1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/eval.c
2020-11-22 20:28:34 -08:00

2133 lines
52 KiB
C

/**********************************************************************
eval.c -
$Author$
created at: Thu Jun 10 14:22:17 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/internal/config.h"
#ifdef HAVE_SYS_PRCTL_H
#include <sys/prctl.h>
#endif
#include "eval_intern.h"
#include "gc.h"
#include "internal.h"
#include "internal/class.h"
#include "internal/error.h"
#include "internal/eval.h"
#include "internal/hash.h"
#include "internal/inits.h"
#include "internal/io.h"
#include "internal/object.h"
#include "internal/thread.h"
#include "internal/variable.h"
#include "internal/scheduler.h"
#include "iseq.h"
#include "mjit.h"
#include "probes.h"
#include "probes_helper.h"
#include "ruby/vm.h"
#include "vm_core.h"
#include "ractor_core.h"
NORETURN(void rb_raise_jump(VALUE, VALUE));
void rb_ec_clear_current_thread_trace_func(const rb_execution_context_t *ec);
void rb_ec_clear_all_trace_func(const rb_execution_context_t *ec);
static int rb_ec_cleanup(rb_execution_context_t *ec, volatile int ex);
static int rb_ec_exec_node(rb_execution_context_t *ec, void *n);
VALUE rb_eLocalJumpError;
VALUE rb_eSysStackError;
ID ruby_static_id_signo, ruby_static_id_status;
extern ID ruby_static_id_cause;
#define id_cause ruby_static_id_cause
#define exception_error GET_VM()->special_exceptions[ruby_error_reenter]
#include "eval_error.c"
#include "eval_jump.c"
#define CLASS_OR_MODULE_P(obj) \
(!SPECIAL_CONST_P(obj) && \
(BUILTIN_TYPE(obj) == T_CLASS || BUILTIN_TYPE(obj) == T_MODULE))
/*!
* Initializes the VM and builtin libraries.
* @retval 0 if succeeded.
* @retval non-zero an error occurred.
*/
int
ruby_setup(void)
{
enum ruby_tag_type state;
if (GET_VM())
return 0;
ruby_init_stack((void *)&state);
/*
* Disable THP early before mallocs happen because we want this to
* affect as many future pages as possible for CoW-friendliness
*/
#if defined(__linux__) && defined(PR_SET_THP_DISABLE)
prctl(PR_SET_THP_DISABLE, 1, 0, 0, 0);
#endif
Init_BareVM();
Init_heap();
rb_vm_encoded_insn_data_table_init();
Init_vm_objects();
EC_PUSH_TAG(GET_EC());
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
rb_call_inits();
ruby_prog_init();
GET_VM()->running = 1;
}
EC_POP_TAG();
return state;
}
/*!
* Calls ruby_setup() and check error.
*
* Prints errors and calls exit(3) if an error occurred.
*/
void
ruby_init(void)
{
int state = ruby_setup();
if (state) {
if (RTEST(ruby_debug))
error_print(GET_EC());
exit(EXIT_FAILURE);
}
}
/*! Processes command line arguments and compiles the Ruby source to execute.
*
* This function does:
* \li Processes the given command line flags and arguments for ruby(1)
* \li compiles the source code from the given argument, -e or stdin, and
* \li returns the compiled source as an opaque pointer to an internal data structure
*
* @return an opaque pointer to the compiled source or an internal special value.
* @sa ruby_executable_node().
*/
void *
ruby_options(int argc, char **argv)
{
rb_execution_context_t *ec = GET_EC();
enum ruby_tag_type state;
void *volatile iseq = 0;
ruby_init_stack((void *)&iseq);
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
SAVE_ROOT_JMPBUF(GET_THREAD(), iseq = ruby_process_options(argc, argv));
}
else {
rb_ec_clear_current_thread_trace_func(ec);
state = error_handle(ec, state);
iseq = (void *)INT2FIX(state);
}
EC_POP_TAG();
return iseq;
}
static void
rb_ec_scheduler_finalize(rb_execution_context_t *ec)
{
enum ruby_tag_type state;
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
rb_scheduler_set(Qnil);
}
else {
state = error_handle(ec, state);
}
EC_POP_TAG();
}
static void
rb_ec_teardown(rb_execution_context_t *ec)
{
// If the user code defined a scheduler for the top level thread, run it:
rb_ec_scheduler_finalize(ec);
EC_PUSH_TAG(ec);
if (EC_EXEC_TAG() == TAG_NONE) {
rb_vm_trap_exit(rb_ec_vm_ptr(ec));
}
EC_POP_TAG();
rb_ec_exec_end_proc(ec);
rb_ec_clear_all_trace_func(ec);
}
static void
rb_ec_finalize(rb_execution_context_t *ec)
{
ruby_sig_finalize();
ec->errinfo = Qnil;
rb_objspace_call_finalizer(rb_ec_vm_ptr(ec)->objspace);
}
/** Runs the VM finalization processes.
*
* <code>END{}</code> and procs registered by <code>Kernel.#at_exit</code> are
* executed here. See the Ruby language spec for more details.
*
* @note This function is allowed to raise an exception if an error occurred.
*/
void
ruby_finalize(void)
{
rb_execution_context_t *ec = GET_EC();
rb_ec_teardown(ec);
rb_ec_finalize(ec);
}
/** Destructs the VM.
*
* Runs the VM finalization processes as well as ruby_finalize(), and frees
* resources used by the VM.
*
* @param ex Default value to the return value.
* @return If an error occurred returns a non-zero. If otherwise, returns the
* given ex.
* @note This function does not raise any exception.
*/
int
ruby_cleanup(volatile int ex)
{
return rb_ec_cleanup(GET_EC(), ex);
}
static int
rb_ec_cleanup(rb_execution_context_t *ec, volatile int ex)
{
int state;
volatile VALUE errs[2] = { Qundef, Qundef };
int nerr;
rb_thread_t *th = rb_ec_thread_ptr(ec);
rb_thread_t *const volatile th0 = th;
volatile int sysex = EXIT_SUCCESS;
volatile int step = 0;
rb_threadptr_interrupt(th);
rb_threadptr_check_signal(th);
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
th = th0;
SAVE_ROOT_JMPBUF(th, { RUBY_VM_CHECK_INTS(ec); });
step_0: step++;
th = th0;
errs[1] = ec->errinfo;
if (THROW_DATA_P(ec->errinfo)) ec->errinfo = Qnil;
ruby_init_stack(&errs[STACK_UPPER(errs, 0, 1)]);
SAVE_ROOT_JMPBUF(th, rb_ec_teardown(ec));
step_1: step++;
th = th0;
/* protect from Thread#raise */
th->status = THREAD_KILLED;
errs[0] = ec->errinfo;
SAVE_ROOT_JMPBUF(th, rb_ractor_terminate_all());
}
else {
switch (step) {
case 0: goto step_0;
case 1: goto step_1;
}
if (ex == 0) ex = state;
}
th = th0;
ec->errinfo = errs[1];
sysex = error_handle(ec, ex);
state = 0;
for (nerr = 0; nerr < numberof(errs); ++nerr) {
VALUE err = ATOMIC_VALUE_EXCHANGE(errs[nerr], Qnil);
VALUE sig;
if (!RTEST(err)) continue;
/* ec->errinfo contains a NODE while break'ing */
if (THROW_DATA_P(err)) continue;
if (rb_obj_is_kind_of(err, rb_eSystemExit)) {
sysex = sysexit_status(err);
break;
}
else if (rb_obj_is_kind_of(err, rb_eSignal)) {
VALUE sig = rb_ivar_get(err, id_signo);
state = NUM2INT(sig);
break;
}
else if (rb_obj_is_kind_of(err, rb_eSystemCallError) &&
FIXNUM_P(sig = rb_attr_get(err, id_signo))) {
state = NUM2INT(sig);
break;
}
else if (sysex == EXIT_SUCCESS) {
sysex = EXIT_FAILURE;
}
}
mjit_finish(true); // We still need ISeqs here.
