mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
cd0fec3728
It can be used to get the parameters' information of method and block. There was no way to get block parameters. It was possible but ineffective to get method parameters via Method object: `tp.defined_class.method(tp.method_id).parameters` TracePoint#parameters allows us to get the information easily. [Feature #14694] git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@63562 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
3230 lines
84 KiB
C
3230 lines
84 KiB
C
/**********************************************************************
|
|
|
|
proc.c - Proc, Binding, Env
|
|
|
|
$Author$
|
|
created at: Wed Jan 17 12:13:14 2007
|
|
|
|
Copyright (C) 2004-2007 Koichi Sasada
|
|
|
|
**********************************************************************/
|
|
|
|
#include "eval_intern.h"
|
|
#include "internal.h"
|
|
#include "gc.h"
|
|
#include "vm_core.h"
|
|
#include "iseq.h"
|
|
|
|
/* Proc.new with no block will raise an exception in the future
|
|
* versions */
|
|
#define PROC_NEW_REQUIRES_BLOCK 0
|
|
|
|
#if !defined(__GNUC__) || __GNUC__ < 5 || defined(__MINGW32__)
|
|
# define NO_CLOBBERED(v) (*(volatile VALUE *)&(v))
|
|
#else
|
|
# define NO_CLOBBERED(v) (v)
|
|
#endif
|
|
|
|
const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase);
|
|
|
|
struct METHOD {
|
|
const VALUE recv;
|
|
const VALUE klass;
|
|
const VALUE iclass;
|
|
const rb_method_entry_t * const me;
|
|
/* for bound methods, `me' should be rb_callable_method_entry_t * */
|
|
};
|
|
|
|
VALUE rb_cUnboundMethod;
|
|
VALUE rb_cMethod;
|
|
VALUE rb_cBinding;
|
|
VALUE rb_cProc;
|
|
|
|
static VALUE bmcall(VALUE, VALUE, int, VALUE *, VALUE);
|
|
static int method_arity(VALUE);
|
|
static int method_min_max_arity(VALUE, int *max);
|
|
|
|
#define attached id__attached__
|
|
|
|
/* Proc */
|
|
|
|
#define IS_METHOD_PROC_IFUNC(ifunc) ((ifunc)->func == bmcall)
|
|
|
|
static void
|
|
block_mark(const struct rb_block *block)
|
|
{
|
|
switch (vm_block_type(block)) {
|
|
case block_type_iseq:
|
|
case block_type_ifunc:
|
|
{
|
|
const struct rb_captured_block *captured = &block->as.captured;
|
|
RUBY_MARK_UNLESS_NULL(captured->self);
|
|
RUBY_MARK_UNLESS_NULL((VALUE)captured->code.val);
|
|
if (captured->ep && captured->ep[VM_ENV_DATA_INDEX_ENV] != Qundef /* cfunc_proc_t */) {
|
|
RUBY_MARK_UNLESS_NULL(VM_ENV_ENVVAL(captured->ep));
|
|
}
|
|
}
|
|
break;
|
|
case block_type_symbol:
|
|
RUBY_MARK_UNLESS_NULL(block->as.symbol);
|
|
break;
|
|
case block_type_proc:
|
|
RUBY_MARK_UNLESS_NULL(block->as.proc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
proc_mark(void *ptr)
|
|
{
|
|
rb_proc_t *proc = ptr;
|
|
block_mark(&proc->block);
|
|
RUBY_MARK_LEAVE("proc");
|
|
}
|
|
|
|
typedef struct {
|
|
rb_proc_t basic;
|
|
VALUE env[VM_ENV_DATA_SIZE + 1]; /* ..., envval */
|
|
} cfunc_proc_t;
|
|
|
|
static size_t
|
|
proc_memsize(const void *ptr)
|
|
{
|
|
const rb_proc_t *proc = ptr;
|
|
if (proc->block.as.captured.ep == ((const cfunc_proc_t *)ptr)->env+1)
|
|
return sizeof(cfunc_proc_t);
|
|
return sizeof(rb_proc_t);
|
|
}
|
|
|
|
static const rb_data_type_t proc_data_type = {
|
|
"proc",
|
|
{
|
|
proc_mark,
|
|
RUBY_TYPED_DEFAULT_FREE,
|
|
proc_memsize,
|
|
},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED
|
|
};
|
|
|
|
VALUE
|
|
rb_proc_alloc(VALUE klass)
|
|
{
|
|
rb_proc_t *proc;
|
|
return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc);
|
|
}
|
|
|
|
VALUE
|
|
rb_obj_is_proc(VALUE proc)
|
|
{
|
|
if (rb_typeddata_is_kind_of(proc, &proc_data_type)) {
|
|
return Qtrue;
|
|
}
|
|
else {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
proc_clone(VALUE self)
|
|
{
|
|
VALUE procval = rb_proc_dup(self);
|
|
CLONESETUP(procval, self);
|
|
return procval;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.lambda? -> true or false
|
|
*
|
|
* Returns +true+ for a Proc object for which argument handling is rigid.
|
|
* Such procs are typically generated by +lambda+.
|
|
*
|
|
* A Proc object generated by +proc+ ignores extra arguments.
|
|
*
|
|
* proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2]
|
|
*
|
|
* It provides +nil+ for missing arguments.
|
|
*
|
|
* proc {|a,b| [a,b] }.call(1) #=> [1,nil]
|
|
*
|
|
* It expands a single array argument.
|
|
*
|
|
* proc {|a,b| [a,b] }.call([1,2]) #=> [1,2]
|
|
*
|
|
* A Proc object generated by +lambda+ doesn't have such tricks.
|
|
*
|
|
* lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError
|
|
* lambda {|a,b| [a,b] }.call(1) #=> ArgumentError
|
|
* lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError
|
|
*
|
|
* Proc#lambda? is a predicate for the tricks.
|
|
* It returns +true+ if no tricks apply.
|
|
*
|
|
* lambda {}.lambda? #=> true
|
|
* proc {}.lambda? #=> false
|
|
*
|
|
* Proc.new is the same as +proc+.
|
|
*
|
|
* Proc.new {}.lambda? #=> false
|
|
*
|
|
* +lambda+, +proc+ and Proc.new preserve the tricks of
|
|
* a Proc object given by <code>&</code> argument.
|
|
*
|
|
* lambda(&lambda {}).lambda? #=> true
|
|
* proc(&lambda {}).lambda? #=> true
|
|
* Proc.new(&lambda {}).lambda? #=> true
|
|
*
|
|
* lambda(&proc {}).lambda? #=> false
|
|
* proc(&proc {}).lambda? #=> false
|
|
* Proc.new(&proc {}).lambda? #=> false
|
|
*
|
|
* A Proc object generated by <code>&</code> argument has the tricks
|
|
*
|
|
* def n(&b) b.lambda? end
|
|
* n {} #=> false
|
|
*
|
|
* The <code>&</code> argument preserves the tricks if a Proc object
|
|
* is given by <code>&</code> argument.
|
|
*
|
|
* n(&lambda {}) #=> true
|
|
* n(&proc {}) #=> false
|
|
* n(&Proc.new {}) #=> false
|
|
*
|
|
* A Proc object converted from a method has no tricks.
|
|
*
|
|
* def m() end
|
|
* method(:m).to_proc.lambda? #=> true
|
|
*
|
|
* n(&method(:m)) #=> true
|
|
* n(&method(:m).to_proc) #=> true
|
|
*
|
|
* +define_method+ is treated the same as method definition.
|
|
* The defined method has no tricks.
|
|
*
|
|
* class C
|
|
* define_method(:d) {}
|
|
* end
|
|
* C.new.d(1,2) #=> ArgumentError
|
|
* C.new.method(:d).to_proc.lambda? #=> true
|
|
*
|
|
* +define_method+ always defines a method without the tricks,
|
|
* even if a non-lambda Proc object is given.
|
|
* This is the only exception for which the tricks are not preserved.
|
|
*
|
|
* class C
|
|
* define_method(:e, &proc {})
|
|
* end
|
|
* C.new.e(1,2) #=> ArgumentError
|
|
* C.new.method(:e).to_proc.lambda? #=> true
|
|
*
|
|
* This exception ensures that methods never have tricks
|
|
* and makes it easy to have wrappers to define methods that behave as usual.
|
|
*
|
|
* class C
|
|
* def self.def2(name, &body)
|
|
* define_method(name, &body)
|
|
* end
|
|
*
|
|
* def2(:f) {}
|
|
* end
|
|
* C.new.f(1,2) #=> ArgumentError
|
|
*
|
|
* The wrapper <i>def2</i> defines a method which has no tricks.
|
|
*
|
|
*/
|
|
|
|
VALUE
|
|
rb_proc_lambda_p(VALUE procval)
|
|
{
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
|
|
return proc->is_lambda ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/* Binding */
|
|
|
|
static void
|
|
binding_free(void *ptr)
|
|
{
|
|
RUBY_FREE_ENTER("binding");
|
|
ruby_xfree(ptr);
|
|
RUBY_FREE_LEAVE("binding");
|
|
}
|
|
|
|
static void
|
|
binding_mark(void *ptr)
|
|
{
|
|
rb_binding_t *bind = ptr;
|
|
|
|
RUBY_MARK_ENTER("binding");
|
|
block_mark(&bind->block);
|
|
rb_gc_mark(bind->pathobj);
|
|
RUBY_MARK_LEAVE("binding");
|
|
}
|
|
|
|
static size_t
|
|
binding_memsize(const void *ptr)
|
|
{
|
|
return sizeof(rb_binding_t);
|
|
}
|
|
|
|
const rb_data_type_t ruby_binding_data_type = {
|
|
"binding",
|
|
{
|
|
binding_mark,
|
|
binding_free,
|
|
binding_memsize,
|
|
},
|
|
0, 0, RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
VALUE
|
|
rb_binding_alloc(VALUE klass)
|
|
{
|
|
VALUE obj;
|
|
rb_binding_t *bind;
|
|
obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind);
|
|
return obj;
|
|
}
|
|
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
binding_dup(VALUE self)
|
|
{
|
|
VALUE bindval = rb_binding_alloc(rb_cBinding);
|
|
rb_binding_t *src, *dst;
|
|
GetBindingPtr(self, src);
|
|
GetBindingPtr(bindval, dst);
|
|
rb_vm_block_copy(bindval, &dst->block, &src->block);
|
|
RB_OBJ_WRITE(bindval, &dst->pathobj, src->pathobj);
|
|
dst->first_lineno = src->first_lineno;
|
|
return bindval;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
binding_clone(VALUE self)
|
|
{
|
|
VALUE bindval = binding_dup(self);
|
|
CLONESETUP(bindval, self);
|
|
return bindval;
|
|
}
|
|
|
|
VALUE
|
|
rb_binding_new(void)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
return rb_vm_make_binding(ec, ec->cfp);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding -> a_binding
|
|
*
|
|
* Returns a +Binding+ object, describing the variable and
|
|
* method bindings at the point of call. This object can be used when
|
|
* calling +eval+ to execute the evaluated command in this
|
|
* environment. See also the description of class +Binding+.
|
|
*
|
|
* def get_binding(param)
|
|
* binding
|
|
* end
|
|
* b = get_binding("hello")
|
|
* eval("param", b) #=> "hello"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_f_binding(VALUE self)
|
|
{
|
|
return rb_binding_new();
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.eval(string [, filename [,lineno]]) -> obj
|
|
*
|
|
* Evaluates the Ruby expression(s) in <em>string</em>, in the
|
|
* <em>binding</em>'s context. If the optional <em>filename</em> and
|
|
* <em>lineno</em> parameters are present, they will be used when
|
|
* reporting syntax errors.
|
|
*
|
|
* def get_binding(param)
|
|
* binding
|
|
* end
|
|
* b = get_binding("hello")
|
|
* b.eval("param") #=> "hello"
|
|
*/
|
|
|
|
static VALUE
|
|
bind_eval(int argc, VALUE *argv, VALUE bindval)
|
|
{
|
|
VALUE args[4];
|
|
|
|
rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
|
|
args[1] = bindval;
|
|
return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */);
|
|
}
|
|
|
|
static const VALUE *
|
|
get_local_variable_ptr(const rb_env_t **envp, ID lid)
|
|
{
|
|
const rb_env_t *env = *envp;
|
|
do {
|
|
if (!VM_ENV_FLAGS(env->ep, VM_FRAME_FLAG_CFRAME)) {
|
|
const rb_iseq_t *iseq = env->iseq;
|
|
unsigned int i;
|
|
|
|
VM_ASSERT(rb_obj_is_iseq((VALUE)iseq));
|
|
|
|
for (i=0; i<iseq->body->local_table_size; i++) {
|
|
if (iseq->body->local_table[i] == lid) {
|
|
if (iseq->body->local_iseq == iseq &&
|
|
iseq->body->param.flags.has_block &&
|
|
(unsigned int)iseq->body->param.block_start == i) {
|
|
const VALUE *ep = env->ep;
|
|
if (!VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)) {
|
|
RB_OBJ_WRITE(env, &env->env[i], rb_vm_bh_to_procval(GET_EC(), VM_ENV_BLOCK_HANDLER(ep)));
|
|
VM_ENV_FLAGS_SET(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM);
|
|
}
|
|
}
|
|
|
|
*envp = env;
|
|
return &env->env[i];
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
*envp = NULL;
|
|
return NULL;
|
|
}
|
|
} while ((env = rb_vm_env_prev_env(env)) != NULL);
|
|
|
|
*envp = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* check local variable name.
