1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/process.c
ko1 d1d5d5e798 * thread_pthread.c: Stop polling in the timer thread when there are
no waiting thread.  If there are 2 or more runnable threads,
  the timer thread does polling.  Avoid polling makes power save
  for several computers (0.2W per a Ruby process, when I measured).
  If outside-event such as signal or Thread#kill was occuerred
  when the timer thread does not do polling, then wake-up
  the timer thread using communication-pipe (the timer thread
  waits this communication-pipe with select(2)).
  The discussion about this modification can be found from the post
  [ruby-core:33456] and other related posts.
  Note that Eric Wong and KOSAKI Motohiro give us the huge
  contributions for this modification.  Thanks.
* thread_pthread.c (rb_thread_wakeup_timer_thread): add a function.
  This function wakes up the timer thread using communication-pipe.
* thread.c (rb_thread_stop_timer_thread): add a parameter which
  specify closing communication-pipe or not.
* thread.c (rb_thread_terminate_all): do not stop timer thread here
  (ruby_cleanup() terminate timer thread).
* signal.c: wake up timer thread using
  rb_thread_wakeup_timer_thread() from signal handler.
* eval.c (ruby_cleanup): use rb_thread_stop_timer_thread(1).
* process.c: use rb_thread_stop_timer_thread(0)
  (reuse communication-pipe).
* thread_win32.c (rb_thread_wakeup_timer_thread): add a dummy
  function.
* vm_core.h: add and fix decl. of functions.



git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@32244 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2011-06-27 00:30:41 +00:00

5992 lines
151 KiB
C

/**********************************************************************
process.c -
$Author$
created at: Tue Aug 10 14:30:50 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/io.h"
#include "ruby/util.h"
#include "internal.h"
#include "vm_core.h"
#include <stdio.h>
#include <errno.h>
#include <signal.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#include <time.h>
#include <ctype.h>
#ifndef EXIT_SUCCESS
#define EXIT_SUCCESS 0
#endif
#ifndef EXIT_FAILURE
#define EXIT_FAILURE 1
#endif
#ifdef HAVE_SYS_WAIT_H
# include <sys/wait.h>
#endif
#ifdef HAVE_SYS_RESOURCE_H
# include <sys/resource.h>
#endif
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
#ifndef MAXPATHLEN
# define MAXPATHLEN 1024
#endif
#include "ruby/st.h"
#ifdef __EMX__
#undef HAVE_GETPGRP
#endif
#include <sys/stat.h>
#ifdef HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif
#ifdef HAVE_GRP_H
#include <grp.h>
#endif
#if defined(HAVE_TIMES) || defined(_WIN32)
static VALUE rb_cProcessTms;
#endif
#ifndef WIFEXITED
#define WIFEXITED(w) (((w) & 0xff) == 0)
#endif
#ifndef WIFSIGNALED
#define WIFSIGNALED(w) (((w) & 0x7f) > 0 && (((w) & 0x7f) < 0x7f))
#endif
#ifndef WIFSTOPPED
#define WIFSTOPPED(w) (((w) & 0xff) == 0x7f)
#endif
#ifndef WEXITSTATUS
#define WEXITSTATUS(w) (((w) >> 8) & 0xff)
#endif
#ifndef WTERMSIG
#define WTERMSIG(w) ((w) & 0x7f)
#endif
#ifndef WSTOPSIG
#define WSTOPSIG WEXITSTATUS
#endif
#if defined(__APPLE__) && ( defined(__MACH__) || defined(__DARWIN__) ) && !defined(__MacOS_X__)
#define __MacOS_X__ 1
#endif
#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__)
#define HAVE_44BSD_SETUID 1
#define HAVE_44BSD_SETGID 1
#endif
#ifdef __NetBSD__
#undef HAVE_SETRUID
#undef HAVE_SETRGID
#endif
#ifdef BROKEN_SETREUID
#define setreuid ruby_setreuid
#endif
#ifdef BROKEN_SETREGID
#define setregid ruby_setregid
#endif
#if defined(HAVE_44BSD_SETUID) || defined(__MacOS_X__)
#if !defined(USE_SETREUID) && !defined(BROKEN_SETREUID)
#define OBSOLETE_SETREUID 1
#endif
#if !defined(USE_SETREGID) && !defined(BROKEN_SETREGID)
#define OBSOLETE_SETREGID 1
#endif
#endif
#define preserving_errno(stmts) \
do {int saved_errno = errno; stmts; errno = saved_errno;} while (0)
/*
* call-seq:
* Process.pid -> fixnum
*
* Returns the process id of this process. Not available on all
* platforms.
