captured = &block->as.captured;
RUBY_MARK_MOVABLE_UNLESS_NULL(captured->self);
RUBY_MARK_MOVABLE_UNLESS_NULL((VALUE)captured->code.val);
if (captured->ep && captured->ep[VM_ENV_DATA_INDEX_ENV] != Qundef /* cfunc_proc_t */) {
rb_gc_mark(VM_ENV_ENVVAL(captured->ep));
}
}
break;
case block_type_symbol:
RUBY_MARK_MOVABLE_UNLESS_NULL(block->as.symbol);
break;
case block_type_proc:
RUBY_MARK_MOVABLE_UNLESS_NULL(block->as.proc);
break;
}
}
static void
block_compact(struct rb_block *block)
{
switch (block->type) {
case block_type_iseq:
case block_type_ifunc:
{
struct rb_captured_block *captured = &block->as.captured;
captured->self = rb_gc_location(captured->self);
captured->code.val = rb_gc_location(captured->code.val);
}
break;
case block_type_symbol:
block->as.symbol = rb_gc_location(block->as.symbol);
break;
case block_type_proc:
block->as.proc = rb_gc_location(block->as.proc);
break;
}
}
static void
proc_compact(void *ptr)
{
rb_proc_t *proc = ptr;
block_compact((struct rb_block *)&proc->block);
}
static void
proc_mark(void *ptr)
{
rb_proc_t *proc = ptr;
block_mark(&proc->block);
RUBY_MARK_LEAVE("proc");
}
typedef struct {
rb_proc_t basic;
VALUE env[VM_ENV_DATA_SIZE + 1]; /* ..., envval */
} cfunc_proc_t;
static size_t
proc_memsize(const void *ptr)
{
const rb_proc_t *proc = ptr;
if (proc->block.as.captured.ep == ((const cfunc_proc_t *)ptr)->env+1)
return sizeof(cfunc_proc_t);
return sizeof(rb_proc_t);
}
static const rb_data_type_t proc_data_type = {
"proc",
{
proc_mark,
RUBY_TYPED_DEFAULT_FREE,
proc_memsize,
proc_compact,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED
};
VALUE
rb_proc_alloc(VALUE klass)
{
rb_proc_t *proc;
return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc);
}
VALUE
rb_obj_is_proc(VALUE proc)
{
return RBOOL(rb_typeddata_is_kind_of(proc, &proc_data_type));
}
/* :nodoc: */
static VALUE
proc_clone(VALUE self)
{
VALUE procval = rb_proc_dup(self);
CLONESETUP(procval, self);
return procval;
}
/*
* call-seq:
* prc.lambda? -> true or false
*
* Returns +true+ if a Proc object is lambda.
* +false+ if non-lambda.
*
* The lambda-ness affects argument handling and the behavior of +return+ and +break+.
*
* A Proc object generated by +proc+ ignores extra arguments.
*
* proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2]
*
* It provides +nil+ for missing arguments.
*
* proc {|a,b| [a,b] }.call(1) #=> [1,nil]
*
* It expands a single array argument.
*
* proc {|a,b| [a,b] }.call([1,2]) #=> [1,2]
*
* A Proc object generated by +lambda+ doesn't have such tricks.
*
* lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError
* lambda {|a,b| [a,b] }.call(1) #=> ArgumentError
* lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError
*
* Proc#lambda? is a predicate for the tricks.
* It returns +true+ if no tricks apply.
*
* lambda {}.lambda? #=> true
* proc {}.lambda? #=> false
*
* Proc.new is the same as +proc+.
*
* Proc.new {}.lambda? #=> false
*
* +lambda+, +proc+ and Proc.new preserve the tricks of
* a Proc object given by <code>&</code> argument.
*
* lambda(&lambda {}).lambda? #=> true
* proc(&lambda {}).lambda? #=> true
* Proc.new(&lambda {}).lambda? #=> true
*
* lambda(&proc {}).lambda? #=> false
* proc(&proc {}).lambda? #=> false
* Proc.new(&proc {}).lambda? #=> false
*
* A Proc object generated by <code>&</code> argument has the tricks
*
* def n(&b) b.lambda? end
* n {} #=> false
*
* The <code>&</code> argument preserves the tricks if a Proc object
* is given by <code>&</code> argument.
*
* n(&lambda {}) #=> true
* n(&proc {}) #=> false
* n(&Proc.new {}) #=> false
*
* A Proc object converted from a method has no tricks.
*
* def m() end
* method(:m).to_proc.lambda? #=> true
*
* n(&method(:m)) #=> true
* n(&method(:m).to_proc) #=> true
*
* +define_method+ is treated the same as method definition.
* The defined method has no tricks.
*
* class C
* define_method(:d) {}
* end
* C.new.d(1,2) #=> ArgumentError
* C.new.method(:d).to_proc.lambda? #=> true
*
* +define_method+ always defines a method without the tricks,
* even if a non-lambda Proc object is given.
* This is the only exception for which the tricks are not preserved.
*
* class C
* define_method(:e, &proc {})
* end
* C.new.e(1,2) #=> ArgumentError
* C.new.method(:e).to_proc.lambda? #=> true
*
* This exception ensures that methods never have tricks
* and makes it easy to have wrappers to define methods that behave as usual.
*
* class C
* def self.def2(name, &body)
* define_method(name, &body)
* end
*
* def2(:f) {}
* end
* C.new.f(1,2) #=> ArgumentError
*
* The wrapper <i>def2</i> defines a method which has no tricks.
*
*/
VALUE
rb_proc_lambda_p(VALUE procval)
{
rb_proc_t *proc;
GetProcPtr(procval, proc);
return RBOOL(proc->is_lambda);
}
/* Binding */
static void
binding_free(void *ptr)
{
RUBY_FREE_ENTER("binding");
ruby_xfree(ptr);
RUBY_FREE_LEAVE("binding");
}
static void
binding_mark(void *ptr)
{
rb_binding_t *bind = ptr;
RUBY_MARK_ENTER("binding");
block_mark(&bind->block);
rb_gc_mark_movable(bind->pathobj);
RUBY_MARK_LEAVE("binding");
}
static void
binding_compact(void *ptr)
{
rb_binding_t *bind = ptr;
block_compact((struct rb_block *)&bind->block);
UPDATE_REFERENCE(bind->pathobj);
}
static size_t
binding_memsize(const void *ptr)
{
return sizeof(rb_binding_t);
}
const rb_data_type_t ruby_binding_data_type = {
"binding",
{
binding_mark,
binding_free,
binding_memsize,
binding_compact,
},
0, 0, RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FREE_IMMEDIATELY
};
VALUE
rb_binding_alloc(VALUE klass)
{
VALUE obj;
rb_binding_t *bind;
obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind);
return obj;
}
/* :nodoc: */
static VALUE
binding_dup(VALUE self)
{
VALUE bindval = rb_binding_alloc(rb_cBinding);
rb_binding_t *src, *dst;
GetBindingPtr(self, src);
GetBindingPtr(bindval, dst);
rb_vm_block_copy(bindval, &dst->block, &src->block);
RB_OBJ_WRITE(bindval, &dst->pathobj, src->pathobj);
dst->first_lineno = src->first_lineno;
return bindval;
}
/* :nodoc: */
static VALUE
binding_clone(VALUE self)
{
VALUE bindval = binding_dup(self);
CLONESETUP(bindval, self);
return bindval;
}
VALUE
rb_binding_new(void)
{
rb_execution_context_t *ec = GET_EC();
return rb_vm_make_binding(ec, ec->cfp);
}
/*
* call-seq:
* binding -> a_binding
*
* Returns a +Binding+ object, describing the variable and
* method bindings at the point of call. This object can be used when
* calling +eval+ to execute the evaluated command in this
* environment. See also the description of class +Binding+.
*
* def get_binding(param)
* binding
* end
* b = get_binding("hello")
* eval("param", b) #=> "hello"
*/
static VALUE
rb_f_binding(VALUE self)
{
return rb_binding_new();
}
/*
* call-seq:
* binding.eval(string [, filename [,lineno]]) -> obj
*
* Evaluates the Ruby expression(s) in <em>string</em>, in the
* <em>binding</em>'s context. If the optional <em>filename</em> and
* <em>lineno</em> parameters are present, they will be used when
* reporting syntax errors.
*
* def get_binding(param)
* binding
* end
* b = get_binding("hello")
* b.eval("param") #=> "hello"
*/
static VALUE
bind_eval(int argc, VALUE *argv, VALUE bindval)
{
VALUE args[4];
rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
args[1] = bindval;
return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */);
}
static const VALUE *
get_local_variable_ptr(const rb_env_t **envp, ID lid)
{
const rb_env_t *env = *envp;
do {
if (!VM_ENV_FLAGS(env->ep, VM_FRAME_FLAG_CFRAME)) {
if (VM_ENV_FLAGS(env->ep, VM_ENV_FLAG_ISOLATED)) {
return NULL;
}
const rb_iseq_t *iseq = env->iseq;
unsigned int i;
VM_ASSERT(rb_obj_is_iseq((VALUE)iseq));
for (i=0; i<iseq->body->local_table_size; i++) {
if (iseq->body->local_table[i] == lid) {
if (iseq->body->local_iseq == iseq &&
iseq->body->param.flags.has_block &&
(unsigned int)iseq->body->param.block_start == i) {
const VALUE *ep = env->ep;
if (!VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)) {
RB_OBJ_WRITE(env, &env->env[i], rb_vm_bh_to_procval(GET_EC(), VM_ENV_BLOCK_HANDLER(ep)));
VM_ENV_FLAGS_SET(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM);
}
}
*envp = env;
return &env->env[i];
}
}
}
else {
*envp = NULL;
return NULL;
}
} while ((env = rb_vm_env_prev_env(env)) != NULL);
*envp = NULL;
return NULL;
}
/*
* check local variable name.
* returns ID if it's an already interned symbol, or 0 with setting
* local name in String to *namep.
*/
static ID
check_local_id(VALUE bindval, volatile VALUE *pname)
{
ID lid = rb_check_id(pname);
VALUE name = *pname;
if (lid) {
if (!rb_is_local_id(lid)) {
rb_name_err_raise("wrong local variable name `%1$s' for %2$s",
bindval, ID2SYM(lid));
}
}
else {
if (!rb_is_local_name(name)) {
rb_name_err_raise("wrong local variable name `%1$s' for %2$s",
bindval, name);
}
return 0;
}
return lid;
}
/*
* call-seq:
* binding.local_variables -> Array
*
* Returns the names of the binding's local variables as symbols.
*
* def foo
* a = 1
* 2.times do |n|
* binding.local_variables #=> [:a, :n]
* end
* end
*
* This method is the short version of the following code:
*
* binding.eval("local_variables")
*
*/
static VALUE
bind_local_variables(VALUE bindval)
{
const rb_binding_t *bind;
const rb_env_t *env;
GetBindingPtr(bindval, bind);
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
return rb_vm_env_local_variables(env);
}
/*
* call-seq:
* binding.local_variable_get(symbol) -> obj
*
* Returns the value of the local variable +symbol+.
*
* def foo
* a = 1
* binding.local_variable_get(:a) #=> 1
* binding.local_variable_get(:b) #=> NameError
* end
*
* This method is the short version of the following code:
*
* binding.eval("#{symbol}")
*
*/
static VALUE
bind_local_variable_get(VALUE bindval, VALUE sym)
{
ID lid = check_local_id(bindval, &sym);
const rb_binding_t *bind;
const VALUE *ptr;
const rb_env_t *env;
if (!lid) goto undefined;
GetBindingPtr(bindval, bind);
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
if ((ptr = get_local_variable_ptr(&env, lid)) != NULL) {
return *ptr;
}
sym = ID2SYM(lid);
undefined:
rb_name_err_raise("local variable `%1$s' is not defined for %2$s",
bindval, sym);
UNREACHABLE_RETURN(Qundef);
}
/*
* call-seq:
* binding.local_variable_set(symbol, obj) -> obj
*
* Set local variable named +symbol+ as +obj+.
*
* def foo
* a = 1
* bind = binding
* bind.local_variable_set(:a, 2) # set existing local variable `a'
* bind.local_variable_set(:b, 3) # create new local variable `b'
* # `b' exists only in binding
*
* p bind.local_variable_get(:a) #=> 2
* p bind.local_variable_get(:b) #=> 3
* p a #=> 2
* p b #=> NameError
* end
*
* This method behaves similarly to the following code:
*
* binding.eval("#{symbol} = #{obj}")
*
* if +obj+ can be dumped in Ruby code.
*/
static VALUE
bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val)
{
ID lid = check_local_id(bindval, &sym);
rb_binding_t *bind;
const VALUE *ptr;
const rb_env_t *env;
if (!lid) lid = rb_intern_str(sym);
GetBindingPtr(bindval, bind);
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
if ((ptr = get_local_variable_ptr(&env, lid)) == NULL) {
/* not found. create new env */
ptr = rb_binding_add_dynavars(bindval, bind, 1, &lid);
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
}
RB_OBJ_WRITE(env, ptr, val);
return val;
}
/*
* call-seq:
* binding.local_variable_defined?(symbol) -> obj
*
* Returns +true+ if a local variable +symbol+ exists.
*
* def foo
* a = 1
* binding.local_variable_defined?(:a) #=> true
* binding.local_variable_defined?(:b) #=> false
* end
*
* This method is the short version of the following code:
*
* binding.eval("defined?(#{symbol}) == 'local-variable'")
*
*/
static VALUE
bind_local_variable_defined_p(VALUE bindval, VALUE sym)
{
ID lid = check_local_id(bindval, &sym);
const rb_binding_t *bind;
const rb_env_t *env;
if (!lid) return Qfalse;
GetBindingPtr(bindval, bind);
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
return RBOOL(get_local_variable_ptr(&env, lid));
}
/*
* call-seq:
* binding.receiver -> object
*
* Returns the bound receiver of the binding object.
