1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/lib/complex.rb
matz 8cee72d5c6 * eval.c (rb_clear_cache_by_class): check both klass and origin.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@4083 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2003-07-17 08:58:16 +00:00

604 lines
12 KiB
Ruby

#
# complex.rb -
# $Release Version: 0.5 $
# $Revision: 1.3 $
# $Date: 1998/07/08 10:05:28 $
# by Keiju ISHITSUKA(SHL Japan Inc.)
#
# ----
#
# complex.rb implements the Complex class for complex numbers. Additionally,
# some methods in other Numeric classes are redefined or added to allow greater
# interoperability with Complex numbers.
#
# Complex numbers can be created in the following manner:
# - <tt>Complex(a, b)</tt>
# - <tt>Complex.polar(radius, theta)</tt>
#
# Additionally, note the following:
# - <tt>Complex::I</tt> (the mathematical constant <i>i</i>)
# - <tt>Numeric#im</tt> (e.g. <tt>5.im -> 0+5i</tt>)
#
# The following +Math+ module methods are redefined to handle Complex arguments.
# They will work as normal with non-Complex arguments.
# sqrt exp cos sin tan log log10 atan2
#
#
# Creates a Complex number. +a+ and +b+ should be Numeric. The result will be
# <tt>a+bi</tt>.
#
def Complex(a, b = 0)
if a.kind_of?(Complex) and b == 0
a
elsif b.kind_of?(Complex)
if a.kind_of?(Complex)
Complex(a.real-b.image, a.image + b.real)
else
Complex(a-b.image, b.real)
end
elsif b == 0 and defined? Complex::Unify
a
else
Complex.new!(a, b)
end
end
#
# The complex number class. See complex.rb for an overview.
#
class Complex < Numeric
@RCS_ID='-$Id: complex.rb,v 1.3 1998/07/08 10:05:28 keiju Exp keiju $-'
undef step
def Complex.generic?(other) # :nodoc:
other.kind_of?(Integer) or
other.kind_of?(Float) or
(defined?(Rational) and other.kind_of?(Rational))
end
#
# Creates a +Complex+ number in terms of +r+ (radius) and +theta+ (angle).
#
def Complex.polar(r, theta)
Complex(r*Math.cos(theta), r*Math.sin(theta))
end
private_class_method :new
#
# Creates a +Complex+ number <tt>a</tt>+<tt>b</tt><i>i</i>.
#
def Complex.new!(a, b=0)
new(a,b)
end
def initialize(a, b)
raise "non numeric 1st arg `#{a.inspect}'" if !a.kind_of? Numeric
raise "non numeric 2nd arg `#{b.inspect}'" if !b.kind_of? Numeric
@real = a
@image = b
end
#
# Addition with real or complex number.
#
def + (other)
if other.kind_of?(Complex)
re = @real + other.real
im = @image + other.image
Complex(re, im)
elsif Complex.generic?(other)
Complex(@real + other, @image)
else
x , y = other.coerce(self)
x + y
end
end
#
# Subtraction with real or complex number.
#
def - (other)
if other.kind_of?(Complex)
re = @real - other.real
im = @image - other.image
Complex(re, im)
elsif Complex.generic?(other)
Complex(@real - other, @image)
else
x , y = other.coerce(self)
x - y
end
end
#
# Multiplication with real or complex number.
#
def * (other)
if other.kind_of?(Complex)
re = @real*other.real - @image*other.image
im = @real*other.image + @image*other.real
Complex(re, im)
elsif Complex.generic?(other)
Complex(@real * other, @image * other)
else
x , y = other.coerce(self)
x * y
end
end
#
# Division by real or complex number.
#
def / (other)
if other.kind_of?(Complex)
self*other.conjugate/other.abs2
elsif Complex.generic?(other)
Complex(@real/other, @image/other)
else
x, y = other.coerce(self)