*
* Process.pid #=> 27415
*/
static VALUE
get_pid(void)
{
rb_secure(2);
return PIDT2NUM(getpid());
}
/*
* call-seq:
* Process.ppid -> fixnum
*
* Returns the process id of the parent of this process. Returns
* untrustworthy value on Win32/64. Not available on all platforms.
*
* puts "I am #{Process.pid}"
* Process.fork { puts "Dad is #{Process.ppid}" }
*
* <em>produces:</em>
*
* I am 27417
* Dad is 27417
*/
static VALUE
get_ppid(void)
{
rb_secure(2);
return PIDT2NUM(getppid());
}
/*********************************************************************
*
* Document-class: Process::Status
*
* <code>Process::Status</code> encapsulates the information on the
* status of a running or terminated system process. The built-in
* variable <code>$?</code> is either +nil+ or a
* <code>Process::Status</code> object.
*
* fork { exit 99 } #=> 26557
* Process.wait #=> 26557
* $?.class #=> Process::Status
* $?.to_i #=> 25344
* $? >> 8 #=> 99
* $?.stopped? #=> false
* $?.exited? #=> true
* $?.exitstatus #=> 99
*
* Posix systems record information on processes using a 16-bit
* integer. The lower bits record the process status (stopped,
* exited, signaled) and the upper bits possibly contain additional
* information (for example the program's return code in the case of
* exited processes). Pre Ruby 1.8, these bits were exposed directly
* to the Ruby program. Ruby now encapsulates these in a
* <code>Process::Status</code> object. To maximize compatibility,
* however, these objects retain a bit-oriented interface. In the
* descriptions that follow, when we talk about the integer value of
* _stat_, we're referring to this 16 bit value.
*/
static VALUE rb_cProcessStatus;
VALUE
rb_last_status_get(void)
{
return GET_THREAD()->last_status;
}
void
rb_last_status_set(int status, rb_pid_t pid)
{
rb_thread_t *th = GET_THREAD();
th->last_status = rb_obj_alloc(rb_cProcessStatus);
rb_iv_set(th->last_status, "status", INT2FIX(status));
rb_iv_set(th->last_status, "pid", PIDT2NUM(pid));
}
static void
rb_last_status_clear(void)
{
GET_THREAD()->last_status = Qnil;
}
/*
* call-seq:
* stat.to_i -> fixnum
* stat.to_int -> fixnum
*
* Returns the bits in _stat_ as a <code>Fixnum</code>. Poking
* around in these bits is platform dependent.
*
* fork { exit 0xab } #=> 26566
* Process.wait #=> 26566
* sprintf('%04x', $?.to_i) #=> "ab00"
*/
static VALUE
pst_to_i(VALUE st)
{
return rb_iv_get(st, "status");
}
#define PST2INT(st) NUM2INT(pst_to_i(st))
/*
* call-seq:
* stat.pid -> fixnum
*
* Returns the process ID that this status object represents.
*
* fork { exit } #=> 26569
* Process.wait #=> 26569
* $?.pid #=> 26569
*/
static VALUE
pst_pid(VALUE st)
{
return rb_attr_get(st, rb_intern("pid"));
}
static void
pst_message(VALUE str, rb_pid_t pid, int status)
{
rb_str_catf(str, "pid %ld", (long)pid);
if (WIFSTOPPED(status)) {
int stopsig = WSTOPSIG(status);
const char *signame = ruby_signal_name(stopsig);
if (signame) {
rb_str_catf(str, " stopped SIG%s (signal %d)", signame, stopsig);
}
else {
rb_str_catf(str, " stopped signal %d", stopsig);
}
}
if (WIFSIGNALED(status)) {
int termsig = WTERMSIG(status);
const char *signame = ruby_signal_name(termsig);
if (signame) {
rb_str_catf(str, " SIG%s (signal %d)", signame, termsig);
}
else {
rb_str_catf(str, " signal %d", termsig);
}
}
if (WIFEXITED(status)) {
rb_str_catf(str, " exit %d", WEXITSTATUS(status));
}
#ifdef WCOREDUMP
if (WCOREDUMP(status)) {
rb_str_cat2(str, " (core dumped)");
}
#endif
}
/*
* call-seq:
* stat.to_s -> string
*
* Show pid and exit status as a string.