*/
static VALUE
bind_receiver(VALUE bindval)
{
const rb_binding_t *bind;
GetBindingPtr(bindval, bind);
return vm_block_self(&bind->block);
}
/*
* call-seq:
* binding.source_location -> [String, Integer]
*
* Returns the Ruby source filename and line number of the binding object.
*/
static VALUE
bind_location(VALUE bindval)
{
VALUE loc[2];
const rb_binding_t *bind;
GetBindingPtr(bindval, bind);
loc[0] = pathobj_path(bind->pathobj);
loc[1] = INT2FIX(bind->first_lineno);
return rb_ary_new4(2, loc);
}
static VALUE
cfunc_proc_new(VALUE klass, VALUE ifunc)
{
rb_proc_t *proc;
cfunc_proc_t *sproc;
VALUE procval = TypedData_Make_Struct(klass, cfunc_proc_t, &proc_data_type, sproc);
VALUE *ep;
proc = &sproc->basic;
vm_block_type_set(&proc->block, block_type_ifunc);
*(VALUE **)&proc->block.as.captured.ep = ep = sproc->env + VM_ENV_DATA_SIZE-1;
ep[VM_ENV_DATA_INDEX_FLAGS] = VM_FRAME_MAGIC_IFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL | VM_ENV_FLAG_ESCAPED;
ep[VM_ENV_DATA_INDEX_ME_CREF] = Qfalse;
ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE;
ep[VM_ENV_DATA_INDEX_ENV] = Qundef; /* envval */
/* self? */
RB_OBJ_WRITE(procval, &proc->block.as.captured.code.ifunc, ifunc);
proc->is_lambda = TRUE;
return procval;
}
static VALUE
sym_proc_new(VALUE klass, VALUE sym)
{
VALUE procval = rb_proc_alloc(klass);
rb_proc_t *proc;
GetProcPtr(procval, proc);
vm_block_type_set(&proc->block, block_type_symbol);
proc->is_lambda = TRUE;
RB_OBJ_WRITE(procval, &proc->block.as.symbol, sym);
return procval;
}
struct vm_ifunc *
rb_vm_ifunc_new(rb_block_call_func_t func, const void *data, int min_argc, int max_argc)
{
union {
struct vm_ifunc_argc argc;
VALUE packed;
} arity;
if (min_argc < UNLIMITED_ARGUMENTS ||
#if SIZEOF_INT * 2 > SIZEOF_VALUE
min_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
#endif
0) {
rb_raise(rb_eRangeError, "minimum argument number out of range: %d",
min_argc);
}
if (max_argc < UNLIMITED_ARGUMENTS ||
#if SIZEOF_INT * 2 > SIZEOF_VALUE
max_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
#endif
0) {
rb_raise(rb_eRangeError, "maximum argument number out of range: %d",
max_argc);
}
arity.argc.min = min_argc;
arity.argc.max = max_argc;
VALUE ret = rb_imemo_new(imemo_ifunc, (VALUE)func, (VALUE)data, arity.packed, 0);
return (struct vm_ifunc *)ret;
}
MJIT_FUNC_EXPORTED VALUE
rb_func_proc_new(rb_block_call_func_t func, VALUE val)
{
struct vm_ifunc *ifunc = rb_vm_ifunc_proc_new(func, (void *)val);
return cfunc_proc_new(rb_cProc, (VALUE)ifunc);
}
MJIT_FUNC_EXPORTED VALUE
rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc)
{
struct vm_ifunc *ifunc = rb_vm_ifunc_new(func, (void *)val, min_argc, max_argc);
return cfunc_proc_new(rb_cProc, (VALUE)ifunc);
}
static const char proc_without_block[] = "tried to create Proc object without a block";
static VALUE
proc_new(VALUE klass, int8_t is_lambda, int8_t kernel)
{
VALUE procval;
const rb_execution_context_t *ec = GET_EC();
rb_control_frame_t *cfp = ec->cfp;
VALUE block_handler;
if ((block_handler = rb_vm_frame_block_handler(cfp)) == VM_BLOCK_HANDLER_NONE) {
rb_raise(rb_eArgError, proc_without_block);
}
/* block is in cf */
switch (vm_block_handler_type(block_handler)) {
case block_handler_type_proc:
procval = VM_BH_TO_PROC(block_handler);
if (RBASIC_CLASS(procval) == klass) {
return procval;
}
else {
VALUE newprocval = rb_proc_dup(procval);
RBASIC_SET_CLASS(newprocval, klass);
return newprocval;
}
break;
case block_handler_type_symbol:
return (klass != rb_cProc) ?
sym_proc_new(klass, VM_BH_TO_SYMBOL(block_handler)) :
rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler));
break;
case block_handler_type_ifunc:
return rb_vm_make_proc_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), klass, is_lambda);
case block_handler_type_iseq:
{
const struct rb_captured_block *captured = VM_BH_TO_CAPT_BLOCK(block_handler);
rb_control_frame_t *last_ruby_cfp = rb_vm_get_ruby_level_next_cfp(ec, cfp);
if (is_lambda && last_ruby_cfp && vm_cfp_forwarded_bh_p(last_ruby_cfp, block_handler)) {
is_lambda = false;
}
return rb_vm_make_proc_lambda(ec, captured, klass, is_lambda);
}
}
VM_UNREACHABLE(proc_new);
return Qnil;
}
/*
* call-seq:
* Proc.new {|...| block } -> a_proc
*
* Creates a new Proc object, bound to the current context.
*
* proc = Proc.new { "hello" }
* proc.call #=> "hello"
*
* Raises ArgumentError if called without a block.
*
* Proc.new #=> ArgumentError
*/
static VALUE
rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE block = proc_new(klass, FALSE, FALSE);
rb_obj_call_init_kw(block, argc, argv, RB_PASS_CALLED_KEYWORDS);
return block;
}
VALUE
rb_block_proc(void)
{
return proc_new(rb_cProc, FALSE, FALSE);
}
/*
* call-seq:
* proc { |...| block } -> a_proc
*
* Equivalent to Proc.new.
*/
static VALUE
f_proc(VALUE _)
{
return proc_new(rb_cProc, FALSE, TRUE);
}
VALUE
rb_block_lambda(void)
{
return proc_new(rb_cProc, TRUE, FALSE);
}
static void
f_lambda_warn(void)
{
rb_control_frame_t *cfp = GET_EC()->cfp;
VALUE block_handler = rb_vm_frame_block_handler(cfp);
if (block_handler != VM_BLOCK_HANDLER_NONE) {
switch (vm_block_handler_type(block_handler)) {
case block_handler_type_iseq:
if (RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp)->ep == VM_BH_TO_ISEQ_BLOCK(block_handler)->ep) {
return;
}
break;
case block_handler_type_symbol:
return;
case block_handler_type_proc:
if (rb_proc_lambda_p(VM_BH_TO_PROC(block_handler))) {
return;
}
break;
case block_handler_type_ifunc:
break;
}
}
rb_warn_deprecated("lambda without a literal block", "the proc without lambda");
}
/*
* call-seq:
* lambda { |...| block } -> a_proc
*
* Equivalent to Proc.new, except the resulting Proc objects check the
* number of parameters passed when called.
*/
static VALUE
f_lambda(VALUE _)
{
f_lambda_warn();
return rb_block_lambda();
}
/* Document-method: Proc#===
*
* call-seq:
* proc === obj -> result_of_proc
*
* Invokes the block with +obj+ as the proc's parameter like Proc#call.
* This allows a proc object to be the target of a +when+ clause
* in a case statement.
*/
/* CHECKME: are the argument checking semantics correct? */
/*
* Document-method: Proc#[]
* Document-method: Proc#call
* Document-method: Proc#yield
*
* call-seq:
* prc.call(params,...) -> obj
* prc[params,...] -> obj
* prc.(params,...) -> obj
* prc.yield(params,...) -> obj
*
* Invokes the block, setting the block's parameters to the values in
* <i>params</i> using something close to method calling semantics.
* Returns the value of the last expression evaluated in the block.
*
* a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } }
* a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
* a_proc[9, 1, 2, 3] #=> [9, 18, 27]
* a_proc.(9, 1, 2, 3) #=> [9, 18, 27]
* a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27]
*
* Note that <code>prc.()</code> invokes <code>prc.call()</code> with
* the parameters given. It's syntactic sugar to hide "call".
*
* For procs created using #lambda or <code>->()</code> an error is
* generated if the wrong number of parameters are passed to the
* proc. For procs created using Proc.new or Kernel.proc, extra
* parameters are silently discarded and missing parameters are set
* to +nil+.
*
* a_proc = proc {|a,b| [a,b] }
* a_proc.call(1) #=> [1, nil]
*
* a_proc = lambda {|a,b| [a,b] }
* a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
*
* See also Proc#lambda?.
*/
#if 0
static VALUE
proc_call(int argc, VALUE *argv, VALUE procval)
{
/* removed */
}
#endif
#if SIZEOF_LONG > SIZEOF_INT
static inline int
check_argc(long argc)
{
if (argc > INT_MAX || argc < 0) {
rb_raise(rb_eArgError, "too many arguments (%lu)",
(unsigned long)argc);
}
return (int)argc;
}
#else
#define check_argc(argc) (argc)
#endif
VALUE
rb_proc_call_kw(VALUE self, VALUE args, int kw_splat)
{
VALUE vret;
rb_proc_t *proc;
int argc = check_argc(RARRAY_LEN(args));
const VALUE *argv = RARRAY_CONST_PTR(args);
GetProcPtr(self, proc);
vret = rb_vm_invoke_proc(GET_EC(), proc, argc, argv,
kw_splat, VM_BLOCK_HANDLER_NONE);
RB_GC_GUARD(self);
RB_GC_GUARD(args);
return vret;
}
VALUE
rb_proc_call(VALUE self, VALUE args)
{
VALUE vret;
rb_proc_t *proc;
GetProcPtr(self, proc);
vret = rb_vm_invoke_proc(GET_EC(), proc,
check_argc(RARRAY_LEN(args)), RARRAY_CONST_PTR(args),
RB_NO_KEYWORDS, VM_BLOCK_HANDLER_NONE);
RB_GC_GUARD(self);
RB_GC_GUARD(args);
return vret;
}
static VALUE
proc_to_block_handler(VALUE procval)
{
return NIL_P(procval) ? VM_BLOCK_HANDLER_NONE : procval;
}
VALUE
rb_proc_call_with_block_kw(VALUE self, int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
{
rb_execution_context_t *ec = GET_EC();
VALUE vret;
rb_proc_t *proc;
GetProcPtr(self, proc);
vret = rb_vm_invoke_proc(ec, proc, argc, argv, kw_splat, proc_to_block_handler(passed_procval));
RB_GC_GUARD(self);
return vret;
}
VALUE
rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE passed_procval)
{
return rb_proc_call_with_block_kw(self, argc, argv, passed_procval, RB_NO_KEYWORDS);
}
/*
* call-seq:
* prc.arity -> integer
*
* Returns the number of mandatory arguments. If the block
* is declared to take no arguments, returns 0. If the block is known
* to take exactly n arguments, returns n.
* If the block has optional arguments, returns -n-1, where n is the
* number of mandatory arguments, with the exception for blocks that
* are not lambdas and have only a finite number of optional arguments;
* in this latter case, returns n.
* Keyword arguments will be considered as a single additional argument,
* that argument being mandatory if any keyword argument is mandatory.
* A #proc with no argument declarations is the same as a block
* declaring <code>||</code> as its arguments.
*
* proc {}.arity #=> 0
* proc { || }.arity #=> 0
* proc { |a| }.arity #=> 1
* proc { |a, b| }.arity #=> 2
* proc { |a, b, c| }.arity #=> 3
* proc { |*a| }.arity #=> -1
* proc { |a, *b| }.arity #=> -2
* proc { |a, *b, c| }.arity #=> -3
* proc { |x:, y:, z:0| }.arity #=> 1
* proc { |*a, x:, y:0| }.arity #=> -2
*
* proc { |a=0| }.arity #=> 0
* lambda { |a=0| }.arity #=> -1
* proc { |a=0, b| }.arity #=> 1
* lambda { |a=0, b| }.arity #=> -2
* proc { |a=0, b=0| }.arity #=> 0
* lambda { |a=0, b=0| }.arity #=> -1
* proc { |a, b=0| }.arity #=> 1
* lambda { |a, b=0| }.arity #=> -2
* proc { |(a, b), c=0| }.arity #=> 1
* lambda { |(a, b), c=0| }.arity #=> -2
* proc { |a, x:0, y:0| }.arity #=> 1
* lambda { |a, x:0, y:0| }.arity #=> -2
*/
static VALUE
proc_arity(VALUE self)
{
int arity = rb_proc_arity(self);
return INT2FIX(arity);
}
static inline int
rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max)
{
*max = iseq->body->param.flags.has_rest == FALSE ?
iseq->body->param.lead_num + iseq->body->param.opt_num + iseq->body->param.post_num +
(iseq->body->param.flags.has_kw == TRUE || iseq->body->param.flags.has_kwrest == TRUE)
: UNLIMITED_ARGUMENTS;
return iseq->body->param.lead_num + iseq->body->param.post_num + (iseq->body->param.flags.has_kw && iseq->body->param.keyword->required_num > 0);
}
static int
rb_vm_block_min_max_arity(const struct rb_block *block, int *max)
{
again:
switch (vm_block_type(block)) {
case block_type_iseq:
return rb_iseq_min_max_arity(rb_iseq_check(block->as.captured.code.iseq), max);
case block_type_proc:
block = vm_proc_block(block->as.proc);
goto again;
case block_type_ifunc:
{
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
if (IS_METHOD_PROC_IFUNC(ifunc)) {
/* e.g. method(:foo).to_proc.arity */
return method_min_max_arity((VALUE)ifunc->data, max);
}
*max = ifunc->argc.max;
return ifunc->argc.min;
}
case block_type_symbol:
*max = UNLIMITED_ARGUMENTS;
return 1;
}
*max = UNLIMITED_ARGUMENTS;
return 0;
}
/*
* Returns the number of required parameters and stores the maximum
* number of parameters in max, or UNLIMITED_ARGUMENTS if no max.
