mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 6cdef2dc7e
			
		
	
	
		6cdef2dc7e
		
	
	
	
	
		
			
			string. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@14912 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			1403 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
			
		
		
	
	
			1403 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
| #!/usr/local/bin/ruby
 | |
| #--
 | |
| #   matrix.rb - 
 | |
| #   	$Release Version: 1.0$
 | |
| #   	$Revision: 1.13 $
 | |
| #       Original Version from Smalltalk-80 version
 | |
| #          on July 23, 1985 at 8:37:17 am
 | |
| #       by Keiju ISHITSUKA
 | |
| #++
 | |
| #
 | |
| # = matrix.rb
 | |
| #
 | |
| # An implementation of Matrix and Vector classes.
 | |
| #
 | |
| # Author:: Keiju ISHITSUKA
 | |
| # Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly)) 
 | |
| #
 | |
| # See classes Matrix and Vector for documentation. 
 | |
| #
 | |
| 
 | |
| 
 | |
| require "e2mmap.rb"
 | |
| 
 | |
| module ExceptionForMatrix # :nodoc:
 | |
|   extend Exception2MessageMapper
 | |
|   def_e2message(TypeError, "wrong argument type %s (expected %s)")
 | |
|   def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)")
 | |
|   
 | |
|   def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch")
 | |
|   def_exception("ErrNotRegular", "Not Regular Matrix")
 | |
|   def_exception("ErrOperationNotDefined", "This operation(%s) can\\'t defined")
 | |
| end
 | |
| 
 | |
| #
 | |
| # The +Matrix+ class represents a mathematical matrix, and provides methods for creating
 | |
| # special-case matrices (zero, identity, diagonal, singular, vector), operating on them
 | |
| # arithmetically and algebraically, and determining their mathematical properties (trace, rank,
 | |
| # inverse, determinant).
 | |
| #
 | |
| # Note that although matrices should theoretically be rectangular, this is not
 | |
| # enforced by the class.
 | |
| #
 | |
| # Also note that the determinant of integer matrices may be incorrectly calculated unless you
 | |
| # also <tt>require 'mathn'</tt>.  This may be fixed in the future.
 | |
| #
 | |
| # == Method Catalogue
 | |
| #
 | |
| # To create a matrix:
 | |
| # * <tt> Matrix[*rows]                  </tt>
 | |
| # * <tt> Matrix.[](*rows)               </tt>
 | |
| # * <tt> Matrix.rows(rows, copy = true) </tt>
 | |
| # * <tt> Matrix.columns(columns)        </tt>
 | |
| # * <tt> Matrix.diagonal(*values)       </tt>
 | |
| # * <tt> Matrix.scalar(n, value)        </tt>
 | |
| # * <tt> Matrix.scalar(n, value)        </tt>
 | |
| # * <tt> Matrix.identity(n)             </tt>
 | |
| # * <tt> Matrix.unit(n)                 </tt>
 | |
| # * <tt> Matrix.I(n)                    </tt>
 | |
| # * <tt> Matrix.zero(n)                 </tt>
 | |
| # * <tt> Matrix.row_vector(row)         </tt>
 | |
| # * <tt> Matrix.column_vector(column)   </tt>
 | |
| #
 | |
| # To access Matrix elements/columns/rows/submatrices/properties: 
 | |
| # * <tt>  [](i, j)                      </tt>
 | |
| # * <tt> #row_size                      </tt>
 | |
| # * <tt> #column_size                   </tt>
 | |
| # * <tt> #row(i)                        </tt>
 | |
| # * <tt> #column(j)                     </tt>
 | |
| # * <tt> #collect                       </tt>
 | |
| # * <tt> #map                           </tt>
 | |
| # * <tt> #minor(*param)                 </tt>
 | |
| #
 | |
| # Properties of a matrix:
 | |
| # * <tt> #regular?                      </tt>
 | |
| # * <tt> #singular?                     </tt>
 | |
| # * <tt> #square?                       </tt>
 | |
| #
 | |
| # Matrix arithmetic:
 | |
| # * <tt>  *(m)                          </tt>
 | |
| # * <tt>  +(m)                          </tt>
 | |
| # * <tt>  -(m)                          </tt>
 | |
| # * <tt> #/(m)                          </tt>
 | |
| # * <tt> #inverse                       </tt>
 | |
| # * <tt> #inv                           </tt>
 | |
| # * <tt>  **                            </tt>
 | |
| #
 | |
| # Matrix functions:
 | |
| # * <tt> #determinant                   </tt>
 | |
| # * <tt> #det                           </tt>
 | |
| # * <tt> #rank                          </tt>
 | |
| # * <tt> #trace                         </tt>
 | |
| # * <tt> #tr                            </tt>
 | |
| # * <tt> #transpose                     </tt>
 | |
| # * <tt> #t                             </tt>
 | |
| #
 | |
| # Conversion to other data types:
 | |
| # * <tt> #coerce(other)                 </tt>
 | |
| # * <tt> #row_vectors                   </tt>
 | |
| # * <tt> #column_vectors                </tt>
 | |
| # * <tt> #to_a                          </tt>
 | |
| #
 | |
| # String representations:
 | |
| # * <tt> #to_s                          </tt>
 | |
| # * <tt> #inspect                       </tt>
 | |
| #
 | |
| class Matrix
 | |
|   @RCS_ID='-$Id: matrix.rb,v 1.13 2001/12/09 14:22:23 keiju Exp keiju $-'
 | |
|   
 | |
| #  extend Exception2MessageMapper
 | |
|   include ExceptionForMatrix
 | |
|   
 | |
|   # instance creations
 | |
|   private_class_method :new
 | |
|   
 | |
|   #
 | |
|   # Creates a matrix where each argument is a row.