*
* system("false")
* p $?.to_s #=> "pid 12766 exit 1"
*
*/
static VALUE
pst_to_s(VALUE st)
{
rb_pid_t pid;
int status;
VALUE str;
pid = NUM2PIDT(pst_pid(st));
status = PST2INT(st);
str = rb_str_buf_new(0);
pst_message(str, pid, status);
return str;
}
/*
* call-seq:
* stat.inspect -> string
*
* Override the inspection method.
*
* system("false")
* p $?.inspect #=> "#<Process::Status: pid 12861 exit 1>"
*
*/
static VALUE
pst_inspect(VALUE st)
{
rb_pid_t pid;
int status;
VALUE vpid, str;
vpid = pst_pid(st);
if (NIL_P(vpid)) {
return rb_sprintf("#<%s: uninitialized>", rb_class2name(CLASS_OF(st)));
}
pid = NUM2PIDT(vpid);
status = PST2INT(st);
str = rb_sprintf("#<%s: ", rb_class2name(CLASS_OF(st)));
pst_message(str, pid, status);
rb_str_cat2(str, ">");
return str;
}
/*
* call-seq:
* stat == other -> true or false
*
* Returns +true+ if the integer value of _stat_
* equals <em>other</em>.
*/
static VALUE
pst_equal(VALUE st1, VALUE st2)
{
if (st1 == st2) return Qtrue;
return rb_equal(pst_to_i(st1), st2);
}
/*
* call-seq:
* stat & num -> fixnum
*
* Logical AND of the bits in _stat_ with <em>num</em>.
*
* fork { exit 0x37 }
* Process.wait
* sprintf('%04x', $?.to_i) #=> "3700"
* sprintf('%04x', $? & 0x1e00) #=> "1600"
*/
static VALUE
pst_bitand(VALUE st1, VALUE st2)
{
int status = PST2INT(st1) & NUM2INT(st2);
return INT2NUM(status);
}
/*
* call-seq:
* stat >> num -> fixnum
*
* Shift the bits in _stat_ right <em>num</em> places.
*
* fork { exit 99 } #=> 26563
* Process.wait #=> 26563
* $?.to_i #=> 25344
* $? >> 8 #=> 99
*/
static VALUE
pst_rshift(VALUE st1, VALUE st2)
{
int status = PST2INT(st1) >> NUM2INT(st2);
return INT2NUM(status);
}
/*
* call-seq:
* stat.stopped? -> true or false
*
* Returns +true+ if this process is stopped. This is only
* returned if the corresponding <code>wait</code> call had the
* <code>WUNTRACED</code> flag set.
*/
static VALUE
pst_wifstopped(VALUE st)
{
int status = PST2INT(st);
if (WIFSTOPPED(status))
return Qtrue;
else
return Qfalse;
}
/*
* call-seq:
* stat.stopsig -> fixnum or nil
*
* Returns the number of the signal that caused _stat_ to stop
* (or +nil+ if self is not stopped).
*/
static VALUE
pst_wstopsig(VALUE st)
{
int status = PST2INT(st);
if (WIFSTOPPED(status))
return INT2NUM(WSTOPSIG(status));
return Qnil;
}
/*
* call-seq:
* stat.signaled? -> true or false
*
* Returns +true+ if _stat_ terminated because of
* an uncaught signal.
*/
static VALUE
pst_wifsignaled(VALUE st)
{
int status = PST2INT(st);
if (WIFSIGNALED(status))
return Qtrue;
else
return Qfalse;
}
/*
* call-seq:
* stat.termsig -> fixnum or nil
*
* Returns the number of the signal that caused _stat_ to
* terminate (or +nil+ if self was not terminated by an
* uncaught signal).