* For non-lambda procs, the maximum is the number of non-ignored
* parameters even though there is no actual limit to the number of parameters
*/
static int
rb_proc_min_max_arity(VALUE self, int *max)
{
rb_proc_t *proc;
GetProcPtr(self, proc);
return rb_vm_block_min_max_arity(&proc->block, max);
}
int
rb_proc_arity(VALUE self)
{
rb_proc_t *proc;
int max, min;
GetProcPtr(self, proc);
min = rb_vm_block_min_max_arity(&proc->block, &max);
return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
}
static void
block_setup(struct rb_block *block, VALUE block_handler)
{
switch (vm_block_handler_type(block_handler)) {
case block_handler_type_iseq:
block->type = block_type_iseq;
block->as.captured = *VM_BH_TO_ISEQ_BLOCK(block_handler);
break;
case block_handler_type_ifunc:
block->type = block_type_ifunc;
block->as.captured = *VM_BH_TO_IFUNC_BLOCK(block_handler);
break;
case block_handler_type_symbol:
block->type = block_type_symbol;
block->as.symbol = VM_BH_TO_SYMBOL(block_handler);
break;
case block_handler_type_proc:
block->type = block_type_proc;
block->as.proc = VM_BH_TO_PROC(block_handler);
}
}
int
rb_block_pair_yield_optimizable(void)
{
int min, max;
const rb_execution_context_t *ec = GET_EC();
rb_control_frame_t *cfp = ec->cfp;
VALUE block_handler = rb_vm_frame_block_handler(cfp);
struct rb_block block;
if (block_handler == VM_BLOCK_HANDLER_NONE) {
rb_raise(rb_eArgError, "no block given");
}
block_setup(&block, block_handler);
min = rb_vm_block_min_max_arity(&block, &max);
switch (vm_block_type(&block)) {
case block_handler_type_symbol:
return 0;
case block_handler_type_proc:
{
VALUE procval = block_handler;
rb_proc_t *proc;
GetProcPtr(procval, proc);
if (proc->is_lambda) return 0;
if (min != max) return 0;
return min > 1;
}
default:
return min > 1;
}
}
int
rb_block_arity(void)
{
int min, max;
const rb_execution_context_t *ec = GET_EC();
rb_control_frame_t *cfp = ec->cfp;
VALUE block_handler = rb_vm_frame_block_handler(cfp);
struct rb_block block;
if (block_handler == VM_BLOCK_HANDLER_NONE) {
rb_raise(rb_eArgError, "no block given");
}
block_setup(&block, block_handler);
min = rb_vm_block_min_max_arity(&block, &max);
switch (vm_block_type(&block)) {
case block_handler_type_symbol:
return -1;
case block_handler_type_proc:
{
VALUE procval = block_handler;
rb_proc_t *proc;
GetProcPtr(procval, proc);
return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
}
default:
return max != UNLIMITED_ARGUMENTS ? min : -min-1;
}
}
int
rb_block_min_max_arity(int *max)
{
const rb_execution_context_t *ec = GET_EC();
rb_control_frame_t *cfp = ec->cfp;
VALUE block_handler = rb_vm_frame_block_handler(cfp);
struct rb_block block;
if (block_handler == VM_BLOCK_HANDLER_NONE) {
rb_raise(rb_eArgError, "no block given");
}
block_setup(&block, block_handler);
return rb_vm_block_min_max_arity(&block, max);
}
const rb_iseq_t *
rb_proc_get_iseq(VALUE self, int *is_proc)
{
const rb_proc_t *proc;
const struct rb_block *block;
GetProcPtr(self, proc);
block = &proc->block;
if (is_proc) *is_proc = !proc->is_lambda;
switch (vm_block_type(block)) {
case block_type_iseq:
return rb_iseq_check(block->as.captured.code.iseq);
case block_type_proc:
return rb_proc_get_iseq(block->as.proc, is_proc);
case block_type_ifunc:
{
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
if (IS_METHOD_PROC_IFUNC(ifunc)) {
/* method(:foo).to_proc */
if (is_proc) *is_proc = 0;
return rb_method_iseq((VALUE)ifunc->data);
}
else {
return NULL;
}
}
case block_type_symbol:
return NULL;
}
VM_UNREACHABLE(rb_proc_get_iseq);
return NULL;
}
/* call-seq:
* prc == other -> true or false
* prc.eql?(other) -> true or false
*
* Two procs are the same if, and only if, they were created from the same code block.
*
* def return_block(&block)
* block
* end
*
* def pass_block_twice(&block)
* [return_block(&block), return_block(&block)]
* end
*
* block1, block2 = pass_block_twice { puts 'test' }
* # Blocks might be instantiated into Proc's lazily, so they may, or may not,
* # be the same object.
* # But they are produced from the same code block, so they are equal
* block1 == block2
* #=> true
*
* # Another Proc will never be equal, even if the code is the "same"
* block1 == proc { puts 'test' }
* #=> false
*
*/
static VALUE
proc_eq(VALUE self, VALUE other)
{
const rb_proc_t *self_proc, *other_proc;
const struct rb_block *self_block, *other_block;
if (rb_obj_class(self) != rb_obj_class(other)) {
return Qfalse;
}
GetProcPtr(self, self_proc);
GetProcPtr(other, other_proc);
if (self_proc->is_from_method != other_proc->is_from_method ||
self_proc->is_lambda != other_proc->is_lambda) {
return Qfalse;
}
self_block = &self_proc->block;
other_block = &other_proc->block;
if (vm_block_type(self_block) != vm_block_type(other_block)) {
return Qfalse;
}
switch (vm_block_type(self_block)) {
case block_type_iseq:
if (self_block->as.captured.ep != \
other_block->as.captured.ep ||
self_block->as.captured.code.iseq != \
other_block->as.captured.code.iseq) {
return Qfalse;
}
break;
case block_type_ifunc:
if (self_block->as.captured.ep != \
other_block->as.captured.ep ||
self_block->as.captured.code.ifunc != \
other_block->as.captured.code.ifunc) {
return Qfalse;
}
break;
case block_type_proc:
if (self_block->as.proc != other_block->as.proc) {
return Qfalse;
}
break;
case block_type_symbol:
if (self_block->as.symbol != other_block->as.symbol) {
return Qfalse;
}
break;
}
return Qtrue;
}
static VALUE
iseq_location(const rb_iseq_t *iseq)
{
VALUE loc[2];
if (!iseq) return Qnil;
rb_iseq_check(iseq);
loc[0] = rb_iseq_path(iseq);
loc[1] = iseq->body->location.first_lineno;
return rb_ary_new4(2, loc);
}
MJIT_FUNC_EXPORTED VALUE
rb_iseq_location(const rb_iseq_t *iseq)
{
return iseq_location(iseq);
}
/*
* call-seq:
* prc.source_location -> [String, Integer]
*
* Returns the Ruby source filename and line number containing this proc
* or +nil+ if this proc was not defined in Ruby (i.e. native).
*/
VALUE
rb_proc_location(VALUE self)
{
return iseq_location(rb_proc_get_iseq(self, 0));
}
VALUE
rb_unnamed_parameters(int arity)
{
VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity);
int n = (arity < 0) ? ~arity : arity;
ID req, rest;
CONST_ID(req, "req");
a = rb_ary_new3(1, ID2SYM(req));
OBJ_FREEZE(a);
for (; n; --n) {
rb_ary_push(param, a);
}
if (arity < 0) {
CONST_ID(rest, "rest");
rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest)));
}
return param;
}
/*
* call-seq:
* prc.parameters -> array
*
* Returns the parameter information of this proc.
*
* prc = lambda{|x, y=42, *other|}
* prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]]
*/
static VALUE
rb_proc_parameters(VALUE self)
{
int is_proc;
const rb_iseq_t *iseq = rb_proc_get_iseq(self, &is_proc);
if (!iseq) {
return rb_unnamed_parameters(rb_proc_arity(self));
}
return rb_iseq_parameters(iseq, is_proc);
}
st_index_t
rb_hash_proc(st_index_t hash, VALUE prc)
{
rb_proc_t *proc;
GetProcPtr(prc, proc);
hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.code.val);
hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.self);
return rb_hash_uint(hash, (st_index_t)proc->block.as.captured.ep);
}
MJIT_FUNC_EXPORTED VALUE
rb_sym_to_proc(VALUE sym)
{
static VALUE sym_proc_cache = Qfalse;
enum {SYM_PROC_CACHE_SIZE = 67};
VALUE proc;
long index;
ID id;
if (!sym_proc_cache) {
sym_proc_cache = rb_ary_tmp_new(SYM_PROC_CACHE_SIZE * 2);
rb_gc_register_mark_object(sym_proc_cache);
rb_ary_store(sym_proc_cache, SYM_PROC_CACHE_SIZE*2 - 1, Qnil);
}
id = SYM2ID(sym);
index = (id % SYM_PROC_CACHE_SIZE) << 1;
if (RARRAY_AREF(sym_proc_cache, index) == sym) {
return RARRAY_AREF(sym_proc_cache, index + 1);
}
else {
proc = sym_proc_new(rb_cProc, ID2SYM(id));
RARRAY_ASET(sym_proc_cache, index, sym);
RARRAY_ASET(sym_proc_cache, index + 1, proc);
return proc;
}
}
/*
* call-seq:
* prc.hash -> integer
*
* Returns a hash value corresponding to proc body.
*
* See also Object#hash.
*/
static VALUE
proc_hash(VALUE self)
{
st_index_t hash;
hash = rb_hash_start(0);
hash = rb_hash_proc(hash, self);
hash = rb_hash_end(hash);
return ST2FIX(hash);
}
VALUE
rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info)
{
VALUE cname = rb_obj_class(self);
VALUE str = rb_sprintf("#<%"PRIsVALUE":", cname);
again:
switch (vm_block_type(block)) {
case block_type_proc:
block = vm_proc_block(block->as.proc);
goto again;
case block_type_iseq:
{
const rb_iseq_t *iseq = rb_iseq_check(block->as.captured.code.iseq);
rb_str_catf(str, "%p %"PRIsVALUE":%d", (void *)self,
rb_iseq_path(iseq),
FIX2INT(iseq->body->location.first_lineno));
}
break;
case block_type_symbol:
rb_str_catf(str, "%p(&%+"PRIsVALUE")", (void *)self, block->as.symbol);
break;
case block_type_ifunc:
rb_str_catf(str, "%p", (void *)block->as.captured.code.ifunc);
break;
}
if (additional_info) rb_str_cat_cstr(str, additional_info);
rb_str_cat_cstr(str, ">");
return str;
}
/*
* call-seq:
* prc.to_s -> string
*
* Returns the unique identifier for this proc, along with
* an indication of where the proc was defined.
*/
static VALUE
proc_to_s(VALUE self)
{
const rb_proc_t *proc;
GetProcPtr(self, proc);
return rb_block_to_s(self, &proc->block, proc->is_lambda ? " (lambda)" : NULL);
}
/*
* call-seq:
* prc.to_proc -> proc
*
* Part of the protocol for converting objects to Proc objects.
* Instances of class Proc simply return themselves.
*/
static VALUE
proc_to_proc(VALUE self)
{
return self;
}
static void
bm_mark(void *ptr)
{
struct METHOD *data = ptr;
rb_gc_mark_movable(data->recv);
rb_gc_mark_movable(data->klass);
rb_gc_mark_movable(data->iclass);
rb_gc_mark_movable((VALUE)data->me);
}
static void
bm_compact(void *ptr)
{
struct METHOD *data = ptr;
UPDATE_REFERENCE(data->recv);
UPDATE_REFERENCE(data->klass);
UPDATE_REFERENCE(data->iclass);
UPDATE_TYPED_REFERENCE(rb_method_entry_t *, data->me);
}
static size_t
bm_memsize(const void *ptr)
{
return sizeof(struct METHOD);
}
static const rb_data_type_t method_data_type = {
"method",
{
bm_mark,
RUBY_TYPED_DEFAULT_FREE,
bm_memsize,
bm_compact,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
VALUE
rb_obj_is_method(VALUE m)
{
return RBOOL(rb_typeddata_is_kind_of(m, &method_data_type));
}
static int
respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope)
{
/* TODO: merge with obj_respond_to() */
ID rmiss = idRespond_to_missing;
if (obj == Qundef) return 0;
if (rb_method_basic_definition_p(klass, rmiss)) return 0;
return RTEST(rb_funcall(obj, rmiss, 2, sym, scope ? Qfalse : Qtrue));
}
static VALUE
mnew_missing(VALUE klass, VALUE obj, ID id, VALUE mclass)
{
struct METHOD *data;
VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
rb_method_entry_t *me;
rb_method_definition_t *def;
RB_OBJ_WRITE(method, &data->recv, obj);
RB_OBJ_WRITE(method, &data->klass, klass);
def = ZALLOC(rb_method_definition_t);
def->type = VM_METHOD_TYPE_MISSING;
def->original_id = id;
me = rb_method_entry_create(id, klass, METHOD_VISI_UNDEF, def);
RB_OBJ_WRITE(method, &data->me, me);
return method;
}
static VALUE
mnew_missing_by_name(VALUE klass, VALUE obj, VALUE *name, int scope, VALUE mclass)
{
VALUE vid = rb_str_intern(*name);
*name = vid;
if (!respond_to_missing_p(klass, obj, vid, scope)) return Qfalse;
return mnew_missing(klass, obj, SYM2ID(vid), mclass);
}
static VALUE
mnew_internal(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
VALUE obj, ID id, VALUE mclass, int scope, int error)
{
struct METHOD *data;
VALUE method;
rb_method_visibility_t visi = METHOD_VISI_UNDEF;
again:
if (UNDEFINED_METHOD_ENTRY_P(me)) {
if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) {
return mnew_missing(klass, obj, id, mclass);
}
if (!error) return Qnil;
rb_print_undef(klass, id, METHOD_VISI_UNDEF);
}
if (visi == METHOD_VISI_UNDEF) {
visi = METHOD_ENTRY_VISI(me);
if (scope && (visi != METHOD_VISI_PUBLIC)) {
if (!error) return Qnil;
rb_print_inaccessible(klass, id, visi);
}
}
if (me->def->type == VM_METHOD_TYPE_ZSUPER) {
if (me->defined_class) {
VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->defined_class));
id = me->def->original_id;
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
}
else {
VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->owner));
id = me->def->original_id;
me = rb_method_entry_without_refinements(klass, id, &iclass);
}
goto again;
}
method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
RB_OBJ_WRITE(method, &data->recv, obj);
RB_OBJ_WRITE(method, &data->klass, klass);
RB_OBJ_WRITE(method, &data->iclass, iclass);
RB_OBJ_WRITE(method, &data->me, me);
return method;
}
static VALUE
mnew_from_me(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
VALUE obj, ID id, VALUE mclass, int scope)
{
return mnew_internal(me, klass, iclass, obj, id, mclass, scope, TRUE);
}
static VALUE
mnew_callable(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope)
{
const rb_method_entry_t *me;
VALUE iclass = Qnil;
ASSUME(obj != Qundef);
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass);
return mnew_from_me(me, klass, iclass, obj, id, mclass, scope);
}
static VALUE
mnew_unbound(VALUE klass, ID id, VALUE mclass, int scope)
{
const rb_method_entry_t *me;
VALUE iclass = Qnil;
me = rb_method_entry_with_refinements(klass, id, &iclass);
return mnew_from_me(me, klass, iclass, Qundef, id, mclass, scope);
}
static inline VALUE
method_entry_defined_class(const rb_method_entry_t *me)
{
VALUE defined_class = me->defined_class;
return defined_class ? defined_class : me->owner;
}
/**********************************************************************
*
* Document-class: Method
*
* Method objects are created by Object#method, and are associated
* with a particular object (not just with a class). They may be
* used to invoke the method within the object, and as a block
* associated with an iterator. They may also be unbound from one
* object (creating an UnboundMethod) and bound to another.
