1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/math.c
akr c8aa30a958 * math.c (math_gamma): add error check.
(math_lgamma): ditto.


git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@15413 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2008-02-09 02:47:50 +00:00

625 lines
12 KiB
C

/**********************************************************************
math.c -
$Author$
created at: Tue Jan 25 14:12:56 JST 1994
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/ruby.h"
#include <math.h>
#include <errno.h>
VALUE rb_mMath;
#define Need_Float(x) (x) = rb_Float(x)
#define Need_Float2(x,y) do {\
Need_Float(x);\
Need_Float(y);\
} while (0)
static void
domain_check(double x, char *msg)
{
while(1) {
if (errno) {
rb_sys_fail(msg);
}
if (isnan(x)) {
#if defined(EDOM)
errno = EDOM;
#elif defined(ERANGE)
errno = ERANGE;
#endif
continue;
}
break;
}
}
/*
* call-seq:
* Math.atan2(y, x) => float
*
* Computes the arc tangent given <i>y</i> and <i>x</i>. Returns
* -PI..PI.
*
*/
static VALUE
math_atan2(VALUE obj, VALUE y, VALUE x)
{
Need_Float2(y, x);
return DOUBLE2NUM(atan2(RFLOAT_VALUE(y), RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.cos(x) => float
*
* Computes the cosine of <i>x</i> (expressed in radians). Returns
* -1..1.
*/
static VALUE
math_cos(VALUE obj, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(cos(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.sin(x) => float
*
* Computes the sine of <i>x</i> (expressed in radians). Returns
* -1..1.
*/
static VALUE
math_sin(VALUE obj, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(sin(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.tan(x) => float
*
* Returns the tangent of <i>x</i> (expressed in radians).
*/
static VALUE
math_tan(VALUE obj, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(tan(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.acos(x) => float
*
* Computes the arc cosine of <i>x</i>. Returns 0..PI.
*/
static VALUE
math_acos(VALUE obj, VALUE x)
{
double d;
Need_Float(x);
errno = 0;
d = acos(RFLOAT_VALUE(x));
domain_check(d, "acos");
return DOUBLE2NUM(d);
}
/*
* call-seq:
* Math.asin(x) => float
*
* Computes the arc sine of <i>x</i>. Returns -{PI/2} .. {PI/2}.
*/
static VALUE
math_asin(VALUE obj, VALUE x)
{
double d;
Need_Float(x);
errno = 0;
d = asin(RFLOAT_VALUE(x));
domain_check(d, "asin");
return DOUBLE2NUM(d);
}
/*
* call-seq:
* Math.atan(x) => float
*
* Computes the arc tangent of <i>x</i>. Returns -{PI/2} .. {PI/2}.
*/
static VALUE
math_atan(VALUE obj, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(atan(RFLOAT_VALUE(x)));
}
#ifndef HAVE_COSH
double
cosh(double x)
{
return (exp(x) + exp(-x)) / 2;
}
#endif
/*
* call-seq:
* Math.cosh(x) => float
*
* Computes the hyperbolic cosine of <i>x</i> (expressed in radians).
*/
static VALUE
math_cosh(VALUE obj, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(cosh(RFLOAT_VALUE(x)));
}
#ifndef HAVE_SINH
double
sinh(double x)
{
return (exp(x) - exp(-x)) / 2;
}
#endif
/*
* call-seq:
* Math.sinh(x) => float
*
* Computes the hyperbolic sine of <i>x</i> (expressed in
* radians).
*/
static VALUE
math_sinh(VALUE obj, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(sinh(RFLOAT_VALUE(x)));
}
#ifndef HAVE_TANH
double
tanh(double x)
{
return sinh(x) / cosh(x);
}
#endif
/*
* call-seq:
* Math.tanh() => float
*
* Computes the hyperbolic tangent of <i>x</i> (expressed in
* radians).
*/
static VALUE
math_tanh(VALUE obj, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(tanh(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.acosh(x) => float
*
* Computes the inverse hyperbolic cosine of <i>x</i>.
*/
static VALUE
math_acosh(VALUE obj, VALUE x)
{
double d;
Need_Float(x);
errno = 0;
d = acosh(RFLOAT_VALUE(x));
domain_check(d, "acosh");
return DOUBLE2NUM(d);
}
/*
* call-seq:
* Math.asinh(x) => float
*
* Computes the inverse hyperbolic sine of <i>x</i>.
*/
static VALUE
math_asinh(VALUE obj, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(asinh(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.atanh(x) => float
*
* Computes the inverse hyperbolic tangent of <i>x</i>.
*/
static VALUE
math_atanh(VALUE obj, VALUE x)
{
double d;
Need_Float(x);
errno = 0;
d = atanh(RFLOAT_VALUE(x));
domain_check(d, "atanh");
return DOUBLE2NUM(d);
}
/*
* call-seq:
* Math.exp(x) => float
*
* Returns e**x.