*/
static VALUE
pst_wtermsig(VALUE st)
{
int status = PST2INT(st);
if (WIFSIGNALED(status))
return INT2NUM(WTERMSIG(status));
return Qnil;
}
/*
* call-seq:
* stat.exited? -> true or false
*
* Returns +true+ if _stat_ exited normally (for
* example using an <code>exit()</code> call or finishing the
* program).
*/
static VALUE
pst_wifexited(VALUE st)
{
int status = PST2INT(st);
if (WIFEXITED(status))
return Qtrue;
else
return Qfalse;
}
/*
* call-seq:
* stat.exitstatus -> fixnum or nil
*
* Returns the least significant eight bits of the return code of
* _stat_. Only available if <code>exited?</code> is
* +true+.
*
* fork { } #=> 26572
* Process.wait #=> 26572
* $?.exited? #=> true
* $?.exitstatus #=> 0
*
* fork { exit 99 } #=> 26573
* Process.wait #=> 26573
* $?.exited? #=> true
* $?.exitstatus #=> 99
*/
static VALUE
pst_wexitstatus(VALUE st)
{
int status = PST2INT(st);
if (WIFEXITED(status))
return INT2NUM(WEXITSTATUS(status));
return Qnil;
}
/*
* call-seq:
* stat.success? -> true, false or nil
*
* Returns +true+ if _stat_ is successful, +false+ if not.
* Returns +nil+ if <code>exited?</code> is not +true+.
*/
static VALUE
pst_success_p(VALUE st)
{
int status = PST2INT(st);
if (!WIFEXITED(status))
return Qnil;
return WEXITSTATUS(status) == EXIT_SUCCESS ? Qtrue : Qfalse;
}
/*
* call-seq:
* stat.coredump? -> true or false
*
* Returns +true+ if _stat_ generated a coredump
* when it terminated. Not available on all platforms.
*/
static VALUE
pst_wcoredump(VALUE st)
{
#ifdef WCOREDUMP
int status = PST2INT(st);
if (WCOREDUMP(status))
return Qtrue;
else
return Qfalse;
#else
return Qfalse;
#endif
}
#if !defined(HAVE_WAITPID) && !defined(HAVE_WAIT4)
#define NO_WAITPID
static st_table *pid_tbl;
struct wait_data {
rb_pid_t pid;
int status;
};
static int
wait_each(rb_pid_t pid, int status, struct wait_data *data)
{
if (data->status != -1) return ST_STOP;
data->pid = pid;
data->status = status;
return ST_DELETE;
}
static int
waitall_each(rb_pid_t pid, int status, VALUE ary)
{
rb_last_status_set(status, pid);
rb_ary_push(ary, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
return ST_DELETE;
}
#else
struct waitpid_arg {
rb_pid_t pid;
int *st;
int flags;
};
#endif
static VALUE
rb_waitpid_blocking(void *data)
{
rb_pid_t result;
#ifndef NO_WAITPID
struct waitpid_arg *arg = data;
#endif
#if defined NO_WAITPID
result = wait(data);
#elif defined HAVE_WAITPID
result = waitpid(arg->pid, arg->st, arg->flags);
#else /* HAVE_WAIT4 */
result = wait4(arg->pid, arg->st, arg->flags, NULL);
#endif
return (VALUE)result;
}
rb_pid_t
rb_waitpid(rb_pid_t pid, int *st, int flags)
{
rb_pid_t result;
#ifndef NO_WAITPID
struct waitpid_arg arg;
retry:
arg.pid = pid;
arg.st = st;
arg.flags = flags;
result = (rb_pid_t)rb_thread_blocking_region(rb_waitpid_blocking, &arg,
RUBY_UBF_PROCESS, 0);
if (result < 0) {
if (errno == EINTR) {
RUBY_VM_CHECK_INTS();
goto retry;
}
return (rb_pid_t)-1;
}
#else /* NO_WAITPID */
if (pid_tbl) {
st_data_t status, piddata = (st_data_t)pid;
if (pid == (rb_pid_t)-1) {
struct wait_data data;
data.pid = (rb_pid_t)-1;
data.status = -1;
st_foreach(pid_tbl, wait_each, (st_data_t)&data);
if (data.status != -1) {
rb_last_status_set(data.status, data.pid);
return data.pid;
}
}
else if (st_delete(pid_tbl, &piddata, &status)) {
rb_last_status_set(*st = (int)status, pid);
return pid;
}
}
if (flags) {