*
* class Thing
* def square(n)
* n*n
* end
* end
* thing = Thing.new
* meth = thing.method(:square)
*
* meth.call(9) #=> 81
* [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
*
* [ 1, 2, 3 ].each(&method(:puts)) #=> prints 1, 2, 3
*
* require 'date'
* %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
* #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
*/
/*
* call-seq:
* meth.eql?(other_meth) -> true or false
* meth == other_meth -> true or false
*
* Two method objects are equal if they are bound to the same
* object and refer to the same method definition and the classes
* defining the methods are the same class or module.
*/
static VALUE
method_eq(VALUE method, VALUE other)
{
struct METHOD *m1, *m2;
VALUE klass1, klass2;
if (!rb_obj_is_method(other))
return Qfalse;
if (CLASS_OF(method) != CLASS_OF(other))
return Qfalse;
Check_TypedStruct(method, &method_data_type);
m1 = (struct METHOD *)DATA_PTR(method);
m2 = (struct METHOD *)DATA_PTR(other);
klass1 = method_entry_defined_class(m1->me);
klass2 = method_entry_defined_class(m2->me);
if (!rb_method_entry_eq(m1->me, m2->me) ||
klass1 != klass2 ||
m1->klass != m2->klass ||
m1->recv != m2->recv) {
return Qfalse;
}
return Qtrue;
}
/*
* call-seq:
* meth.hash -> integer
*
* Returns a hash value corresponding to the method object.
*
* See also Object#hash.
*/
static VALUE
method_hash(VALUE method)
{
struct METHOD *m;
st_index_t hash;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, m);
hash = rb_hash_start((st_index_t)m->recv);
hash = rb_hash_method_entry(hash, m->me);
hash = rb_hash_end(hash);
return ST2FIX(hash);
}
/*
* call-seq:
* meth.unbind -> unbound_method
*
* Dissociates <i>meth</i> from its current receiver. The resulting
* UnboundMethod can subsequently be bound to a new object of the
* same class (see UnboundMethod).
*/
static VALUE
method_unbind(VALUE obj)
{
VALUE method;
struct METHOD *orig, *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig);
method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD,
&method_data_type, data);
RB_OBJ_WRITE(method, &data->recv, Qundef);
RB_OBJ_WRITE(method, &data->klass, orig->klass);
RB_OBJ_WRITE(method, &data->iclass, orig->iclass);
RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me));
return method;
}
/*
* call-seq:
* meth.receiver -> object
*
* Returns the bound receiver of the method object.
*
* (1..3).method(:map).receiver # => 1..3
*/
static VALUE
method_receiver(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return data->recv;
}
/*
* call-seq:
* meth.name -> symbol
*
* Returns the name of the method.
*/
static VALUE
method_name(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return ID2SYM(data->me->called_id);
}
/*
* call-seq:
* meth.original_name -> symbol
*
* Returns the original name of the method.
*
* class C
* def foo; end
* alias bar foo
* end
* C.instance_method(:bar).original_name # => :foo
*/
static VALUE
method_original_name(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return ID2SYM(data->me->def->original_id);
}
/*
* call-seq:
* meth.owner -> class_or_module
*
* Returns the class or module that defines the method.
* See also Method#receiver.
*
* (1..3).method(:map).owner #=> Enumerable
*/
static VALUE
method_owner(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return data->me->owner;
}
void
rb_method_name_error(VALUE klass, VALUE str)
{
#define MSG(s) rb_fstring_lit("undefined method `%1$s' for"s" `%2$s'")
VALUE c = klass;
VALUE s = Qundef;
if (FL_TEST(c, FL_SINGLETON)) {
VALUE obj = rb_ivar_get(klass, attached);
switch (BUILTIN_TYPE(obj)) {
case T_MODULE:
case T_CLASS:
c = obj;
break;
default:
break;
}
}
else if (RB_TYPE_P(c, T_MODULE)) {
s = MSG(" module");
}
if (s == Qundef) {
s = MSG(" class");
}
rb_name_err_raise_str(s, c, str);
#undef MSG
}
static VALUE
obj_method(VALUE obj, VALUE vid, int scope)
{
ID id = rb_check_id(&vid);
const VALUE klass = CLASS_OF(obj);
const VALUE mclass = rb_cMethod;
if (!id) {
VALUE m = mnew_missing_by_name(klass, obj, &vid, scope, mclass);
if (m) return m;
rb_method_name_error(klass, vid);
}
return mnew_callable(klass, obj, id, mclass, scope);
}
/*
* call-seq:
* obj.method(sym) -> method
*
* Looks up the named method as a receiver in <i>obj</i>, returning a
* Method object (or raising NameError). The Method object acts as a
* closure in <i>obj</i>'s object instance, so instance variables and
* the value of <code>self</code> remain available.
*
* class Demo
* def initialize(n)
* @iv = n
* end
* def hello()
* "Hello, @iv = #{@iv}"
* end
* end
*
* k = Demo.new(99)
* m = k.method(:hello)
* m.call #=> "Hello, @iv = 99"
*
* l = Demo.new('Fred')
* m = l.method("hello")
* m.call #=> "Hello, @iv = Fred"
*
* Note that Method implements <code>to_proc</code> method, which
* means it can be used with iterators.
*
* [ 1, 2, 3 ].each(&method(:puts)) # => prints 3 lines to stdout
*
* out = File.open('test.txt', 'w')
* [ 1, 2, 3 ].each(&out.method(:puts)) # => prints 3 lines to file
*
* require 'date'
* %w[2017-03-01 2017-03-02].collect(&Date.method(:parse))
* #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
*/
VALUE
rb_obj_method(VALUE obj, VALUE vid)
{
return obj_method(obj, vid, FALSE);
}
/*
* call-seq:
* obj.public_method(sym) -> method
*
* Similar to _method_, searches public method only.
*/
VALUE
rb_obj_public_method(VALUE obj, VALUE vid)
{
return obj_method(obj, vid, TRUE);
}
/*
* call-seq:
* obj.singleton_method(sym) -> method
*
* Similar to _method_, searches singleton method only.
*
* class Demo
* def initialize(n)
* @iv = n
* end
* def hello()
* "Hello, @iv = #{@iv}"
* end
* end
*
* k = Demo.new(99)
* def k.hi
* "Hi, @iv = #{@iv}"
* end
* m = k.singleton_method(:hi)
* m.call #=> "Hi, @iv = 99"
* m = k.singleton_method(:hello) #=> NameError
*/
VALUE
rb_obj_singleton_method(VALUE obj, VALUE vid)
{
VALUE klass = rb_singleton_class_get(obj);
ID id = rb_check_id(&vid);
if (NIL_P(klass)) {
/* goto undef; */
}
else if (NIL_P(klass = RCLASS_ORIGIN(klass))) {
/* goto undef; */
}
else if (! id) {
VALUE m = mnew_missing_by_name(klass, obj, &vid, FALSE, rb_cMethod);
if (m) return m;
/* else goto undef; */
}
else {
const rb_method_entry_t *me = rb_method_entry_at(klass, id);
vid = ID2SYM(id);
if (UNDEFINED_METHOD_ENTRY_P(me)) {
/* goto undef; */
}
else if (UNDEFINED_REFINED_METHOD_P(me->def)) {
/* goto undef; */
}
else {
return mnew_from_me(me, klass, klass, obj, id, rb_cMethod, FALSE);
}
}
/* undef: */
rb_name_err_raise("undefined singleton method `%1$s' for `%2$s'",
obj, vid);
UNREACHABLE_RETURN(Qundef);
}
/*
* call-seq:
* mod.instance_method(symbol) -> unbound_method
*
* Returns an +UnboundMethod+ representing the given
* instance method in _mod_.
*
* class Interpreter
* def do_a() print "there, "; end
* def do_d() print "Hello "; end
* def do_e() print "!\n"; end
* def do_v() print "Dave"; end
* Dispatcher = {
* "a" => instance_method(:do_a),
* "d" => instance_method(:do_d),
* "e" => instance_method(:do_e),
* "v" => instance_method(:do_v)
* }
* def interpret(string)
* string.each_char {|b| Dispatcher[b].bind(self).call }
* end
* end
*
* interpreter = Interpreter.new
* interpreter.interpret('dave')
*
* <em>produces:</em>
*
* Hello there, Dave!
*/
static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew_unbound(mod, id, rb_cUnboundMethod, FALSE);
}
/*
* call-seq:
* mod.public_instance_method(symbol) -> unbound_method
*
* Similar to _instance_method_, searches public method only.
*/
static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew_unbound(mod, id, rb_cUnboundMethod, TRUE);
}
/*
* call-seq:
* define_method(symbol, method) -> symbol
* define_method(symbol) { block } -> symbol
*
* Defines an instance method in the receiver. The _method_
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
* If a block is specified, it is used as the method body.
* If a block or the _method_ parameter has parameters,
* they're used as method parameters.
* This block is evaluated using #instance_eval.
*
* class A
* def fred
* puts "In Fred"
* end
* def create_method(name, &block)
* self.class.define_method(name, &block)
* end
* define_method(:wilma) { puts "Charge it!" }
* define_method(:flint) {|name| puts "I'm #{name}!"}
* end
* class B < A
* define_method(:barney, instance_method(:fred))
* end
* a = B.new
* a.barney
* a.wilma
* a.flint('Dino')
* a.create_method(:betty) { p self }
* a.betty
*
* <em>produces:</em>
*
* In Fred
* Charge it!
* I'm Dino!
* #<B:0x401b39e8>
*/
static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
ID id;
VALUE body;
VALUE name;
const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
const rb_scope_visibility_t *scope_visi = &default_scope_visi;
int is_method = FALSE;
if (cref) {
scope_visi = CREF_SCOPE_VISI(cref);
}
rb_check_arity(argc, 1, 2);
name = argv[0];
id = rb_check_id(&name);
if (argc == 1) {
body = rb_block_lambda();
}
else {
body = argv[1];
if (rb_obj_is_method(body)) {
is_method = TRUE;
}
else if (rb_obj_is_proc(body)) {
is_method = FALSE;
}
else {
rb_raise(rb_eTypeError,
"wrong argument type %s (expected Proc/Method/UnboundMethod)",
rb_obj_classname(body));
}
}
if (!id) id = rb_to_id(name);
if (is_method) {
struct METHOD *method = (struct METHOD *)DATA_PTR(body);
if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
!RTEST(rb_class_inherited_p(mod, method->me->owner))) {
if (FL_TEST(method->me->owner, FL_SINGLETON)) {
rb_raise(rb_eTypeError,
"can't bind singleton method to a different class");
}
else {
rb_raise(rb_eTypeError,
"bind argument must be a subclass of % "PRIsVALUE,
method->me->owner);
}
}
rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
if (scope_visi->module_func) {
rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
}
RB_GC_GUARD(body);
}
else {
VALUE procval = rb_proc_dup(body);
if (vm_proc_iseq(procval) != NULL) {
rb_proc_t *proc;
GetProcPtr(procval, proc);
proc->is_lambda = TRUE;
proc->is_from_method = TRUE;
}
rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi);
if (scope_visi->module_func) {
rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
}
}
return ID2SYM(id);
}
/*
* call-seq:
* define_singleton_method(symbol, method) -> symbol
* define_singleton_method(symbol) { block } -> symbol
*
* Defines a singleton method in the receiver. The _method_
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
* If a block is specified, it is used as the method body.
* If a block or a method has parameters, they're used as method parameters.
*
* class A
* class << self
* def class_name
* to_s
* end
* end
* end
* A.define_singleton_method(:who_am_i) do
* "I am: #{class_name}"
* end
* A.who_am_i # ==> "I am: A"
*
* guy = "Bob"
* guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
* guy.hello #=> "Bob: Hello there!"
*
* chris = "Chris"
* chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" }
* chris.greet("Hi") #=> "Hi, I'm Chris!"
*/
static VALUE
rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
{
VALUE klass = rb_singleton_class(obj);
return rb_mod_define_method(argc, argv, klass);
}
/*
* define_method(symbol, method) -> symbol
* define_method(symbol) { block } -> symbol
*
* Defines a global function by _method_ or the block.