 | |
|   #   Matrix[ [25, 93], [-1, 66] ]
 | |
|   #      =>  25 93
 | |
|   #          -1 66
 | |
|   #
 | |
|   def Matrix.[](*rows)
 | |
|     new(:init_rows, rows, false)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Creates a matrix where +rows+ is an array of arrays, each of which is a row
 | |
|   # to the matrix.  If the optional argument +copy+ is false, use the given
 | |
|   # arrays as the internal structure of the matrix without copying.
 | |
|   #   Matrix.rows([[25, 93], [-1, 66]])
 | |
|   #      =>  25 93
 | |
|   #          -1 66
 | |
|   def Matrix.rows(rows, copy = true)
 | |
|     new(:init_rows, rows, copy)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Creates a matrix using +columns+ as an array of column vectors.
 | |
|   #   Matrix.columns([[25, 93], [-1, 66]])
 | |
|   #      =>  25 -1
 | |
|   #          93 66
 | |
|   #
 | |
|   #
 | |
|   def Matrix.columns(columns)
 | |
|     rows = (0 .. columns[0].size - 1).collect {
 | |
|       |i|
 | |
|       (0 .. columns.size - 1).collect {
 | |
|         |j|
 | |
|         columns[j][i]
 | |
|       }
 | |
|     }
 | |
|     Matrix.rows(rows, false)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Creates a matrix where the diagonal elements are composed of +values+.
 | |
|   #   Matrix.diagonal(9, 5, -3)
 | |
|   #     =>  9  0  0
 | |
|   #         0  5  0
 | |
|   #         0  0 -3
 | |
|   #
 | |
|   def Matrix.diagonal(*values)
 | |
|     size = values.size
 | |
|     rows = (0 .. size  - 1).collect {
 | |
|       |j|
 | |
|       row = Array.new(size).fill(0, 0, size)
 | |
|       row[j] = values[j]
 | |
|       row
 | |
|     }
 | |
|     rows(rows, false)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Creates an +n+ by +n+ diagonal matrix where each diagonal element is
 | |
|   # +value+.
 | |
|   #   Matrix.scalar(2, 5)
 | |
|   #     => 5 0
 | |
|   #        0 5
 | |
|   #
 | |
|   def Matrix.scalar(n, value)
 | |
|     Matrix.diagonal(*Array.new(n).fill(value, 0, n))
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Creates an +n+ by +n+ identity matrix.
 | |
|   #   Matrix.identity(2)
 | |
|   #     => 1 0
 | |
|   #        0 1
 | |
|   #
 | |
|   def Matrix.identity(n)
 | |
|     Matrix.scalar(n, 1)
 | |
|   end
 | |
|   class << Matrix 
 | |
|     alias unit identity
 | |
|     alias I identity
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Creates an +n+ by +n+ zero matrix.
 | |
|   #   Matrix.zero(2)
 | |
|   #     => 0 0
 | |
|   #        0 0
 | |
|   #
 | |
|   def Matrix.zero(n)
 | |
|     Matrix.scalar(n, 0)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Creates a single-row matrix where the values of that row are as given in
 | |
|   # +row+.
 | |
|   #   Matrix.row_vector([4,5,6])
 | |
|   #     => 4 5 6
 | |
|   #
 | |
|   def Matrix.row_vector(row)
 | |
|     case row
 | |
|     when Vector
 | |
|       Matrix.rows([row.to_a], false)
 | |
|     when Array
 | |
|       Matrix.rows([row.dup], false)
 | |
|     else
 | |
|       Matrix.rows([[row]], false)
 | |
|     end
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Creates a single-column matrix where the values of that column are as given
 | |
|   # in +column+.
 | |
|   #   Matrix.column_vector([4,5,6])
 | |
|   #     => 4
 | |
|   #        5
 | |
|   #        6
 | |
|   #
 | |
|   def Matrix.column_vector(column)
 | |
|     case column
 | |
|     when Vector
 | |
|       Matrix.columns([column.to_a])
 | |
|     when Array
 | |
|       Matrix.columns([column])
 | |
|     else
 | |
|       Matrix.columns([[column]])
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # This method is used by the other methods that create matrices, and is of no
 | |
|   # use to general users.
 | |
|   #
 | |
|   def initialize(init_method, *argv)
 | |
|     self.send(init_method, *argv)
 | |
|   end
 | |
|   
 | |
|   def init_rows(rows, copy)
 | |
|     if copy
 | |
|       @rows = rows.collect{|row| row.dup}
 | |
|     else
 | |
|       @rows = rows
 | |
|     end
 | |
|     self
 | |
|   end
 | |
|   private :init_rows
 | |
|   
 | |
|   #
 | |
|   # Returns element (+i+,+j+) of the matrix.  That is: row +i+, column +j+.
 | |
|   #
 | |
|   def [](i, j)
 | |
|     @rows[i][j]
 | |
|   end
 | |
|   alias element []
 | |
|   alias component []
 | |
| 
 | |
|   def []=(i, j, v)
 | |
|     @rows[i][j] = v
 | |
|   end
 | |
|   alias set_element []=
 | |
|   alias set_component []=
 | |
|   private :[]=, :set_element, :set_component
 | |
| 
 | |
|   #
 | |
|   # Returns the number of rows.
 | |
|   #
 | |
|   def row_size
 | |
|     @rows.size
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Returns the number of columns.  Note that it is possible to construct a
 | |
|   # matrix with uneven columns (e.g. Matrix[ [1,2,3], [4,5] ]), but this is
 | |
|   # mathematically unsound.  This method uses the first row to determine the
 | |
|   # result.
 | |
|   #
 | |
|   def column_size
 | |
|     @rows[0].size
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
 | |
|   # an array).  When a block is given, the elements of that vector are iterated.