rb_raise(rb_eArgError, "can't do waitpid with flags");
}
for (;;) {
result = (rb_pid_t)rb_thread_blocking_region(rb_waitpid_blocking,
st, RUBY_UBF_PROCESS, 0);
if (result < 0) {
if (errno == EINTR) {
rb_thread_schedule();
continue;
}
return (rb_pid_t)-1;
}
if (result == pid || pid == (rb_pid_t)-1) {
break;
}
if (!pid_tbl)
pid_tbl = st_init_numtable();
st_insert(pid_tbl, pid, (st_data_t)st);
if (!rb_thread_alone()) rb_thread_schedule();
}
#endif
if (result > 0) {
rb_last_status_set(*st, result);
}
return result;
}
/* [MG]:FIXME: I wasn't sure how this should be done, since ::wait()
has historically been documented as if it didn't take any arguments
despite the fact that it's just an alias for ::waitpid(). The way I
have it below is more truthful, but a little confusing.
I also took the liberty of putting in the pid values, as they're
pretty useful, and it looked as if the original 'ri' output was
supposed to contain them after "[...]depending on the value of
aPid:".
The 'ansi' and 'bs' formats of the ri output don't display the
definition list for some reason, but the plain text one does.
*/
/*
* call-seq:
* Process.wait() -> fixnum
* Process.wait(pid=-1, flags=0) -> fixnum
* Process.waitpid(pid=-1, flags=0) -> fixnum
*
* Waits for a child process to exit, returns its process id, and
* sets <code>$?</code> to a <code>Process::Status</code> object
* containing information on that process. Which child it waits on
* depends on the value of _pid_:
*
* > 0:: Waits for the child whose process ID equals _pid_.
*
* 0:: Waits for any child whose process group ID equals that of the
* calling process.
*
* -1:: Waits for any child process (the default if no _pid_ is
* given).
*
* < -1:: Waits for any child whose process group ID equals the absolute
* value of _pid_.
*
* The _flags_ argument may be a logical or of the flag values
* <code>Process::WNOHANG</code> (do not block if no child available)
* or <code>Process::WUNTRACED</code> (return stopped children that
* haven't been reported). Not all flags are available on all
* platforms, but a flag value of zero will work on all platforms.
*
* Calling this method raises a <code>SystemError</code> if there are
* no child processes. Not available on all platforms.
*
* include Process
* fork { exit 99 } #=> 27429
* wait #=> 27429
* $?.exitstatus #=> 99
*
* pid = fork { sleep 3 } #=> 27440
* Time.now #=> 2008-03-08 19:56:16 +0900
* waitpid(pid, Process::WNOHANG) #=> nil
* Time.now #=> 2008-03-08 19:56:16 +0900
* waitpid(pid, 0) #=> 27440
* Time.now #=> 2008-03-08 19:56:19 +0900
*/
static VALUE
proc_wait(int argc, VALUE *argv)
{
VALUE vpid, vflags;
rb_pid_t pid;
int flags, status;
rb_secure(2);
flags = 0;
if (argc == 0) {
pid = -1;
}
else {
rb_scan_args(argc, argv, "02", &vpid, &vflags);
pid = NUM2PIDT(vpid);
if (argc == 2 && !NIL_P(vflags)) {
flags = NUM2UINT(vflags);
}
}
if ((pid = rb_waitpid(pid, &status, flags)) < 0)
rb_sys_fail(0);
if (pid == 0) {
rb_last_status_clear();
return Qnil;
}
return PIDT2NUM(pid);
}
/*
* call-seq:
* Process.wait2(pid=-1, flags=0) -> [pid, status]
* Process.waitpid2(pid=-1, flags=0) -> [pid, status]
*
* Waits for a child process to exit (see Process::waitpid for exact
* semantics) and returns an array containing the process id and the
* exit status (a <code>Process::Status</code> object) of that
* child. Raises a <code>SystemError</code> if there are no child
* processes.