x/y
end
end
#
# Raise this complex number to the given (real or complex) power.
#
def ** (other)
if other == 0
return Complex(1)
end
if other.kind_of?(Complex)
r, theta = polar
ore = other.real
oim = other.image
nr = Math.exp!(ore*Math.log!(r) - oim * theta)
ntheta = theta*ore + oim*Math.log!(r)
Complex.polar(nr, ntheta)
elsif other.kind_of?(Integer)
if other > 0
x = self
z = x
n = other - 1
while n != 0
while (div, mod = n.divmod(2)
mod == 0)
x = Complex(x.real*x.real - x.image*x.image, 2*x.real*x.image)
n = div
end
z *= x
n -= 1
end
z
else
if defined? Rational
(Rational(1) / self) ** -other
else
self ** Float(other)
end
end
elsif Complex.generic?(other)
r, theta = polar
Complex.polar(r.power!(other), theta * other)
else
x, y = other.coerce(self)
x/y
end
end
#
# Remainder after division by a real or complex number.
#
def % (other)
if other.kind_of?(Complex)
Complex(@real % other.real, @image % other.image)
elsif Complex.generic?(other)
Complex(@real % other, @image % other)
else
x , y = other.coerce(self)
x % y
end
end
#--
# def divmod(other)
# if other.kind_of?(Complex)
# rdiv, rmod = @real.divmod(other.real)
# idiv, imod = @image.divmod(other.image)
# return Complex(rdiv, idiv), Complex(rmod, rmod)
# elsif Complex.generic?(other)
# Complex(@real.divmod(other), @image.divmod(other))
# else
# x , y = other.coerce(self)
# x.divmod(y)
# end
# end
#++
#
# Absolute value (aka modulus): distance from the zero point on the complex
# plane.
#
def abs
Math.sqrt!((@real*@real + @image*@image).to_f)
end
#
# Square of the absolute value.
#
def abs2
@real*@real + @image*@image
end
#
# Argument (angle from (1,0) on the complex plane).
#
def arg
Math.atan2(@image.to_f, @real.to_f)
end
#
# Returns the absolute value _and_ the argument.
#
def polar
return abs, arg
end
#
# Complex conjugate (<tt>z + z.conjugate = 2 * z.real</tt>).
#
def conjugate
Complex(@real, -@image)
end
#
# Compares the absolute values of the two numbers.
#
def <=> (other)
self.abs <=> other.abs
end
#
# Test for numerical equality (<tt>a == a + 0<i>i</i></tt>).
#
def == (other)
if other.kind_of?(Complex)
@real == other.real and @image == other.image
elsif Complex.generic?(other)
@real == other and @image == 0
else
other == self
end
end
#
# Attempts to coerce +other+ to a Complex number.
#
def coerce(other)
if Complex.generic?(other)
return Complex.new!(other), self
else
super
end
end
#
# FIXME
#
def denominator
@real.denominator.lcm(@image.denominator)
end
#
# FIXME
#
def numerator
cd = denominator
Complex(@real.numerator*(cd/@real.denominator),
@image.numerator*(cd/@image.denominator))
end
#
# Standard string representation of the complex number.
#
def to_s
if @real != 0
if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1
if @image >= 0
@real.to_s+"+("+@image.to_s+")i"
else
@real.to_s+"-("+(-@image).to_s+")i"
end
else
if @image >= 0
@real.to_s+"+"+@image.to_s+"i"
else
@real.to_s+"-"+(-@image).to_s+"i"
end
end
else
if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1
"("+@image.to_s+")i"
else
@image.to_s+"i"
end
end
end
#
# Returns a hash code for the complex number.
#
def hash
@real.hash ^ @image.hash
end
#
# Returns "<tt>Complex(<i>real</i>, <i>image</i>)</tt>".
#
def inspect
sprintf("Complex(%s, %s)", @real.inspect, @image.inspect)
end
#
# +I+ is the imaginary number. It exists at point (0,1) on the complex plane.
#
I = Complex(0,1)
# The real part of a complex number.
attr :real
# The imaginary part of a complex number.
attr :image
end
#
# Numeric is a built-in class on which Fixnum, Bignum, etc., are based. Here
# some methods are added so that all number types can be treated to some extent
# as Complex numbers.
#
class Numeric
#
# Returns a Complex number <tt>(0,<i>self</i>)</tt>.
#
def im
Complex(0, self)
end
#
# The real part of a complex number, i.e. <i>self</i>.
#
def real
self
end
#
# The imaginary part of a complex number, i.e. 0.
#
def image
0
end
#
# See Complex#arg.
#
def arg
if self >= 0
return 0
else
return Math.atan2(1,1)*4
end
end
#
# See Complex#polar.
#
def polar
return abs, arg
end
#
# See Complex#conjugate (short answer: returns <i>self</i>).
#
def conjugate
self
end
end
class Fixnum
unless defined? 1.power!