rb_ec_finalize(ec);
/* unlock again if finalizer took mutexes. */
rb_threadptr_unlock_all_locking_mutexes(th);
EC_POP_TAG();
rb_thread_stop_timer_thread();
ruby_vm_destruct(th->vm);
if (state) ruby_default_signal(state);
return sysex;
}
static int
rb_ec_exec_node(rb_execution_context_t *ec, void *n)
{
volatile int state;
rb_iseq_t *iseq = (rb_iseq_t *)n;
if (!n) return 0;
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
rb_thread_t *const th = rb_ec_thread_ptr(ec);
SAVE_ROOT_JMPBUF(th, {
rb_iseq_eval_main(iseq);
});
}
EC_POP_TAG();
return state;
}
/*! Calls ruby_cleanup() and exits the process */
void
ruby_stop(int ex)
{
exit(ruby_cleanup(ex));
}
/*! Checks the return value of ruby_options().
* @param n return value of ruby_options().
* @param status pointer to the exit status of this process.
*
* ruby_options() sometimes returns a special value to indicate this process
* should immediately exit. This function checks if the case. Also stores the
* exit status that the caller have to pass to exit(3) into
* <code>*status</code>.
*
* @retval non-zero if the given opaque pointer is actually a compiled source.
* @retval 0 if the given value is such a special value.
*/
int
ruby_executable_node(void *n, int *status)
{
VALUE v = (VALUE)n;
int s;
switch (v) {
case Qtrue: s = EXIT_SUCCESS; break;
case Qfalse: s = EXIT_FAILURE; break;
default:
if (!FIXNUM_P(v)) return TRUE;
s = FIX2INT(v);
}
if (status) *status = s;
return FALSE;
}
/*! Runs the given compiled source and exits this process.
* @retval 0 if successfully run the source
* @retval non-zero if an error occurred.
*/
int
ruby_run_node(void *n)
{
rb_execution_context_t *ec = GET_EC();
int status;
if (!ruby_executable_node(n, &status)) {
rb_ec_cleanup(ec, 0);
return status;
}
ruby_init_stack((void *)&status);
return rb_ec_cleanup(ec, rb_ec_exec_node(ec, n));
}
/*! Runs the given compiled source */
int
ruby_exec_node(void *n)
{
ruby_init_stack((void *)&n);
return rb_ec_exec_node(GET_EC(), n);
}
/*
* call-seq:
* Module.nesting -> array
*
* Returns the list of +Modules+ nested at the point of call.
*
* module M1
* module M2
* $a = Module.nesting
* end
* end
* $a #=> [M1::M2, M1]
* $a[0].name #=> "M1::M2"
*/
static VALUE
rb_mod_nesting(VALUE _)
{
VALUE ary = rb_ary_new();
const rb_cref_t *cref = rb_vm_cref();
while (cref && CREF_NEXT(cref)) {
VALUE klass = CREF_CLASS(cref);
if (!CREF_PUSHED_BY_EVAL(cref) &&
!NIL_P(klass)) {
rb_ary_push(ary, klass);
}
cref = CREF_NEXT(cref);
}
return ary;
}
/*
* call-seq:
* Module.constants -> array
* Module.constants(inherited) -> array
*
* In the first form, returns an array of the names of all
* constants accessible from the point of call.
* This list includes the names of all modules and classes
* defined in the global scope.
*
* Module.constants.first(4)
* # => [:ARGF, :ARGV, :ArgumentError, :Array]
*
* Module.constants.include?(:SEEK_SET) # => false
*
* class IO
* Module.constants.include?(:SEEK_SET) # => true
* end
*
* The second form calls the instance method +constants+.
*/
static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
const rb_cref_t *cref = rb_vm_cref();
VALUE klass;
VALUE cbase = 0;
void *data = 0;
if (argc > 0 || mod != rb_cModule) {
return rb_mod_constants(argc, argv, mod);
}
while (cref) {
klass = CREF_CLASS(cref);
if (!CREF_PUSHED_BY_EVAL(cref) &&
!NIL_P(klass)) {
data = rb_mod_const_at(CREF_CLASS(cref), data);
if (!cbase) {
cbase = klass;
}
}
cref = CREF_NEXT(cref);
}
if (cbase) {
data = rb_mod_const_of(cbase, data);
}
return rb_const_list(data);
}
/*!
* Asserts that \a klass is not a frozen class.
* \param[in] klass a \c Module object
* \exception RuntimeError if \a klass is not a class or frozen.