*
* Process.fork { exit 99 } #=> 27437
* pid, status = Process.wait2
* pid #=> 27437
* status.exitstatus #=> 99
*/
static VALUE
proc_wait2(int argc, VALUE *argv)
{
VALUE pid = proc_wait(argc, argv);
if (NIL_P(pid)) return Qnil;
return rb_assoc_new(pid, rb_last_status_get());
}
/*
* call-seq:
* Process.waitall -> [ [pid1,status1], ...]
*
* Waits for all children, returning an array of
* _pid_/_status_ pairs (where _status_ is a
* <code>Process::Status</code> object).
*
* fork { sleep 0.2; exit 2 } #=> 27432
* fork { sleep 0.1; exit 1 } #=> 27433
* fork { exit 0 } #=> 27434
* p Process.waitall
*
* <em>produces</em>:
*
* [[30982, #<Process::Status: pid 30982 exit 0>],
* [30979, #<Process::Status: pid 30979 exit 1>],
* [30976, #<Process::Status: pid 30976 exit 2>]]
*/
static VALUE
proc_waitall(void)
{
VALUE result;
rb_pid_t pid;
int status;
rb_secure(2);
result = rb_ary_new();
#ifdef NO_WAITPID
if (pid_tbl) {
st_foreach(pid_tbl, waitall_each, result);
}
#else
rb_last_status_clear();
#endif
for (pid = -1;;) {
#ifdef NO_WAITPID
pid = wait(&status);
#else
pid = rb_waitpid(-1, &status, 0);
#endif
if (pid == -1) {
if (errno == ECHILD)
break;
#ifdef NO_WAITPID
if (errno == EINTR) {
rb_thread_schedule();
continue;
}
#endif
rb_sys_fail(0);
}
#ifdef NO_WAITPID
rb_last_status_set(status, pid);
#endif
rb_ary_push(result, rb_assoc_new(PIDT2NUM(pid), rb_last_status_get()));
}
return result;
}
static inline ID
id_pid(void)
{
ID pid;
CONST_ID(pid, "pid");
return pid;
}
static VALUE
detach_process_pid(VALUE thread)
{
return rb_thread_local_aref(thread, id_pid());
}
static VALUE
detach_process_watcher(void *arg)
{
rb_pid_t cpid, pid = (rb_pid_t)(VALUE)arg;
int status;
while ((cpid = rb_waitpid(pid, &status, 0)) == 0) {
/* wait while alive */
}
return rb_last_status_get();
}
VALUE
rb_detach_process(rb_pid_t pid)
{
VALUE watcher = rb_thread_create(detach_process_watcher, (void*)(VALUE)pid);
rb_thread_local_aset(watcher, id_pid(), PIDT2NUM(pid));
rb_define_singleton_method(watcher, "pid", detach_process_pid, 0);
return watcher;
}
/*
* call-seq:
* Process.detach(pid) -> thread
*
* Some operating systems retain the status of terminated child
* processes until the parent collects that status (normally using
* some variant of <code>wait()</code>. If the parent never collects
* this status, the child stays around as a <em>zombie</em> process.
* <code>Process::detach</code> prevents this by setting up a
* separate Ruby thread whose sole job is to reap the status of the
* process _pid_ when it terminates. Use <code>detach</code>
* only when you do not intent to explicitly wait for the child to
* terminate.
*
* The waiting thread returns the exit status of the detached process
* when it terminates, so you can use <code>Thread#join</code> to
* know the result. If specified _pid_ is not a valid child process
* ID, the thread returns +nil+ immediately.
*
* The waiting thread has <code>pid</code> method which returns the pid.
*
* In this first example, we don't reap the first child process, so
* it appears as a zombie in the process status display.
*
* p1 = fork { sleep 0.1 }
* p2 = fork { sleep 0.2 }
* Process.waitpid(p2)
* sleep 2
* system("ps -ho pid,state -p #{p1}")
*
* <em>produces:</em>
*
* 27389 Z
*
* In the next example, <code>Process::detach</code> is used to reap
* the child automatically.