 | |
|   #
 | |
|   def row(i) # :yield: e
 | |
|     if block_given?
 | |
|       for e in @rows[i]
 | |
|         yield e
 | |
|       end
 | |
|     else
 | |
|       Vector.elements(@rows[i])
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns column vector number +j+ of the matrix as a Vector (starting at 0
 | |
|   # like an array).  When a block is given, the elements of that vector are
 | |
|   # iterated.
 | |
|   #
 | |
|   def column(j) # :yield: e
 | |
|     if block_given?
 | |
|       0.upto(row_size - 1) do
 | |
|         |i|
 | |
|         yield @rows[i][j]
 | |
|       end
 | |
|     else
 | |
|       col = (0 .. row_size - 1).collect {
 | |
|         |i|
 | |
|         @rows[i][j]
 | |
|       }
 | |
|       Vector.elements(col, false)
 | |
|     end
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Returns a matrix that is the result of iteration of the given block over all
 | |
|   # elements of the matrix.
 | |
|   #   Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
 | |
|   #     => 1  4
 | |
|   #        9 16
 | |
|   #
 | |
|   def collect # :yield: e
 | |
|     rows = @rows.collect{|row| row.collect{|e| yield e}}
 | |
|     Matrix.rows(rows, false)
 | |
|   end
 | |
|   alias map collect
 | |
|   
 | |
|   #
 | |
|   # Returns a section of the matrix.  The parameters are either:
 | |
|   # *  start_row, nrows, start_col, ncols; OR
 | |
|   # *  col_range, row_range
 | |
|   #
 | |
|   #   Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
 | |
|   #     => 9 0 0
 | |
|   #        0 5 0
 | |
|   #
 | |
|   def minor(*param)
 | |
|     case param.size
 | |
|     when 2
 | |
|       from_row = param[0].first
 | |
|       size_row = param[0].end - from_row
 | |
|       size_row += 1 unless param[0].exclude_end?
 | |
|       from_col = param[1].first
 | |
|       size_col = param[1].end - from_col
 | |
|       size_col += 1 unless param[1].exclude_end?
 | |
|     when 4
 | |
|       from_row = param[0]
 | |
|       size_row = param[1]
 | |
|       from_col = param[2]
 | |
|       size_col = param[3]
 | |
|     else
 | |
|       Matrix.Raise ArgumentError, param.inspect
 | |
|     end
 | |
|     
 | |
|     rows = @rows[from_row, size_row].collect{
 | |
|       |row|
 | |
|       row[from_col, size_col]
 | |
|     }
 | |
|     Matrix.rows(rows, false)
 | |
|   end
 | |
|  
 | |
|   #--
 | |
|   # TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if this is a regular matrix.
 | |
|   #
 | |
|   def regular?
 | |
|     square? and rank == column_size
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Returns +true+ is this is a singular (i.e. non-regular) matrix.
 | |
|   #
 | |
|   def singular?
 | |
|     not regular?
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ is this is a square matrix.  See note in column_size about this
 | |
|   # being unreliable, though.
 | |
|   #
 | |
|   def square?
 | |
|     column_size == row_size
 | |
|   end
 | |
|   
 | |
|   #--
 | |
|   # OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ if and only if the two matrices contain equal elements.
 | |
|   #
 | |
|   def ==(other)
 | |
|     return false unless Matrix === other
 | |
|     
 | |
|     other.compare_by_row_vectors(@rows)
 | |
|   end
 | |
|   alias eql? ==
 | |
|   
 | |
|   #
 | |
|   # Not really intended for general consumption.
 | |
|   #
 | |
|   def compare_by_row_vectors(rows)
 | |
|     return false unless @rows.size == rows.size
 | |
|     
 | |
|     0.upto(@rows.size - 1) do
 | |
|       |i|
 | |
|       return false unless @rows[i] == rows[i]
 | |
|     end
 | |
|     true
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Returns a clone of the matrix, so that the contents of each do not reference
 | |
|   # identical objects.
 | |
|   #
 | |
|   def clone
 | |
|     Matrix.rows(@rows)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Returns a hash-code for the matrix.
 | |
|   #
 | |
|   def hash
 | |
|     value = 0
 | |
|     for row in @rows
 | |
|       for e in row
 | |
|         value ^= e.hash
 | |
|       end
 | |
|     end
 | |
|     return value
 | |
|   end
 | |
|   
 | |
|   #--
 | |
|   # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
|   
 | |
|   #
 | |
|   # Matrix multiplication.
 | |
|   #   Matrix[[2,4], [6,8]] * Matrix.identity(2)
 | |
|   #     => 2 4
 | |
|   #        6 8
 | |
|   #
 | |
|   def *(m) # m is matrix or vector or number
 | |
|     case(m)
 | |
|     when Numeric
 | |
|       rows = @rows.collect {
 | |
|         |row|
 | |
|         row.collect {
 | |
|           |e|
 | |
|           e * m
 | |
|         }
 | |
|       }
 | |
|       return Matrix.rows(rows, false)
 | |
|     when Vector
 | |
|       m = Matrix.column_vector(m)
 | |
|       r = self * m
 | |
|       return r.column(0)
 | |
|     when Matrix
 | |
|       Matrix.Raise ErrDimensionMismatch if column_size != m.row_size
 | |
|     
 | |
|       rows = (0 .. row_size - 1).collect {
 | |
|         |i|
 | |
|         (0 .. m.column_size - 1).collect {
 | |
|           |j|
 | |
|           vij = 0
 | |
|           0.upto(column_size - 1) do
 | |
|             |k|
 | |
|             vij += self[i, k] * m[k, j]
 | |
|           end
 | |
|           vij
 | |
|         }
 | |
|       }
 | |
|       return Matrix.rows(rows, false)
 | |
|     else
 | |
|       x, y = m.coerce(self)
 | |
|       return x * y
 | |
|     end
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Matrix addition.