*/
static VALUE
top_define_method(int argc, VALUE *argv, VALUE obj)
{
rb_thread_t *th = GET_THREAD();
VALUE klass;
klass = th->top_wrapper;
if (klass) {
rb_warning("main.define_method in the wrapped load is effective only in wrapper module");
}
else {
klass = rb_cObject;
}
return rb_mod_define_method(argc, argv, klass);
}
/*
* call-seq:
* method.clone -> new_method
*
* Returns a clone of this method.
*
* class A
* def foo
* return "bar"
* end
* end
*
* m = A.new.method(:foo)
* m.call # => "bar"
* n = m.clone.call # => "bar"
*/
static VALUE
method_clone(VALUE self)
{
VALUE clone;
struct METHOD *orig, *data;
TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
CLONESETUP(clone, self);
RB_OBJ_WRITE(clone, &data->recv, orig->recv);
RB_OBJ_WRITE(clone, &data->klass, orig->klass);
RB_OBJ_WRITE(clone, &data->iclass, orig->iclass);
RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me));
return clone;
}
/* Document-method: Method#===
*
* call-seq:
* method === obj -> result_of_method
*
* Invokes the method with +obj+ as the parameter like #call.
* This allows a method object to be the target of a +when+ clause
* in a case statement.
*
* require 'prime'
*
* case 1373
* when Prime.method(:prime?)
* # ...
* end
*/
/* Document-method: Method#[]
*
* call-seq:
* meth[args, ...] -> obj
*
* Invokes the <i>meth</i> with the specified arguments, returning the
* method's return value, like #call.
*
* m = 12.method("+")
* m[3] #=> 15
* m[20] #=> 32
*/
/*
* call-seq:
* meth.call(args, ...) -> obj
*
* Invokes the <i>meth</i> with the specified arguments, returning the
* method's return value.
*
* m = 12.method("+")
* m.call(3) #=> 15
* m.call(20) #=> 32
*/
static VALUE
rb_method_call_pass_called_kw(int argc, const VALUE *argv, VALUE method)
{
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
return rb_method_call_with_block_kw(argc, argv, method, procval, RB_PASS_CALLED_KEYWORDS);
}
VALUE
rb_method_call_kw(int argc, const VALUE *argv, VALUE method, int kw_splat)
{
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
return rb_method_call_with_block_kw(argc, argv, method, procval, kw_splat);
}
VALUE
rb_method_call(int argc, const VALUE *argv, VALUE method)
{
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
return rb_method_call_with_block(argc, argv, method, procval);
}
static const rb_callable_method_entry_t *
method_callable_method_entry(const struct METHOD *data)
{
if (data->me->defined_class == 0) rb_bug("method_callable_method_entry: not callable.");
return (const rb_callable_method_entry_t *)data->me;
}
static inline VALUE
call_method_data(rb_execution_context_t *ec, const struct METHOD *data,
int argc, const VALUE *argv, VALUE passed_procval, int kw_splat)
{
vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
return rb_vm_call_kw(ec, data->recv, data->me->called_id, argc, argv,
method_callable_method_entry(data), kw_splat);
}
VALUE
rb_method_call_with_block_kw(int argc, const VALUE *argv, VALUE method, VALUE passed_procval, int kw_splat)
{
const struct METHOD *data;
rb_execution_context_t *ec = GET_EC();
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
if (data->recv == Qundef) {
rb_raise(rb_eTypeError, "can't call unbound method; bind first");
}
return call_method_data(ec, data, argc, argv, passed_procval, kw_splat);
}
VALUE
rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE passed_procval)
{
return rb_method_call_with_block_kw(argc, argv, method, passed_procval, RB_NO_KEYWORDS);
}
/**********************************************************************
*
* Document-class: UnboundMethod
*
* Ruby supports two forms of objectified methods. Class Method is
* used to represent methods that are associated with a particular
* object: these method objects are bound to that object. Bound
* method objects for an object can be created using Object#method.
*
* Ruby also supports unbound methods; methods objects that are not
* associated with a particular object. These can be created either
* by calling Module#instance_method or by calling #unbind on a bound
* method object. The result of both of these is an UnboundMethod
* object.
*
* Unbound methods can only be called after they are bound to an
* object. That object must be a kind_of? the method's original
* class.
*
* class Square
* def area
* @side * @side
* end
* def initialize(side)
* @side = side
* end
* end
*
* area_un = Square.instance_method(:area)
*
* s = Square.new(12)
* area = area_un.bind(s)
* area.call #=> 144
*
* Unbound methods are a reference to the method at the time it was
* objectified: subsequent changes to the underlying class will not
* affect the unbound method.
*
* class Test
* def test
* :original
* end
* end
* um = Test.instance_method(:test)
* class Test
* def test
* :modified
* end
* end
* t = Test.new
* t.test #=> :modified
* um.bind(t).call #=> :original
*
*/
static void
convert_umethod_to_method_components(const struct METHOD *data, VALUE recv, VALUE *methclass_out, VALUE *klass_out, VALUE *iclass_out, const rb_method_entry_t **me_out)
{
VALUE methclass = data->me->owner;
VALUE iclass = data->me->defined_class;
VALUE klass = CLASS_OF(recv);
if (RB_TYPE_P(methclass, T_MODULE)) {
VALUE refined_class = rb_refinement_module_get_refined_class(methclass);
if (!NIL_P(refined_class)) methclass = refined_class;
}
if (!RB_TYPE_P(methclass, T_MODULE) &&
methclass != CLASS_OF(recv) && !rb_obj_is_kind_of(recv, methclass)) {
if (FL_TEST(methclass, FL_SINGLETON)) {
rb_raise(rb_eTypeError,
"singleton method called for a different object");
}
else {
rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE,
methclass);
}
}
const rb_method_entry_t *me = rb_method_entry_clone(data->me);
if (RB_TYPE_P(me->owner, T_MODULE)) {
VALUE ic = rb_class_search_ancestor(klass, me->owner);
if (ic) {
klass = ic;
iclass = ic;
}
else {
klass = rb_include_class_new(methclass, klass);
}
me = (const rb_method_entry_t *) rb_method_entry_complement_defined_class(me, me->called_id, klass);
}
*methclass_out = methclass;
*klass_out = klass;
*iclass_out = iclass;
*me_out = me;
}
/*
* call-seq:
* umeth.bind(obj) -> method
*
* Bind <i>umeth</i> to <i>obj</i>. If Klass was the class from which
* <i>umeth</i> was obtained, <code>obj.kind_of?(Klass)</code> must
* be true.
*
* class A
* def test
* puts "In test, class = #{self.class}"
* end
* end
* class B < A
* end
* class C < B
* end
*
*
* um = B.instance_method(:test)
* bm = um.bind(C.new)
* bm.call
* bm = um.bind(B.new)
* bm.call
* bm = um.bind(A.new)
* bm.call
*
* <em>produces:</em>
*
* In test, class = C
* In test, class = B
* prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
* from prog.rb:16
*/
static VALUE
umethod_bind(VALUE method, VALUE recv)
{
VALUE methclass, klass, iclass;
const rb_method_entry_t *me;
const struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me);
struct METHOD *bound;
method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound);
RB_OBJ_WRITE(method, &bound->recv, recv);
RB_OBJ_WRITE(method, &bound->klass, klass);
RB_OBJ_WRITE(method, &bound->iclass, iclass);
RB_OBJ_WRITE(method, &bound->me, me);
return method;
}
/*
* call-seq:
* umeth.bind_call(recv, args, ...) -> obj
*
* Bind <i>umeth</i> to <i>recv</i> and then invokes the method with the
* specified arguments.
* This is semantically equivalent to <code>umeth.bind(recv).call(args, ...)</code>.
*/
static VALUE
umethod_bind_call(int argc, VALUE *argv, VALUE method)
{
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
VALUE recv = argv[0];
argc--;
argv++;
VALUE passed_procval = rb_block_given_p() ? rb_block_proc() : Qnil;
rb_execution_context_t *ec = GET_EC();
const struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(recv), data->me->called_id);
if (data->me == (const rb_method_entry_t *)cme) {
vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
return rb_vm_call_kw(ec, recv, cme->called_id, argc, argv, cme, RB_PASS_CALLED_KEYWORDS);
}
else {
VALUE methclass, klass, iclass;
const rb_method_entry_t *me;
convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me);
struct METHOD bound = { recv, klass, 0, me };
return call_method_data(ec, &bound, argc, argv, passed_procval, RB_PASS_CALLED_KEYWORDS);
}
}
/*
* Returns the number of required parameters and stores the maximum
* number of parameters in max, or UNLIMITED_ARGUMENTS
* if there is no maximum.
*/
static int
rb_method_entry_min_max_arity(const rb_method_entry_t *me, int *max)
{
const rb_method_definition_t *def = me->def;
again:
if (!def) return *max = 0;
switch (def->type) {
case VM_METHOD_TYPE_CFUNC:
if (def->body.cfunc.argc < 0) {
*max = UNLIMITED_ARGUMENTS;
return 0;
}
return *max = check_argc(def->body.cfunc.argc);
case VM_METHOD_TYPE_ZSUPER:
*max = UNLIMITED_ARGUMENTS;
return 0;
case VM_METHOD_TYPE_ATTRSET:
return *max = 1;
case VM_METHOD_TYPE_IVAR:
return *max = 0;
case VM_METHOD_TYPE_ALIAS:
def = def->body.alias.original_me->def;
goto again;
case VM_METHOD_TYPE_BMETHOD:
return rb_proc_min_max_arity(def->body.bmethod.proc, max);
case VM_METHOD_TYPE_ISEQ:
return rb_iseq_min_max_arity(rb_iseq_check(def->body.iseq.iseqptr), max);
case VM_METHOD_TYPE_UNDEF:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
return *max = 0;
case VM_METHOD_TYPE_MISSING:
*max = UNLIMITED_ARGUMENTS;
return 0;
case VM_METHOD_TYPE_OPTIMIZED: {
switch (def->body.optimize_type) {
case OPTIMIZED_METHOD_TYPE_SEND:
*max = UNLIMITED_ARGUMENTS;
return 0;
case OPTIMIZED_METHOD_TYPE_CALL:
*max = UNLIMITED_ARGUMENTS;
return 0;
case OPTIMIZED_METHOD_TYPE_BLOCK_CALL:
*max = UNLIMITED_ARGUMENTS;
return 0;
default:
break;
}
break;
}
case VM_METHOD_TYPE_REFINED:
*max = UNLIMITED_ARGUMENTS;
return 0;
}
rb_bug("rb_method_entry_min_max_arity: invalid method entry type (%d)", def->type);
UNREACHABLE_RETURN(Qnil);
}
int
rb_method_entry_arity(const rb_method_entry_t *me)
{
int max, min = rb_method_entry_min_max_arity(me, &max);
return min == max ? min : -min-1;
}
/*
* call-seq:
* meth.arity -> integer
*
* Returns an indication of the number of arguments accepted by a
* method. Returns a nonnegative integer for methods that take a fixed
* number of arguments. For Ruby methods that take a variable number of
* arguments, returns -n-1, where n is the number of required arguments.
* Keyword arguments will be considered as a single additional argument,
* that argument being mandatory if any keyword argument is mandatory.
* For methods written in C, returns -1 if the call takes a
* variable number of arguments.
*
* class C
* def one; end
* def two(a); end
* def three(*a); end
* def four(a, b); end
* def five(a, b, *c); end
* def six(a, b, *c, &d); end
* def seven(a, b, x:0); end
* def eight(x:, y:); end
* def nine(x:, y:, **z); end
* def ten(*a, x:, y:); end
* end
* c = C.new
* c.method(:one).arity #=> 0
* c.method(:two).arity #=> 1
* c.method(:three).arity #=> -1
* c.method(:four).arity #=> 2
* c.method(:five).arity #=> -3
* c.method(:six).arity #=> -3
* c.method(:seven).arity #=> -3
* c.method(:eight).arity #=> 1
* c.method(:nine).arity #=> 1
* c.method(:ten).arity #=> -2
*
* "cat".method(:size).arity #=> 0
* "cat".method(:replace).arity #=> 1
* "cat".method(:squeeze).arity #=> -1
* "cat".method(:count).arity #=> -1
*/
static VALUE
method_arity_m(VALUE method)
{
int n = method_arity(method);
return INT2FIX(n);
}
static int
method_arity(VALUE method)
{
struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
return rb_method_entry_arity(data->me);
}
static const rb_method_entry_t *
original_method_entry(VALUE mod, ID id)
{
const rb_method_entry_t *me;
while ((me = rb_method_entry(mod, id)) != 0) {
const rb_method_definition_t *def = me->def;
if (def->type != VM_METHOD_TYPE_ZSUPER) break;
mod = RCLASS_SUPER(me->owner);
id = def->original_id;
}
return me;
}
static int
method_min_max_arity(VALUE method, int *max)
{
const struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
return rb_method_entry_min_max_arity(data->me, max);
}
int
rb_mod_method_arity(VALUE mod, ID id)
{
const rb_method_entry_t *me = original_method_entry(mod, id);
if (!me) return 0; /* should raise? */
return rb_method_entry_arity(me);
}
int
rb_obj_method_arity(VALUE obj, ID id)
{
return rb_mod_method_arity(CLASS_OF(obj), id);
}
VALUE
rb_callable_receiver(VALUE callable)
{
if (rb_obj_is_proc(callable)) {
VALUE binding = proc_binding(callable);
return rb_funcall(binding, rb_intern("receiver"), 0);
}
else if (rb_obj_is_method(callable)) {
return method_receiver(callable);
}
else {
return Qundef;
}
}
const rb_method_definition_t *
rb_method_def(VALUE method)
{
const struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
return data->me->def;
}
static const rb_iseq_t *
method_def_iseq(const rb_method_definition_t *def)
{
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
return rb_iseq_check(def->body.iseq.iseqptr);
case VM_METHOD_TYPE_BMETHOD:
return rb_proc_get_iseq(def->body.bmethod.proc, 0);
case VM_METHOD_TYPE_ALIAS:
return method_def_iseq(def->body.alias.original_me->def);
case VM_METHOD_TYPE_CFUNC:
case VM_METHOD_TYPE_ATTRSET:
case VM_METHOD_TYPE_IVAR:
case VM_METHOD_TYPE_ZSUPER:
case VM_METHOD_TYPE_UNDEF:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
case VM_METHOD_TYPE_OPTIMIZED:
case VM_METHOD_TYPE_MISSING:
case VM_METHOD_TYPE_REFINED:
break;
}
return NULL;
}
const rb_iseq_t *
rb_method_iseq(VALUE method)
{
return method_def_iseq(rb_method_def(method));
}
static const rb_cref_t *
method_cref(VALUE method)
{
const rb_method_definition_t *def = rb_method_def(method);
again:
switch (def->type) {
case VM_METHOD_TYPE_ISEQ:
return def->body.iseq.cref;
case VM_METHOD_TYPE_ALIAS:
def = def->body.alias.original_me->def;
goto again;
default:
return NULL;
}
}
static VALUE
method_def_location(const rb_method_definition_t *def)
{
if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) {
if (!def->body.attr.location)
return Qnil;
return rb_ary_dup(def->body.attr.location);
}
return iseq_location(method_def_iseq(def));
}
VALUE
rb_method_entry_location(const rb_method_entry_t *me)
{
if (!me) return Qnil;
return method_def_location(me->def);
}
/*
* call-seq:
* meth.source_location -> [String, Integer]
*
* Returns the Ruby source filename and line number containing this method
* or nil if this method was not defined in Ruby (i.e. native).