alias power! **
p [__FILE__, defined? 1.power!]
end
# Redefined to handle a Complex argument.
def ** (other)
if self < 0
Complex.new!(self, 0) ** other
else
if defined? self.rpower
self.rpower(other)
else
self.power!(other)
end
end
end
end
class Bignum
alias power! **
end
class Float
alias power! **
end
module Math
alias sqrt! sqrt
alias exp! exp
alias cos! cos
alias sin! sin
alias tan! tan
alias log! log
alias atan! atan
alias log10! log10
alias atan2! atan2
# Redefined to handle a Complex argument.
def sqrt(z)
if Complex.generic?(z)
if z >= 0
sqrt!(z)
else
Complex(0,sqrt!(-z))
end
else
if defined? Rational
z**Rational(1,2)
else
z**0.5
end
end
end
# Redefined to handle a Complex argument.
def exp(z)
if Complex.generic?(z)
exp!(z)
else
Complex(exp!(z.real) * cos!(z.image), exp!(z.real) * sin!(z.image))
end
end
#
# Hyperbolic cosine.
#
def cosh!(x)
(exp!(x) + exp!(-x))/2.0
end
#
# Hyperbolic sine.
#
def sinh!(x)
(exp!(x) - exp!(-x))/2.0
end
# Redefined to handle a Complex argument.
def cos(z)
if Complex.generic?(z)
cos!(z)
else
Complex(cos!(z.real)*cosh!(z.image),
-sin!(z.real)*sinh!(z.image))
end
end
# Redefined to handle a Complex argument.
def sin(z)
if Complex.generic?(z)
sin!(z)
else
Complex(sin!(z.real)*cosh!(z.image),
cos!(z.real)*sinh!(z.image))
end
end
# Redefined to handle a Complex argument.
def tan(z)
if Complex.generic?(z)
tan!(z)
else
sin(z)/cos(z)
end
end
# Redefined to handle a Complex argument.
def log(z)
if Complex.generic?(z) and z >= 0
log!(z)
else
r, theta = z.polar
Complex(log!(r.abs), theta)
end
end
# Redefined to handle a Complex argument.
def log10(z)
if Complex.generic?(z)
log10!(z)
else
log(z)/log!(10)
end
end
# FIXME: I don't know what the point of this is. If you give it Complex
# arguments, it will fail.
def atan2(x, y)
if Complex.generic?(x) and Complex.generic?(y)
atan2!(x, y)
else
fail "Not yet implemented."
end
end
#
# Hyperbolic arctangent.
#
def atanh!(x)
log((1.0 + x.to_f) / ( 1.0 - x.to_f)) / 2.0
end
# Redefined to handle a Complex argument.
def atan(z)
if Complex.generic?(z)
atan2!(z, 1)
elsif z.image == 0
atan2(z.real,1)
else
a = z.real
b = z.image
c = (a*a + b*b - 1.0)
d = (a*a + b*b + 1.0)
Complex(atan2!((c + sqrt(c*c + 4.0*a*a)), 2.0*a),
atanh!((-d + sqrt(d*d - 4.0*b*b))/(2.0*b)))
end
end
module_function :sqrt
module_function :sqrt!
module_function :exp!
module_function :exp
module_function :cosh!
module_function :cos!
module_function :cos
module_function :sinh!
module_function :sin!
module_function :sin
module_function :tan!
module_function :tan
module_function :log!
module_function :log
module_function :log10!
module_function :log
module_function :atan2!
module_function :atan2
# module_function :atan!
module_function :atan
module_function :atanh!
end
# Documentation comments:
# - source: original (researched from pickaxe)
# - a couple of fixme's
# - Math module methods sinh! etc. a bit fuzzy. What exactly is the intention?
# - RDoc output for Bignum etc. is a bit short, with nothing but an
# (undocumented) alias. No big deal.