 | |
|   #   Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
 | |
|   #     =>  6  0
 | |
|   #        -4 12
 | |
|   #
 | |
|   def +(m)
 | |
|     case m
 | |
|     when Numeric
 | |
|       Matrix.Raise ErrOperationNotDefined, "+"
 | |
|     when Vector
 | |
|       m = Matrix.column_vector(m)
 | |
|     when Matrix
 | |
|     else
 | |
|       x, y = m.coerce(self)
 | |
|       return x + y
 | |
|     end
 | |
|     
 | |
|     Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
 | |
|     
 | |
|     rows = (0 .. row_size - 1).collect {
 | |
|       |i|
 | |
|       (0 .. column_size - 1).collect {
 | |
|         |j|
 | |
|         self[i, j] + m[i, j]
 | |
|       }
 | |
|     }
 | |
|     Matrix.rows(rows, false)
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Matrix subtraction.
 | |
|   #   Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
 | |
|   #     => -8  2
 | |
|   #         8  1
 | |
|   #
 | |
|   def -(m)
 | |
|     case m
 | |
|     when Numeric
 | |
|       Matrix.Raise ErrOperationNotDefined, "-"
 | |
|     when Vector
 | |
|       m = Matrix.column_vector(m)
 | |
|     when Matrix
 | |
|     else
 | |
|       x, y = m.coerce(self)
 | |
|       return x - y
 | |
|     end
 | |
|     
 | |
|     Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
 | |
|     
 | |
|     rows = (0 .. row_size - 1).collect {
 | |
|       |i|
 | |
|       (0 .. column_size - 1).collect {
 | |
|         |j|
 | |
|         self[i, j] - m[i, j]
 | |
|       }
 | |
|     }
 | |
|     Matrix.rows(rows, false)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Matrix division (multiplication by the inverse).
 | |
|   #   Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
 | |
|   #     => -7  1
 | |
|   #        -3 -6
 | |
|   #
 | |
|   def /(other)
 | |
|     case other
 | |
|     when Numeric
 | |
|       rows = @rows.collect {
 | |
|         |row|
 | |
|         row.collect {
 | |
|           |e|
 | |
|           e / other
 | |
|         }
 | |
|       }
 | |
|       return Matrix.rows(rows, false)
 | |
|     when Matrix
 | |
|       return self * other.inverse
 | |
|     else
 | |
|       x, y = other.coerce(self)
 | |
|       rerurn x / y
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns the inverse of the matrix.
 | |
|   #   Matrix[[1, 2], [2, 1]].inverse
 | |
|   #     => -1  1
 | |
|   #         0 -1
 | |
|   #
 | |
|   def inverse
 | |
|     Matrix.Raise ErrDimensionMismatch unless square?
 | |
|     Matrix.I(row_size).inverse_from(self)
 | |
|   end
 | |
|   alias inv inverse
 | |
| 
 | |
|   #
 | |
|   # Not for public consumption?
 | |
|   #
 | |
|   def inverse_from(src)
 | |
|     size = row_size - 1
 | |
|     a = src.to_a
 | |
|     
 | |
|     for k in 0..size
 | |
|       i = k
 | |
|       akk = a[k][k].abs
 | |
|       for j in (k+1)..size
 | |
|         v = a[j][k].abs
 | |
|         if v > akk
 | |
|           i = j
 | |
|           akk = v
 | |
|         end
 | |
|       end
 | |
|       Matrix.Raise ErrNotRegular if akk == 0
 | |
|       if i != k
 | |
|         a[i], a[k] = a[k], a[i]
 | |
|         @rows[i], @rows[k] = @rows[k], @rows[i]
 | |
|       end
 | |
|       akk = a[k][k]
 | |
|       
 | |
|       for i in 0 .. size
 | |
|         next if i == k
 | |
|         q = a[i][k].quo(akk)
 | |
|         a[i][k] = 0
 | |
|         
 | |
|         (k + 1).upto(size) do   
 | |
|           |j|
 | |
|           a[i][j] -= a[k][j] * q
 | |
|         end
 | |
|         0.upto(size) do
 | |
|           |j|
 | |
|           @rows[i][j] -= @rows[k][j] * q
 | |
|         end
 | |
|       end
 | |
|       
 | |
|       (k + 1).upto(size) do
 | |
|         |j|
 | |
|         a[k][j] = a[k][j].quo(akk)
 | |
|       end
 | |
|       0.upto(size) do
 | |
|         |j|
 | |
|         @rows[k][j] = @rows[k][j].quo(akk)
 | |
|       end
 | |
|     end
 | |
|     self
 | |
|   end
 | |
|   #alias reciprocal inverse
 | |
|   
 | |
|   #
 | |
|   # Matrix exponentiation.  Defined for integer powers only.  Equivalent to
 | |
|   # multiplying the matrix by itself N times.
 | |
|   #   Matrix[[7,6], [3,9]] ** 2
 | |
|   #     => 67 96
 | |
|   #        48 99
 | |
|   #
 | |
|   def ** (other)
 | |
|     if other.kind_of?(Integer)
 | |
|       x = self
 | |
|       if other <= 0
 | |
|         x = self.inverse
 | |
|         return Matrix.identity(self.column_size) if other == 0
 | |
|         other = -other
 | |
|       end
 | |
|       z = x
 | |
|       n = other  - 1
 | |
|       while n != 0
 | |
|         while (div, mod = n.divmod(2)
 | |
|                mod == 0)
 | |
|           x = x * x
 | |
|           n = div
 | |
|         end
 | |
|         z *= x
 | |
|         n -= 1
 | |
|       end
 | |
|       z
 | |
|     elsif other.kind_of?(Float) || defined?(Rational) && other.kind_of?(Rational)
 | |
|       Matrix.Raise ErrOperationNotDefined, "**"
 | |
|     else
 | |
|       Matrix.Raise ErrOperationNotDefined, "**"
 | |
|     end
 | |
|   end
 | |
|   
 | |
|   #--
 | |
|   # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
|   
 | |
|   #
 | |
|   # Returns the determinant of the matrix.  If the matrix is not square, the
 | |
|   # result is 0. This method's algorism is Gaussian elimination method
 | |
|   # and using Numeric#quo(). Beware that using Float values, with their
 | |
|   # usual lack of precision, can affect the value returned by this method.  Use
 | |
|   # Rational values or Matrix#det_e instead if this is important to you.