*/
VALUE
rb_method_location(VALUE method)
{
return method_def_location(rb_method_def(method));
}
/*
* call-seq:
* meth.parameters -> array
*
* Returns the parameter information of this method.
*
* def foo(bar); end
* method(:foo).parameters #=> [[:req, :bar]]
*
* def foo(bar, baz, bat, &blk); end
* method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]]
*
* def foo(bar, *args); end
* method(:foo).parameters #=> [[:req, :bar], [:rest, :args]]
*
* def foo(bar, baz, *args, &blk); end
* method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]]
*/
static VALUE
rb_method_parameters(VALUE method)
{
const rb_iseq_t *iseq = rb_method_iseq(method);
if (!iseq) {
return rb_unnamed_parameters(method_arity(method));
}
return rb_iseq_parameters(iseq, 0);
}
/*
* call-seq:
* meth.to_s -> string
* meth.inspect -> string
*
* Returns a human-readable description of the underlying method.
*
* "cat".method(:count).inspect #=> "#<Method: String#count(*)>"
* (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>"
*
* In the latter case, the method description includes the "owner" of the
* original method (+Enumerable+ module, which is included into +Range+).
*
* +inspect+ also provides, when possible, method argument names (call
* sequence) and source location.
*
* require 'net/http'
* Net::HTTP.method(:get).inspect
* #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"
*
* <code>...</code> in argument definition means argument is optional (has
* some default value).
*
* For methods defined in C (language core and extensions), location and
* argument names can't be extracted, and only generic information is provided
* in form of <code>*</code> (any number of arguments) or <code>_</code> (some
* positional argument).
*
* "cat".method(:count).inspect #=> "#<Method: String#count(*)>"
* "cat".method(:+).inspect #=> "#<Method: String#+(_)>""
*/
static VALUE
method_inspect(VALUE method)
{
struct METHOD *data;
VALUE str;
const char *sharp = "#";
VALUE mklass;
VALUE defined_class;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method));
mklass = data->iclass;
if (!mklass) mklass = data->klass;
if (RB_TYPE_P(mklass, T_ICLASS)) {
/* TODO: I'm not sure why mklass is T_ICLASS.
* UnboundMethod#bind() can set it as T_ICLASS at convert_umethod_to_method_components()
* but not sure it is needed.
*/
mklass = RBASIC_CLASS(mklass);
}
if (data->me->def->type == VM_METHOD_TYPE_ALIAS) {
defined_class = data->me->def->body.alias.original_me->owner;
}
else {
defined_class = method_entry_defined_class(data->me);
}
if (RB_TYPE_P(defined_class, T_ICLASS)) {
defined_class = RBASIC_CLASS(defined_class);
}
if (FL_TEST(mklass, FL_SINGLETON)) {
VALUE v = rb_ivar_get(mklass, attached);
if (data->recv == Qundef) {
rb_str_buf_append(str, rb_inspect(mklass));
}
else if (data->recv == v) {
rb_str_buf_append(str, rb_inspect(v));
sharp = ".";
}
else {
rb_str_buf_append(str, rb_inspect(data->recv));
rb_str_buf_cat2(str, "(");
rb_str_buf_append(str, rb_inspect(v));
rb_str_buf_cat2(str, ")");
sharp = ".";
}
}
else {
mklass = data->klass;
if (FL_TEST(mklass, FL_SINGLETON)) {
VALUE v = rb_ivar_get(mklass, attached);
if (!(RB_TYPE_P(v, T_CLASS) || RB_TYPE_P(v, T_MODULE))) {
do {
mklass = RCLASS_SUPER(mklass);
} while (RB_TYPE_P(mklass, T_ICLASS));
}
}
rb_str_buf_append(str, rb_inspect(mklass));
if (defined_class != mklass) {
rb_str_catf(str, "(% "PRIsVALUE")", defined_class);
}
}
rb_str_buf_cat2(str, sharp);
rb_str_append(str, rb_id2str(data->me->called_id));
if (data->me->called_id != data->me->def->original_id) {
rb_str_catf(str, "(%"PRIsVALUE")",
rb_id2str(data->me->def->original_id));
}
if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
rb_str_buf_cat2(str, " (not-implemented)");
}
// parameter information
{
VALUE params = rb_method_parameters(method);
VALUE pair, name, kind;
const VALUE req = ID2SYM(rb_intern("req"));
const VALUE opt = ID2SYM(rb_intern("opt"));
const VALUE keyreq = ID2SYM(rb_intern("keyreq"));
const VALUE key = ID2SYM(rb_intern("key"));
const VALUE rest = ID2SYM(rb_intern("rest"));
const VALUE keyrest = ID2SYM(rb_intern("keyrest"));
const VALUE block = ID2SYM(rb_intern("block"));
const VALUE nokey = ID2SYM(rb_intern("nokey"));
int forwarding = 0;
rb_str_buf_cat2(str, "(");
for (int i = 0; i < RARRAY_LEN(params); i++) {
pair = RARRAY_AREF(params, i);
kind = RARRAY_AREF(pair, 0);
name = RARRAY_AREF(pair, 1);
// FIXME: in tests it turns out that kind, name = [:req] produces name to be false. Why?..
if (NIL_P(name) || name == Qfalse) {
// FIXME: can it be reduced to switch/case?
if (kind == req || kind == opt) {
name = rb_str_new2("_");
}
else if (kind == rest || kind == keyrest) {
name = rb_str_new2("");
}
else if (kind == block) {
name = rb_str_new2("block");
}
else if (kind == nokey) {
name = rb_str_new2("nil");
}
}
if (kind == req) {
rb_str_catf(str, "%"PRIsVALUE, name);
}
else if (kind == opt) {
rb_str_catf(str, "%"PRIsVALUE"=...", name);
}
else if (kind == keyreq) {
rb_str_catf(str, "%"PRIsVALUE":", name);
}
else if (kind == key) {
rb_str_catf(str, "%"PRIsVALUE": ...", name);
}
else if (kind == rest) {
if (name == ID2SYM('*')) {
forwarding = 1;
rb_str_cat_cstr(str, "...");
}
else {
rb_str_catf(str, "*%"PRIsVALUE, name);
}
}
else if (kind == keyrest) {
if (name != ID2SYM(idPow)) {
rb_str_catf(str, "**%"PRIsVALUE, name);
}
else if (i > 0) {
rb_str_set_len(str, RSTRING_LEN(str) - 2);
}
}
else if (kind == block) {
if (name == ID2SYM('&')) {
if (forwarding) {
rb_str_set_len(str, RSTRING_LEN(str) - 2);
}
else {
rb_str_cat_cstr(str, "...");
}
}
else {
rb_str_catf(str, "&%"PRIsVALUE, name);
}
}
else if (kind == nokey) {
rb_str_buf_cat2(str, "**nil");
}
if (i < RARRAY_LEN(params) - 1) {
rb_str_buf_cat2(str, ", ");
}
}
rb_str_buf_cat2(str, ")");
}
{ // source location
VALUE loc = rb_method_location(method);
if (!NIL_P(loc)) {
rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE,
RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1));
}
}
rb_str_buf_cat2(str, ">");
return str;
}
static VALUE
bmcall(RB_BLOCK_CALL_FUNC_ARGLIST(args, method))
{
return rb_method_call_with_block_kw(argc, argv, method, blockarg, RB_PASS_CALLED_KEYWORDS);
}
VALUE
rb_proc_new(
rb_block_call_func_t func,
VALUE val)
{
VALUE procval = rb_block_call(rb_mRubyVMFrozenCore, idProc, 0, 0, func, val);
return procval;
}
/*
* call-seq:
* meth.to_proc -> proc
*
* Returns a Proc object corresponding to this method.
*/
static VALUE
method_to_proc(VALUE method)
{
VALUE procval;
rb_proc_t *proc;
/*
* class Method
* def to_proc
* lambda{|*args|
* self.call(*args)
* }
* end
* end
*/
procval = rb_block_call(rb_mRubyVMFrozenCore, idLambda, 0, 0, bmcall, method);
GetProcPtr(procval, proc);
proc->is_from_method = 1;
return procval;
}
extern VALUE rb_find_defined_class_by_owner(VALUE current_class, VALUE target_owner);
/*
* call-seq:
* meth.super_method -> method
*
* Returns a Method of superclass which would be called when super is used
* or nil if there is no method on superclass.
*/
static VALUE
method_super_method(VALUE method)
{
const struct METHOD *data;
VALUE super_class, iclass;
ID mid;
const rb_method_entry_t *me;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
iclass = data->iclass;
if (!iclass) return Qnil;
if (data->me->def->type == VM_METHOD_TYPE_ALIAS && data->me->defined_class) {
super_class = RCLASS_SUPER(rb_find_defined_class_by_owner(data->me->defined_class,
data->me->def->body.alias.original_me->owner));
mid = data->me->def->body.alias.original_me->def->original_id;
}
else {
super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass));
mid = data->me->def->original_id;
}
if (!super_class) return Qnil;
me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass);
if (!me) return Qnil;
return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE);
}
/*
* call-seq:
* local_jump_error.exit_value -> obj
*
* Returns the exit value associated with this +LocalJumpError+.
*/
static VALUE
localjump_xvalue(VALUE exc)
{
return rb_iv_get(exc, "@exit_value");
}
/*
* call-seq:
* local_jump_error.reason -> symbol
*
* The reason this block was terminated:
* :break, :redo, :retry, :next, :return, or :noreason.
*/
static VALUE
localjump_reason(VALUE exc)
{
return rb_iv_get(exc, "@reason");
}
rb_cref_t *rb_vm_cref_new_toplevel(void); /* vm.c */
static const rb_env_t *
env_clone(const rb_env_t *env, const rb_cref_t *cref)
{
VALUE *new_ep;
VALUE *new_body;
const rb_env_t *new_env;
VM_ASSERT(env->ep > env->env);
VM_ASSERT(VM_ENV_ESCAPED_P(env->ep));
if (cref == NULL) {
cref = rb_vm_cref_new_toplevel();
}
new_body = ALLOC_N(VALUE, env->env_size);
MEMCPY(new_body, env->env, VALUE, env->env_size);
new_ep = &new_body[env->ep - env->env];
new_env = vm_env_new(new_ep, new_body, env->env_size, env->iseq);
RB_OBJ_WRITE(new_env, &new_ep[VM_ENV_DATA_INDEX_ME_CREF], (VALUE)cref);
VM_ASSERT(VM_ENV_ESCAPED_P(new_ep));
return new_env;
}
/*
* call-seq:
* prc.binding -> binding
*
* Returns the binding associated with <i>prc</i>.
*
* def fred(param)
* proc {}
* end
*
* b = fred(99)
* eval("param", b.binding) #=> 99
*/
static VALUE
proc_binding(VALUE self)
{
VALUE bindval, binding_self = Qundef;
rb_binding_t *bind;
const rb_proc_t *proc;
const rb_iseq_t *iseq = NULL;
const struct rb_block *block;
const rb_env_t *env = NULL;
GetProcPtr(self, proc);
block = &proc->block;
if (proc->is_isolated) rb_raise(rb_eArgError, "Can't create Binding from isolated Proc");
again:
switch (vm_block_type(block)) {
case block_type_iseq:
iseq = block->as.captured.code.iseq;
binding_self = block->as.captured.self;
env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
break;
case block_type_proc:
GetProcPtr(block->as.proc, proc);
block = &proc->block;
goto again;
case block_type_ifunc:
{
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
if (IS_METHOD_PROC_IFUNC(ifunc)) {
VALUE method = (VALUE)ifunc->data;
VALUE name = rb_fstring_lit("<empty_iseq>");
rb_iseq_t *empty;
binding_self = method_receiver(method);
iseq = rb_method_iseq(method);
env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
env = env_clone(env, method_cref(method));
/* set empty iseq */
empty = rb_iseq_new(NULL, name, name, Qnil, 0, ISEQ_TYPE_TOP);
RB_OBJ_WRITE(env, &env->iseq, empty);
break;
}
}
/* FALLTHROUGH */
case block_type_symbol:
rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
UNREACHABLE_RETURN(Qnil);
}
bindval = rb_binding_alloc(rb_cBinding);
GetBindingPtr(bindval, bind);
RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, binding_self);
RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq);
rb_vm_block_ep_update(bindval, &bind->block, env->ep);
RB_OBJ_WRITTEN(bindval, Qundef, VM_ENV_ENVVAL(env->ep));
if (iseq) {
rb_iseq_check(iseq);
RB_OBJ_WRITE(bindval, &bind->pathobj, iseq->body->location.pathobj);
bind->first_lineno = FIX2INT(rb_iseq_first_lineno(iseq));
}
else {
RB_OBJ_WRITE(bindval, &bind->pathobj,
rb_iseq_pathobj_new(rb_fstring_lit("(binding)"), Qnil));
bind->first_lineno = 1;
}
return bindval;
}
static rb_block_call_func curry;
static VALUE
make_curry_proc(VALUE proc, VALUE passed, VALUE arity)
{
VALUE args = rb_ary_new3(3, proc, passed, arity);
rb_proc_t *procp;
int is_lambda;
GetProcPtr(proc, procp);
is_lambda = procp->is_lambda;
rb_ary_freeze(passed);
rb_ary_freeze(args);
proc = rb_proc_new(curry, args);
GetProcPtr(proc, procp);
procp->is_lambda = is_lambda;
return proc;
}
static VALUE
curry(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
{
VALUE proc, passed, arity;
proc = RARRAY_AREF(args, 0);
passed = RARRAY_AREF(args, 1);
arity = RARRAY_AREF(args, 2);
passed = rb_ary_plus(passed, rb_ary_new4(argc, argv));
rb_ary_freeze(passed);
if (RARRAY_LEN(passed) < FIX2INT(arity)) {
if (!NIL_P(blockarg)) {
rb_warn("given block not used");
}
arity = make_curry_proc(proc, passed, arity);
return arity;
}
else {
return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), blockarg);
}
}
/*
* call-seq:
* prc.curry -> a_proc
* prc.curry(arity) -> a_proc
*
* Returns a curried proc. If the optional <i>arity</i> argument is given,
* it determines the number of arguments.
