1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/internal/numeric.h
Takashi Kokubun dbb4f19969
Allow inlining Integer#-@ and #~
```
$ benchmark-driver -v --rbenv 'before --jit;after --jit' benchmark/mjit_integer.yml --filter '(comp|uminus)'
before --jit: ruby 3.0.0dev (2020-12-23T05:41:44Z master 0dd4896175) +JIT [x86_64-linux]
after --jit: ruby 3.0.0dev (2020-12-23T06:25:41Z master 8887d78992) +JIT [x86_64-linux]
last_commit=Allow inlining Integer#-@ and #~
Calculating -------------------------------------
                     before --jit  after --jit
        mjit_comp(1)      44.006M      70.417M i/s -     40.000M times in 0.908967s 0.568042s
      mjit_uminus(1)      44.333M      68.422M i/s -     40.000M times in 0.902255s 0.584603s

Comparison:
                     mjit_comp(1)
         after --jit:  70417331.4 i/s
        before --jit:  44005980.4 i/s - 1.60x  slower

                   mjit_uminus(1)
         after --jit:  68422468.8 i/s
        before --jit:  44333371.0 i/s - 1.54x  slower
```
2020-12-22 22:32:19 -08:00

255 lines
7.1 KiB
C

#ifndef INTERNAL_NUMERIC_H /*-*-C-*-vi:se ft=c:*/
#define INTERNAL_NUMERIC_H
/**
* @file
* @author Ruby developers <ruby-core@ruby-lang.org>
* @copyright This file is a part of the programming language Ruby.
* Permission is hereby granted, to either redistribute and/or
* modify this file, provided that the conditions mentioned in the
* file COPYING are met. Consult the file for details.
* @brief Internal header for Numeric.
*/
#include "internal/bignum.h" /* for BIGNUM_POSITIVE_P */
#include "internal/bits.h" /* for RUBY_BIT_ROTL */
#include "internal/fixnum.h" /* for FIXNUM_POSITIVE_P */
#include "internal/vm.h" /* for rb_method_basic_definition_p */
#include "ruby/intern.h" /* for rb_cmperr */
#include "ruby/ruby.h" /* for USE_FLONUM */
#define ROUND_TO(mode, even, up, down) \
((mode) == RUBY_NUM_ROUND_HALF_EVEN ? even : \
(mode) == RUBY_NUM_ROUND_HALF_UP ? up : down)
#define ROUND_FUNC(mode, name) \
ROUND_TO(mode, name##_half_even, name##_half_up, name##_half_down)
#define ROUND_CALL(mode, name, args) \
ROUND_TO(mode, name##_half_even args, \
name##_half_up args, name##_half_down args)
#ifndef ROUND_DEFAULT
# define ROUND_DEFAULT RUBY_NUM_ROUND_HALF_UP
#endif
enum ruby_num_rounding_mode {
RUBY_NUM_ROUND_HALF_UP,
RUBY_NUM_ROUND_HALF_EVEN,
RUBY_NUM_ROUND_HALF_DOWN,
RUBY_NUM_ROUND_DEFAULT = ROUND_DEFAULT,
};
struct RFloat {
struct RBasic basic;
double float_value;
};
#define RFLOAT(obj) ((struct RFloat *)(obj))
/* numeric.c */
int rb_num_to_uint(VALUE val, unsigned int *ret);
VALUE ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl);
double ruby_float_step_size(double beg, double end, double unit, int excl);
int ruby_float_step(VALUE from, VALUE to, VALUE step, int excl, int allow_endless);
int rb_num_negative_p(VALUE);
VALUE rb_int_succ(VALUE num);
VALUE rb_float_uminus(VALUE num);
VALUE rb_int_plus(VALUE x, VALUE y);
VALUE rb_float_plus(VALUE x, VALUE y);
VALUE rb_int_minus(VALUE x, VALUE y);
VALUE rb_float_minus(VALUE x, VALUE y);
VALUE rb_int_mul(VALUE x, VALUE y);
VALUE rb_float_mul(VALUE x, VALUE y);
VALUE rb_float_div(VALUE x, VALUE y);
VALUE rb_int_idiv(VALUE x, VALUE y);
VALUE rb_int_modulo(VALUE x, VALUE y);
VALUE rb_int2str(VALUE num, int base);
VALUE rb_fix_plus(VALUE x, VALUE y);
VALUE rb_int_gt(VALUE x, VALUE y);
VALUE rb_float_gt(VALUE x, VALUE y);
VALUE rb_int_ge(VALUE x, VALUE y);
enum ruby_num_rounding_mode rb_num_get_rounding_option(VALUE opts);
double rb_int_fdiv_double(VALUE x, VALUE y);
VALUE rb_int_pow(VALUE x, VALUE y);
VALUE rb_float_pow(VALUE x, VALUE y);
VALUE rb_int_cmp(VALUE x, VALUE y);
VALUE rb_int_equal(VALUE x, VALUE y);
VALUE rb_int_divmod(VALUE x, VALUE y);
VALUE rb_int_and(VALUE x, VALUE y);
VALUE rb_int_lshift(VALUE x, VALUE y);
VALUE rb_int_div(VALUE x, VALUE y);