* \ingroup class
*/
void
rb_class_modify_check(VALUE klass)
{
if (SPECIAL_CONST_P(klass)) {
Check_Type(klass, T_CLASS);
}
if (OBJ_FROZEN(klass)) {
const char *desc;
if (FL_TEST(klass, FL_SINGLETON)) {
desc = "object";
klass = rb_ivar_get(klass, id__attached__);
if (!SPECIAL_CONST_P(klass)) {
switch (BUILTIN_TYPE(klass)) {
case T_MODULE:
case T_ICLASS:
desc = "Module";
break;
case T_CLASS:
desc = "Class";
break;
default:
break;
}
}
}
else {
switch (BUILTIN_TYPE(klass)) {
case T_MODULE:
case T_ICLASS:
desc = "module";
break;
case T_CLASS:
desc = "class";
break;
default:
Check_Type(klass, T_CLASS);
UNREACHABLE;
}
}
rb_frozen_error_raise(klass, "can't modify frozen %s: %"PRIsVALUE, desc, klass);
}
}
NORETURN(static void rb_longjmp(rb_execution_context_t *, int, volatile VALUE, VALUE));
static VALUE get_errinfo(void);
#define get_ec_errinfo(ec) rb_ec_get_errinfo(ec)
static VALUE
exc_setup_cause(VALUE exc, VALUE cause)
{
#if OPT_SUPPORT_JOKE
if (NIL_P(cause)) {
ID id_true_cause;
CONST_ID(id_true_cause, "true_cause");
cause = rb_attr_get(rb_eFatal, id_true_cause);
if (NIL_P(cause)) {
cause = rb_exc_new_cstr(rb_eFatal, "because using such Ruby");
rb_ivar_set(cause, id_cause, INT2FIX(42)); /* the answer */
OBJ_FREEZE(cause);
rb_ivar_set(rb_eFatal, id_true_cause, cause);
}
}
#endif
if (!NIL_P(cause) && cause != exc) {
rb_ivar_set(exc, id_cause, cause);
if (!rb_ivar_defined(cause, id_cause)) {
rb_ivar_set(cause, id_cause, Qnil);
}
}
return exc;
}
static inline VALUE
exc_setup_message(const rb_execution_context_t *ec, VALUE mesg, VALUE *cause)
{
int nocause = 0;
int nocircular = 0;
if (NIL_P(mesg)) {
mesg = ec->errinfo;
if (INTERNAL_EXCEPTION_P(mesg)) EC_JUMP_TAG(ec, TAG_FATAL);
nocause = 1;
}
if (NIL_P(mesg)) {
mesg = rb_exc_new(rb_eRuntimeError, 0, 0);
nocause = 0;
nocircular = 1;
}
if (*cause == Qundef) {
if (nocause) {
*cause = Qnil;
nocircular = 1;
}
else if (!rb_ivar_defined(mesg, id_cause)) {
*cause = get_ec_errinfo(ec);
}
else {
nocircular = 1;
}
}
else if (!NIL_P(*cause) && !rb_obj_is_kind_of(*cause, rb_eException)) {
rb_raise(rb_eTypeError, "exception object expected");
}
if (!nocircular && !NIL_P(*cause) && *cause != Qundef && *cause != mesg) {
VALUE c = *cause;
while (!NIL_P(c = rb_attr_get(c, id_cause))) {
if (c == mesg) {
rb_raise(rb_eArgError, "circular causes");
}
}
}
return mesg;
}
static void
setup_exception(rb_execution_context_t *ec, int tag, volatile VALUE mesg, VALUE cause)
{
VALUE e;
int line;
const char *file = rb_source_location_cstr(&line);
const char *const volatile file0 = file;
if ((file && !NIL_P(mesg)) || (cause != Qundef)) {
volatile int state = 0;
EC_PUSH_TAG(ec);
if (EC_EXEC_TAG() == TAG_NONE && !(state = rb_ec_set_raised(ec))) {
VALUE bt = rb_get_backtrace(mesg);
if (!NIL_P(bt) || cause == Qundef) {
if (OBJ_FROZEN(mesg)) {
mesg = rb_obj_dup(mesg);
}
}
if (cause != Qundef && !THROW_DATA_P(cause)) {
exc_setup_cause(mesg, cause);
}
if (NIL_P(bt)) {
VALUE at = rb_ec_backtrace_object(ec);
rb_ivar_set(mesg, idBt_locations, at);
set_backtrace(mesg, at);
}
rb_ec_reset_raised(ec);
}
EC_POP_TAG();
file = file0;
if (state) goto fatal;
}
if (!NIL_P(mesg)) {
ec->errinfo = mesg;
}
if (RTEST(ruby_debug) && !NIL_P(e = ec->errinfo) &&
!rb_obj_is_kind_of(e, rb_eSystemExit)) {
enum ruby_tag_type state;
mesg = e;
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
ec->errinfo = Qnil;
e = rb_obj_as_string(mesg);
ec->errinfo = mesg;
if (file && line) {
e = rb_sprintf("Exception `%"PRIsVALUE"' at %s:%d - %"PRIsVALUE"\n",
rb_obj_class(mesg), file, line, e);
}
else if (file) {
e = rb_sprintf("Exception `%"PRIsVALUE"' at %s - %"PRIsVALUE"\n",
rb_obj_class(mesg), file, e);
}
else {
e = rb_sprintf("Exception `%"PRIsVALUE"' - %"PRIsVALUE"\n",
rb_obj_class(mesg), e);
}
warn_print_str(e);
}
EC_POP_TAG();
if (state == TAG_FATAL && ec->errinfo == exception_error) {
ec->errinfo = mesg;
}
else if (state) {
rb_ec_reset_raised(ec);
EC_JUMP_TAG(ec, state);
}
}
if (rb_ec_set_raised(ec)) {
goto fatal;
}
if (tag != TAG_FATAL) {
RUBY_DTRACE_HOOK(RAISE, rb_obj_classname(ec->errinfo));
EXEC_EVENT_HOOK(ec, RUBY_EVENT_RAISE, ec->cfp->self, 0, 0, 0, mesg);
}
return;
fatal:
ec->errinfo = exception_error;
rb_ec_reset_raised(ec);
EC_JUMP_TAG(ec, TAG_FATAL);
}
/*! \private */
void
rb_ec_setup_exception(const rb_execution_context_t *ec, VALUE mesg, VALUE cause)
{
if (cause == Qundef) {
cause = get_ec_errinfo(ec);
}
if (cause != mesg) {
rb_ivar_set(mesg, id_cause, cause);
}
}
static void
rb_longjmp(rb_execution_context_t *ec, int tag, volatile VALUE mesg, VALUE cause)
{
mesg = exc_setup_message(ec, mesg, &cause);
setup_exception(ec, tag, mesg, cause);
rb_ec_raised_clear(ec);
EC_JUMP_TAG(ec, tag);
}
static VALUE make_exception(int argc, const VALUE *argv, int isstr);
/*!
* Raises an exception in the current thread.
* \param[in] mesg an Exception class or an \c Exception object.
* \exception always raises an instance of the given exception class or
* the given \c Exception object.
* \ingroup exception
*/
void
rb_exc_raise(VALUE mesg)
{
if (!NIL_P(mesg)) {
mesg = make_exception(1, &mesg, FALSE);
}
rb_longjmp(GET_EC(), TAG_RAISE, mesg, Qundef);
}
/*!
* Raises a fatal error in the current thread.
*
* Same as rb_exc_raise() but raises a fatal error, which Ruby codes
* cannot rescue.
* \ingroup exception
*/
void
rb_exc_fatal(VALUE mesg)
{
if (!NIL_P(mesg)) {
mesg = make_exception(1, &mesg, FALSE);
}
rb_longjmp(GET_EC(), TAG_FATAL, mesg, Qnil);
}
/*!
* Raises an \c Interrupt exception.
* \ingroup exception
*/
void
rb_interrupt(void)
{
rb_exc_raise(rb_exc_new(rb_eInterrupt, 0, 0));
}
enum {raise_opt_cause, raise_max_opt}; /*< \private */
static int
extract_raise_opts(int argc, const VALUE *argv, VALUE *opts)
{
int i;
if (argc > 0) {
VALUE opt = argv[argc-1];
if (RB_TYPE_P(opt, T_HASH)) {
if (!RHASH_EMPTY_P(opt)) {
ID keywords[1];
CONST_ID(keywords[0], "cause");
rb_get_kwargs(opt, keywords, 0, -1-raise_max_opt, opts);
if (RHASH_EMPTY_P(opt)) --argc;
return argc;
}
}
}
for (i = 0; i < raise_max_opt; ++i) {
opts[i] = Qundef;
}
return argc;
}
VALUE
rb_f_raise(int argc, VALUE *argv)
{
VALUE err;
VALUE opts[raise_max_opt], *const cause = &opts[raise_opt_cause];
argc = extract_raise_opts(argc, argv, opts);
if (argc == 0) {
if (*cause != Qundef) {
rb_raise(rb_eArgError, "only cause is given with no arguments");
}
err = get_errinfo();
if (!NIL_P(err)) {
argc = 1;
argv = &err;
}
}
rb_raise_jump(rb_make_exception(argc, argv), *cause);
UNREACHABLE_RETURN(Qnil);
}
/*
* call-seq:
* raise
* raise(string, cause: $!)