|
|
* returns ID if it's an already interned symbol, or 0 with setting
|
|
* local name in String to *namep.
|
|
*/
|
|
static ID
|
|
check_local_id(VALUE bindval, volatile VALUE *pname)
|
|
{
|
|
ID lid = rb_check_id(pname);
|
|
VALUE name = *pname;
|
|
|
|
if (lid) {
|
|
if (!rb_is_local_id(lid)) {
|
|
rb_name_err_raise("wrong local variable name `%1$s' for %2$s",
|
|
bindval, ID2SYM(lid));
|
|
}
|
|
}
|
|
else {
|
|
if (!rb_is_local_name(name)) {
|
|
rb_name_err_raise("wrong local variable name `%1$s' for %2$s",
|
|
bindval, name);
|
|
}
|
|
return 0;
|
|
}
|
|
return lid;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.local_variables -> Array
|
|
*
|
|
* Returns the names of the binding's local variables as symbols.
|
|
*
|
|
* def foo
|
|
* a = 1
|
|
* 2.times do |n|
|
|
* binding.local_variables #=> [:a, :n]
|
|
* end
|
|
* end
|
|
*
|
|
* This method is the short version of the following code:
|
|
*
|
|
* binding.eval("local_variables")
|
|
*
|
|
*/
|
|
static VALUE
|
|
bind_local_variables(VALUE bindval)
|
|
{
|
|
const rb_binding_t *bind;
|
|
const rb_env_t *env;
|
|
|
|
GetBindingPtr(bindval, bind);
|
|
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
|
|
return rb_vm_env_local_variables(env);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.local_variable_get(symbol) -> obj
|
|
*
|
|
* Returns the value of the local variable +symbol+.
|
|
*
|
|
* def foo
|
|
* a = 1
|
|
* binding.local_variable_get(:a) #=> 1
|
|
* binding.local_variable_get(:b) #=> NameError
|
|
* end
|
|
*
|
|
* This method is the short version of the following code:
|
|
*
|
|
* binding.eval("#{symbol}")
|
|
*
|
|
*/
|
|
static VALUE
|
|
bind_local_variable_get(VALUE bindval, VALUE sym)
|
|
{
|
|
ID lid = check_local_id(bindval, &sym);
|
|
const rb_binding_t *bind;
|
|
const VALUE *ptr;
|
|
const rb_env_t *env;
|
|
|
|
if (!lid) goto undefined;
|
|
|
|
GetBindingPtr(bindval, bind);
|
|
|
|
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
|
|
if ((ptr = get_local_variable_ptr(&env, lid)) == NULL) {
|
|
sym = ID2SYM(lid);
|
|
undefined:
|
|
rb_name_err_raise("local variable `%1$s' is not defined for %2$s",
|
|
bindval, sym);
|
|
}
|
|
|
|
return *ptr;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.local_variable_set(symbol, obj) -> obj
|
|
*
|
|
* Set local variable named +symbol+ as +obj+.
|
|
*
|
|
* def foo
|
|
* a = 1
|
|
* bind = binding
|
|
* bind.local_variable_set(:a, 2) # set existing local variable `a'
|
|
* bind.local_variable_set(:b, 3) # create new local variable `b'
|
|
* # `b' exists only in binding
|
|
*
|
|
* p bind.local_variable_get(:a) #=> 2
|
|
* p bind.local_variable_get(:b) #=> 3
|
|
* p a #=> 2
|
|
* p b #=> NameError
|
|
* end
|
|
*
|
|
* This method behaves similarly to the following code:
|
|
*
|
|
* binding.eval("#{symbol} = #{obj}")
|
|
*
|
|
* if +obj+ can be dumped in Ruby code.
|
|
*/
|
|
static VALUE
|
|
bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val)
|
|
{
|
|
ID lid = check_local_id(bindval, &sym);
|
|
rb_binding_t *bind;
|
|
const VALUE *ptr;
|
|
const rb_env_t *env;
|
|
|
|
if (!lid) lid = rb_intern_str(sym);
|
|
|
|
GetBindingPtr(bindval, bind);
|
|
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
|
|
if ((ptr = get_local_variable_ptr(&env, lid)) == NULL) {
|
|
/* not found. create new env */
|
|
ptr = rb_binding_add_dynavars(bindval, bind, 1, &lid);
|
|
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
|
|
}
|
|
|
|
RB_OBJ_WRITE(env, ptr, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.local_variable_defined?(symbol) -> obj
|
|
*
|
|
* Returns +true+ if a local variable +symbol+ exists.
|
|
*
|
|
* def foo
|
|
* a = 1
|
|
* binding.local_variable_defined?(:a) #=> true
|
|
* binding.local_variable_defined?(:b) #=> false
|
|
* end
|
|
*
|
|
* This method is the short version of the following code:
|
|
*
|
|
* binding.eval("defined?(#{symbol}) == 'local-variable'")
|
|
*
|
|
*/
|
|
static VALUE
|
|
bind_local_variable_defined_p(VALUE bindval, VALUE sym)
|
|
{
|
|
ID lid = check_local_id(bindval, &sym);
|
|
const rb_binding_t *bind;
|
|
const rb_env_t *env;
|
|
|
|
if (!lid) return Qfalse;
|
|
|
|
GetBindingPtr(bindval, bind);
|
|
env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block));
|
|
return get_local_variable_ptr(&env, lid) ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.receiver -> object
|
|
*
|
|
* Returns the bound receiver of the binding object.
|
|
*/
|
|
static VALUE
|
|
bind_receiver(VALUE bindval)
|
|
{
|
|
const rb_binding_t *bind;
|
|
GetBindingPtr(bindval, bind);
|
|
return vm_block_self(&bind->block);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* binding.source_location -> [String, Integer]
|
|
*
|
|
* Returns the Ruby source filename and line number of the binding object.
|
|
*/
|
|
static VALUE
|
|
bind_location(VALUE bindval)
|
|
{
|
|
VALUE loc[2];
|
|
const rb_binding_t *bind;
|
|
GetBindingPtr(bindval, bind);
|
|
loc[0] = pathobj_path(bind->pathobj);
|
|
loc[1] = INT2FIX(bind->first_lineno);
|
|
|
|
return rb_ary_new4(2, loc);
|
|
}
|
|
|
|
static VALUE
|
|
cfunc_proc_new(VALUE klass, VALUE ifunc, int8_t is_lambda)
|
|
{
|
|
rb_proc_t *proc;
|
|
cfunc_proc_t *sproc;
|
|
VALUE procval = TypedData_Make_Struct(klass, cfunc_proc_t, &proc_data_type, sproc);
|
|
VALUE *ep;
|
|
|
|
proc = &sproc->basic;
|
|
vm_block_type_set(&proc->block, block_type_ifunc);
|
|
|
|
*(VALUE **)&proc->block.as.captured.ep = ep = sproc->env + VM_ENV_DATA_SIZE-1;
|
|
ep[VM_ENV_DATA_INDEX_FLAGS] = VM_FRAME_MAGIC_IFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL | VM_ENV_FLAG_ESCAPED;
|
|
ep[VM_ENV_DATA_INDEX_ME_CREF] = Qfalse;
|
|
ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE;
|
|
ep[VM_ENV_DATA_INDEX_ENV] = Qundef; /* envval */
|
|
|
|
/* self? */
|
|
RB_OBJ_WRITE(procval, &proc->block.as.captured.code.ifunc, ifunc);
|
|
proc->is_lambda = is_lambda;
|
|
return procval;
|
|
}
|
|
|
|
static VALUE
|
|
sym_proc_new(VALUE klass, VALUE sym)
|
|
{
|
|
VALUE procval = rb_proc_alloc(klass);
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
|
|
vm_block_type_set(&proc->block, block_type_symbol);
|
|
RB_OBJ_WRITE(procval, &proc->block.as.symbol, sym);
|
|
return procval;
|
|
}
|
|
|
|
struct vm_ifunc *
|
|
rb_vm_ifunc_new(VALUE (*func)(ANYARGS), const void *data, int min_argc, int max_argc)
|
|
{
|
|
union {
|
|
struct vm_ifunc_argc argc;
|
|
VALUE packed;
|
|
} arity;
|
|
|
|
if (min_argc < UNLIMITED_ARGUMENTS ||
|
|
#if SIZEOF_INT * 2 > SIZEOF_VALUE
|
|
min_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
|
|
#endif
|
|
0) {
|
|
rb_raise(rb_eRangeError, "minimum argument number out of range: %d",
|
|
min_argc);
|
|
}
|
|
if (max_argc < UNLIMITED_ARGUMENTS ||
|
|
#if SIZEOF_INT * 2 > SIZEOF_VALUE
|
|
max_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) ||
|
|
#endif
|
|
0) {
|
|
rb_raise(rb_eRangeError, "maximum argument number out of range: %d",
|
|
max_argc);
|
|
}
|
|
arity.argc.min = min_argc;
|
|
arity.argc.max = max_argc;
|
|
return IFUNC_NEW(func, data, arity.packed);
|
|
}
|
|
|
|
MJIT_FUNC_EXPORTED VALUE
|
|
rb_func_proc_new(rb_block_call_func_t func, VALUE val)
|
|
{
|
|
struct vm_ifunc *ifunc = rb_vm_ifunc_proc_new(func, (void *)val);
|
|
return cfunc_proc_new(rb_cProc, (VALUE)ifunc, 0);
|
|
}
|
|
|
|
VALUE
|
|
rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc)
|
|
{
|
|
struct vm_ifunc *ifunc = rb_vm_ifunc_new(func, (void *)val, min_argc, max_argc);
|
|
return cfunc_proc_new(rb_cProc, (VALUE)ifunc, 1);
|
|
}
|
|
|
|
static const char proc_without_block[] = "tried to create Proc object without a block";
|
|
|
|
static VALUE
|
|
proc_new(VALUE klass, int8_t is_lambda)
|
|
{
|
|
VALUE procval;
|
|
const rb_execution_context_t *ec = GET_EC();
|
|
rb_control_frame_t *cfp = ec->cfp;
|
|
VALUE block_handler;
|
|
|
|
if ((block_handler = rb_vm_frame_block_handler(cfp)) == VM_BLOCK_HANDLER_NONE) {
|
|
#if !PROC_NEW_REQUIRES_BLOCK
|
|
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
|
|
|
|
if ((block_handler = rb_vm_frame_block_handler(cfp)) != VM_BLOCK_HANDLER_NONE) {
|
|
if (is_lambda) {
|
|
rb_warn(proc_without_block);
|
|
}
|
|
}
|
|
#else
|
|
if (0)
|
|
#endif
|
|
else {
|
|
rb_raise(rb_eArgError, proc_without_block);
|
|
}
|
|
}
|
|
|
|
/* block is in cf */
|
|
switch (vm_block_handler_type(block_handler)) {
|
|
case block_handler_type_proc:
|
|
procval = VM_BH_TO_PROC(block_handler);
|
|
|
|
if (RBASIC_CLASS(procval) == klass) {
|
|
return procval;
|
|
}
|
|
else {
|
|
VALUE newprocval = rb_proc_dup(procval);
|
|
RBASIC_SET_CLASS(newprocval, klass);
|
|
return newprocval;
|
|
}
|
|
break;
|
|
|
|
case block_handler_type_symbol:
|
|
return (klass != rb_cProc) ?
|
|
sym_proc_new(klass, VM_BH_TO_SYMBOL(block_handler)) :
|
|
rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler));
|
|
break;
|
|
|
|
case block_handler_type_ifunc:
|
|
case block_handler_type_iseq:
|
|
return rb_vm_make_proc_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), klass, is_lambda);
|
|
}
|
|
VM_UNREACHABLE(proc_new);
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Proc.new {|...| block } -> a_proc
|
|
* Proc.new -> a_proc
|
|
*
|
|
* Creates a new <code>Proc</code> object, bound to the current
|
|
* context. <code>Proc::new</code> may be called without a block only
|
|
* within a method with an attached block, in which case that block is
|
|
* converted to the <code>Proc</code> object.
|
|
*
|
|
* def proc_from
|
|
* Proc.new
|
|
* end
|
|
* proc = proc_from { "hello" }
|
|
* proc.call #=> "hello"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE block = proc_new(klass, FALSE);
|
|
|
|
rb_obj_call_init(block, argc, argv);
|
|
return block;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* proc { |...| block } -> a_proc
|
|
*
|
|
* Equivalent to <code>Proc.new</code>.
|
|
*/
|
|
|
|
VALUE
|
|
rb_block_proc(void)
|
|
{
|
|
return proc_new(rb_cProc, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* lambda { |...| block } -> a_proc
|
|
*
|
|
* Equivalent to <code>Proc.new</code>, except the resulting Proc objects
|
|
* check the number of parameters passed when called.
|
|
*/
|
|
|
|
VALUE
|
|
rb_block_lambda(void)
|
|
{
|
|
return proc_new(rb_cProc, TRUE);
|
|
}
|
|
|
|
/* Document-method: ===
|
|
*
|
|
* call-seq:
|
|
* proc === obj -> result_of_proc
|
|
*
|
|
* Invokes the block with +obj+ as the proc's parameter like Proc#call. It
|
|
* is to allow a proc object to be a target of +when+ clause in a case
|
|
* statement.