 | |
|   #
 | |
|   #   Matrix[[7,6], [3,9]].determinant
 | |
|   #     => 63.0
 | |
|   #
 | |
|   def determinant
 | |
|     return 0 unless square?
 | |
|     
 | |
|     size = row_size - 1
 | |
|     a = to_a
 | |
|     
 | |
|     det = 1
 | |
|     k = 0
 | |
|     begin 
 | |
|       if (akk = a[k][k]) == 0
 | |
|         i = k
 | |
|         begin
 | |
|           return 0 if (i += 1) > size
 | |
|         end while a[i][k] == 0
 | |
|         a[i], a[k] = a[k], a[i]
 | |
|         akk = a[k][k]
 | |
|         det *= -1
 | |
|       end
 | |
|       (k + 1).upto(size) do
 | |
|         |i|
 | |
|         q = a[i][k].quo(akk)
 | |
|         (k + 1).upto(size) do
 | |
|           |j|
 | |
|           a[i][j] -= a[k][j] * q
 | |
|         end
 | |
|       end
 | |
|       det *= akk
 | |
|     end while (k += 1) <= size
 | |
|     det
 | |
|   end
 | |
|   alias det determinant
 | |
| 
 | |
|   #
 | |
|   # Returns the determinant of the matrix.  If the matrix is not square, the
 | |
|   # result is 0. This method's algorism is Gaussian elimination method. 
 | |
|   # This method uses Euclidean algorism. If all elements are integer,
 | |
|   # really exact value. But, if an element is a float, can't return
 | |
|   # exact value.   
 | |
|   #
 | |
|   #   Matrix[[7,6], [3,9]].determinant
 | |
|   #     => 63
 | |
|   #
 | |
|   def determinant_e
 | |
|     return 0 unless square?
 | |
|     
 | |
|     size = row_size - 1
 | |
|     a = to_a
 | |
|     
 | |
|     det = 1
 | |
|     k = 0
 | |
|     begin 
 | |
|       if a[k][k].zero?
 | |
|         i = k
 | |
|         begin
 | |
|           return 0 if (i += 1) > size
 | |
|         end while a[i][k].zero?
 | |
|         a[i], a[k] = a[k], a[i]
 | |
|         det *= -1
 | |
|       end
 | |
|       (k + 1).upto(size) do |i|
 | |
|         q = a[i][k].quo(a[k][k])
 | |
|         k.upto(size) do |j|
 | |
|           a[i][j] -= a[k][j] * q
 | |
|         end
 | |
|         unless a[i][k].zero?
 | |
|           a[i], a[k] = a[k], a[i]
 | |
|           det *= -1
 | |
|           redo
 | |
|         end
 | |
|       end
 | |
|       det *= a[k][k]
 | |
|     end while (k += 1) <= size
 | |
|     det
 | |
|   end
 | |
|   alias det_e determinant_e
 | |
| 
 | |
|   #
 | |
|   # Returns the rank of the matrix. Beware that using Float values,
 | |
|   # probably return faild value. Use Rational values or Matrix#rank_e
 | |
|   # for getting exact result.
 | |
|   #
 | |
|   #   Matrix[[7,6], [3,9]].rank
 | |
|   #     => 2
 | |
|   #
 | |
|   def rank
 | |
|     if column_size > row_size
 | |
|       a = transpose.to_a
 | |
|       a_column_size = row_size
 | |
|       a_row_size = column_size
 | |
|     else
 | |
|       a = to_a
 | |
|       a_column_size = column_size
 | |
|       a_row_size = row_size
 | |
|     end
 | |
|     rank = 0
 | |
|     k = 0
 | |
|     begin
 | |
|       if (akk = a[k][k]) == 0
 | |
|         i = k
 | |
|         exists = true
 | |
|         begin
 | |
|           if (i += 1) > a_column_size - 1
 | |
|             exists = false
 | |
|             break
 | |
|           end
 | |
|         end while a[i][k] == 0
 | |
|         if exists
 | |
|           a[i], a[k] = a[k], a[i]
 | |
|           akk = a[k][k]
 | |
|         else
 | |
|           i = k
 | |
|           exists = true
 | |
|           begin
 | |
|             if (i += 1) > a_row_size - 1
 | |
|               exists = false
 | |
|               break
 | |
|             end
 | |
|           end while a[k][i] == 0
 | |
|           if exists
 | |
|             k.upto(a_column_size - 1) do
 | |
|               |j|
 | |
|               a[j][k], a[j][i] = a[j][i], a[j][k]
 | |
|             end
 | |
|             akk = a[k][k]
 | |
|           else
 | |
|             next
 | |
|           end
 | |
|         end
 | |
|       end
 | |
|       (k + 1).upto(a_row_size - 1) do
 | |
|         |i|
 | |
|         q = a[i][k].quo(akk)
 | |
|         (k + 1).upto(a_column_size - 1) do
 | |
|           |j|
 | |
|           a[i][j] -= a[k][j] * q
 | |
|         end
 | |
|       end
 | |
|       rank += 1
 | |
|     end while (k += 1) <= a_column_size - 1
 | |
|     return rank
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns the rank of the matrix. This method uses Euclidean
 | |
|   # algorism. If all elements are integer, really exact value. But, if
 | |
|   # an element is a float, can't return exact value.  