* raise(exception [, string [, array]], cause: $!)
* fail
* fail(string, cause: $!)
* fail(exception [, string [, array]], cause: $!)
*
* With no arguments, raises the exception in <code>$!</code> or raises
* a RuntimeError if <code>$!</code> is +nil+. With a single +String+
* argument, raises a +RuntimeError+ with the string as a message. Otherwise,
* the first parameter should be an +Exception+ class (or another
* object that returns an +Exception+ object when sent an +exception+
* message). The optional second parameter sets the message associated with
* the exception (accessible via Exception#message), and the third parameter
* is an array of callback information (accessible via Exception#backtrace).
* The +cause+ of the generated exception (accessible via Exception#cause)
* is automatically set to the "current" exception (<code>$!</code>), if any.
* An alternative value, either an +Exception+ object or +nil+, can be
* specified via the +:cause+ argument.
*
* Exceptions are caught by the +rescue+ clause of
* <code>begin...end</code> blocks.
*
* raise "Failed to create socket"
* raise ArgumentError, "No parameters", caller
*/
static VALUE
f_raise(int c, VALUE *v, VALUE _)
{
return rb_f_raise(c, v);
}
static VALUE
make_exception(int argc, const VALUE *argv, int isstr)
{
VALUE mesg, exc;
mesg = Qnil;
switch (argc) {
case 0:
return Qnil;
case 1:
exc = argv[0];
if (isstr &&! NIL_P(exc)) {
mesg = rb_check_string_type(exc);
if (!NIL_P(mesg)) {
return rb_exc_new3(rb_eRuntimeError, mesg);
}
}
case 2:
case 3:
break;
default:
rb_error_arity(argc, 0, 3);
}
if (NIL_P(mesg)) {
mesg = rb_check_funcall(argv[0], idException, argc != 1, &argv[1]);
}
if (mesg == Qundef) {
rb_raise(rb_eTypeError, "exception class/object expected");
}
if (!rb_obj_is_kind_of(mesg, rb_eException)) {
rb_raise(rb_eTypeError, "exception object expected");
}
if (argc == 3) {
set_backtrace(mesg, argv[2]);
}
return mesg;
}
/*!
* Make an \c Exception object from the list of arguments in a manner
* similar to \c Kernel\#raise.
*
* \param[in] argc the number of arguments
* \param[in] argv a pointer to the array of arguments.
*
* The first form of this function takes a \c String argument. Then
* it returns a \c RuntimeError whose error message is the given value.
*
* The second from of this function takes an \c Exception object. Then
* it just returns the given value.
*
* The last form takes an exception class, an optional error message and
* an optional array of backtrace. Then it passes the optional arguments
* to \c #exception method of the exception class.
*
* \return the exception object, or \c Qnil if \c argc is 0.
* \ingroup exception
*/
VALUE
rb_make_exception(int argc, const VALUE *argv)
{
return make_exception(argc, argv, TRUE);
}
/*! \private
* \todo can be static?
*/
void
rb_raise_jump(VALUE mesg, VALUE cause)
{
rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = ec->cfp;
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
VALUE klass = me->owner;
VALUE self = cfp->self;
ID mid = me->called_id;
rb_vm_pop_frame(ec);
EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, self, me->def->original_id, mid, klass, Qnil);
rb_longjmp(ec, TAG_RAISE, mesg, cause);
}
/*!
* Continues the exception caught by rb_protect() and rb_eval_string_protect().
*
* This function never return to the caller.
* \param[in] the value of \c *state which the protect function has set to the
* their last parameter.
* \ingroup exception
*/
void
rb_jump_tag(int tag)
{
if (UNLIKELY(tag < TAG_RETURN || tag > TAG_FATAL)) {
unknown_longjmp_status(tag);
}
EC_JUMP_TAG(GET_EC(), tag);
}
/*! Determines if the current method is given a block.
* \retval zero if not given
* \retval non-zero if given
* \ingroup defmethod
*/
int
rb_block_given_p(void)
{
if (rb_vm_frame_block_handler(GET_EC()->cfp) == VM_BLOCK_HANDLER_NONE) {
return FALSE;
}
else {
return TRUE;
}
}
int rb_vm_cframe_keyword_p(const rb_control_frame_t *cfp);
int
rb_keyword_given_p(void)
{
return rb_vm_cframe_keyword_p(GET_EC()->cfp);
}
VALUE rb_eThreadError;
/*! Declares that the current method needs a block.
*
* Raises a \c LocalJumpError if not given a block.
* \ingroup defmethod
*/
void
rb_need_block(void)
{
if (!rb_block_given_p()) {
rb_vm_localjump_error("no block given", Qnil, 0);
}
}
/*! An equivalent of \c rescue clause.
*
* Equivalent to <code>begin .. rescue err_type .. end</code>
*
* \param[in] b_proc a function which potentially raises an exception.
* \param[in] data1 the argument of \a b_proc
* \param[in] r_proc a function which rescues an exception in \a b_proc.
* \param[in] data2 the first argument of \a r_proc
* \param[in] ... 1 or more exception classes. Must be terminated by \c (VALUE)0.
*
* First it calls the function \a b_proc, with \a data1 as the argument.
* When \a b_proc raises an exception, it calls \a r_proc with \a data2 and
* the exception object if the exception is a kind of one of the given
* exception classes.
*
* \return the return value of \a b_proc if no exception occurs,
* or the return value of \a r_proc if otherwise.
* \sa rb_rescue
* \sa rb_ensure
* \sa rb_protect
* \ingroup exception
*/
VALUE
rb_rescue2(VALUE (* b_proc) (VALUE), VALUE data1,
VALUE (* r_proc) (VALUE, VALUE), VALUE data2, ...)
{
va_list ap;
va_start(ap, data2);
VALUE ret = rb_vrescue2(b_proc, data1, r_proc, data2, ap);
va_end(ap);
return ret;
}
/*!
* \copydoc rb_rescue2
* \param[in] args exception classes, terminated by (VALUE)0.
*/
VALUE
rb_vrescue2(VALUE (* b_proc) (VALUE), VALUE data1,
VALUE (* r_proc) (VALUE, VALUE), VALUE data2,
va_list args)
{
enum ruby_tag_type state;
rb_execution_context_t * volatile ec = GET_EC();
rb_control_frame_t *volatile cfp = ec->cfp;
volatile VALUE result = Qfalse;
volatile VALUE e_info = ec->errinfo;
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
retry_entry:
result = (*b_proc) (data1);
}
else if (result) {
/* escape from r_proc */
if (state == TAG_RETRY) {
state = 0;
ec->errinfo = Qnil;
result = Qfalse;
goto retry_entry;
}
}
else {
rb_vm_rewind_cfp(ec, cfp);
if (state == TAG_RAISE) {
int handle = FALSE;
VALUE eclass;
while ((eclass = va_arg(args, VALUE)) != 0) {
if (rb_obj_is_kind_of(ec->errinfo, eclass)) {
handle = TRUE;
break;
}
}
if (handle) {
result = Qnil;
state = 0;
if (r_proc) {
result = (*r_proc) (data2, ec->errinfo);
}
ec->errinfo = e_info;
}
}
}
EC_POP_TAG();
if (state)
EC_JUMP_TAG(ec, state);
return result;
}
/*! An equivalent of \c rescue clause.