* A curried proc receives some arguments. If a sufficient number of
* arguments are supplied, it passes the supplied arguments to the original
* proc and returns the result. Otherwise, returns another curried proc that
* takes the rest of arguments.
*
* b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> 6
* p b.curry(5)[1][2][3][4][5] #=> 6
* p b.curry(5)[1, 2][3, 4][5] #=> 6
* p b.curry(1)[1] #=> 1
*
* b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> 10
* p b.curry(5)[1][2][3][4][5] #=> 15
* p b.curry(5)[1, 2][3, 4][5] #=> 15
* p b.curry(1)[1] #=> 1
*
* b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> wrong number of arguments (given 4, expected 3)
* p b.curry(5) #=> wrong number of arguments (given 5, expected 3)
* p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
*
* b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> 10
* p b.curry(5)[1][2][3][4][5] #=> 15
* p b.curry(5)[1, 2][3, 4][5] #=> 15
* p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
*
* b = proc { :foo }
* p b.curry[] #=> :foo
*/
static VALUE
proc_curry(int argc, const VALUE *argv, VALUE self)
{
int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity);
VALUE arity;
if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(arity = argv[0])) {
arity = INT2FIX(min_arity);
}
else {
sarity = FIX2INT(arity);
if (rb_proc_lambda_p(self)) {
rb_check_arity(sarity, min_arity, max_arity);
}
}
return make_curry_proc(self, rb_ary_new(), arity);
}
/*
* call-seq:
* meth.curry -> proc
* meth.curry(arity) -> proc
*
* Returns a curried proc based on the method. When the proc is called with a number of
* arguments that is lower than the method's arity, then another curried proc is returned.
* Only when enough arguments have been supplied to satisfy the method signature, will the
* method actually be called.
*
* The optional <i>arity</i> argument should be supplied when currying methods with
* variable arguments to determine how many arguments are needed before the method is
* called.
*
* def foo(a,b,c)
* [a, b, c]
* end
*
* proc = self.method(:foo).curry
* proc2 = proc.call(1, 2) #=> #<Proc>
* proc2.call(3) #=> [1,2,3]
*
* def vararg(*args)
* args
* end
*
* proc = self.method(:vararg).curry(4)
* proc2 = proc.call(:x) #=> #<Proc>
* proc3 = proc2.call(:y, :z) #=> #<Proc>
* proc3.call(:a) #=> [:x, :y, :z, :a]
*/
static VALUE
rb_method_curry(int argc, const VALUE *argv, VALUE self)
{
VALUE proc = method_to_proc(self);
return proc_curry(argc, argv, proc);
}
static VALUE
compose(RB_BLOCK_CALL_FUNC_ARGLIST(_, args))
{
VALUE f, g, fargs;
f = RARRAY_AREF(args, 0);
g = RARRAY_AREF(args, 1);
if (rb_obj_is_proc(g))
fargs = rb_proc_call_with_block_kw(g, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
else
fargs = rb_funcall_with_block_kw(g, idCall, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS);
if (rb_obj_is_proc(f))
return rb_proc_call(f, rb_ary_new3(1, fargs));
else
return rb_funcallv(f, idCall, 1, &fargs);
}
static VALUE
to_callable(VALUE f)
{
VALUE mesg;
if (rb_obj_is_proc(f)) return f;
if (rb_obj_is_method(f)) return f;
if (rb_obj_respond_to(f, idCall, TRUE)) return f;
mesg = rb_fstring_lit("callable object is expected");
rb_exc_raise(rb_exc_new_str(rb_eTypeError, mesg));
}
static VALUE rb_proc_compose_to_left(VALUE self, VALUE g);
static VALUE rb_proc_compose_to_right(VALUE self, VALUE g);
/*
* call-seq:
* prc << g -> a_proc
*
* Returns a proc that is the composition of this proc and the given <i>g</i>.
* The returned proc takes a variable number of arguments, calls <i>g</i> with them
* then calls this proc with the result.
*
* f = proc {|x| x * x }
* g = proc {|x| x + x }
* p (f << g).call(2) #=> 16
*
* See Proc#>> for detailed explanations.
*/
static VALUE
proc_compose_to_left(VALUE self, VALUE g)
{
return rb_proc_compose_to_left(self, to_callable(g));
}
static VALUE
rb_proc_compose_to_left(VALUE self, VALUE g)
{
VALUE proc, args, procs[2];
rb_proc_t *procp;
int is_lambda;
procs[0] = self;
procs[1] = g;
args = rb_ary_tmp_new_from_values(0, 2, procs);
if (rb_obj_is_proc(g)) {
GetProcPtr(g, procp);
is_lambda = procp->is_lambda;
}
else {
VM_ASSERT(rb_obj_is_method(g) || rb_obj_respond_to(g, idCall, TRUE));
is_lambda = 1;
}
proc = rb_proc_new(compose, args);
GetProcPtr(proc, procp);
procp->is_lambda = is_lambda;
return proc;
}
/*
* call-seq:
* prc >> g -> a_proc
*
* Returns a proc that is the composition of this proc and the given <i>g</i>.
* The returned proc takes a variable number of arguments, calls this proc with them
* then calls <i>g</i> with the result.
*
* f = proc {|x| x * x }
* g = proc {|x| x + x }
* p (f >> g).call(2) #=> 8
*
* <i>g</i> could be other Proc, or Method, or any other object responding to
* +call+ method:
*
* class Parser
* def self.call(text)
* # ...some complicated parsing logic...
* end
* end
*
* pipeline = File.method(:read) >> Parser >> proc { |data| puts "data size: #{data.count}" }
* pipeline.call('data.json')
*
* See also Method#>> and Method#<<.
*/
static VALUE
proc_compose_to_right(VALUE self, VALUE g)
{
return rb_proc_compose_to_right(self, to_callable(g));
}
static VALUE
rb_proc_compose_to_right(VALUE self, VALUE g)
{
VALUE proc, args, procs[2];
rb_proc_t *procp;
int is_lambda;
procs[0] = g;
procs[1] = self;
args = rb_ary_tmp_new_from_values(0, 2, procs);
GetProcPtr(self, procp);
is_lambda = procp->is_lambda;
proc = rb_proc_new(compose, args);
GetProcPtr(proc, procp);
procp->is_lambda = is_lambda;
return proc;
}
/*
* call-seq:
* meth << g -> a_proc
*
* Returns a proc that is the composition of this method and the given <i>g</i>.
* The returned proc takes a variable number of arguments, calls <i>g</i> with them
* then calls this method with the result.
*
* def f(x)
* x * x
* end
*
* f = self.method(:f)
* g = proc {|x| x + x }
* p (f << g).call(2) #=> 16
*/
static VALUE
rb_method_compose_to_left(VALUE self, VALUE g)
{
g = to_callable(g);
self = method_to_proc(self);
return proc_compose_to_left(self, g);
}
/*
* call-seq:
* meth >> g -> a_proc
*
* Returns a proc that is the composition of this method and the given <i>g</i>.
* The returned proc takes a variable number of arguments, calls this method
* with them then calls <i>g</i> with the result.
*
* def f(x)
* x * x
* end
*
* f = self.method(:f)
* g = proc {|x| x + x }
* p (f >> g).call(2) #=> 8
*/
static VALUE
rb_method_compose_to_right(VALUE self, VALUE g)
{
g = to_callable(g);
self = method_to_proc(self);
return proc_compose_to_right(self, g);
}
/*
* call-seq:
* proc.ruby2_keywords -> proc
*
* Marks the proc as passing keywords through a normal argument splat.
* This should only be called on procs that accept an argument splat
* (<tt>*args</tt>) but not explicit keywords or a keyword splat. It
* marks the proc such that if the proc is called with keyword arguments,
* the final hash argument is marked with a special flag such that if it
* is the final element of a normal argument splat to another method call,
* and that method call does not include explicit keywords or a keyword
* splat, the final element is interpreted as keywords. In other words,
* keywords will be passed through the proc to other methods.
*
* This should only be used for procs that delegate keywords to another
* method, and only for backwards compatibility with Ruby versions before
* 2.7.
*
* This method will probably be removed at some point, as it exists only
* for backwards compatibility. As it does not exist in Ruby versions
* before 2.7, check that the proc responds to this method before calling
* it. Also, be aware that if this method is removed, the behavior of the
* proc will change so that it does not pass through keywords.
*
* module Mod
* foo = ->(meth, *args, &block) do
* send(:"do_#{meth}", *args, &block)
* end
* foo.ruby2_keywords if foo.respond_to?(:ruby2_keywords)
* end
*/
static VALUE
proc_ruby2_keywords(VALUE procval)
{
rb_proc_t *proc;
GetProcPtr(procval, proc);
rb_check_frozen(procval);
if (proc->is_from_method) {
rb_warn("Skipping set of ruby2_keywords flag for proc (proc created from method)");
return procval;
}
switch (proc->block.type) {
case block_type_iseq:
if (proc->block.as.captured.code.iseq->body->param.flags.has_rest &&
!proc->block.as.captured.code.iseq->body->param.flags.has_kw &&
!proc->block.as.captured.code.iseq->body->param.flags.has_kwrest) {
proc->block.as.captured.code.iseq->body->param.flags.ruby2_keywords = 1;
}
else {
rb_warn("Skipping set of ruby2_keywords flag for proc (proc accepts keywords or proc does not accept argument splat)");
}
break;
default:
rb_warn("Skipping set of ruby2_keywords flag for proc (proc not defined in Ruby)");
break;
}
return procval;
}
/*
* Document-class: LocalJumpError
*
* Raised when Ruby can't yield as requested.
*
* A typical scenario is attempting to yield when no block is given:
*
* def call_block
* yield 42
* end
* call_block
*
* <em>raises the exception:</em>
*
* LocalJumpError: no block given (yield)
*
* A more subtle example:
*
* def get_me_a_return
* Proc.new { return 42 }
* end
* get_me_a_return.call
*
* <em>raises the exception:</em>
*
* LocalJumpError: unexpected return
*/
/*
* Document-class: SystemStackError
*
* Raised in case of a stack overflow.
*
* def me_myself_and_i
* me_myself_and_i
* end
* me_myself_and_i
*
* <em>raises the exception:</em>
*
* SystemStackError: stack level too deep
*/
/*
* Document-class: Proc
*
* A +Proc+ object is an encapsulation of a block of code, which can be stored
* in a local variable, passed to a method or another Proc, and can be called.
* Proc is an essential concept in Ruby and a core of its functional
* programming features.
*
* square = Proc.new {|x| x**2 }
*
* square.call(3) #=> 9
* # shorthands:
* square.(3) #=> 9
* square[3] #=> 9
*
* Proc objects are _closures_, meaning they remember and can use the entire
* context in which they were created.
*
* def gen_times(factor)
* Proc.new {|n| n*factor } # remembers the value of factor at the moment of creation
* end
*
* times3 = gen_times(3)
* times5 = gen_times(5)
*
* times3.call(12) #=> 36
* times5.call(5) #=> 25
* times3.call(times5.call(4)) #=> 60
*
* == Creation
*
* There are several methods to create a Proc
*
* * Use the Proc class constructor:
*
* proc1 = Proc.new {|x| x**2 }
*
* * Use the Kernel#proc method as a shorthand of Proc.new:
*
* proc2 = proc {|x| x**2 }
*
* * Receiving a block of code into proc argument (note the <code>&</code>):
*
* def make_proc(&block)
* block
* end
*
* proc3 = make_proc {|x| x**2 }
*
* * Construct a proc with lambda semantics using the Kernel#lambda method
* (see below for explanations about lambdas):
*
* lambda1 = lambda {|x| x**2 }
*
* * Use the Lambda literal syntax (also constructs a proc with lambda semantics):
*
* lambda2 = ->(x) { x**2 }
*
* == Lambda and non-lambda semantics
*
* Procs are coming in two flavors: lambda and non-lambda (regular procs).
* Differences are:
*
* * In lambdas, +return+ and +break+ means exit from this lambda;
* * In non-lambda procs, +return+ means exit from embracing method
* (and will throw +LocalJumpError+ if invoked outside the method);
* * In non-lambda procs, +break+ means exit from the method which the block given for.
* (and will throw +LocalJumpError+ if invoked after the method returns);
* * In lambdas, arguments are treated in the same way as in methods: strict,
* with +ArgumentError+ for mismatching argument number,
* and no additional argument processing;
* * Regular procs accept arguments more generously: missing arguments
* are filled with +nil+, single Array arguments are deconstructed if the
* proc has multiple arguments, and there is no error raised on extra
* arguments.