|
|
*/
|
|
|
|
/* CHECKME: are the argument checking semantics correct? */
|
|
|
|
/*
|
|
* Document-method: []
|
|
* Document-method: call
|
|
* Document-method: yield
|
|
*
|
|
* call-seq:
|
|
* prc.call(params,...) -> obj
|
|
* prc[params,...] -> obj
|
|
* prc.(params,...) -> obj
|
|
* prc.yield(params,...) -> obj
|
|
*
|
|
* Invokes the block, setting the block's parameters to the values in
|
|
* <i>params</i> using something close to method calling semantics.
|
|
* Returns the value of the last expression evaluated in the block.
|
|
*
|
|
* a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } }
|
|
* a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
|
|
* a_proc[9, 1, 2, 3] #=> [9, 18, 27]
|
|
* a_proc.(9, 1, 2, 3) #=> [9, 18, 27]
|
|
* a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27]
|
|
*
|
|
* Note that <code>prc.()</code> invokes <code>prc.call()</code> with
|
|
* the parameters given. It's syntactic sugar to hide "call".
|
|
*
|
|
* For procs created using <code>lambda</code> or <code>->()</code> an error
|
|
* is generated if the wrong number of parameters are passed to the proc.
|
|
* For procs created using <code>Proc.new</code> or <code>Kernel.proc</code>,
|
|
* extra parameters are silently discarded and missing parameters are
|
|
* set to +nil+.
|
|
*
|
|
* a_proc = proc {|a,b| [a,b] }
|
|
* a_proc.call(1) #=> [1, nil]
|
|
*
|
|
* a_proc = lambda {|a,b| [a,b] }
|
|
* a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
|
|
*
|
|
* See also Proc#lambda?.
|
|
*/
|
|
#if 0
|
|
static VALUE
|
|
proc_call(int argc, VALUE *argv, VALUE procval)
|
|
{
|
|
/* removed */
|
|
}
|
|
#endif
|
|
|
|
#if SIZEOF_LONG > SIZEOF_INT
|
|
static inline int
|
|
check_argc(long argc)
|
|
{
|
|
if (argc > INT_MAX || argc < 0) {
|
|
rb_raise(rb_eArgError, "too many arguments (%lu)",
|
|
(unsigned long)argc);
|
|
}
|
|
return (int)argc;
|
|
}
|
|
#else
|
|
#define check_argc(argc) (argc)
|
|
#endif
|
|
|
|
VALUE
|
|
rb_proc_call(VALUE self, VALUE args)
|
|
{
|
|
VALUE vret;
|
|
rb_proc_t *proc;
|
|
GetProcPtr(self, proc);
|
|
vret = rb_vm_invoke_proc(GET_EC(), proc,
|
|
check_argc(RARRAY_LEN(args)), RARRAY_CONST_PTR(args),
|
|
VM_BLOCK_HANDLER_NONE);
|
|
RB_GC_GUARD(self);
|
|
RB_GC_GUARD(args);
|
|
return vret;
|
|
}
|
|
|
|
static VALUE
|
|
proc_to_block_handler(VALUE procval)
|
|
{
|
|
return NIL_P(procval) ? VM_BLOCK_HANDLER_NONE : procval;
|
|
}
|
|
|
|
VALUE
|
|
rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE passed_procval)
|
|
{
|
|
rb_execution_context_t *ec = GET_EC();
|
|
VALUE vret;
|
|
rb_proc_t *proc;
|
|
GetProcPtr(self, proc);
|
|
vret = rb_vm_invoke_proc(ec, proc, argc, argv, proc_to_block_handler(passed_procval));
|
|
RB_GC_GUARD(self);
|
|
return vret;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.arity -> integer
|
|
*
|
|
* Returns the number of mandatory arguments. If the block
|
|
* is declared to take no arguments, returns 0. If the block is known
|
|
* to take exactly n arguments, returns n.
|
|
* If the block has optional arguments, returns -n-1, where n is the
|
|
* number of mandatory arguments, with the exception for blocks that
|
|
* are not lambdas and have only a finite number of optional arguments;
|
|
* in this latter case, returns n.
|
|
* Keyword arguments will be considered as a single additional argument,
|
|
* that argument being mandatory if any keyword argument is mandatory.
|
|
* A <code>proc</code> with no argument declarations
|
|
* is the same as a block declaring <code>||</code> as its arguments.
|
|
*
|
|
* proc {}.arity #=> 0
|
|
* proc { || }.arity #=> 0
|
|
* proc { |a| }.arity #=> 1
|
|
* proc { |a, b| }.arity #=> 2
|
|
* proc { |a, b, c| }.arity #=> 3
|
|
* proc { |*a| }.arity #=> -1
|
|
* proc { |a, *b| }.arity #=> -2
|
|
* proc { |a, *b, c| }.arity #=> -3
|
|
* proc { |x:, y:, z:0| }.arity #=> 1
|
|
* proc { |*a, x:, y:0| }.arity #=> -2
|
|
*
|
|
* proc { |a=0| }.arity #=> 0
|
|
* lambda { |a=0| }.arity #=> -1
|
|
* proc { |a=0, b| }.arity #=> 1
|
|
* lambda { |a=0, b| }.arity #=> -2
|
|
* proc { |a=0, b=0| }.arity #=> 0
|
|
* lambda { |a=0, b=0| }.arity #=> -1
|
|
* proc { |a, b=0| }.arity #=> 1
|
|
* lambda { |a, b=0| }.arity #=> -2
|
|
* proc { |(a, b), c=0| }.arity #=> 1
|
|
* lambda { |(a, b), c=0| }.arity #=> -2
|
|
* proc { |a, x:0, y:0| }.arity #=> 1
|
|
* lambda { |a, x:0, y:0| }.arity #=> -2
|
|
*/
|
|
|
|
static VALUE
|
|
proc_arity(VALUE self)
|
|
{
|
|
int arity = rb_proc_arity(self);
|
|
return INT2FIX(arity);
|
|
}
|
|
|
|
static inline int
|
|
rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max)
|
|
{
|
|
*max = iseq->body->param.flags.has_rest == FALSE ?
|
|
iseq->body->param.lead_num + iseq->body->param.opt_num + iseq->body->param.post_num +
|
|
(iseq->body->param.flags.has_kw == TRUE || iseq->body->param.flags.has_kwrest == TRUE)
|
|
: UNLIMITED_ARGUMENTS;
|
|
return iseq->body->param.lead_num + iseq->body->param.post_num + (iseq->body->param.flags.has_kw && iseq->body->param.keyword->required_num > 0);
|
|
}
|
|
|
|
static int
|
|
rb_vm_block_min_max_arity(const struct rb_block *block, int *max)
|
|
{
|
|
again:
|
|
switch (vm_block_type(block)) {
|
|
case block_type_iseq:
|
|
return rb_iseq_min_max_arity(rb_iseq_check(block->as.captured.code.iseq), max);
|
|
case block_type_proc:
|
|
block = vm_proc_block(block->as.proc);
|
|
goto again;
|
|
case block_type_ifunc:
|
|
{
|
|
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
|
|
if (IS_METHOD_PROC_IFUNC(ifunc)) {
|
|
/* e.g. method(:foo).to_proc.arity */
|
|
return method_min_max_arity((VALUE)ifunc->data, max);
|
|
}
|
|
*max = ifunc->argc.max;
|
|
return ifunc->argc.min;
|
|
}
|
|
case block_type_symbol:
|
|
break;
|
|
}
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns the number of required parameters and stores the maximum
|
|
* number of parameters in max, or UNLIMITED_ARGUMENTS if no max.
|
|
* For non-lambda procs, the maximum is the number of non-ignored
|
|
* parameters even though there is no actual limit to the number of parameters
|
|
*/
|
|
static int
|
|
rb_proc_min_max_arity(VALUE self, int *max)
|
|
{
|
|
rb_proc_t *proc;
|
|
GetProcPtr(self, proc);
|
|
return rb_vm_block_min_max_arity(&proc->block, max);
|
|
}
|
|
|
|
int
|
|
rb_proc_arity(VALUE self)
|
|
{
|
|
rb_proc_t *proc;
|
|
int max, min;
|
|
GetProcPtr(self, proc);
|
|
min = rb_vm_block_min_max_arity(&proc->block, &max);
|
|
return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
|
|
}
|
|
|
|
static void
|
|
block_setup(struct rb_block *block, VALUE block_handler)
|
|
{
|
|
switch (vm_block_handler_type(block_handler)) {
|
|
case block_handler_type_iseq:
|
|
block->type = block_type_iseq;
|
|
block->as.captured = *VM_BH_TO_ISEQ_BLOCK(block_handler);
|
|
break;
|
|
case block_handler_type_ifunc:
|
|
block->type = block_type_ifunc;
|
|
block->as.captured = *VM_BH_TO_IFUNC_BLOCK(block_handler);
|
|
break;
|
|
case block_handler_type_symbol:
|
|
block->type = block_type_symbol;
|
|
block->as.symbol = VM_BH_TO_SYMBOL(block_handler);
|
|
break;
|
|
case block_handler_type_proc:
|
|
block->type = block_type_proc;
|
|
block->as.proc = VM_BH_TO_PROC(block_handler);
|
|
}
|
|
}
|
|
|
|
int
|
|
rb_block_arity(void)
|
|
{
|
|
int min, max;
|
|
const rb_execution_context_t *ec = GET_EC();
|
|
rb_control_frame_t *cfp = ec->cfp;
|
|
VALUE block_handler = rb_vm_frame_block_handler(cfp);
|
|
struct rb_block block;
|
|
|
|
if (block_handler == VM_BLOCK_HANDLER_NONE) {
|
|
rb_raise(rb_eArgError, "no block given");
|
|
}
|
|
|
|
block_setup(&block, block_handler);
|
|
min = rb_vm_block_min_max_arity(&block, &max);
|
|
|
|
switch (vm_block_type(&block)) {
|
|
case block_handler_type_symbol:
|
|
return -1;
|
|
|
|
case block_handler_type_proc:
|
|
{
|
|
VALUE procval = block_handler;
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
|
|
/* fall through */
|
|
}
|
|
|
|
default:
|
|
return max != UNLIMITED_ARGUMENTS ? min : -min-1;
|
|
}
|
|
}
|
|
|
|
int
|
|
rb_block_min_max_arity(int *max)
|
|
{
|
|
const rb_execution_context_t *ec = GET_EC();
|
|
rb_control_frame_t *cfp = ec->cfp;
|
|
VALUE block_handler = rb_vm_frame_block_handler(cfp);
|
|
struct rb_block block;
|
|
|
|
if (block_handler == VM_BLOCK_HANDLER_NONE) {
|
|
rb_raise(rb_eArgError, "no block given");
|
|
}
|
|
|
|
block_setup(&block, block_handler);
|
|
return rb_vm_block_min_max_arity(&block, max);
|
|
}
|
|
|
|
const rb_iseq_t *
|
|
rb_proc_get_iseq(VALUE self, int *is_proc)
|
|
{
|
|
const rb_proc_t *proc;
|
|
const struct rb_block *block;
|
|
|
|
GetProcPtr(self, proc);
|
|
block = &proc->block;
|
|
if (is_proc) *is_proc = !proc->is_lambda;
|
|
|
|
switch (vm_block_type(block)) {
|
|
case block_type_iseq:
|
|
return rb_iseq_check(block->as.captured.code.iseq);
|
|
case block_type_proc:
|
|
return rb_proc_get_iseq(block->as.proc, is_proc);
|
|
case block_type_ifunc:
|
|
{
|
|
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
|
|
if (IS_METHOD_PROC_IFUNC(ifunc)) {
|
|
/* method(:foo).to_proc */
|
|
if (is_proc) *is_proc = 0;
|
|
return rb_method_iseq((VALUE)ifunc->data);
|
|
}
|
|
else {
|
|
return NULL;
|
|
}
|
|
}
|
|
case block_type_symbol:
|
|
return NULL;
|
|
}
|
|
|
|
VM_UNREACHABLE(rb_proc_get_iseq);
|
|
return NULL;
|
|
}
|
|
|
|
static VALUE
|
|
iseq_location(const rb_iseq_t *iseq)
|
|
{
|
|
VALUE loc[2];
|
|
|
|
if (!iseq) return Qnil;
|
|
rb_iseq_check(iseq);
|
|
loc[0] = rb_iseq_path(iseq);
|
|
loc[1] = iseq->body->location.first_lineno;
|
|
|
|
return rb_ary_new4(2, loc);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.source_location -> [String, Integer]
|
|
*
|
|
* Returns the Ruby source filename and line number containing this proc
|
|
* or +nil+ if this proc was not defined in Ruby (i.e. native).
|
|
*/
|
|
|
|
VALUE
|
|
rb_proc_location(VALUE self)
|
|
{
|
|
return iseq_location(rb_proc_get_iseq(self, 0));
|
|
}
|
|
|
|
VALUE
|
|
rb_unnamed_parameters(int arity)
|
|
{
|
|
VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity);
|
|
int n = (arity < 0) ? ~arity : arity;
|
|
ID req, rest;
|
|
CONST_ID(req, "req");
|
|
a = rb_ary_new3(1, ID2SYM(req));
|
|
OBJ_FREEZE(a);
|
|
for (; n; --n) {
|
|
rb_ary_push(param, a);
|
|
}
|
|
if (arity < 0) {
|
|
CONST_ID(rest, "rest");
|
|
rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest)));
|
|
}
|
|
return param;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.parameters -> array
|
|
*
|
|
* Returns the parameter information of this proc.