 | |
|   #
 | |
|   #   Matrix[[7,6], [3,9]].rank
 | |
|   #     => 2
 | |
|   #
 | |
|   def rank_e
 | |
|     a = to_a
 | |
|     a_column_size = column_size
 | |
|     a_row_size = row_size
 | |
|     pi = 0
 | |
|     (0 ... a_column_size).each do |j|
 | |
|       if i = (pi ... a_row_size).find{|i0| !a[i0][j].zero?}
 | |
|         if i != pi
 | |
|           a[pi], a[i] = a[i], a[pi]
 | |
|         end
 | |
|         (pi + 1 ... a_row_size).each do |k|
 | |
|           q = a[k][j].quo(a[pi][j])
 | |
|           (pi ... a_column_size).each do |j0|
 | |
|             a[k][j0] -= q * a[pi][j0]
 | |
|           end
 | |
|           if k > pi && !a[k][j].zero?
 | |
|             a[k], a[pi] = a[pi], a[k]
 | |
|             redo
 | |
|           end
 | |
|         end
 | |
|         pi += 1
 | |
|       end
 | |
|     end
 | |
|     pi
 | |
|   end
 | |
| 
 | |
| 
 | |
|   #
 | |
|   # Returns the trace (sum of diagonal elements) of the matrix.
 | |
|   #   Matrix[[7,6], [3,9]].trace
 | |
|   #     => 16
 | |
|   #
 | |
|   def trace
 | |
|     tr = 0
 | |
|     0.upto(column_size - 1) do
 | |
|       |i|
 | |
|       tr += @rows[i][i]
 | |
|     end
 | |
|     tr
 | |
|   end
 | |
|   alias tr trace
 | |
|   
 | |
|   #
 | |
|   # Returns the transpose of the matrix.
 | |
|   #   Matrix[[1,2], [3,4], [5,6]]
 | |
|   #     => 1 2
 | |
|   #        3 4
 | |
|   #        5 6
 | |
|   #   Matrix[[1,2], [3,4], [5,6]].transpose
 | |
|   #     => 1 3 5
 | |
|   #        2 4 6
 | |
|   #
 | |
|   def transpose
 | |
|     Matrix.columns(@rows)
 | |
|   end
 | |
|   alias t transpose
 | |
|   
 | |
|   #--
 | |
|   # CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
|   
 | |
|   #
 | |
|   # FIXME: describe #coerce.
 | |
|   #
 | |
|   def coerce(other)
 | |
|     case other
 | |
|     when Numeric
 | |
|       return Scalar.new(other), self
 | |
|     else
 | |
|       raise TypeError, "#{self.class} can't be coerced into #{other.class}"
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Returns an array of the row vectors of the matrix.  See Vector.
 | |
|   #
 | |
|   def row_vectors
 | |
|     rows = (0 .. row_size - 1).collect {
 | |
|       |i|
 | |
|       row(i)
 | |
|     }
 | |
|     rows
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Returns an array of the column vectors of the matrix.  See Vector.
 | |
|   #
 | |
|   def column_vectors
 | |
|     columns = (0 .. column_size - 1).collect {
 | |
|       |i|
 | |
|       column(i)
 | |
|     }
 | |
|     columns
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Returns an array of arrays that describe the rows of the matrix.
 | |
|   #
 | |
|   def to_a
 | |
|     @rows.collect{|row| row.collect{|e| e}}
 | |
|   end
 | |
|   
 | |
|   def elements_to_f
 | |
|     collect{|e| e.to_f}
 | |
|   end
 | |
|   
 | |
|   def elements_to_i
 | |
|     collect{|e| e.to_i}
 | |
|   end
 | |
|   
 | |
|   def elements_to_r
 | |
|     collect{|e| e.to_r}
 | |
|   end
 | |
|   
 | |
|   #--
 | |
|   # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
|   
 | |
|   #
 | |
|   # Overrides Object#to_s
 | |
|   #
 | |
|   def to_s
 | |
|     "Matrix[" + @rows.collect{
 | |
|       |row|
 | |
|       "[" + row.collect{|e| e.to_s}.join(", ") + "]"
 | |
|     }.join(", ")+"]"
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Overrides Object#inspect
 | |
|   #
 | |
|   def inspect
 | |
|     "Matrix"+@rows.inspect
 | |
|   end
 | |
|   
 | |
|   # Private CLASS
 | |
|   
 | |
|   class Scalar < Numeric # :nodoc:
 | |
|     include ExceptionForMatrix
 | |
|     
 | |
|     def initialize(value)
 | |
|       @value = value
 | |
|     end
 | |
|     
 | |
|     # ARITHMETIC
 | |
|     def +(other)
 | |
|       case other
 | |
|       when Numeric
 | |
|         Scalar.new(@value + other)
 | |
|       when Vector, Matrix
 | |
|         Scalar.Raise WrongArgType, other.class, "Numeric or Scalar"
 | |
|       when Scalar
 | |
|         Scalar.new(@value + other.value)
 | |
|       else
 | |
|         x, y = other.coerce(self)
 | |
|         x + y
 | |
|       end
 | |
|     end
 | |
|     
 | |
|     def -(other)
 | |
|       case other
 | |
|       when Numeric
 | |
|         Scalar.new(@value - other)
 | |
|       when Vector, Matrix
 | |
|         Scalar.Raise WrongArgType, other.class, "Numeric or Scalar"
 | |
|       when Scalar
 | |
|         Scalar.new(@value - other.value)
 | |
|       else
 | |
|         x, y = other.coerce(self)
 | |
|         x - y
 | |
|       end
 | |
|     end
 | |
|     
 | |
|     def *(other)
 | |
|       case other
 | |
|       when Numeric
 | |
|         Scalar.new(@value * other)
 | |
|       when Vector, Matrix
 | |
|         other.collect{|e| @value * e}
 | |
|       else
 | |
|         x, y = other.coerce(self)
 | |
|         x * y
 | |
|       end
 | |
|     end
 | |
|     
 | |
|     def / (other)
 | |
|       case other
 | |
|       when Numeric
 | |
|         Scalar.new(@value / other)
 | |
|       when Vector
 | |
|         Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix"
 | |
|       when Matrix
 | |
| 	self * other.inverse
 | |
|       else
 | |
|         x, y = other.coerce(self)
 | |
|         x.quo(y)
 | |
|       end
 | |
|     end
 | |
|     
 | |
|     def ** (other)
 | |
|       case other
 | |
|       when Numeric
 | |
|         Scalar.new(@value ** other)
 | |
|       when Vector
 | |
|         Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix"
 | |
|       when Matrix
 | |
|         other.powered_by(self)
 | |
|       else
 | |
|         x, y = other.coerce(self)
 | |
|         x ** y
 | |
|       end
 | |
|     end
 | |
|   end
 | |
| end
 | |
| 
 | |
| 
 | |
| #
 | |
| # The +Vector+ class represents a mathematical vector, which is useful in its own right, and
 | |
| # also constitutes a row or column of a Matrix.