*
* Examples:
*
* # +return+ in non-lambda proc, +b+, exits +m2+.
* # (The block +{ return }+ is given for +m1+ and embraced by +m2+.)
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { return }; $a << :m2 end; m2; p $a
* #=> []
*
* # +break+ in non-lambda proc, +b+, exits +m1+.
* # (The block +{ break }+ is given for +m1+ and embraced by +m2+.)
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { break }; $a << :m2 end; m2; p $a
* #=> [:m2]
*
* # +next+ in non-lambda proc, +b+, exits the block.
* # (The block +{ next }+ is given for +m1+ and embraced by +m2+.)
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { next }; $a << :m2 end; m2; p $a
* #=> [:m1, :m2]
*
* # Using +proc+ method changes the behavior as follows because
* # The block is given for +proc+ method and embraced by +m2+.
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { return }); $a << :m2 end; m2; p $a
* #=> []
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { break }); $a << :m2 end; m2; p $a
* # break from proc-closure (LocalJumpError)
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { next }); $a << :m2 end; m2; p $a
* #=> [:m1, :m2]
*
* # +return+, +break+ and +next+ in the stubby lambda exits the block.
* # (+lambda+ method behaves same.)
* # (The block is given for stubby lambda syntax and embraced by +m2+.)
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { return }); $a << :m2 end; m2; p $a
* #=> [:m1, :m2]
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { break }); $a << :m2 end; m2; p $a
* #=> [:m1, :m2]
* $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { next }); $a << :m2 end; m2; p $a
* #=> [:m1, :m2]
*
* p = proc {|x, y| "x=#{x}, y=#{y}" }
* p.call(1, 2) #=> "x=1, y=2"
* p.call([1, 2]) #=> "x=1, y=2", array deconstructed
* p.call(1, 2, 8) #=> "x=1, y=2", extra argument discarded
* p.call(1) #=> "x=1, y=", nil substituted instead of error
*
* l = lambda {|x, y| "x=#{x}, y=#{y}" }
* l.call(1, 2) #=> "x=1, y=2"
* l.call([1, 2]) # ArgumentError: wrong number of arguments (given 1, expected 2)
* l.call(1, 2, 8) # ArgumentError: wrong number of arguments (given 3, expected 2)
* l.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
*
* def test_return
* -> { return 3 }.call # just returns from lambda into method body
* proc { return 4 }.call # returns from method
* return 5
* end
*
* test_return # => 4, return from proc
*
* Lambdas are useful as self-sufficient functions, in particular useful as
* arguments to higher-order functions, behaving exactly like Ruby methods.
*
* Procs are useful for implementing iterators:
*
* def test
* [[1, 2], [3, 4], [5, 6]].map {|a, b| return a if a + b > 10 }
* # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* end
*
* Inside +map+, the block of code is treated as a regular (non-lambda) proc,
* which means that the internal arrays will be deconstructed to pairs of
* arguments, and +return+ will exit from the method +test+. That would
* not be possible with a stricter lambda.
*
* You can tell a lambda from a regular proc by using the #lambda? instance method.
*
* Lambda semantics is typically preserved during the proc lifetime, including
* <code>&</code>-deconstruction to a block of code:
*
* p = proc {|x, y| x }
* l = lambda {|x, y| x }
* [[1, 2], [3, 4]].map(&p) #=> [1, 3]
* [[1, 2], [3, 4]].map(&l) # ArgumentError: wrong number of arguments (given 1, expected 2)
*
* The only exception is dynamic method definition: even if defined by
* passing a non-lambda proc, methods still have normal semantics of argument
* checking.
*
* class C
* define_method(:e, &proc {})
* end
* C.new.e(1,2) #=> ArgumentError
* C.new.method(:e).to_proc.lambda? #=> true
*
* This exception ensures that methods never have unusual argument passing
* conventions, and makes it easy to have wrappers defining methods that
* behave as usual.
*
* class C
* def self.def2(name, &body)
* define_method(name, &body)
* end
*
* def2(:f) {}
* end
* C.new.f(1,2) #=> ArgumentError
*
* The wrapper <code>def2</code> receives _body_ as a non-lambda proc,
* yet defines a method which has normal semantics.
*
* == Conversion of other objects to procs
*
* Any object that implements the +to_proc+ method can be converted into
* a proc by the <code>&</code> operator, and therefore can be
* consumed by iterators.
*
* class Greeter
* def initialize(greeting)
* @greeting = greeting
* end
*
* def to_proc
* proc {|name| "#{@greeting}, #{name}!" }
* end
* end
*
* hi = Greeter.new("Hi")
* hey = Greeter.new("Hey")
* ["Bob", "Jane"].map(&hi) #=> ["Hi, Bob!", "Hi, Jane!"]
* ["Bob", "Jane"].map(&hey) #=> ["Hey, Bob!", "Hey, Jane!"]
*
* Of the Ruby core classes, this method is implemented by Symbol,
* Method, and Hash.
*
* :to_s.to_proc.call(1) #=> "1"
* [1, 2].map(&:to_s) #=> ["1", "2"]
*
* method(:puts).to_proc.call(1) # prints 1
* [1, 2].each(&method(:puts)) # prints 1, 2
*
* {test: 1}.to_proc.call(:test) #=> 1
* %i[test many keys].map(&{test: 1}) #=> [1, nil, nil]
*
* == Orphaned Proc
*
* +return+ and +break+ in a block exit a method.
* If a Proc object is generated from the block and the Proc object
* survives until the method is returned, +return+ and +break+ cannot work.
* In such case, +return+ and +break+ raises LocalJumpError.
* A Proc object in such situation is called as orphaned Proc object.
*
* Note that the method to exit is different for +return+ and +break+.
* There is a situation that orphaned for +break+ but not orphaned for +return+.
*
* def m1(&b) b.call end; def m2(); m1 { return } end; m2 # ok
* def m1(&b) b.call end; def m2(); m1 { break } end; m2 # ok
*
* def m1(&b) b end; def m2(); m1 { return }.call end; m2 # ok
* def m1(&b) b end; def m2(); m1 { break }.call end; m2 # LocalJumpError
*
* def m1(&b) b end; def m2(); m1 { return } end; m2.call # LocalJumpError
* def m1(&b) b end; def m2(); m1 { break } end; m2.call # LocalJumpError
*
* Since +return+ and +break+ exits the block itself in lambdas,
* lambdas cannot be orphaned.
*
* == Numbered parameters
*
* Numbered parameters are implicitly defined block parameters intended to
* simplify writing short blocks:
*
* # Explicit parameter:
* %w[test me please].each { |str| puts str.upcase } # prints TEST, ME, PLEASE
* (1..5).map { |i| i**2 } # => [1, 4, 9, 16, 25]
*
* # Implicit parameter:
* %w[test me please].each { puts _1.upcase } # prints TEST, ME, PLEASE
* (1..5).map { _1**2 } # => [1, 4, 9, 16, 25]
*
* Parameter names from +_1+ to +_9+ are supported:
*
* [10, 20, 30].zip([40, 50, 60], [70, 80, 90]).map { _1 + _2 + _3 }
* # => [120, 150, 180]
*
* Though, it is advised to resort to them wisely, probably limiting
* yourself to +_1+ and +_2+, and to one-line blocks.
*
* Numbered parameters can't be used together with explicitly named
* ones:
*
* [10, 20, 30].map { |x| _1**2 }
* # SyntaxError (ordinary parameter is defined)
*
* To avoid conflicts, naming local variables or method
* arguments +_1+, +_2+ and so on, causes a warning.
*
* _1 = 'test'
* # warning: `_1' is reserved as numbered parameter
*
* Using implicit numbered parameters affects block's arity:
*
* p = proc { _1 + _2 }
* l = lambda { _1 + _2 }
* p.parameters # => [[:opt, :_1], [:opt, :_2]]
* p.arity # => 2
* l.parameters # => [[:req, :_1], [:req, :_2]]
* l.arity # => 2
*
* Blocks with numbered parameters can't be nested:
*
* %w[test me].each { _1.each_char { p _1 } }
* # SyntaxError (numbered parameter is already used in outer block here)
* # %w[test me].each { _1.each_char { p _1 } }
* # ^~
*
* Numbered parameters were introduced in Ruby 2.7.
*/
void
Init_Proc(void)
{
#undef rb_intern
/* Proc */
rb_cProc = rb_define_class("Proc", rb_cObject);
rb_undef_alloc_func(rb_cProc);
rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1);
rb_add_method(rb_cProc, idCall, VM_METHOD_TYPE_OPTIMIZED,
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
rb_add_method(rb_cProc, rb_intern("[]"), VM_METHOD_TYPE_OPTIMIZED,
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
rb_add_method(rb_cProc, rb_intern("==="), VM_METHOD_TYPE_OPTIMIZED,
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
rb_add_method(rb_cProc, rb_intern("yield"), VM_METHOD_TYPE_OPTIMIZED,
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
#if 0 /* for RDoc */
rb_define_method(rb_cProc, "call", proc_call, -1);
rb_define_method(rb_cProc, "[]", proc_call, -1);
rb_define_method(rb_cProc, "===", proc_call, -1);
rb_define_method(rb_cProc, "yield", proc_call, -1);
#endif
rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
rb_define_method(rb_cProc, "arity", proc_arity, 0);
rb_define_method(rb_cProc, "clone", proc_clone, 0);
rb_define_method(rb_cProc, "dup", rb_proc_dup, 0);
rb_define_method(rb_cProc, "hash", proc_hash, 0);
rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
rb_define_alias(rb_cProc, "inspect", "to_s");
rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0);
rb_define_method(rb_cProc, "binding", proc_binding, 0);
rb_define_method(rb_cProc, "curry", proc_curry, -1);
rb_define_method(rb_cProc, "<<", proc_compose_to_left, 1);
rb_define_method(rb_cProc, ">>", proc_compose_to_right, 1);
rb_define_method(rb_cProc, "==", proc_eq, 1);
rb_define_method(rb_cProc, "eql?", proc_eq, 1);
rb_define_method(rb_cProc, "source_location", rb_proc_location, 0);
rb_define_method(rb_cProc, "parameters", rb_proc_parameters, 0);
rb_define_method(rb_cProc, "ruby2_keywords", proc_ruby2_keywords, 0);
// rb_define_method(rb_cProc, "isolate", rb_proc_isolate, 0); is not accepted.
/* Exceptions */
rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep");
/* utility functions */
rb_define_global_function("proc", f_proc, 0);
rb_define_global_function("lambda", f_lambda, 0);
/* Method */
rb_cMethod = rb_define_class("Method", rb_cObject);
rb_undef_alloc_func(rb_cMethod);
rb_undef_method(CLASS_OF(rb_cMethod), "new");
rb_define_method(rb_cMethod, "==", method_eq, 1);
rb_define_method(rb_cMethod, "eql?", method_eq, 1);
rb_define_method(rb_cMethod, "hash", method_hash, 0);
rb_define_method(rb_cMethod, "clone", method_clone, 0);
rb_define_method(rb_cMethod, "call", rb_method_call_pass_called_kw, -1);
rb_define_method(rb_cMethod, "===", rb_method_call_pass_called_kw, -1);
rb_define_method(rb_cMethod, "curry", rb_method_curry, -1);
rb_define_method(rb_cMethod, "<<", rb_method_compose_to_left, 1);
rb_define_method(rb_cMethod, ">>", rb_method_compose_to_right, 1);
rb_define_method(rb_cMethod, "[]", rb_method_call_pass_called_kw, -1);
rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
rb_define_method(rb_cMethod, "to_proc", method_to_proc, 0);
rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
rb_define_method(rb_cMethod, "name", method_name, 0);
rb_define_method(rb_cMethod, "original_name", method_original_name, 0);
rb_define_method(rb_cMethod, "owner", method_owner, 0);
rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
rb_define_method(rb_cMethod, "source_location", rb_method_location, 0);
rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0);
rb_define_method(rb_cMethod, "super_method", method_super_method, 0);
rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1);
rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1);
/* UnboundMethod */
rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
rb_undef_alloc_func(rb_cUnboundMethod);
rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
rb_define_method(rb_cUnboundMethod, "==", method_eq, 1);
rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1);
rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0);
rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
rb_define_method(rb_cUnboundMethod, "bind_call", umethod_bind_call, -1);
rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0);
rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0);
rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0);
/* Module#*_method */
rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1);
rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1);
rb_define_method(rb_cModule, "define_method", rb_mod_define_method, -1);
/* Kernel */
rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"define_method", top_define_method, -1);
}
/*
* Objects of class Binding encapsulate the execution context at some
* particular place in the code and retain this context for future
* use. The variables, methods, value of <code>self</code>, and
* possibly an iterator block that can be accessed in this context
* are all retained. Binding objects can be created using
* Kernel#binding, and are made available to the callback of
* Kernel#set_trace_func and instances of TracePoint.
*
* These binding objects can be passed as the second argument of the
* Kernel#eval method, establishing an environment for the
* evaluation.
*
* class Demo
* def initialize(n)
* @secret = n
* end
* def get_binding
* binding
* end
* end
*
* k1 = Demo.new(99)
* b1 = k1.get_binding
* k2 = Demo.new(-3)
* b2 = k2.get_binding
*
* eval("@secret", b1) #=> 99
* eval("@secret", b2) #=> -3
* eval("@secret") #=> nil
*
* Binding objects have no class-specific methods.
*
*/
void
Init_Binding(void)
{
rb_cBinding = rb_define_class("Binding", rb_cObject);
rb_undef_alloc_func(rb_cBinding);
rb_undef_method(CLASS_OF(rb_cBinding), "new");
rb_define_method(rb_cBinding, "clone", binding_clone, 0);
rb_define_method(rb_cBinding, "dup", binding_dup, 0);
rb_define_method(rb_cBinding, "eval", bind_eval, -1);
rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0);
rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1);
rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2);
rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1);
rb_define_method(rb_cBinding, "receiver", bind_receiver, 0);
rb_define_method(rb_cBinding, "source_location", bind_location, 0);
rb_define_global_function("binding", rb_f_binding, 0);
}