|
|
*
|
|
* prc = lambda{|x, y=42, *other|}
|
|
* prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_proc_parameters(VALUE self)
|
|
{
|
|
int is_proc;
|
|
const rb_iseq_t *iseq = rb_proc_get_iseq(self, &is_proc);
|
|
if (!iseq) {
|
|
return rb_unnamed_parameters(rb_proc_arity(self));
|
|
}
|
|
return rb_iseq_parameters(iseq, is_proc);
|
|
}
|
|
|
|
st_index_t
|
|
rb_hash_proc(st_index_t hash, VALUE prc)
|
|
{
|
|
rb_proc_t *proc;
|
|
GetProcPtr(prc, proc);
|
|
hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.code.val);
|
|
hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.self);
|
|
return rb_hash_uint(hash, (st_index_t)proc->block.as.captured.ep >> 16);
|
|
}
|
|
|
|
MJIT_FUNC_EXPORTED VALUE
|
|
rb_sym_to_proc(VALUE sym)
|
|
{
|
|
static VALUE sym_proc_cache = Qfalse;
|
|
enum {SYM_PROC_CACHE_SIZE = 67};
|
|
VALUE proc;
|
|
long index;
|
|
ID id;
|
|
VALUE *aryp;
|
|
|
|
if (!sym_proc_cache) {
|
|
sym_proc_cache = rb_ary_tmp_new(SYM_PROC_CACHE_SIZE * 2);
|
|
rb_gc_register_mark_object(sym_proc_cache);
|
|
rb_ary_store(sym_proc_cache, SYM_PROC_CACHE_SIZE*2 - 1, Qnil);
|
|
}
|
|
|
|
id = SYM2ID(sym);
|
|
index = (id % SYM_PROC_CACHE_SIZE) << 1;
|
|
|
|
aryp = RARRAY_PTR(sym_proc_cache);
|
|
if (aryp[index] == sym) {
|
|
return aryp[index + 1];
|
|
}
|
|
else {
|
|
proc = sym_proc_new(rb_cProc, ID2SYM(id));
|
|
aryp[index] = sym;
|
|
aryp[index + 1] = proc;
|
|
return proc;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.hash -> integer
|
|
*
|
|
* Returns a hash value corresponding to proc body.
|
|
*
|
|
* See also Object#hash.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_hash(VALUE self)
|
|
{
|
|
st_index_t hash;
|
|
hash = rb_hash_start(0);
|
|
hash = rb_hash_proc(hash, self);
|
|
hash = rb_hash_end(hash);
|
|
return ST2FIX(hash);
|
|
}
|
|
|
|
VALUE
|
|
rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info)
|
|
{
|
|
VALUE cname = rb_obj_class(self);
|
|
VALUE str = rb_sprintf("#<%"PRIsVALUE":", cname);
|
|
|
|
again:
|
|
switch (vm_block_type(block)) {
|
|
case block_type_proc:
|
|
block = vm_proc_block(block->as.proc);
|
|
goto again;
|
|
case block_type_iseq:
|
|
{
|
|
const rb_iseq_t *iseq = rb_iseq_check(block->as.captured.code.iseq);
|
|
rb_str_catf(str, "%p@%"PRIsVALUE":%d", (void *)self,
|
|
rb_iseq_path(iseq),
|
|
FIX2INT(iseq->body->location.first_lineno));
|
|
}
|
|
break;
|
|
case block_type_symbol:
|
|
rb_str_catf(str, "%p(&%+"PRIsVALUE")", (void *)self, block->as.symbol);
|
|
break;
|
|
case block_type_ifunc:
|
|
rb_str_catf(str, "%p", (void *)block->as.captured.code.ifunc);
|
|
break;
|
|
}
|
|
|
|
if (additional_info) rb_str_cat_cstr(str, additional_info);
|
|
rb_str_cat_cstr(str, ">");
|
|
OBJ_INFECT_RAW(str, self);
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.to_s -> string
|
|
*
|
|
* Returns the unique identifier for this proc, along with
|
|
* an indication of where the proc was defined.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_to_s(VALUE self)
|
|
{
|
|
const rb_proc_t *proc;
|
|
GetProcPtr(self, proc);
|
|
return rb_block_to_s(self, &proc->block, proc->is_lambda ? " (lambda)" : NULL);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.to_proc -> proc
|
|
*
|
|
* Part of the protocol for converting objects to <code>Proc</code>
|
|
* objects. Instances of class <code>Proc</code> simply return
|
|
* themselves.
|
|
*/
|
|
|
|
static VALUE
|
|
proc_to_proc(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
static void
|
|
bm_mark(void *ptr)
|
|
{
|
|
struct METHOD *data = ptr;
|
|
rb_gc_mark(data->recv);
|
|
rb_gc_mark(data->klass);
|
|
rb_gc_mark(data->iclass);
|
|
rb_gc_mark((VALUE)data->me);
|
|
}
|
|
|
|
static size_t
|
|
bm_memsize(const void *ptr)
|
|
{
|
|
return sizeof(struct METHOD);
|
|
}
|
|
|
|
static const rb_data_type_t method_data_type = {
|
|
"method",
|
|
{
|
|
bm_mark,
|
|
RUBY_TYPED_DEFAULT_FREE,
|
|
bm_memsize,
|
|
},
|
|
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
VALUE
|
|
rb_obj_is_method(VALUE m)
|
|
{
|
|
if (rb_typeddata_is_kind_of(m, &method_data_type)) {
|
|
return Qtrue;
|
|
}
|
|
else {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
|
|
static int
|
|
respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope)
|
|
{
|
|
/* TODO: merge with obj_respond_to() */
|
|
ID rmiss = idRespond_to_missing;
|
|
|
|
if (obj == Qundef) return 0;
|
|
if (rb_method_basic_definition_p(klass, rmiss)) return 0;
|
|
return RTEST(rb_funcall(obj, rmiss, 2, sym, scope ? Qfalse : Qtrue));
|
|
}
|
|
|
|
|
|
static VALUE
|
|
mnew_missing(VALUE klass, VALUE obj, ID id, VALUE mclass)
|
|
{
|
|
struct METHOD *data;
|
|
VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
|
|
rb_method_entry_t *me;
|
|
rb_method_definition_t *def;
|
|
|
|
RB_OBJ_WRITE(method, &data->recv, obj);
|
|
RB_OBJ_WRITE(method, &data->klass, klass);
|
|
|
|
def = ZALLOC(rb_method_definition_t);
|
|
def->type = VM_METHOD_TYPE_MISSING;
|
|
def->original_id = id;
|
|
|
|
me = rb_method_entry_create(id, klass, METHOD_VISI_UNDEF, def);
|
|
|
|
RB_OBJ_WRITE(method, &data->me, me);
|
|
|
|
OBJ_INFECT(method, klass);
|
|
|
|
return method;
|
|
}
|
|
|
|
static VALUE
|
|
mnew_internal(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
|
|
VALUE obj, ID id, VALUE mclass, int scope, int error)
|
|
{
|
|
struct METHOD *data;
|
|
VALUE method;
|
|
rb_method_visibility_t visi = METHOD_VISI_UNDEF;
|
|
|
|
again:
|
|
if (UNDEFINED_METHOD_ENTRY_P(me)) {
|
|
if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) {
|
|
return mnew_missing(klass, obj, id, mclass);
|
|
}
|
|
if (!error) return Qnil;
|
|
rb_print_undef(klass, id, METHOD_VISI_UNDEF);
|
|
}
|
|
if (visi == METHOD_VISI_UNDEF) {
|
|
visi = METHOD_ENTRY_VISI(me);
|
|
if (scope && (visi != METHOD_VISI_PUBLIC)) {
|
|
if (!error) return Qnil;
|
|
rb_print_inaccessible(klass, id, visi);
|
|
}
|
|
}
|
|
if (me->def->type == VM_METHOD_TYPE_ZSUPER) {
|
|
if (me->defined_class) {
|
|
VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->defined_class));
|
|
id = me->def->original_id;
|
|
me = (rb_method_entry_t *)rb_callable_method_entry_without_refinements(klass, id, &iclass);
|
|
}
|
|
else {
|
|
VALUE klass = RCLASS_SUPER(me->owner);
|
|
id = me->def->original_id;
|
|
me = rb_method_entry_without_refinements(klass, id, &iclass);
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
|
|
|
|
RB_OBJ_WRITE(method, &data->recv, obj);
|
|
RB_OBJ_WRITE(method, &data->klass, klass);
|
|
RB_OBJ_WRITE(method, &data->iclass, iclass);
|
|
RB_OBJ_WRITE(method, &data->me, me);
|
|
|
|
OBJ_INFECT(method, klass);
|
|
return method;
|
|
}
|
|
|
|
static VALUE
|
|
mnew_from_me(const rb_method_entry_t *me, VALUE klass, VALUE iclass,
|
|
VALUE obj, ID id, VALUE mclass, int scope)
|
|
{
|
|
return mnew_internal(me, klass, iclass, obj, id, mclass, scope, TRUE);
|
|
}
|
|
|
|
static VALUE
|
|
mnew(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope)
|
|
{
|
|
const rb_method_entry_t *me;
|
|
VALUE iclass = Qnil;
|
|
|
|
if (obj == Qundef) { /* UnboundMethod */
|
|
me = rb_method_entry_without_refinements(klass, id, &iclass);
|
|
}
|
|
else {
|
|
me = (rb_method_entry_t *)rb_callable_method_entry_without_refinements(klass, id, &iclass);
|
|
}
|
|
return mnew_from_me(me, klass, iclass, obj, id, mclass, scope);
|
|
}
|
|
|
|
static inline VALUE
|
|
method_entry_defined_class(const rb_method_entry_t *me)
|
|
{
|
|
VALUE defined_class = me->defined_class;
|
|
return defined_class ? defined_class : me->owner;
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Document-class: Method
|
|
*
|
|
* Method objects are created by <code>Object#method</code>, and are
|
|
* associated with a particular object (not just with a class). They
|
|
* may be used to invoke the method within the object, and as a block
|
|
* associated with an iterator. They may also be unbound from one
|
|
* object (creating an <code>UnboundMethod</code>) and bound to
|
|
* another.
|
|
*
|
|
* class Thing
|
|
* def square(n)
|
|
* n*n
|
|
* end
|
|
* end
|
|
* thing = Thing.new
|
|
* meth = thing.method(:square)
|
|
*
|
|
* meth.call(9) #=> 81
|
|
* [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.eql?(other_meth) -> true or false
|
|
* meth == other_meth -> true or false
|
|
*
|
|
* Two method objects are equal if they are bound to the same
|
|
* object and refer to the same method definition and their owners are the
|
|
* same class or module.
|
|
*/
|
|
|
|
static VALUE
|
|
method_eq(VALUE method, VALUE other)
|
|
{
|
|
struct METHOD *m1, *m2;
|
|
VALUE klass1, klass2;
|
|
|
|
if (!rb_obj_is_method(other))
|
|
return Qfalse;
|
|
if (CLASS_OF(method) != CLASS_OF(other))
|
|
return Qfalse;
|
|
|
|
Check_TypedStruct(method, &method_data_type);
|
|
m1 = (struct METHOD *)DATA_PTR(method);
|
|
m2 = (struct METHOD *)DATA_PTR(other);
|
|
|
|
klass1 = method_entry_defined_class(m1->me);
|
|
klass2 = method_entry_defined_class(m2->me);
|
|
|
|
if (!rb_method_entry_eq(m1->me, m2->me) ||
|
|
klass1 != klass2 ||
|
|
m1->klass != m2->klass ||
|
|
m1->recv != m2->recv) {
|
|
return Qfalse;
|
|
}
|
|
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.hash -> integer
|
|
*
|
|
* Returns a hash value corresponding to the method object.
|
|
*
|
|
* See also Object#hash.
|
|
*/
|
|
|
|
static VALUE
|
|
method_hash(VALUE method)
|
|
{
|
|
struct METHOD *m;
|
|
st_index_t hash;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, m);
|
|
hash = rb_hash_start((st_index_t)m->recv);
|
|
hash = rb_hash_method_entry(hash, m->me);
|
|
hash = rb_hash_end(hash);
|
|
|
|
return INT2FIX(hash);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.unbind -> unbound_method
|
|
*
|
|
* Dissociates <i>meth</i> from its current receiver. The resulting
|
|
* <code>UnboundMethod</code> can subsequently be bound to a new object
|
|
* of the same class (see <code>UnboundMethod</code>).
|
|
*/
|
|
|
|
static VALUE
|
|
method_unbind(VALUE obj)
|
|
{
|
|
VALUE method;
|
|
struct METHOD *orig, *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig);
|
|
method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD,
|
|
&method_data_type, data);
|
|
RB_OBJ_WRITE(method, &data->recv, Qundef);
|
|
RB_OBJ_WRITE(method, &data->klass, orig->klass);
|
|
RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me));
|
|
OBJ_INFECT(method, obj);
|
|
|
|
return method;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.receiver -> object
|
|
*
|
|
* Returns the bound receiver of the method object.
|
|
*/
|
|
|
|
static VALUE
|
|
method_receiver(VALUE obj)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
|
|
return data->recv;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.name -> symbol
|
|
*
|
|
* Returns the name of the method.