*
* Equivalent to <code>begin .. rescue .. end</code>.
*
* It is same as
* \code{cpp}
* rb_rescue2(b_proc, data1, r_proc, data2, rb_eStandardError, (VALUE)0);
* \endcode
*
* \sa rb_rescue2
* \sa rb_ensure
* \sa rb_protect
* \ingroup exception
*/
VALUE
rb_rescue(VALUE (* b_proc)(VALUE), VALUE data1,
VALUE (* r_proc)(VALUE, VALUE), VALUE data2)
{
return rb_rescue2(b_proc, data1, r_proc, data2, rb_eStandardError,
(VALUE)0);
}
/*! Protects a function call from potential global escapes from the function.
*
* Such global escapes include exceptions, \c Kernel\#throw, \c break in
* an iterator, for example.
* It first calls the function func with arg as the argument.
* If no exception occurred during func, it returns the result of func and
* *state is zero.
* Otherwise, it returns Qnil and sets *state to nonzero.
* If state is NULL, it is not set in both cases.
*
* You have to clear the error info with rb_set_errinfo(Qnil) when
* ignoring the caught exception.
* \ingroup exception
* \sa rb_rescue
* \sa rb_rescue2
* \sa rb_ensure
*/
VALUE
rb_protect(VALUE (* proc) (VALUE), VALUE data, int *pstate)
{
volatile VALUE result = Qnil;
volatile enum ruby_tag_type state;
rb_execution_context_t * volatile ec = GET_EC();
rb_control_frame_t *volatile cfp = ec->cfp;
struct rb_vm_protect_tag protect_tag;
rb_jmpbuf_t org_jmpbuf;
protect_tag.prev = ec->protect_tag;
EC_PUSH_TAG(ec);
ec->protect_tag = &protect_tag;
MEMCPY(&org_jmpbuf, &rb_ec_thread_ptr(ec)->root_jmpbuf, rb_jmpbuf_t, 1);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
SAVE_ROOT_JMPBUF(rb_ec_thread_ptr(ec), result = (*proc) (data));
}
else {
rb_vm_rewind_cfp(ec, cfp);
}
MEMCPY(&rb_ec_thread_ptr(ec)->root_jmpbuf, &org_jmpbuf, rb_jmpbuf_t, 1);
ec->protect_tag = protect_tag.prev;
EC_POP_TAG();
if (pstate != NULL) *pstate = state;
return result;
}
/*!
* An equivalent to \c ensure clause.
*
* Equivalent to <code>begin .. ensure .. end</code>.
*
* Calls the function \a b_proc with \a data1 as the argument,
* then calls \a e_proc with \a data2 when execution terminated.
* \return The return value of \a b_proc if no exception occurred,
* or \c Qnil if otherwise.
* \sa rb_rescue
* \sa rb_rescue2
* \sa rb_protect
* \ingroup exception
*/
VALUE
rb_ensure(VALUE (*b_proc)(VALUE), VALUE data1, VALUE (*e_proc)(VALUE), VALUE data2)
{
int state;
volatile VALUE result = Qnil;
VALUE errinfo;
rb_execution_context_t * volatile ec = GET_EC();
rb_ensure_list_t ensure_list;
ensure_list.entry.marker = 0;
ensure_list.entry.e_proc = e_proc;
ensure_list.entry.data2 = data2;
ensure_list.next = ec->ensure_list;
ec->ensure_list = &ensure_list;
EC_PUSH_TAG(ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
result = (*b_proc) (data1);
}
EC_POP_TAG();
errinfo = ec->errinfo;
if (!NIL_P(errinfo) && !RB_TYPE_P(errinfo, T_OBJECT)) {
ec->errinfo = Qnil;
}
ec->ensure_list=ensure_list.next;
(*ensure_list.entry.e_proc)(ensure_list.entry.data2);
ec->errinfo = errinfo;
if (state)
EC_JUMP_TAG(ec, state);
return result;
}
static ID
frame_func_id(const rb_control_frame_t *cfp)
{
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
if (me) {
return me->def->original_id;
}
else {
return 0;
}
}
static ID
frame_called_id(rb_control_frame_t *cfp)
{
const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
if (me) {
return me->called_id;
}
else {
return 0;
}
}
/*!
* The original name of the current method.
*
* The function returns the original name of the method even if
* an alias of the method is called.
* The function can also return 0 if it is not in a method. This
* case can happen in a toplevel of a source file, for example.
*
* \returns the ID of the name or 0
* \sa rb_frame_callee
* \ingroup defmethod
*/
ID
rb_frame_this_func(void)
{
return frame_func_id(GET_EC()->cfp);
}
/*!
* The name of the current method.
*
* The function returns the alias if an alias of the method is called.
* The function can also return 0 if it is not in a method. This
* case can happen in a toplevel of a source file, for example.
*
* \returns the ID of the name or 0.
* \sa rb_frame_this_func
* \ingroup defmethod
*/
ID
rb_frame_callee(void)
{
return frame_called_id(GET_EC()->cfp);
}
static rb_control_frame_t *
previous_frame(const rb_execution_context_t *ec)
{
rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(ec->cfp);
/* check if prev_cfp can be accessible */
if ((void *)(ec->vm_stack + ec->vm_stack_size) == (void *)(prev_cfp)) {
return 0;
}
return prev_cfp;
}
static ID
prev_frame_callee(void)
{
rb_control_frame_t *prev_cfp = previous_frame(GET_EC());
if (!prev_cfp) return 0;
return frame_called_id(prev_cfp);
}
static ID
prev_frame_func(void)
{
rb_control_frame_t *prev_cfp = previous_frame(GET_EC());
if (!prev_cfp) return 0;
return frame_func_id(prev_cfp);
}
/*!
* \private
* Returns the ID of the last method in the call stack.
* \sa rb_frame_this_func
* \ingroup defmethod
*/
ID
rb_frame_last_func(void)
{
const rb_execution_context_t *ec = GET_EC();
const rb_control_frame_t *cfp = ec->cfp;
ID mid;
while (!(mid = frame_func_id(cfp)) &&
(cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp),
!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)));
return mid;
}
/*
* call-seq:
* append_features(mod) -> mod
*
* When this module is included in another, Ruby calls
* #append_features in this module, passing it the receiving module
* in _mod_. Ruby's default implementation is to add the constants,
* methods, and module variables of this module to _mod_ if this
* module has not already been added to _mod_ or one of its
* ancestors. See also Module#include.
*/
static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
if (!CLASS_OR_MODULE_P(include)) {
Check_Type(include, T_CLASS);
}
rb_include_module(include, module);
return module;
}
/*
* call-seq:
* include(module, ...) -> self
*
* Invokes Module.append_features on each parameter in reverse order.
*/
static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_append_features, id_included;
CONST_ID(id_append_features, "append_features");
CONST_ID(id_included, "included");
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_append_features, 1, module);
rb_funcall(argv[argc], id_included, 1, module);
}
return module;
}
/*
* call-seq:
* prepend_features(mod) -> mod
*
* When this module is prepended in another, Ruby calls
* #prepend_features in this module, passing it the receiving module
* in _mod_. Ruby's default implementation is to overlay the
* constants, methods, and module variables of this module to _mod_
* if this module has not already been added to _mod_ or one of its
* ancestors. See also Module#prepend.