 | |
| #
 | |
| # == Method Catalogue
 | |
| #
 | |
| # To create a Vector:
 | |
| # * <tt>  Vector.[](*array)                   </tt>
 | |
| # * <tt>  Vector.elements(array, copy = true) </tt>
 | |
| #
 | |
| # To access elements:
 | |
| # * <tt>  [](i)                               </tt>
 | |
| #
 | |
| # To enumerate the elements:
 | |
| # * <tt> #each2(v)                            </tt>
 | |
| # * <tt> #collect2(v)                         </tt>
 | |
| #
 | |
| # Vector arithmetic:
 | |
| # * <tt>  *(x) "is matrix or number"          </tt>
 | |
| # * <tt>  +(v)                                </tt>
 | |
| # * <tt>  -(v)                                </tt>
 | |
| #
 | |
| # Vector functions:
 | |
| # * <tt> #inner_product(v)                    </tt>
 | |
| # * <tt> #collect                             </tt>
 | |
| # * <tt> #map                                 </tt>
 | |
| # * <tt> #map2(v)                             </tt>
 | |
| # * <tt> #r                                   </tt>
 | |
| # * <tt> #size                                </tt>
 | |
| #
 | |
| # Conversion to other data types:
 | |
| # * <tt> #covector                            </tt>
 | |
| # * <tt> #to_a                                </tt>
 | |
| # * <tt> #coerce(other)                       </tt>
 | |
| #
 | |
| # String representations:
 | |
| # * <tt> #to_s                                </tt>
 | |
| # * <tt> #inspect                             </tt>
 | |
| #
 | |
| class Vector
 | |
|   include ExceptionForMatrix
 | |
|   
 | |
|   #INSTANCE CREATION
 | |
|   
 | |
|   private_class_method :new
 | |
| 
 | |
|   #
 | |
|   # Creates a Vector from a list of elements.
 | |
|   #   Vector[7, 4, ...]
 | |
|   #
 | |
|   def Vector.[](*array)
 | |
|     new(:init_elements, array, copy = false)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Creates a vector from an Array.  The optional second argument specifies
 | |
|   # whether the array itself or a copy is used internally.
 | |
|   #
 | |
|   def Vector.elements(array, copy = true)
 | |
|     new(:init_elements, array, copy)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # For internal use.
 | |
|   #
 | |
|   def initialize(method, array, copy)
 | |
|     self.send(method, array, copy)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # For internal use.
 | |
|   #
 | |
|   def init_elements(array, copy)
 | |
|     if copy
 | |
|       @elements = array.dup
 | |
|     else
 | |
|       @elements = array
 | |
|     end
 | |
|   end
 | |
|   
 | |
|   # ACCESSING
 | |
|          
 | |
|   #
 | |
|   # Returns element number +i+ (starting at zero) of the vector.
 | |
|   #
 | |
|   def [](i)
 | |
|     @elements[i]
 | |
|   end
 | |
|   alias element []
 | |
|   alias component []
 | |
| 
 | |
|   def []=(i, v)
 | |
|     @elements[i]= v
 | |
|   end
 | |
|   alias set_element []=
 | |
|   alias set_component []=
 | |
|   private :[]=, :set_element, :set_component
 | |
|   
 | |
|   #
 | |
|   # Returns the number of elements in the vector.
 | |
|   #
 | |
|   def size
 | |
|     @elements.size
 | |
|   end
 | |
|   
 | |
|   #--
 | |
|   # ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Iterate over the elements of this vector and +v+ in conjunction.
 | |
|   #
 | |
|   def each2(v) # :yield: e1, e2
 | |
|     Vector.Raise ErrDimensionMismatch if size != v.size
 | |
|     0.upto(size - 1) do
 | |
|       |i|
 | |
|       yield @elements[i], v[i]
 | |
|     end
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Collects (as in Enumerable#collect) over the elements of this vector and +v+
 | |
|   # in conjunction.
 | |
|   #
 | |
|   def collect2(v) # :yield: e1, e2
 | |
|     Vector.Raise ErrDimensionMismatch if size != v.size
 | |
|     (0 .. size - 1).collect do
 | |
|       |i|
 | |
|       yield @elements[i], v[i]
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #--
 | |
|   # COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Returns +true+ iff the two vectors have the same elements in the same order.