|
|
*/
|
|
|
|
static VALUE
|
|
method_name(VALUE obj)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
|
|
return ID2SYM(data->me->called_id);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.original_name -> symbol
|
|
*
|
|
* Returns the original name of the method.
|
|
*
|
|
* class C
|
|
* def foo; end
|
|
* alias bar foo
|
|
* end
|
|
* C.instance_method(:bar).original_name # => :foo
|
|
*/
|
|
|
|
static VALUE
|
|
method_original_name(VALUE obj)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
|
|
return ID2SYM(data->me->def->original_id);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.owner -> class_or_module
|
|
*
|
|
* Returns the class or module that defines the method.
|
|
*/
|
|
|
|
static VALUE
|
|
method_owner(VALUE obj)
|
|
{
|
|
struct METHOD *data;
|
|
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
|
|
return data->me->owner;
|
|
}
|
|
|
|
void
|
|
rb_method_name_error(VALUE klass, VALUE str)
|
|
{
|
|
#define MSG(s) rb_fstring_cstr("undefined method `%1$s' for"s" `%2$s'")
|
|
VALUE c = klass;
|
|
VALUE s;
|
|
|
|
if (FL_TEST(c, FL_SINGLETON)) {
|
|
VALUE obj = rb_ivar_get(klass, attached);
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_MODULE:
|
|
case T_CLASS:
|
|
c = obj;
|
|
s = MSG("");
|
|
}
|
|
goto normal_class;
|
|
}
|
|
else if (RB_TYPE_P(c, T_MODULE)) {
|
|
s = MSG(" module");
|
|
}
|
|
else {
|
|
normal_class:
|
|
s = MSG(" class");
|
|
}
|
|
rb_name_err_raise_str(s, c, str);
|
|
#undef MSG
|
|
}
|
|
|
|
static VALUE
|
|
obj_method(VALUE obj, VALUE vid, int scope)
|
|
{
|
|
ID id = rb_check_id(&vid);
|
|
const VALUE klass = CLASS_OF(obj);
|
|
const VALUE mclass = rb_cMethod;
|
|
|
|
if (!id) {
|
|
if (respond_to_missing_p(klass, obj, vid, scope)) {
|
|
id = rb_intern_str(vid);
|
|
return mnew_missing(klass, obj, id, mclass);
|
|
}
|
|
rb_method_name_error(klass, vid);
|
|
}
|
|
return mnew(klass, obj, id, mclass, scope);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.method(sym) -> method
|
|
*
|
|
* Looks up the named method as a receiver in <i>obj</i>, returning a
|
|
* <code>Method</code> object (or raising <code>NameError</code>). The
|
|
* <code>Method</code> object acts as a closure in <i>obj</i>'s object
|
|
* instance, so instance variables and the value of <code>self</code>
|
|
* remain available.
|
|
*
|
|
* class Demo
|
|
* def initialize(n)
|
|
* @iv = n
|
|
* end
|
|
* def hello()
|
|
* "Hello, @iv = #{@iv}"
|
|
* end
|
|
* end
|
|
*
|
|
* k = Demo.new(99)
|
|
* m = k.method(:hello)
|
|
* m.call #=> "Hello, @iv = 99"
|
|
*
|
|
* l = Demo.new('Fred')
|
|
* m = l.method("hello")
|
|
* m.call #=> "Hello, @iv = Fred"
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_method(VALUE obj, VALUE vid)
|
|
{
|
|
return obj_method(obj, vid, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.public_method(sym) -> method
|
|
*
|
|
* Similar to _method_, searches public method only.
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_public_method(VALUE obj, VALUE vid)
|
|
{
|
|
return obj_method(obj, vid, TRUE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.singleton_method(sym) -> method
|
|
*
|
|
* Similar to _method_, searches singleton method only.
|
|
*
|
|
* class Demo
|
|
* def initialize(n)
|
|
* @iv = n
|
|
* end
|
|
* def hello()
|
|
* "Hello, @iv = #{@iv}"
|
|
* end
|
|
* end
|
|
*
|
|
* k = Demo.new(99)
|
|
* def k.hi
|
|
* "Hi, @iv = #{@iv}"
|
|
* end
|
|
* m = k.singleton_method(:hi)
|
|
* m.call #=> "Hi, @iv = 99"
|
|
* m = k.singleton_method(:hello) #=> NameError
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_singleton_method(VALUE obj, VALUE vid)
|
|
{
|
|
const rb_method_entry_t *me;
|
|
VALUE klass = rb_singleton_class_get(obj);
|
|
ID id = rb_check_id(&vid);
|
|
|
|
if (NIL_P(klass) || NIL_P(klass = RCLASS_ORIGIN(klass))) {
|
|
undef:
|
|
rb_name_err_raise("undefined singleton method `%1$s' for `%2$s'",
|
|
obj, vid);
|
|
}
|
|
if (!id) {
|
|
if (respond_to_missing_p(klass, obj, vid, FALSE)) {
|
|
id = rb_intern_str(vid);
|
|
return mnew_missing(klass, obj, id, rb_cMethod);
|
|
}
|
|
goto undef;
|
|
}
|
|
me = rb_method_entry_at(klass, id);
|
|
if (UNDEFINED_METHOD_ENTRY_P(me) ||
|
|
UNDEFINED_REFINED_METHOD_P(me->def)) {
|
|
vid = ID2SYM(id);
|
|
goto undef;
|
|
}
|
|
return mnew_from_me(me, klass, klass, obj, id, rb_cMethod, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.instance_method(symbol) -> unbound_method
|
|
*
|
|
* Returns an +UnboundMethod+ representing the given
|
|
* instance method in _mod_.
|
|
*
|
|
* class Interpreter
|
|
* def do_a() print "there, "; end
|
|
* def do_d() print "Hello "; end
|
|
* def do_e() print "!\n"; end
|
|
* def do_v() print "Dave"; end
|
|
* Dispatcher = {
|
|
* "a" => instance_method(:do_a),
|
|
* "d" => instance_method(:do_d),
|
|
* "e" => instance_method(:do_e),
|
|
* "v" => instance_method(:do_v)
|
|
* }
|
|
* def interpret(string)
|
|
* string.each_char {|b| Dispatcher[b].bind(self).call }
|
|
* end
|
|
* end
|
|
*
|
|
* interpreter = Interpreter.new
|
|
* interpreter.interpret('dave')
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* Hello there, Dave!
|
|
*/
|
|
|
|
static VALUE
|
|
rb_mod_instance_method(VALUE mod, VALUE vid)
|
|
{
|
|
ID id = rb_check_id(&vid);
|
|
if (!id) {
|
|
rb_method_name_error(mod, vid);
|
|
}
|
|
return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* mod.public_instance_method(symbol) -> unbound_method
|
|
*
|
|
* Similar to _instance_method_, searches public method only.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_mod_public_instance_method(VALUE mod, VALUE vid)
|
|
{
|
|
ID id = rb_check_id(&vid);
|
|
if (!id) {
|
|
rb_method_name_error(mod, vid);
|
|
}
|
|
return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* define_method(symbol, method) -> symbol
|
|
* define_method(symbol) { block } -> symbol
|
|
*
|
|
* Defines an instance method in the receiver. The _method_
|
|
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
|
|
* If a block is specified, it is used as the method body. This block
|
|
* is evaluated using <code>instance_eval</code>, a point that is
|
|
* tricky to demonstrate because <code>define_method</code> is private.
|
|
* (This is why we resort to the +send+ hack in this example.)
|
|
*
|
|
* class A
|
|
* def fred
|
|
* puts "In Fred"
|
|
* end
|
|
* def create_method(name, &block)
|
|
* self.class.send(:define_method, name, &block)
|
|
* end
|
|
* define_method(:wilma) { puts "Charge it!" }
|
|
* end
|
|
* class B < A
|
|
* define_method(:barney, instance_method(:fred))
|
|
* end
|
|
* a = B.new
|
|
* a.barney
|
|
* a.wilma
|
|
* a.create_method(:betty) { p self }
|
|
* a.betty
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* In Fred
|
|
* Charge it!
|
|
* #<B:0x401b39e8>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
|
|
{
|
|
ID id;
|
|
VALUE body;
|
|
VALUE name;
|
|
const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
|
|
const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
|
|
const rb_scope_visibility_t *scope_visi = &default_scope_visi;
|
|
int is_method = FALSE;
|
|
|
|
if (cref) {
|
|
scope_visi = CREF_SCOPE_VISI(cref);
|
|
}
|
|
|
|
rb_check_arity(argc, 1, 2);
|
|
name = argv[0];
|
|
id = rb_check_id(&name);
|
|
if (argc == 1) {
|
|
#if PROC_NEW_REQUIRES_BLOCK
|
|
body = rb_block_lambda();
|
|
#else
|
|
const rb_execution_context_t *ec = GET_EC();
|
|
VALUE block_handler = rb_vm_frame_block_handler(ec->cfp);
|
|
if (block_handler == VM_BLOCK_HANDLER_NONE) rb_raise(rb_eArgError, proc_without_block);
|
|
|
|
switch (vm_block_handler_type(block_handler)) {
|
|
case block_handler_type_proc:
|
|
body = VM_BH_TO_PROC(block_handler);
|
|
break;
|
|
case block_handler_type_symbol:
|
|
body = rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler));
|
|
break;
|
|
case block_handler_type_iseq:
|
|
case block_handler_type_ifunc:
|
|
body = rb_vm_make_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), rb_cProc);
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
body = argv[1];
|
|
|
|
if (rb_obj_is_method(body)) {
|
|
is_method = TRUE;
|
|
}
|
|
else if (rb_obj_is_proc(body)) {
|
|
is_method = FALSE;
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError,
|
|
"wrong argument type %s (expected Proc/Method)",
|
|
rb_obj_classname(body));
|
|
}
|
|
}
|
|
if (!id) id = rb_to_id(name);
|
|
|
|
if (is_method) {
|
|
struct METHOD *method = (struct METHOD *)DATA_PTR(body);
|
|
if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
|
|
!RTEST(rb_class_inherited_p(mod, method->me->owner))) {
|
|
if (FL_TEST(method->me->owner, FL_SINGLETON)) {
|
|
rb_raise(rb_eTypeError,
|
|
"can't bind singleton method to a different class");
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError,
|
|
"bind argument must be a subclass of % "PRIsVALUE,
|
|
method->me->owner);
|
|
}
|
|
}
|
|
rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
|
|
if (scope_visi->module_func) {
|
|
rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
|
|
}
|
|
RB_GC_GUARD(body);
|
|
}
|
|
else {
|
|
VALUE procval = rb_proc_dup(body);
|
|
if (vm_proc_iseq(procval) != NULL) {
|
|
rb_proc_t *proc;
|
|
GetProcPtr(procval, proc);
|
|
proc->is_lambda = TRUE;
|
|
proc->is_from_method = TRUE;
|
|
}
|
|
rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi);
|
|
if (scope_visi->module_func) {
|
|
rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
|
|
}
|
|
}
|
|
|
|
return ID2SYM(id);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* define_singleton_method(symbol, method) -> symbol
|
|
* define_singleton_method(symbol) { block } -> symbol
|
|
*
|
|
* Defines a singleton method in the receiver. The _method_
|
|
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
|
|
* If a block is specified, it is used as the method body.
|
|
*
|
|
* class A
|
|
* class << self
|
|
* def class_name
|
|
* to_s
|
|
* end
|
|
* end
|
|
* end
|
|
* A.define_singleton_method(:who_am_i) do
|
|
* "I am: #{class_name}"
|
|
* end
|
|
* A.who_am_i # ==> "I am: A"
|
|
*
|
|
* guy = "Bob"
|
|
* guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
|
|
* guy.hello #=> "Bob: Hello there!"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE klass = rb_singleton_class(obj);
|
|
|
|
return rb_mod_define_method(argc, argv, klass);
|
|
}
|
|
|
|
/*
|
|
* define_method(symbol, method) -> symbol
|
|
* define_method(symbol) { block } -> symbol
|
|
*
|
|
* Defines a global function by _method_ or the block.
|
|
*/
|
|
|
|
static VALUE
|
|
top_define_method(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
VALUE klass;
|
|
|
|
klass = th->top_wrapper;
|
|
if (klass) {
|
|
rb_warning("main.define_method in the wrapped load is effective only in wrapper module");
|
|
}
|
|
else {
|
|
klass = rb_cObject;
|
|
}
|
|
return rb_mod_define_method(argc, argv, klass);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* method.clone -> new_method
|
|
*
|
|
* Returns a clone of this method.
|
|
*
|
|
* class A
|
|
* def foo
|
|
* return "bar"
|
|
* end
|
|
* end
|
|
*
|
|
* m = A.new.method(:foo)
|
|
* m.call # => "bar"
|
|
* n = m.clone.call # => "bar"
|
|
*/
|
|
|
|
static VALUE
|
|
method_clone(VALUE self)
|
|
{
|
|
VALUE clone;
|
|
struct METHOD *orig, *data;
|
|
|
|
TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
|
|
clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
|
|
CLONESETUP(clone, self);
|
|
RB_OBJ_WRITE(clone, &data->recv, orig->recv);
|
|
RB_OBJ_WRITE(clone, &data->klass, orig->klass);
|
|
RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me));
|
|
return clone;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.call(args, ...) -> obj
|
|
* meth[args, ...] -> obj
|
|
*
|
|
* Invokes the <i>meth</i> with the specified arguments, returning the
|
|
* method's return value.