*/
static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
if (!CLASS_OR_MODULE_P(prepend)) {
Check_Type(prepend, T_CLASS);
}
rb_prepend_module(prepend, module);
return module;
}
/*
* call-seq:
* prepend(module, ...) -> self
*
* Invokes Module.prepend_features on each parameter in reverse order.
*/
static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_prepend_features, id_prepended;
CONST_ID(id_prepend_features, "prepend_features");
CONST_ID(id_prepended, "prepended");
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_prepend_features, 1, module);
rb_funcall(argv[argc], id_prepended, 1, module);
}
return module;
}
static void
ensure_class_or_module(VALUE obj)
{
if (!RB_TYPE_P(obj, T_CLASS) && !RB_TYPE_P(obj, T_MODULE)) {
rb_raise(rb_eTypeError,
"wrong argument type %"PRIsVALUE" (expected Class or Module)",
rb_obj_class(obj));
}
}
static VALUE
hidden_identity_hash_new(void)
{
VALUE hash = rb_ident_hash_new();
RBASIC_CLEAR_CLASS(hash); /* hide from ObjectSpace */
return hash;
}
static VALUE
refinement_superclass(VALUE superclass)
{
if (RB_TYPE_P(superclass, T_MODULE)) {
/* FIXME: Should ancestors of superclass be used here? */
return rb_include_class_new(RCLASS_ORIGIN(superclass), rb_cBasicObject);
}
else {
return superclass;
}
}
/*!
* \private
* \todo can be static?
*/
void
rb_using_refinement(rb_cref_t *cref, VALUE klass, VALUE module)
{
VALUE iclass, c, superclass = klass;
ensure_class_or_module(klass);
Check_Type(module, T_MODULE);
if (NIL_P(CREF_REFINEMENTS(cref))) {
CREF_REFINEMENTS_SET(cref, hidden_identity_hash_new());
}
else {
if (CREF_OMOD_SHARED(cref)) {
CREF_REFINEMENTS_SET(cref, rb_hash_dup(CREF_REFINEMENTS(cref)));
CREF_OMOD_SHARED_UNSET(cref);
}
if (!NIL_P(c = rb_hash_lookup(CREF_REFINEMENTS(cref), klass))) {
superclass = c;
while (c && RB_TYPE_P(c, T_ICLASS)) {
if (RBASIC(c)->klass == module) {
/* already used refinement */
return;
}
c = RCLASS_SUPER(c);
}
}
}
FL_SET(module, RMODULE_IS_OVERLAID);
superclass = refinement_superclass(superclass);
c = iclass = rb_include_class_new(module, superclass);
RB_OBJ_WRITE(c, &RCLASS_REFINED_CLASS(c), klass);
RCLASS_M_TBL(c) = RCLASS_M_TBL(module);
module = RCLASS_SUPER(module);
while (module && module != klass) {
FL_SET(module, RMODULE_IS_OVERLAID);
c = RCLASS_SET_SUPER(c, rb_include_class_new(module, RCLASS_SUPER(c)));
RB_OBJ_WRITE(c, &RCLASS_REFINED_CLASS(c), klass);
module = RCLASS_SUPER(module);
}
rb_hash_aset(CREF_REFINEMENTS(cref), klass, iclass);
}
static int
using_refinement(VALUE klass, VALUE module, VALUE arg)
{
rb_cref_t *cref = (rb_cref_t *) arg;
rb_using_refinement(cref, klass, module);
return ST_CONTINUE;
}
static void
using_module_recursive(const rb_cref_t *cref, VALUE klass)
{
ID id_refinements;
VALUE super, module, refinements;
super = RCLASS_SUPER(klass);
if (super) {
using_module_recursive(cref, super);
}
switch (BUILTIN_TYPE(klass)) {
case T_MODULE:
module = klass;
break;
case T_ICLASS:
module = RBASIC(klass)->klass;
break;
default:
rb_raise(rb_eTypeError, "wrong argument type %s (expected Module)",
rb_obj_classname(klass));
break;
}
CONST_ID(id_refinements, "__refinements__");
refinements = rb_attr_get(module, id_refinements);
if (NIL_P(refinements)) return;
rb_hash_foreach(refinements, using_refinement, (VALUE) cref);
}
/*!
* \private
* \todo can be static?
*/
void
rb_using_module(const rb_cref_t *cref, VALUE module)
{
Check_Type(module, T_MODULE);
using_module_recursive(cref, module);
rb_clear_method_cache_all();
}
/*! \private */
VALUE
rb_refinement_module_get_refined_class(VALUE module)
{
ID id_refined_class;
CONST_ID(id_refined_class, "__refined_class__");
return rb_attr_get(module, id_refined_class);
}
static void
add_activated_refinement(VALUE activated_refinements,
VALUE klass, VALUE refinement)
{
VALUE iclass, c, superclass = klass;
if (!NIL_P(c = rb_hash_lookup(activated_refinements, klass))) {
superclass = c;
while (c && RB_TYPE_P(c, T_ICLASS)) {
if (RBASIC(c)->klass == refinement) {
/* already used refinement */
return;
}
c = RCLASS_SUPER(c);
}
}
FL_SET(refinement, RMODULE_IS_OVERLAID);
superclass = refinement_superclass(superclass);
c = iclass = rb_include_class_new(refinement, superclass);
RB_OBJ_WRITE(c, &RCLASS_REFINED_CLASS(c), klass);
refinement = RCLASS_SUPER(refinement);
while (refinement && refinement != klass) {
FL_SET(refinement, RMODULE_IS_OVERLAID);
c = RCLASS_SET_SUPER(c, rb_include_class_new(refinement, RCLASS_SUPER(c)));
RB_OBJ_WRITE(c, &RCLASS_REFINED_CLASS(c), klass);
refinement = RCLASS_SUPER(refinement);
}
rb_hash_aset(activated_refinements, klass, iclass);
}
/*
* call-seq:
* refine(mod) { block } -> module
*
* Refine <i>mod</i> in the receiver.
*
* Returns a module, where refined methods are defined.