int rb_int_positive_p(VALUE num);
int rb_int_negative_p(VALUE num);
VALUE rb_num_pow(VALUE x, VALUE y);
VALUE rb_float_ceil(VALUE num, int ndigits);
VALUE rb_float_floor(VALUE x, int ndigits);
VALUE rb_float_abs(VALUE flt);
static inline VALUE rb_num_compare_with_zero(VALUE num, ID mid);
static inline int rb_num_positive_int_p(VALUE num);
static inline int rb_num_negative_int_p(VALUE num);
static inline double rb_float_flonum_value(VALUE v);
static inline double rb_float_noflonum_value(VALUE v);
static inline double rb_float_value_inline(VALUE v);
static inline VALUE rb_float_new_inline(double d);
static inline bool INT_POSITIVE_P(VALUE num);
static inline bool INT_NEGATIVE_P(VALUE num);
static inline bool FLOAT_ZERO_P(VALUE num);
#define rb_float_value rb_float_value_inline
#define rb_float_new rb_float_new_inline
RUBY_SYMBOL_EXPORT_BEGIN
/* numeric.c (export) */
VALUE rb_int_positive_pow(long x, unsigned long y);
RUBY_SYMBOL_EXPORT_END
MJIT_SYMBOL_EXPORT_BEGIN
VALUE rb_flo_div_flo(VALUE x, VALUE y);
double ruby_float_mod(double x, double y);
VALUE rb_float_equal(VALUE x, VALUE y);
int rb_float_cmp(VALUE x, VALUE y);
VALUE rb_float_eql(VALUE x, VALUE y);
VALUE rb_fix_aref(VALUE fix, VALUE idx);
VALUE rb_int_zero_p(VALUE num);
VALUE rb_int_even_p(VALUE num);
VALUE rb_int_odd_p(VALUE num);
VALUE rb_int_abs(VALUE num);
VALUE rb_int_bit_length(VALUE num);
VALUE rb_int_uminus(VALUE num);
VALUE rb_int_comp(VALUE num);
MJIT_SYMBOL_EXPORT_END
static inline bool
INT_POSITIVE_P(VALUE num)
{
if (FIXNUM_P(num)) {
return FIXNUM_POSITIVE_P(num);
}
else {
return BIGNUM_POSITIVE_P(num);
}
}
static inline bool
INT_NEGATIVE_P(VALUE num)
{
if (FIXNUM_P(num)) {
return FIXNUM_NEGATIVE_P(num);
}
else {
return BIGNUM_NEGATIVE_P(num);
}
}
static inline bool
FLOAT_ZERO_P(VALUE num)
{
return RFLOAT_VALUE(num) == 0.0;
}
static inline VALUE
rb_num_compare_with_zero(VALUE num, ID mid)
{
VALUE zero = INT2FIX(0);
VALUE r = rb_check_funcall(num, mid, 1, &zero);
if (r == Qundef) {
rb_cmperr(num, zero);
}
return r;
}
static inline int
rb_num_positive_int_p(VALUE num)
{
const ID mid = '>';
if (FIXNUM_P(num)) {
if (rb_method_basic_definition_p(rb_cInteger, mid))
return FIXNUM_POSITIVE_P(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
if (rb_method_basic_definition_p(rb_cInteger, mid))
return BIGNUM_POSITIVE_P(num);
}
return RTEST(rb_num_compare_with_zero(num, mid));
}
static inline int
rb_num_negative_int_p(VALUE num)
{
const ID mid = '<';
if (FIXNUM_P(num)) {
if (rb_method_basic_definition_p(rb_cInteger, mid))
return FIXNUM_NEGATIVE_P(num);
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
if (rb_method_basic_definition_p(rb_cInteger, mid))
return BIGNUM_NEGATIVE_P(num);
}
return RTEST(rb_num_compare_with_zero(num, mid));
}
static inline double
rb_float_flonum_value(VALUE v)
{
#if USE_FLONUM
if (v != (VALUE)0x8000000000000002) { /* LIKELY */
union {
double d;
VALUE v;
} t;
VALUE b63 = (v >> 63);
/* e: xx1... -> 011... */
/* xx0... -> 100... */
/* ^b63 */
t.v = RUBY_BIT_ROTR((2 - b63) | (v & ~(VALUE)0x03), 3);
return t.d;
}
#endif
return 0.0;
}
static inline double
rb_float_noflonum_value(VALUE v)
{
return RFLOAT(v)->float_value;
}
static inline double
rb_float_value_inline(VALUE v)
{
if (FLONUM_P(v)) {
return rb_float_flonum_value(v);
}
return rb_float_noflonum_value(v);
}
static inline VALUE
rb_float_new_inline(double d)
{
#if USE_FLONUM
union {
double d;
VALUE v;
} t;
int bits;
t.d = d;
bits = (int)((VALUE)(t.v >> 60) & 0x7);
/* bits contains 3 bits of b62..b60. */
/* bits - 3 = */
/* b011 -> b000 */
/* b100 -> b001 */
if (t.v != 0x3000000000000000 /* 1.72723e-77 */ &&
!((bits-3) & ~0x01)) {
return (RUBY_BIT_ROTL(t.v, 3) & ~(VALUE)0x01) | 0x02;
}
else if (t.v == (VALUE)0) {
/* +0.0 */
return 0x8000000000000002;
}
/* out of range */
#endif
return rb_float_new_in_heap(d);
}
#endif /* INTERNAL_NUMERIC_H */