|
|
*
|
|
* m = 12.method("+")
|
|
* m.call(3) #=> 15
|
|
* m.call(20) #=> 32
|
|
*/
|
|
|
|
VALUE
|
|
rb_method_call(int argc, const VALUE *argv, VALUE method)
|
|
{
|
|
VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil;
|
|
return rb_method_call_with_block(argc, argv, method, procval);
|
|
}
|
|
|
|
static const rb_callable_method_entry_t *
|
|
method_callable_method_entry(const struct METHOD *data)
|
|
{
|
|
if (data->me->defined_class == 0) rb_bug("method_callable_method_entry: not callable.");
|
|
return (const rb_callable_method_entry_t *)data->me;
|
|
}
|
|
|
|
static inline VALUE
|
|
call_method_data(rb_execution_context_t *ec, const struct METHOD *data,
|
|
int argc, const VALUE *argv, VALUE passed_procval)
|
|
{
|
|
vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval));
|
|
return rb_vm_call(ec, data->recv, data->me->called_id, argc, argv,
|
|
method_callable_method_entry(data));
|
|
}
|
|
|
|
static VALUE
|
|
call_method_data_safe(rb_execution_context_t *ec, const struct METHOD *data,
|
|
int argc, const VALUE *argv, VALUE passed_procval,
|
|
int safe)
|
|
{
|
|
VALUE result = Qnil; /* OK */
|
|
enum ruby_tag_type state;
|
|
|
|
EC_PUSH_TAG(ec);
|
|
if ((state = EC_EXEC_TAG()) == TAG_NONE) {
|
|
/* result is used only if state == 0, no exceptions is caught. */
|
|
/* otherwise it doesn't matter even if clobbered. */
|
|
NO_CLOBBERED(result) = call_method_data(ec, data, argc, argv, passed_procval);
|
|
}
|
|
EC_POP_TAG();
|
|
rb_set_safe_level_force(safe);
|
|
if (state)
|
|
EC_JUMP_TAG(ec, state);
|
|
return result;
|
|
}
|
|
|
|
VALUE
|
|
rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE passed_procval)
|
|
{
|
|
const struct METHOD *data;
|
|
rb_execution_context_t *ec = GET_EC();
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
if (data->recv == Qundef) {
|
|
rb_raise(rb_eTypeError, "can't call unbound method; bind first");
|
|
}
|
|
if (OBJ_TAINTED(method)) {
|
|
const int safe_level_to_run = RUBY_SAFE_LEVEL_MAX;
|
|
int safe = rb_safe_level();
|
|
if (safe < safe_level_to_run) {
|
|
rb_set_safe_level_force(safe_level_to_run);
|
|
return call_method_data_safe(ec, data, argc, argv, passed_procval, safe);
|
|
}
|
|
}
|
|
return call_method_data(ec, data, argc, argv, passed_procval);
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Document-class: UnboundMethod
|
|
*
|
|
* Ruby supports two forms of objectified methods. Class
|
|
* <code>Method</code> is used to represent methods that are associated
|
|
* with a particular object: these method objects are bound to that
|
|
* object. Bound method objects for an object can be created using
|
|
* <code>Object#method</code>.
|
|
*
|
|
* Ruby also supports unbound methods; methods objects that are not
|
|
* associated with a particular object. These can be created either by
|
|
* calling <code>Module#instance_method</code> or by calling
|
|
* <code>unbind</code> on a bound method object. The result of both of
|
|
* these is an <code>UnboundMethod</code> object.
|
|
*
|
|
* Unbound methods can only be called after they are bound to an
|
|
* object. That object must be a kind_of? the method's original
|
|
* class.
|
|
*
|
|
* class Square
|
|
* def area
|
|
* @side * @side
|
|
* end
|
|
* def initialize(side)
|
|
* @side = side
|
|
* end
|
|
* end
|
|
*
|
|
* area_un = Square.instance_method(:area)
|
|
*
|
|
* s = Square.new(12)
|
|
* area = area_un.bind(s)
|
|
* area.call #=> 144
|
|
*
|
|
* Unbound methods are a reference to the method at the time it was
|
|
* objectified: subsequent changes to the underlying class will not
|
|
* affect the unbound method.
|
|
*
|
|
* class Test
|
|
* def test
|
|
* :original
|
|
* end
|
|
* end
|
|
* um = Test.instance_method(:test)
|
|
* class Test
|
|
* def test
|
|
* :modified
|
|
* end
|
|
* end
|
|
* t = Test.new
|
|
* t.test #=> :modified
|
|
* um.bind(t).call #=> :original
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* call-seq:
|
|
* umeth.bind(obj) -> method
|
|
*
|
|
* Bind <i>umeth</i> to <i>obj</i>. If <code>Klass</code> was the class
|
|
* from which <i>umeth</i> was obtained,
|
|
* <code>obj.kind_of?(Klass)</code> must be true.
|
|
*
|
|
* class A
|
|
* def test
|
|
* puts "In test, class = #{self.class}"
|
|
* end
|
|
* end
|
|
* class B < A
|
|
* end
|
|
* class C < B
|
|
* end
|
|
*
|
|
*
|
|
* um = B.instance_method(:test)
|
|
* bm = um.bind(C.new)
|
|
* bm.call
|
|
* bm = um.bind(B.new)
|
|
* bm.call
|
|
* bm = um.bind(A.new)
|
|
* bm.call
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* In test, class = C
|
|
* In test, class = B
|
|
* prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
|
|
* from prog.rb:16
|
|
*/
|
|
|
|
static VALUE
|
|
umethod_bind(VALUE method, VALUE recv)
|
|
{
|
|
struct METHOD *data, *bound;
|
|
VALUE methclass, klass;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
|
|
methclass = data->me->owner;
|
|
|
|
if (!RB_TYPE_P(methclass, T_MODULE) &&
|
|
methclass != CLASS_OF(recv) && !rb_obj_is_kind_of(recv, methclass)) {
|
|
if (FL_TEST(methclass, FL_SINGLETON)) {
|
|
rb_raise(rb_eTypeError,
|
|
"singleton method called for a different object");
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE,
|
|
methclass);
|
|
}
|
|
}
|
|
|
|
klass = CLASS_OF(recv);
|
|
|
|
method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound);
|
|
RB_OBJ_WRITE(method, &bound->recv, recv);
|
|
RB_OBJ_WRITE(method, &bound->klass, data->klass);
|
|
RB_OBJ_WRITE(method, &bound->me, rb_method_entry_clone(data->me));
|
|
|
|
if (RB_TYPE_P(bound->me->owner, T_MODULE)) {
|
|
VALUE ic = rb_class_search_ancestor(klass, bound->me->owner);
|
|
if (ic) {
|
|
klass = ic;
|
|
}
|
|
else {
|
|
klass = rb_include_class_new(methclass, klass);
|
|
}
|
|
RB_OBJ_WRITE(method, &bound->me, rb_method_entry_complement_defined_class(bound->me, bound->me->called_id, klass));
|
|
}
|
|
|
|
return method;
|
|
}
|
|
|
|
/*
|
|
* Returns the number of required parameters and stores the maximum
|
|
* number of parameters in max, or UNLIMITED_ARGUMENTS
|
|
* if there is no maximum.
|
|
*/
|
|
static int
|
|
rb_method_entry_min_max_arity(const rb_method_entry_t *me, int *max)
|
|
{
|
|
const rb_method_definition_t *def = me->def;
|
|
|
|
again:
|
|
if (!def) return *max = 0;
|
|
switch (def->type) {
|
|
case VM_METHOD_TYPE_CFUNC:
|
|
if (def->body.cfunc.argc < 0) {
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
}
|
|
return *max = check_argc(def->body.cfunc.argc);
|
|
case VM_METHOD_TYPE_ZSUPER:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
case VM_METHOD_TYPE_ATTRSET:
|
|
return *max = 1;
|
|
case VM_METHOD_TYPE_IVAR:
|
|
return *max = 0;
|
|
case VM_METHOD_TYPE_ALIAS:
|
|
def = def->body.alias.original_me->def;
|
|
goto again;
|
|
case VM_METHOD_TYPE_BMETHOD:
|
|
return rb_proc_min_max_arity(def->body.proc, max);
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
return rb_iseq_min_max_arity(rb_iseq_check(def->body.iseq.iseqptr), max);
|
|
case VM_METHOD_TYPE_UNDEF:
|
|
case VM_METHOD_TYPE_NOTIMPLEMENTED:
|
|
return *max = 0;
|
|
case VM_METHOD_TYPE_MISSING:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
case VM_METHOD_TYPE_OPTIMIZED: {
|
|
switch (def->body.optimize_type) {
|
|
case OPTIMIZED_METHOD_TYPE_SEND:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
case OPTIMIZED_METHOD_TYPE_CALL:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
case OPTIMIZED_METHOD_TYPE_BLOCK_CALL:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case VM_METHOD_TYPE_REFINED:
|
|
*max = UNLIMITED_ARGUMENTS;
|
|
return 0;
|
|
}
|
|
rb_bug("rb_method_entry_min_max_arity: invalid method entry type (%d)", def->type);
|
|
UNREACHABLE;
|
|
}
|
|
|
|
int
|
|
rb_method_entry_arity(const rb_method_entry_t *me)
|
|
{
|
|
int max, min = rb_method_entry_min_max_arity(me, &max);
|
|
return min == max ? min : -min-1;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.arity -> integer
|
|
*
|
|
* Returns an indication of the number of arguments accepted by a
|
|
* method. Returns a nonnegative integer for methods that take a fixed
|
|
* number of arguments. For Ruby methods that take a variable number of
|
|
* arguments, returns -n-1, where n is the number of required arguments.
|
|
* Keyword arguments will be considered as a single additional argument,
|
|
* that argument being mandatory if any keyword argument is mandatory.
|
|
* For methods written in C, returns -1 if the call takes a
|
|
* variable number of arguments.
|
|
*
|
|
* class C
|
|
* def one; end
|
|
* def two(a); end
|
|
* def three(*a); end
|
|
* def four(a, b); end
|
|
* def five(a, b, *c); end
|
|
* def six(a, b, *c, &d); end
|
|
* def seven(a, b, x:0); end
|
|
* def eight(x:, y:); end
|
|
* def nine(x:, y:, **z); end
|
|
* def ten(*a, x:, y:); end
|
|
* end
|
|
* c = C.new
|
|
* c.method(:one).arity #=> 0
|
|
* c.method(:two).arity #=> 1
|
|
* c.method(:three).arity #=> -1
|
|
* c.method(:four).arity #=> 2
|
|
* c.method(:five).arity #=> -3
|
|
* c.method(:six).arity #=> -3
|
|
* c.method(:seven).arity #=> -3
|
|
* c.method(:eight).arity #=> 1
|
|
* c.method(:nine).arity #=> 1
|
|
* c.method(:ten).arity #=> -2
|
|
*
|
|
* "cat".method(:size).arity #=> 0
|
|
* "cat".method(:replace).arity #=> 1
|
|
* "cat".method(:squeeze).arity #=> -1
|
|
* "cat".method(:count).arity #=> -1
|
|
*/
|
|
|
|
static VALUE
|
|
method_arity_m(VALUE method)
|
|
{
|
|
int n = method_arity(method);
|
|
return INT2FIX(n);
|
|
}
|
|
|
|
static int
|
|
method_arity(VALUE method)
|
|
{
|
|
struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
return rb_method_entry_arity(data->me);
|
|
}
|
|
|
|
static const rb_method_entry_t *
|
|
original_method_entry(VALUE mod, ID id)
|
|
{
|
|
const rb_method_entry_t *me;
|
|
|
|
while ((me = rb_method_entry(mod, id)) != 0) {
|
|
const rb_method_definition_t *def = me->def;
|
|
if (def->type != VM_METHOD_TYPE_ZSUPER) break;
|
|
mod = RCLASS_SUPER(me->owner);
|
|
id = def->original_id;
|
|
}
|
|
return me;
|
|
}
|
|
|
|
static int
|
|
method_min_max_arity(VALUE method, int *max)
|
|
{
|
|
const struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
return rb_method_entry_min_max_arity(data->me, max);
|
|
}
|
|
|
|
int
|
|
rb_mod_method_arity(VALUE mod, ID id)
|
|
{
|
|
const rb_method_entry_t *me = original_method_entry(mod, id);
|
|
if (!me) return 0; /* should raise? */
|
|
return rb_method_entry_arity(me);
|
|
}
|
|
|
|
int
|
|
rb_obj_method_arity(VALUE obj, ID id)
|
|
{
|
|
return rb_mod_method_arity(CLASS_OF(obj), id);
|
|
}
|
|
|
|
static inline const rb_method_definition_t *
|
|
method_def(VALUE method)
|
|
{
|
|
const struct METHOD *data;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
return data->me->def;
|
|
}
|
|
|
|
static const rb_iseq_t *
|
|
method_def_iseq(const rb_method_definition_t *def)
|
|
{
|
|
switch (def->type) {
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
return rb_iseq_check(def->body.iseq.iseqptr);
|
|
case VM_METHOD_TYPE_BMETHOD:
|
|
return rb_proc_get_iseq(def->body.proc, 0);
|
|
case VM_METHOD_TYPE_ALIAS:
|
|
return method_def_iseq(def->body.alias.original_me->def);
|
|
case VM_METHOD_TYPE_CFUNC:
|
|
case VM_METHOD_TYPE_ATTRSET:
|
|
case VM_METHOD_TYPE_IVAR:
|
|
case VM_METHOD_TYPE_ZSUPER:
|
|
case VM_METHOD_TYPE_UNDEF:
|
|
case VM_METHOD_TYPE_NOTIMPLEMENTED:
|
|
case VM_METHOD_TYPE_OPTIMIZED:
|
|
case VM_METHOD_TYPE_MISSING:
|
|
case VM_METHOD_TYPE_REFINED:
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
const rb_iseq_t *
|
|
rb_method_iseq(VALUE method)
|
|
{
|
|
return method_def_iseq(method_def(method));
|
|
}
|
|
|
|
static const rb_cref_t *
|
|
method_cref(VALUE method)
|
|
{
|
|
const rb_method_definition_t *def = method_def(method);
|
|
|
|
again:
|
|
switch (def->type) {
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
return def->body.iseq.cref;
|
|
case VM_METHOD_TYPE_ALIAS:
|
|
def = def->body.alias.original_me->def;
|
|
goto again;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
method_def_location(const rb_method_definition_t *def)
|
|
{
|
|
if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) {
|
|
if (!def->body.attr.location)
|
|
return Qnil;
|
|
return rb_ary_dup(def->body.attr.location);
|
|
}
|
|
return iseq_location(method_def_iseq(def));
|
|
}
|
|
|
|
VALUE
|
|
rb_method_entry_location(const rb_method_entry_t *me)
|
|
{
|
|
if (!me) return Qnil;
|
|
return method_def_location(me->def);
|
|
}
|
|
|
|
VALUE
|
|
rb_mod_method_location(VALUE mod, ID id)
|
|
{
|
|
const rb_method_entry_t *me = original_method_entry(mod, id);
|
|
return rb_method_entry_location(me);
|
|
}
|
|
|
|
VALUE
|
|
rb_obj_method_location(VALUE obj, ID id)
|
|
{
|
|
return rb_mod_method_location(CLASS_OF(obj), id);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.source_location -> [String, Integer]
|
|
*
|
|
* Returns the Ruby source filename and line number containing this method
|
|
* or nil if this method was not defined in Ruby (i.e. native).