*/
static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
VALUE refinement;
ID id_refinements, id_activated_refinements,
id_refined_class, id_defined_at;
VALUE refinements, activated_refinements;
rb_thread_t *th = GET_THREAD();
VALUE block_handler = rb_vm_frame_block_handler(th->ec->cfp);
if (block_handler == VM_BLOCK_HANDLER_NONE) {
rb_raise(rb_eArgError, "no block given");
}
if (vm_block_handler_type(block_handler) != block_handler_type_iseq) {
rb_raise(rb_eArgError, "can't pass a Proc as a block to Module#refine");
}
ensure_class_or_module(klass);
CONST_ID(id_refinements, "__refinements__");
refinements = rb_attr_get(module, id_refinements);
if (NIL_P(refinements)) {
refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_refinements, refinements);
}
CONST_ID(id_activated_refinements, "__activated_refinements__");
activated_refinements = rb_attr_get(module, id_activated_refinements);
if (NIL_P(activated_refinements)) {
activated_refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_activated_refinements,
activated_refinements);
}
refinement = rb_hash_lookup(refinements, klass);
if (NIL_P(refinement)) {
VALUE superclass = refinement_superclass(klass);
refinement = rb_module_new();
RCLASS_SET_SUPER(refinement, superclass);
FL_SET(refinement, RMODULE_IS_REFINEMENT);
CONST_ID(id_refined_class, "__refined_class__");
rb_ivar_set(refinement, id_refined_class, klass);
CONST_ID(id_defined_at, "__defined_at__");
rb_ivar_set(refinement, id_defined_at, module);
rb_hash_aset(refinements, klass, refinement);
add_activated_refinement(activated_refinements, klass, refinement);
}
rb_yield_refine_block(refinement, activated_refinements);
return refinement;
}
static void
ignored_block(VALUE module, const char *klass)
{
const char *anon = "";
Check_Type(module, T_MODULE);
if (!RTEST(rb_search_class_path(module))) {
anon = ", maybe for Module.new";
}
rb_warn("%s""using doesn't call the given block""%s.", klass, anon);
}
/*
* call-seq:
* using(module) -> self
*
* Import class refinements from <i>module</i> into the current class or
* module definition.
*/
static VALUE
mod_using(VALUE self, VALUE module)
{
rb_control_frame_t *prev_cfp = previous_frame(GET_EC());
if (prev_frame_func()) {
rb_raise(rb_eRuntimeError,
"Module#using is not permitted in methods");
}
if (prev_cfp && prev_cfp->self != self) {
rb_raise(rb_eRuntimeError, "Module#using is not called on self");
}
if (rb_block_given_p()) {
ignored_block(module, "Module#");
}
rb_using_module(rb_vm_cref_replace_with_duplicated_cref(), module);
return self;
}
static int
used_modules_i(VALUE _, VALUE mod, VALUE ary)
{
ID id_defined_at;
CONST_ID(id_defined_at, "__defined_at__");
while (FL_TEST(rb_class_of(mod), RMODULE_IS_REFINEMENT)) {
rb_ary_push(ary, rb_attr_get(rb_class_of(mod), id_defined_at));
mod = RCLASS_SUPER(mod);
}
return ST_CONTINUE;
}
/*
* call-seq:
* used_modules -> array
*
* Returns an array of all modules used in the current scope. The ordering
* of modules in the resulting array is not defined.
*
* module A
* refine Object do
* end
* end
*
* module B
* refine Object do
* end
* end
*
* using A
* using B
* p Module.used_modules
*
* <em>produces:</em>
*
* [B, A]
*/
static VALUE
rb_mod_s_used_modules(VALUE _)
{
const rb_cref_t *cref = rb_vm_cref();
VALUE ary = rb_ary_new();
while (cref) {
if (!NIL_P(CREF_REFINEMENTS(cref))) {
rb_hash_foreach(CREF_REFINEMENTS(cref), used_modules_i, ary);
}
cref = CREF_NEXT(cref);
}
return rb_funcall(ary, rb_intern("uniq"), 0);
}
/*!
* Calls \c #initialize method of \a obj with the given arguments.
*
* It also forwards the given block to \c #initialize if given.
*
* \param[in] obj the receiver object
* \param[in] argc the number of arguments
* \param[in] argv a pointer to the array of arguments
* \ingroup object
*/
void
rb_obj_call_init(VALUE obj, int argc, const VALUE *argv)
{
PASS_PASSED_BLOCK_HANDLER();
rb_funcallv_kw(obj, idInitialize, argc, argv, RB_NO_KEYWORDS);
}
void
rb_obj_call_init_kw(VALUE obj, int argc, const VALUE *argv, int kw_splat)
{
PASS_PASSED_BLOCK_HANDLER();
rb_funcallv_kw(obj, idInitialize, argc, argv, kw_splat);
}
/*!
* Extend the object with the module.
*
* Same as \c Module\#extend_object.
* \ingroup class
*/
void
rb_extend_object(VALUE obj, VALUE module)
{
rb_include_module(rb_singleton_class(obj), module);
}
/*
* call-seq:
* extend_object(obj) -> obj
*
* Extends the specified object by adding this module's constants and
* methods (which are added as singleton methods). This is the callback
* method used by Object#extend.
*
* module Picky
* def Picky.extend_object(o)
* if String === o
* puts "Can't add Picky to a String"
* else
* puts "Picky added to #{o.class}"
* super
* end
* end
* end
* (s = Array.new).extend Picky # Call Object.extend
* (s = "quick brown fox").extend Picky
*
* <em>produces:</em>
*
* Picky added to Array
* Can't add Picky to a String
*/
static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
rb_extend_object(obj, mod);
return obj;
}
/*
* call-seq:
* obj.extend(module, ...) -> obj
*
* Adds to _obj_ the instance methods from each module given as a
* parameter.
*
* module Mod
* def hello
* "Hello from Mod.\n"
* end
* end
*
* class Klass
* def hello
* "Hello from Klass.\n"
* end
* end
*
* k = Klass.new
* k.hello #=> "Hello from Klass.\n"
* k.extend(Mod) #=> #<Klass:0x401b3bc8>
* k.hello #=> "Hello from Mod.\n"
*/
static VALUE
rb_obj_extend(int argc, VALUE *argv, VALUE obj)
{
int i;
ID id_extend_object, id_extended;
CONST_ID(id_extend_object, "extend_object");
CONST_ID(id_extended, "extended");
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_extend_object, 1, obj);
rb_funcall(argv[argc], id_extended, 1, obj);
}
return obj;
}
/*
* call-seq:
* include(module, ...) -> self
*
* Invokes Module.append_features on each parameter in turn.
* Effectively adds the methods and constants in each module to the
* receiver.
*/
static VALUE
top_include(int argc, VALUE *argv, VALUE self)
{
rb_thread_t *th = GET_THREAD();
if (th->top_wrapper) {
rb_warning("main.include in the wrapped load is effective only in wrapper module");
return rb_mod_include(argc, argv, th->top_wrapper);
}
return rb_mod_include(argc, argv, rb_cObject);
}
/*
* call-seq:
* using(module) -> self
*
* Import class refinements from <i>module</i> into the scope where
* #using is called.
*/
static VALUE
top_using(VALUE self, VALUE module)
{
const rb_cref_t *cref = rb_vm_cref();
rb_control_frame_t *prev_cfp = previous_frame(GET_EC());
if (CREF_NEXT(cref) || (prev_cfp && rb_vm_frame_method_entry(prev_cfp))) {
rb_raise(rb_eRuntimeError, "main.using is permitted only at toplevel");
}
if (rb_block_given_p()) {
ignored_block(module, "main.");
}
rb_using_module(rb_vm_cref_replace_with_duplicated_cref(), module);
return self;
}
static const VALUE *
errinfo_place(const rb_execution_context_t *ec)
{
const rb_control_frame_t *cfp = ec->cfp;
const rb_control_frame_t *end_cfp = RUBY_VM_END_CONTROL_FRAME(ec);
while (RUBY_VM_VALID_CONTROL_FRAME_P(cfp, end_cfp)) {
if (VM_FRAME_RUBYFRAME_P(cfp)) {
if (cfp->iseq->body->type == ISEQ_TYPE_RESCUE) {
return &cfp->ep[VM_ENV_INDEX_LAST_LVAR];
}
else if (cfp->iseq->body->type == ISEQ_TYPE_ENSURE &&
!THROW_DATA_P(cfp->ep[VM_ENV_INDEX_LAST_LVAR]) &&
!FIXNUM_P(cfp->ep[VM_ENV_INDEX_LAST_LVAR])) {
return &cfp->ep[VM_ENV_INDEX_LAST_LVAR];
}
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
VALUE
rb_ec_get_errinfo(const rb_execution_context_t *ec)
{
const VALUE *ptr = errinfo_place(ec);
if (ptr) {
return *ptr;
}
else {
return ec->errinfo;
}
}
static VALUE
get_errinfo(void)
{
return get_ec_errinfo(GET_EC());
}
static VALUE
errinfo_getter(ID id, VALUE *_)
{
return get_errinfo();
}
/*! The current exception in the current thread.