 | |
|   #
 | |
|   def ==(other)
 | |
|     return false unless Vector === other
 | |
|     
 | |
|     other.compare_by(@elements)
 | |
|   end
 | |
|   alias eqn? ==
 | |
|   
 | |
|   #
 | |
|   # For internal use.
 | |
|   #
 | |
|   def compare_by(elements)
 | |
|     @elements == elements
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Return a copy of the vector.
 | |
|   #
 | |
|   def clone
 | |
|     Vector.elements(@elements)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Return a hash-code for the vector.
 | |
|   #
 | |
|   def hash
 | |
|     @elements.hash
 | |
|   end
 | |
|   
 | |
|   #--
 | |
|   # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
|   
 | |
|   #
 | |
|   # Multiplies the vector by +x+, where +x+ is a number or another vector.
 | |
|   #
 | |
|   def *(x)
 | |
|     case x
 | |
|     when Numeric
 | |
|       els = @elements.collect{|e| e * x}
 | |
|       Vector.elements(els, false)
 | |
|     when Matrix
 | |
|       Matrix.column_vector(self) * x
 | |
|     else
 | |
|       s, x = x.coerce(self)
 | |
|       s * x
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Vector addition.
 | |
|   #
 | |
|   def +(v)
 | |
|     case v
 | |
|     when Vector
 | |
|       Vector.Raise ErrDimensionMismatch if size != v.size
 | |
|       els = collect2(v) {
 | |
|         |v1, v2|
 | |
|         v1 + v2
 | |
|       }
 | |
|       Vector.elements(els, false)
 | |
|     when Matrix
 | |
|       Matrix.column_vector(self) + v
 | |
|     else
 | |
|       s, x = v.coerce(self)
 | |
|       s + x
 | |
|     end
 | |
|   end
 | |
| 
 | |
|   #
 | |
|   # Vector subtraction.
 | |
|   #
 | |
|   def -(v)
 | |
|     case v
 | |
|     when Vector
 | |
|       Vector.Raise ErrDimensionMismatch if size != v.size
 | |
|       els = collect2(v) {
 | |
|         |v1, v2|
 | |
|         v1 - v2
 | |
|       }
 | |
|       Vector.elements(els, false)
 | |
|     when Matrix
 | |
|       Matrix.column_vector(self) - v
 | |
|     else
 | |
|       s, x = v.coerce(self)
 | |
|       s - x
 | |
|     end
 | |
|   end
 | |
|   
 | |
|   #--
 | |
|   # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
|   
 | |
|   #
 | |
|   # Returns the inner product of this vector with the other.
 | |
|   #   Vector[4,7].inner_product Vector[10,1]  => 47
 | |
|   #
 | |
|   def inner_product(v)
 | |
|     Vector.Raise ErrDimensionMismatch if size != v.size
 | |
|     
 | |
|     p = 0
 | |
|     each2(v) {
 | |
|       |v1, v2|
 | |
|       p += v1 * v2
 | |
|     }
 | |
|     p
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Like Array#collect.
 | |
|   #
 | |
|   def collect # :yield: e
 | |
|     els = @elements.collect {
 | |
|       |v|
 | |
|       yield v
 | |
|     }
 | |
|     Vector.elements(els, false)
 | |
|   end
 | |
|   alias map collect
 | |
|   
 | |
|   #
 | |
|   # Like Vector#collect2, but returns a Vector instead of an Array.
 | |
|   #
 | |
|   def map2(v) # :yield: e1, e2
 | |
|     els = collect2(v) {
 | |
|       |v1, v2|
 | |
|       yield v1, v2
 | |
|     }
 | |
|     Vector.elements(els, false)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Returns the modulus (Pythagorean distance) of the vector.
 | |
|   #   Vector[5,8,2].r => 9.643650761
 | |
|   #
 | |
|   def r
 | |
|     v = 0
 | |
|     for e in @elements
 | |
|       v += e*e
 | |
|     end
 | |
|     return Math.sqrt(v)
 | |
|   end
 | |
|   
 | |
|   #--
 | |
|   # CONVERTING
 | |
|   #++
 | |
| 
 | |
|   #
 | |
|   # Creates a single-row matrix from this vector.
 | |
|   #
 | |
|   def covector
 | |
|     Matrix.row_vector(self)
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Returns the elements of the vector in an array.
 | |
|   #
 | |
|   def to_a
 | |
|     @elements.dup
 | |
|   end
 | |
|   
 | |
|   def elements_to_f
 | |
|     collect{|e| e.to_f}
 | |
|   end
 | |
|   
 | |
|   def elements_to_i
 | |
|     collect{|e| e.to_i}
 | |
|   end
 | |
|   
 | |
|   def elements_to_r
 | |
|     collect{|e| e.to_r}
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # FIXME: describe Vector#coerce.
 | |
|   #
 | |
|   def coerce(other)
 | |
|     case other
 | |
|     when Numeric
 | |
|       return Matrix::Scalar.new(other), self
 | |
|     else
 | |
|       raise TypeError, "#{self.class} can't be coerced into #{other.class}"
 | |
|     end
 | |
|   end
 | |
|   
 | |
|   #--
 | |
|   # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
 | |
|   #++
 | |
|   
 | |
|   #
 | |
|   # Overrides Object#to_s
 | |
|   #
 | |
|   def to_s
 | |
|     "Vector[" + @elements.join(", ") + "]"
 | |
|   end
 | |
|   
 | |
|   #
 | |
|   # Overrides Object#inspect
 | |
|   #
 | |
|   def inspect
 | |
|     str = "Vector"+@elements.inspect
 | |
|   end
 | |
| end
 | |
| 
 | |
| 
 | |
| # Documentation comments:
 | |
| #  - Matrix#coerce and Vector#coerce need to be documented
 |