*/
static VALUE
math_exp(VALUE obj, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(exp(RFLOAT_VALUE(x)));
}
#if defined __CYGWIN__
# include <cygwin/version.h>
# if CYGWIN_VERSION_DLL_MAJOR < 1005
# define nan(x) nan()
# endif
# define log(x) ((x) < 0.0 ? nan("") : log(x))
# define log10(x) ((x) < 0.0 ? nan("") : log10(x))
#endif
/*
* call-seq:
* Math.log(numeric) => float
* Math.log(num,base) => float
*
* Returns the natural logarithm of <i>numeric</i>.
* If additional second argument is given, it will be the base
* of logarithm.
*/
static VALUE
math_log(int argc, VALUE *argv)
{
VALUE x, base;
double d;
rb_scan_args(argc, argv, "11", &x, &base);
Need_Float(x);
errno = 0;
d = log(RFLOAT_VALUE(x));
if (!NIL_P(base)) {
Need_Float(base);
d /= log(RFLOAT_VALUE(base));
}
domain_check(d, "log");
return DOUBLE2NUM(d);
}
#ifndef log2
#ifndef HAVE_LOG2
double
log2(double x)
{
return log10(x)/log10(2.0);
}
#else
extern double log2(double);
#endif
#endif
/*
* call-seq:
* Math.log2(numeric) => float
*
* Returns the base 2 logarithm of <i>numeric</i>.
*/
static VALUE
math_log2(VALUE obj, VALUE x)
{
double d;
Need_Float(x);
errno = 0;
d = log2(RFLOAT_VALUE(x));
if (errno) {
rb_sys_fail("log2");
}
return DOUBLE2NUM(d);
}
/*
* call-seq:
* Math.log10(numeric) => float
*
* Returns the base 10 logarithm of <i>numeric</i>.
*/
static VALUE
math_log10(VALUE obj, VALUE x)
{
double d;
Need_Float(x);
errno = 0;
d = log10(RFLOAT_VALUE(x));
domain_check(d, "log10");
return DOUBLE2NUM(d);
}
/*
* call-seq:
* Math.sqrt(numeric) => float
*
* Returns the non-negative square root of <i>numeric</i>.
*/
static VALUE
math_sqrt(VALUE obj, VALUE x)
{
double d;
Need_Float(x);
errno = 0;
d = sqrt(RFLOAT_VALUE(x));
domain_check(d, "sqrt");
return DOUBLE2NUM(d);
}
/*
* call-seq:
* Math.frexp(numeric) => [ fraction, exponent ]
*
* Returns a two-element array containing the normalized fraction (a
* <code>Float</code>) and exponent (a <code>Fixnum</code>) of
* <i>numeric</i>.
*
* fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
* fraction * 2**exponent #=> 1234.0
*/
static VALUE
math_frexp(VALUE obj, VALUE x)
{
double d;
int exp;
Need_Float(x);
d = frexp(RFLOAT_VALUE(x), &exp);
return rb_assoc_new(DOUBLE2NUM(d), INT2NUM(exp));
}
/*
* call-seq:
* Math.ldexp(flt, int) -> float
*
* Returns the value of <i>flt</i>*(2**<i>int</i>).
*
* fraction, exponent = Math.frexp(1234)
* Math.ldexp(fraction, exponent) #=> 1234.0
*/
static VALUE
math_ldexp(VALUE obj, VALUE x, VALUE n)
{
Need_Float(x);
return DOUBLE2NUM(ldexp(RFLOAT_VALUE(x), NUM2INT(n)));
}
/*
* call-seq:
* Math.hypot(x, y) => float
*
* Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle
* with sides <i>x</i> and <i>y</i>.
*
* Math.hypot(3, 4) #=> 5.0
*/
static VALUE
math_hypot(VALUE obj, VALUE x, VALUE y)
{
Need_Float2(x, y);
return DOUBLE2NUM(hypot(RFLOAT_VALUE(x), RFLOAT_VALUE(y)));
}
/*
* call-seq:
* Math.erf(x) => float
*
* Calculates the error function of x.
*/
static VALUE
math_erf(VALUE obj, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(erf(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.erfc(x) => float
*
* Calculates the complementary error function of x.
*/
static VALUE
math_erfc(VALUE obj, VALUE x)
{
Need_Float(x);
return DOUBLE2NUM(erfc(RFLOAT_VALUE(x)));
}
/*
* call-seq:
* Math.gamma(x) => float
*
* Calculates the gamma function of x.
*
* Note that gamma(n) is same as fact(n-1) for integer n >= 0.
* However gamma(n) returns float and possibly has error in calculation.