|
|
*/
|
|
|
|
VALUE
|
|
rb_method_location(VALUE method)
|
|
{
|
|
return method_def_location(method_def(method));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.parameters -> array
|
|
*
|
|
* Returns the parameter information of this method.
|
|
*
|
|
* def foo(bar); end
|
|
* method(:foo).parameters #=> [[:req, :bar]]
|
|
*
|
|
* def foo(bar, baz, bat, &blk); end
|
|
* method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]]
|
|
*
|
|
* def foo(bar, *args); end
|
|
* method(:foo).parameters #=> [[:req, :bar], [:rest, :args]]
|
|
*
|
|
* def foo(bar, baz, *args, &blk); end
|
|
* method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_method_parameters(VALUE method)
|
|
{
|
|
const rb_iseq_t *iseq = rb_method_iseq(method);
|
|
if (!iseq) {
|
|
return rb_unnamed_parameters(method_arity(method));
|
|
}
|
|
return rb_iseq_parameters(iseq, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.to_s -> string
|
|
* meth.inspect -> string
|
|
*
|
|
* Returns the name of the underlying method.
|
|
*
|
|
* "cat".method(:count).inspect #=> "#<Method: String#count>"
|
|
*/
|
|
|
|
static VALUE
|
|
method_inspect(VALUE method)
|
|
{
|
|
struct METHOD *data;
|
|
VALUE str;
|
|
const char *sharp = "#";
|
|
VALUE mklass;
|
|
VALUE defined_class;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method));
|
|
OBJ_INFECT_RAW(str, method);
|
|
|
|
mklass = data->klass;
|
|
|
|
if (data->me->def->type == VM_METHOD_TYPE_ALIAS) {
|
|
defined_class = data->me->def->body.alias.original_me->owner;
|
|
}
|
|
else {
|
|
defined_class = method_entry_defined_class(data->me);
|
|
}
|
|
|
|
if (RB_TYPE_P(defined_class, T_ICLASS)) {
|
|
defined_class = RBASIC_CLASS(defined_class);
|
|
}
|
|
|
|
if (FL_TEST(mklass, FL_SINGLETON)) {
|
|
VALUE v = rb_ivar_get(mklass, attached);
|
|
|
|
if (data->recv == Qundef) {
|
|
rb_str_buf_append(str, rb_inspect(mklass));
|
|
}
|
|
else if (data->recv == v) {
|
|
rb_str_buf_append(str, rb_inspect(v));
|
|
sharp = ".";
|
|
}
|
|
else {
|
|
rb_str_buf_append(str, rb_inspect(data->recv));
|
|
rb_str_buf_cat2(str, "(");
|
|
rb_str_buf_append(str, rb_inspect(v));
|
|
rb_str_buf_cat2(str, ")");
|
|
sharp = ".";
|
|
}
|
|
}
|
|
else {
|
|
rb_str_buf_append(str, rb_inspect(mklass));
|
|
if (defined_class != mklass) {
|
|
rb_str_catf(str, "(% "PRIsVALUE")", defined_class);
|
|
}
|
|
}
|
|
rb_str_buf_cat2(str, sharp);
|
|
rb_str_append(str, rb_id2str(data->me->called_id));
|
|
if (data->me->called_id != data->me->def->original_id) {
|
|
rb_str_catf(str, "(%"PRIsVALUE")",
|
|
rb_id2str(data->me->def->original_id));
|
|
}
|
|
if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
|
|
rb_str_buf_cat2(str, " (not-implemented)");
|
|
}
|
|
rb_str_buf_cat2(str, ">");
|
|
|
|
return str;
|
|
}
|
|
|
|
static VALUE
|
|
mproc(VALUE method)
|
|
{
|
|
return rb_funcallv(rb_mRubyVMFrozenCore, idProc, 0, 0);
|
|
}
|
|
|
|
static VALUE
|
|
mlambda(VALUE method)
|
|
{
|
|
return rb_funcallv(rb_mRubyVMFrozenCore, idLambda, 0, 0);
|
|
}
|
|
|
|
static VALUE
|
|
bmcall(VALUE args, VALUE method, int argc, VALUE *argv, VALUE passed_proc)
|
|
{
|
|
return rb_method_call_with_block(argc, argv, method, passed_proc);
|
|
}
|
|
|
|
VALUE
|
|
rb_proc_new(
|
|
VALUE (*func)(ANYARGS), /* VALUE yieldarg[, VALUE procarg] */
|
|
VALUE val)
|
|
{
|
|
VALUE procval = rb_iterate(mproc, 0, func, val);
|
|
return procval;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.to_proc -> proc
|
|
*
|
|
* Returns a <code>Proc</code> object corresponding to this method.
|
|
*/
|
|
|
|
static VALUE
|
|
method_to_proc(VALUE method)
|
|
{
|
|
VALUE procval;
|
|
rb_proc_t *proc;
|
|
|
|
/*
|
|
* class Method
|
|
* def to_proc
|
|
* lambda{|*args|
|
|
* self.call(*args)
|
|
* }
|
|
* end
|
|
* end
|
|
*/
|
|
procval = rb_iterate(mlambda, 0, bmcall, method);
|
|
GetProcPtr(procval, proc);
|
|
proc->is_from_method = 1;
|
|
return procval;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.super_method -> method
|
|
*
|
|
* Returns a Method of superclass which would be called when super is used
|
|
* or nil if there is no method on superclass.
|
|
*/
|
|
|
|
static VALUE
|
|
method_super_method(VALUE method)
|
|
{
|
|
const struct METHOD *data;
|
|
VALUE super_class, iclass;
|
|
ID mid;
|
|
const rb_method_entry_t *me;
|
|
|
|
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
|
|
iclass = data->iclass;
|
|
if (!iclass) return Qnil;
|
|
super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass));
|
|
mid = data->me->called_id;
|
|
if (!super_class) return Qnil;
|
|
me = (rb_method_entry_t *)rb_callable_method_entry_without_refinements(super_class, mid, &iclass);
|
|
if (!me) return Qnil;
|
|
return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* local_jump_error.exit_value -> obj
|
|
*
|
|
* Returns the exit value associated with this +LocalJumpError+.
|
|
*/
|
|
static VALUE
|
|
localjump_xvalue(VALUE exc)
|
|
{
|
|
return rb_iv_get(exc, "@exit_value");
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* local_jump_error.reason -> symbol
|
|
*
|
|
* The reason this block was terminated:
|
|
* :break, :redo, :retry, :next, :return, or :noreason.
|
|
*/
|
|
|
|
static VALUE
|
|
localjump_reason(VALUE exc)
|
|
{
|
|
return rb_iv_get(exc, "@reason");
|
|
}
|
|
|
|
rb_cref_t *rb_vm_cref_new_toplevel(void); /* vm.c */
|
|
|
|
static const rb_env_t *
|
|
env_clone(const rb_env_t *env, const rb_cref_t *cref)
|
|
{
|
|
VALUE *new_ep;
|
|
VALUE *new_body;
|
|
const rb_env_t *new_env;
|
|
|
|
VM_ASSERT(env->ep > env->env);
|
|
VM_ASSERT(VM_ENV_ESCAPED_P(env->ep));
|
|
|
|
if (cref == NULL) {
|
|
cref = rb_vm_cref_new_toplevel();
|
|
}
|
|
|
|
new_body = ALLOC_N(VALUE, env->env_size);
|
|
MEMCPY(new_body, env->env, VALUE, env->env_size);
|
|
new_ep = &new_body[env->ep - env->env];
|
|
new_env = vm_env_new(new_ep, new_body, env->env_size, env->iseq);
|
|
RB_OBJ_WRITE(new_env, &new_ep[VM_ENV_DATA_INDEX_ME_CREF], (VALUE)cref);
|
|
VM_ASSERT(VM_ENV_ESCAPED_P(new_ep));
|
|
return new_env;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.binding -> binding
|
|
*
|
|
* Returns the binding associated with <i>prc</i>.
|
|
*
|
|
* def fred(param)
|
|
* proc {}
|
|
* end
|
|
*
|
|
* b = fred(99)
|
|
* eval("param", b.binding) #=> 99
|
|
*/
|
|
static VALUE
|
|
proc_binding(VALUE self)
|
|
{
|
|
VALUE bindval, binding_self = Qundef;
|
|
rb_binding_t *bind;
|
|
const rb_proc_t *proc;
|
|
const rb_iseq_t *iseq = NULL;
|
|
const struct rb_block *block;
|
|
const rb_env_t *env = NULL;
|
|
|
|
GetProcPtr(self, proc);
|
|
block = &proc->block;
|
|
|
|
again:
|
|
switch (vm_block_type(block)) {
|
|
case block_type_iseq:
|
|
iseq = block->as.captured.code.iseq;
|
|
binding_self = block->as.captured.self;
|
|
env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
|
|
break;
|
|
case block_type_proc:
|
|
GetProcPtr(block->as.proc, proc);
|
|
block = &proc->block;
|
|
goto again;
|
|
case block_type_symbol:
|
|
goto error;
|
|
case block_type_ifunc:
|
|
{
|
|
const struct vm_ifunc *ifunc = block->as.captured.code.ifunc;
|
|
if (IS_METHOD_PROC_IFUNC(ifunc)) {
|
|
VALUE method = (VALUE)ifunc->data;
|
|
VALUE name = rb_fstring_cstr("<empty_iseq>");
|
|
rb_iseq_t *empty;
|
|
binding_self = method_receiver(method);
|
|
iseq = rb_method_iseq(method);
|
|
env = VM_ENV_ENVVAL_PTR(block->as.captured.ep);
|
|
env = env_clone(env, method_cref(method));
|
|
/* set empty iseq */
|
|
empty = rb_iseq_new(NULL, name, name, Qnil, 0, ISEQ_TYPE_TOP);
|
|
RB_OBJ_WRITE(env, &env->iseq, empty);
|
|
break;
|
|
}
|
|
else {
|
|
error:
|
|
rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
|
|
return Qnil;
|
|
}
|
|
}
|
|
}
|
|
|
|
bindval = rb_binding_alloc(rb_cBinding);
|
|
GetBindingPtr(bindval, bind);
|
|
RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, binding_self);
|
|
RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq);
|
|
rb_vm_block_ep_update(bindval, &bind->block, env->ep);
|
|
RB_OBJ_WRITTEN(bindval, Qundef, VM_ENV_ENVVAL(env->ep));
|
|
|
|
if (iseq) {
|
|
rb_iseq_check(iseq);
|
|
RB_OBJ_WRITE(bindval, &bind->pathobj, iseq->body->location.pathobj);
|
|
bind->first_lineno = FIX2INT(rb_iseq_first_lineno(iseq));
|
|
}
|
|
else {
|
|
RB_OBJ_WRITE(bindval, &bind->pathobj,
|
|
rb_iseq_pathobj_new(rb_fstring_cstr("(binding)"), Qnil));
|
|
bind->first_lineno = 1;
|
|
}
|
|
|
|
return bindval;
|
|
}
|
|
|
|
static VALUE curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc);
|
|
|
|
static VALUE
|
|
make_curry_proc(VALUE proc, VALUE passed, VALUE arity)
|
|
{
|
|
VALUE args = rb_ary_new3(3, proc, passed, arity);
|
|
rb_proc_t *procp;
|
|
int is_lambda;
|
|
|
|
GetProcPtr(proc, procp);
|
|
is_lambda = procp->is_lambda;
|
|
rb_ary_freeze(passed);
|
|
rb_ary_freeze(args);
|
|
proc = rb_proc_new(curry, args);
|
|
GetProcPtr(proc, procp);
|
|
procp->is_lambda = is_lambda;
|
|
return proc;
|
|
}
|
|
|
|
static VALUE
|
|
curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc)
|
|
{
|
|
VALUE proc, passed, arity;
|
|
proc = RARRAY_AREF(args, 0);
|
|
passed = RARRAY_AREF(args, 1);
|
|
arity = RARRAY_AREF(args, 2);
|
|
|
|
passed = rb_ary_plus(passed, rb_ary_new4(argc, argv));
|
|
rb_ary_freeze(passed);
|
|
|
|
if (RARRAY_LEN(passed) < FIX2INT(arity)) {
|
|
if (!NIL_P(passed_proc)) {
|
|
rb_warn("given block not used");
|
|
}
|
|
arity = make_curry_proc(proc, passed, arity);
|
|
return arity;
|
|
}
|
|
else {
|
|
return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), passed_proc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* prc.curry -> a_proc
|
|
* prc.curry(arity) -> a_proc
|
|
*
|
|
* Returns a curried proc. If the optional <i>arity</i> argument is given,
|
|
* it determines the number of arguments.