*
* Same as \c $! in Ruby.
* \return the current exception or \c Qnil
* \ingroup exception
*/
VALUE
rb_errinfo(void)
{
return GET_EC()->errinfo;
}
/*! Sets the current exception (\c $!) to the given value
*
* \param[in] err an \c Exception object or \c Qnil.
* \exception TypeError if \a err is neither an exception nor \c nil.
* \note this function does not raise the exception.
* Use \c rb_raise() when you want to raise.
* \ingroup exception
*/
void
rb_set_errinfo(VALUE err)
{
if (!NIL_P(err) && !rb_obj_is_kind_of(err, rb_eException)) {
rb_raise(rb_eTypeError, "assigning non-exception to $!");
}
GET_EC()->errinfo = err;
}
static VALUE
errat_getter(ID id, VALUE *_)
{
VALUE err = get_errinfo();
if (!NIL_P(err)) {
return rb_get_backtrace(err);
}
else {
return Qnil;
}
}
static void
errat_setter(VALUE val, ID id, VALUE *var)
{
VALUE err = get_errinfo();
if (NIL_P(err)) {
rb_raise(rb_eArgError, "$! not set");
}
set_backtrace(err, val);
}
/*
* call-seq:
* __method__ -> symbol
*
* Returns the name at the definition of the current method as a
* Symbol.
* If called outside of a method, it returns <code>nil</code>.
*
*/
static VALUE
rb_f_method_name(VALUE _)
{
ID fname = prev_frame_func(); /* need *method* ID */
if (fname) {
return ID2SYM(fname);
}
else {
return Qnil;
}
}
/*
* call-seq:
* __callee__ -> symbol
*
* Returns the called name of the current method as a Symbol.
* If called outside of a method, it returns <code>nil</code>.
*
*/
static VALUE
rb_f_callee_name(VALUE _)
{
ID fname = prev_frame_callee(); /* need *callee* ID */
if (fname) {
return ID2SYM(fname);
}
else {
return Qnil;
}
}
/*
* call-seq:
* __dir__ -> string
*
* Returns the canonicalized absolute path of the directory of the file from
* which this method is called. It means symlinks in the path is resolved.
* If <code>__FILE__</code> is <code>nil</code>, it returns <code>nil</code>.
* The return value equals to <code>File.dirname(File.realpath(__FILE__))</code>.
*
*/
static VALUE
f_current_dirname(VALUE _)
{
VALUE base = rb_current_realfilepath();
if (NIL_P(base)) {
return Qnil;
}
base = rb_file_dirname(base);
return base;
}
/*
* call-seq:
* global_variables -> array
*
* Returns an array of the names of global variables. This includes
* special regexp global variables such as <tt>$~</tt> and <tt>$+</tt>,
* but does not include the numbered regexp global variables (<tt>$1</tt>,
* <tt>$2</tt>, etc.).
*
* global_variables.grep /std/ #=> [:$stdin, :$stdout, :$stderr]
*/
static VALUE
f_global_variables(VALUE _)
{
return rb_f_global_variables();
}
/*
* call-seq:
* trace_var(symbol, cmd ) -> nil
* trace_var(symbol) {|val| block } -> nil
*
* Controls tracing of assignments to global variables. The parameter
* +symbol+ identifies the variable (as either a string name or a
* symbol identifier). _cmd_ (which may be a string or a
* +Proc+ object) or block is executed whenever the variable
* is assigned. The block or +Proc+ object receives the
* variable's new value as a parameter. Also see
* Kernel::untrace_var.
*
* trace_var :$_, proc {|v| puts "$_ is now '#{v}'" }
* $_ = "hello"
* $_ = ' there'
*
* <em>produces:</em>
*
* $_ is now 'hello'
* $_ is now ' there'
*/
static VALUE
f_trace_var(int c, const VALUE *a, VALUE _)
{
return rb_f_trace_var(c, a);
}
/*
* call-seq:
* untrace_var(symbol [, cmd] ) -> array or nil
*
* Removes tracing for the specified command on the given global
* variable and returns +nil+. If no command is specified,
* removes all tracing for that variable and returns an array
* containing the commands actually removed.
*/
static VALUE
f_untrace_var(int c, const VALUE *a, VALUE _)
{
return rb_f_untrace_var(c, a);
}
void
Init_eval(void)
{
rb_define_virtual_variable("$@", errat_getter, errat_setter);
rb_define_virtual_variable("$!", errinfo_getter, 0);
rb_gvar_ractor_local("$@");
rb_gvar_ractor_local("$!");
rb_define_global_function("raise", f_raise, -1);
rb_define_global_function("fail", f_raise, -1);
rb_define_global_function("global_variables", f_global_variables, 0);
rb_define_global_function("__method__", rb_f_method_name, 0);
rb_define_global_function("__callee__", rb_f_callee_name, 0);
rb_define_global_function("__dir__", f_current_dirname, 0);
rb_define_method(rb_cModule, "include", rb_mod_include, -1);
rb_define_method(rb_cModule, "prepend", rb_mod_prepend, -1);
rb_define_private_method(rb_cModule, "append_features", rb_mod_append_features, 1);
rb_define_private_method(rb_cModule, "extend_object", rb_mod_extend_object, 1);
rb_define_private_method(rb_cModule, "prepend_features", rb_mod_prepend_features, 1);
rb_define_private_method(rb_cModule, "refine", rb_mod_refine, 1);
rb_define_private_method(rb_cModule, "using", mod_using, 1);
rb_define_singleton_method(rb_cModule, "used_modules",
rb_mod_s_used_modules, 0);
rb_undef_method(rb_cClass, "refine");
rb_undef_method(rb_cClass, "module_function");
Init_vm_eval();
Init_eval_method();
rb_define_singleton_method(rb_cModule, "nesting", rb_mod_nesting, 0);
rb_define_singleton_method(rb_cModule, "constants", rb_mod_s_constants, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"include", top_include, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"using", top_using, 1);
rb_define_method(rb_mKernel, "extend", rb_obj_extend, -1);
rb_define_global_function("trace_var", f_trace_var, -1);
rb_define_global_function("untrace_var", f_untrace_var, -1);
rb_vm_register_special_exception(ruby_error_reenter, rb_eFatal, "exception reentered");
rb_vm_register_special_exception(ruby_error_stackfatal, rb_eFatal, "machine stack overflow in critical region");
id_signo = rb_intern_const("signo");
id_status = rb_intern_const("status");
}