*
* def fact(n) (1..n).inject(1) {|r,i| r*i } end
* 0.upto(25) {|i| p [i, Math.gamma(i+1), fact(i)] }
* =>
* [0, 1.0, 1]
* [1, 1.0, 1]
* [2, 2.0, 2]
* [3, 6.0, 6]
* [4, 24.0, 24]
* [5, 120.0, 120]
* [6, 720.0, 720]
* [7, 5040.0, 5040]
* [8, 40320.0, 40320]
* [9, 362880.0, 362880]
* [10, 3628800.0, 3628800]
* [11, 39916800.0, 39916800]
* [12, 479001599.999999, 479001600]
* [13, 6227020800.00001, 6227020800]
* [14, 87178291199.9998, 87178291200]
* [15, 1307674368000.0, 1307674368000]
* [16, 20922789888000.0, 20922789888000]
* [17, 3.55687428096001e+14, 355687428096000]
* [18, 6.40237370572799e+15, 6402373705728000]
* [19, 1.21645100408832e+17, 121645100408832000]
* [20, 2.43290200817664e+18, 2432902008176640000]
* [21, 5.10909421717094e+19, 51090942171709440000]
* [22, 1.12400072777761e+21, 1124000727777607680000]
* [23, 2.58520167388851e+22, 25852016738884976640000]
* [24, 6.20448401733239e+23, 620448401733239439360000]
* [25, 1.5511210043331e+25, 15511210043330985984000000]
*
*/
static VALUE
math_gamma(VALUE obj, VALUE x)
{
double d;
Need_Float(x);
errno = 0;
d = tgamma(RFLOAT_VALUE(x));
domain_check(d, "gamma");
return DOUBLE2NUM(d);
}
/*
* call-seq:
* Math.lgamma(x) => [float, -1 or 1]
*
* Calculates the logarithmic gamma of x and
* the sign of gamma of x.
*
* Math.lgamma(x) is same as
* [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
* but avoid overflow by Math.gamma(x) for large x.
*/
static VALUE
math_lgamma(VALUE obj, VALUE x)
{
double d;
int sign;
VALUE v;
Need_Float(x);
errno = 0;
d = lgamma_r(RFLOAT_VALUE(x), &sign);
domain_check(d, "lgamma");
v = DOUBLE2NUM(d);
return rb_assoc_new(v, INT2FIX(sign));
}
/*
* The <code>Math</code> module contains module functions for basic
* trigonometric and transcendental functions. See class
* <code>Float</code> for a list of constants that
* define Ruby's floating point accuracy.
*/
void
Init_Math(void)
{
rb_mMath = rb_define_module("Math");
#ifdef M_PI
rb_define_const(rb_mMath, "PI", DOUBLE2NUM(M_PI));
#else
rb_define_const(rb_mMath, "PI", DOUBLE2NUM(atan(1.0)*4.0));
#endif
#ifdef M_E
rb_define_const(rb_mMath, "E", DOUBLE2NUM(M_E));
#else
rb_define_const(rb_mMath, "E", DOUBLE2NUM(exp(1.0)));
#endif
rb_define_module_function(rb_mMath, "atan2", math_atan2, 2);
rb_define_module_function(rb_mMath, "cos", math_cos, 1);
rb_define_module_function(rb_mMath, "sin", math_sin, 1);
rb_define_module_function(rb_mMath, "tan", math_tan, 1);
rb_define_module_function(rb_mMath, "acos", math_acos, 1);
rb_define_module_function(rb_mMath, "asin", math_asin, 1);
rb_define_module_function(rb_mMath, "atan", math_atan, 1);
rb_define_module_function(rb_mMath, "cosh", math_cosh, 1);
rb_define_module_function(rb_mMath, "sinh", math_sinh, 1);
rb_define_module_function(rb_mMath, "tanh", math_tanh, 1);
rb_define_module_function(rb_mMath, "acosh", math_acosh, 1);
rb_define_module_function(rb_mMath, "asinh", math_asinh, 1);
rb_define_module_function(rb_mMath, "atanh", math_atanh, 1);
rb_define_module_function(rb_mMath, "exp", math_exp, 1);
rb_define_module_function(rb_mMath, "log", math_log, -1);
rb_define_module_function(rb_mMath, "log2", math_log2, 1);
rb_define_module_function(rb_mMath, "log10", math_log10, 1);
rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1);
rb_define_module_function(rb_mMath, "frexp", math_frexp, 1);
rb_define_module_function(rb_mMath, "ldexp", math_ldexp, 2);
rb_define_module_function(rb_mMath, "hypot", math_hypot, 2);
rb_define_module_function(rb_mMath, "erf", math_erf, 1);
rb_define_module_function(rb_mMath, "erfc", math_erfc, 1);
rb_define_module_function(rb_mMath, "gamma", math_gamma, 1);
rb_define_module_function(rb_mMath, "lgamma", math_lgamma, 1);
}