|
|
* A curried proc receives some arguments. If a sufficient number of
|
|
* arguments are supplied, it passes the supplied arguments to the original
|
|
* proc and returns the result. Otherwise, returns another curried proc that
|
|
* takes the rest of arguments.
|
|
*
|
|
* b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> 6
|
|
* p b.curry(5)[1][2][3][4][5] #=> 6
|
|
* p b.curry(5)[1, 2][3, 4][5] #=> 6
|
|
* p b.curry(1)[1] #=> 1
|
|
*
|
|
* b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> 10
|
|
* p b.curry(5)[1][2][3][4][5] #=> 15
|
|
* p b.curry(5)[1, 2][3, 4][5] #=> 15
|
|
* p b.curry(1)[1] #=> 1
|
|
*
|
|
* b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> wrong number of arguments (given 4, expected 3)
|
|
* p b.curry(5) #=> wrong number of arguments (given 5, expected 3)
|
|
* p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
|
|
*
|
|
* b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
|
|
* p b.curry[1][2][3] #=> 6
|
|
* p b.curry[1, 2][3, 4] #=> 10
|
|
* p b.curry(5)[1][2][3][4][5] #=> 15
|
|
* p b.curry(5)[1, 2][3, 4][5] #=> 15
|
|
* p b.curry(1) #=> wrong number of arguments (given 1, expected 3)
|
|
*
|
|
* b = proc { :foo }
|
|
* p b.curry[] #=> :foo
|
|
*/
|
|
static VALUE
|
|
proc_curry(int argc, const VALUE *argv, VALUE self)
|
|
{
|
|
int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity);
|
|
VALUE arity;
|
|
|
|
rb_scan_args(argc, argv, "01", &arity);
|
|
if (NIL_P(arity)) {
|
|
arity = INT2FIX(min_arity);
|
|
}
|
|
else {
|
|
sarity = FIX2INT(arity);
|
|
if (rb_proc_lambda_p(self)) {
|
|
rb_check_arity(sarity, min_arity, max_arity);
|
|
}
|
|
}
|
|
|
|
return make_curry_proc(self, rb_ary_new(), arity);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* meth.curry -> proc
|
|
* meth.curry(arity) -> proc
|
|
*
|
|
* Returns a curried proc based on the method. When the proc is called with a number of
|
|
* arguments that is lower than the method's arity, then another curried proc is returned.
|
|
* Only when enough arguments have been supplied to satisfy the method signature, will the
|
|
* method actually be called.
|
|
*
|
|
* The optional <i>arity</i> argument should be supplied when currying methods with
|
|
* variable arguments to determine how many arguments are needed before the method is
|
|
* called.
|
|
*
|
|
* def foo(a,b,c)
|
|
* [a, b, c]
|
|
* end
|
|
*
|
|
* proc = self.method(:foo).curry
|
|
* proc2 = proc.call(1, 2) #=> #<Proc>
|
|
* proc2.call(3) #=> [1,2,3]
|
|
*
|
|
* def vararg(*args)
|
|
* args
|
|
* end
|
|
*
|
|
* proc = self.method(:vararg).curry(4)
|
|
* proc2 = proc.call(:x) #=> #<Proc>
|
|
* proc3 = proc2.call(:y, :z) #=> #<Proc>
|
|
* proc3.call(:a) #=> [:x, :y, :z, :a]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_method_curry(int argc, const VALUE *argv, VALUE self)
|
|
{
|
|
VALUE proc = method_to_proc(self);
|
|
return proc_curry(argc, argv, proc);
|
|
}
|
|
|
|
/*
|
|
* Document-class: LocalJumpError
|
|
*
|
|
* Raised when Ruby can't yield as requested.
|
|
*
|
|
* A typical scenario is attempting to yield when no block is given:
|
|
*
|
|
* def call_block
|
|
* yield 42
|
|
* end
|
|
* call_block
|
|
*
|
|
* <em>raises the exception:</em>
|
|
*
|
|
* LocalJumpError: no block given (yield)
|
|
*
|
|
* A more subtle example:
|
|
*
|
|
* def get_me_a_return
|
|
* Proc.new { return 42 }
|
|
* end
|
|
* get_me_a_return.call
|
|
*
|
|
* <em>raises the exception:</em>
|
|
*
|
|
* LocalJumpError: unexpected return
|
|
*/
|
|
|
|
/*
|
|
* Document-class: SystemStackError
|
|
*
|
|
* Raised in case of a stack overflow.
|
|
*
|
|
* def me_myself_and_i
|
|
* me_myself_and_i
|
|
* end
|
|
* me_myself_and_i
|
|
*
|
|
* <em>raises the exception:</em>
|
|
*
|
|
* SystemStackError: stack level too deep
|
|
*/
|
|
|
|
/*
|
|
* <code>Proc</code> objects are blocks of code that have been bound to
|
|
* a set of local variables. Once bound, the code may be called in
|
|
* different contexts and still access those variables.
|
|
*
|
|
* def gen_times(factor)
|
|
* return Proc.new {|n| n*factor }
|
|
* end
|
|
*
|
|
* times3 = gen_times(3)
|
|
* times5 = gen_times(5)
|
|
*
|
|
* times3.call(12) #=> 36
|
|
* times5.call(5) #=> 25
|
|
* times3.call(times5.call(4)) #=> 60
|
|
*
|
|
*/
|
|
|
|
void
|
|
Init_Proc(void)
|
|
{
|
|
#undef rb_intern
|
|
/* Proc */
|
|
rb_cProc = rb_define_class("Proc", rb_cObject);
|
|
rb_undef_alloc_func(rb_cProc);
|
|
rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1);
|
|
|
|
rb_add_method(rb_cProc, idCall, VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
|
|
rb_add_method(rb_cProc, rb_intern("[]"), VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
|
|
rb_add_method(rb_cProc, rb_intern("==="), VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
|
|
rb_add_method(rb_cProc, rb_intern("yield"), VM_METHOD_TYPE_OPTIMIZED,
|
|
(void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC);
|
|
|
|
#if 0 /* for RDoc */
|
|
rb_define_method(rb_cProc, "call", proc_call, -1);
|
|
rb_define_method(rb_cProc, "[]", proc_call, -1);
|
|
rb_define_method(rb_cProc, "===", proc_call, -1);
|
|
rb_define_method(rb_cProc, "yield", proc_call, -1);
|
|
#endif
|
|
|
|
rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
|
|
rb_define_method(rb_cProc, "arity", proc_arity, 0);
|
|
rb_define_method(rb_cProc, "clone", proc_clone, 0);
|
|
rb_define_method(rb_cProc, "dup", rb_proc_dup, 0);
|
|
rb_define_method(rb_cProc, "hash", proc_hash, 0);
|
|
rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
|
|
rb_define_alias(rb_cProc, "inspect", "to_s");
|
|
rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0);
|
|
rb_define_method(rb_cProc, "binding", proc_binding, 0);
|
|
rb_define_method(rb_cProc, "curry", proc_curry, -1);
|
|
rb_define_method(rb_cProc, "source_location", rb_proc_location, 0);
|
|
rb_define_method(rb_cProc, "parameters", rb_proc_parameters, 0);
|
|
|
|
/* Exceptions */
|
|
rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
|
|
rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
|
|
rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
|
|
|
|
rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
|
|
rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep");
|
|
|
|
/* utility functions */
|
|
rb_define_global_function("proc", rb_block_proc, 0);
|
|
rb_define_global_function("lambda", rb_block_lambda, 0);
|
|
|
|
/* Method */
|
|
rb_cMethod = rb_define_class("Method", rb_cObject);
|
|
rb_undef_alloc_func(rb_cMethod);
|
|
rb_undef_method(CLASS_OF(rb_cMethod), "new");
|
|
rb_define_method(rb_cMethod, "==", method_eq, 1);
|
|
rb_define_method(rb_cMethod, "eql?", method_eq, 1);
|
|
rb_define_method(rb_cMethod, "hash", method_hash, 0);
|
|
rb_define_method(rb_cMethod, "clone", method_clone, 0);
|
|
rb_define_method(rb_cMethod, "call", rb_method_call, -1);
|
|
rb_define_method(rb_cMethod, "===", rb_method_call, -1);
|
|
rb_define_method(rb_cMethod, "curry", rb_method_curry, -1);
|
|
rb_define_method(rb_cMethod, "[]", rb_method_call, -1);
|
|
rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
|
|
rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
|
|
rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
|
|
rb_define_method(rb_cMethod, "to_proc", method_to_proc, 0);
|
|
rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
|
|
rb_define_method(rb_cMethod, "name", method_name, 0);
|
|
rb_define_method(rb_cMethod, "original_name", method_original_name, 0);
|
|
rb_define_method(rb_cMethod, "owner", method_owner, 0);
|
|
rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
|
|
rb_define_method(rb_cMethod, "source_location", rb_method_location, 0);
|
|
rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0);
|
|
rb_define_method(rb_cMethod, "super_method", method_super_method, 0);
|
|
rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
|
|
rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1);
|
|
rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1);
|
|
|
|
/* UnboundMethod */
|
|
rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
|
|
rb_undef_alloc_func(rb_cUnboundMethod);
|
|
rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
|
|
rb_define_method(rb_cUnboundMethod, "==", method_eq, 1);
|
|
rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1);
|
|
rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
|
|
rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
|
|
rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
|
|
rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
|
|
rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
|
|
rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
|
|
rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0);
|
|
rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
|
|
rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
|
|
rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0);
|
|
rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0);
|
|
rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0);
|
|
|
|
/* Module#*_method */
|
|
rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1);
|
|
rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1);
|
|
rb_define_method(rb_cModule, "define_method", rb_mod_define_method, -1);
|
|
|
|
/* Kernel */
|
|
rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1);
|
|
|
|
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
|
|
"define_method", top_define_method, -1);
|
|
}
|
|
|
|
/*
|
|
* Objects of class <code>Binding</code> encapsulate the execution
|
|
* context at some particular place in the code and retain this context
|
|
* for future use. The variables, methods, value of <code>self</code>,
|
|
* and possibly an iterator block that can be accessed in this context
|
|
* are all retained. Binding objects can be created using
|
|
* <code>Kernel#binding</code>, and are made available to the callback
|
|
* of <code>Kernel#set_trace_func</code>.
|
|
*
|
|
* These binding objects can be passed as the second argument of the
|
|
* <code>Kernel#eval</code> method, establishing an environment for the
|
|
* evaluation.
|
|
*
|
|
* class Demo
|
|
* def initialize(n)
|
|
* @secret = n
|
|
* end
|
|
* def get_binding
|
|
* binding
|
|
* end
|
|
* end
|
|
*
|
|
* k1 = Demo.new(99)
|
|
* b1 = k1.get_binding
|
|
* k2 = Demo.new(-3)
|
|
* b2 = k2.get_binding
|
|
*
|
|
* eval("@secret", b1) #=> 99
|
|
* eval("@secret", b2) #=> -3
|
|
* eval("@secret") #=> nil
|
|
*
|
|
* Binding objects have no class-specific methods.
|
|
*
|
|
*/
|
|
|
|
void
|
|
Init_Binding(void)
|
|
{
|
|
rb_cBinding = rb_define_class("Binding", rb_cObject);
|
|
rb_undef_alloc_func(rb_cBinding);
|
|
rb_undef_method(CLASS_OF(rb_cBinding), "new");
|
|
rb_define_method(rb_cBinding, "clone", binding_clone, 0);
|
|
rb_define_method(rb_cBinding, "dup", binding_dup, 0);
|
|
rb_define_method(rb_cBinding, "eval", bind_eval, -1);
|
|
rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0);
|
|
rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1);
|
|
rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2);
|
|
rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1);
|
|
rb_define_method(rb_cBinding, "receiver", bind_receiver, 0);
|
|
rb_define_method(rb_cBinding, "source_location", bind_location, 0);
|
|
rb_define_global_function("binding", rb_f_binding, 0);
|
|
}
|