*
* p1 = fork { sleep 0.1 }
* p2 = fork { sleep 0.2 }
* Process.detach(p1)
* Process.waitpid(p2)
* sleep 2
* system("ps -ho pid,state -p #{p1}")
*
* <em>(produces no output)</em>
*/
static VALUE
proc_detach(VALUE obj, VALUE pid)
{
rb_secure(2);
return rb_detach_process(NUM2PIDT(pid));
}
#ifndef HAVE_STRING_H
char *strtok();
#endif
static int forked_child = 0;
#ifdef SIGPIPE
static RETSIGTYPE (*saved_sigpipe_handler)(int) = 0;
#endif
#if defined(POSIX_SIGNAL)
# define signal(a,b) posix_signal((a),(b))
#endif
#ifdef SIGPIPE
static RETSIGTYPE sig_do_nothing(int sig)
{
}
#endif
static void before_exec(void)
{
/*
* signalmask is inherited across exec() and almost system commands don't
* work if signalmask is blocked.
*/
rb_enable_interrupt();
#ifdef SIGPIPE
/*
* Some OS commands don't initialize signal handler properly. Thus we have
* to reset signal handler before exec(). Otherwise, system() and similar
* child process interaction might fail. (e.g. ruby -e "system 'yes | ls'")
* [ruby-dev:12261]
*/
saved_sigpipe_handler = signal(SIGPIPE, sig_do_nothing);
#endif
if (!forked_child) {
/*
* On old MacOS X, exec() may return ENOTSUPP if the process have
* multiple threads. Therefore we have to kill internal threads at once.
* [ruby-core: 10583]
*/
rb_thread_stop_timer_thread(0);
}
}
static void after_exec(void)
{
rb_thread_reset_timer_thread();
rb_thread_start_timer_thread();
#ifdef SIGPIPE
signal(SIGPIPE, saved_sigpipe_handler);
#endif
forked_child = 0;
rb_disable_interrupt();
}
#define before_fork() before_exec()
#define after_fork() (GET_THREAD()->thrown_errinfo = 0, after_exec())
#include "dln.h"
static void
security(const char *str)
{
if (rb_env_path_tainted()) {
if (rb_safe_level() > 0) {
rb_raise(rb_eSecurityError, "Insecure PATH - %s", str);
}
}
}
#ifdef HAVE_FORK
#define try_with_sh(prog, argv) ((saved_errno == ENOEXEC) ? exec_with_sh((prog), (argv)) : (void)0)
static void
exec_with_sh(const char *prog, char **argv)
{
*argv = (char *)prog;
*--argv = (char *)"sh";
execv("/bin/sh", argv);
}
#define ARGV_COUNT(n) ((n)+1)
#else
#define try_with_sh(prog, argv) (void)0
#define ARGV_COUNT(n) (n)
#endif
#define ARGV_SIZE(n) (sizeof(char*) * ARGV_COUNT(n))
#define ALLOC_ARGV(n, v) ALLOCV_N(char*, (v), ARGV_COUNT(n))
#define ALLOC_ARGV_WITH_STR(n, v, s, l) \
(char **)(((s) = ALLOCV_N(char, (v), ARGV_SIZE(n) + (l)) + ARGV_SIZE(n)) - ARGV_SIZE(n))
static int
proc_exec_v(char **argv, const char *prog)
{
char fbuf[MAXPATHLEN];
#if defined(__EMX__) || defined(OS2)
char **new_argv = NULL;
#endif
if (!prog)
prog = argv[0];
prog = dln_find_exe_r(prog, 0, fbuf, sizeof(fbuf));
if (!prog) {
errno = ENOENT;
return -1;
}
#if defined(__EMX__) || defined(OS2)
{
#define COMMAND "cmd.exe"
char *extension;
if ((extension = strrchr(prog, '.')) != NULL && STRCASECMP(extension, ".bat") == 0) {
char *p;
int n;
for (n = 0; argv[n]; n++)
/* no-op */;
new_argv = ALLOC_N(char*, n + 2);
for (; n > 0; n--)
new_argv[n + 1] = argv[n];
new_argv[1] = strcpy(ALLOC_N(char, strlen(argv[0]) + 1), argv[0]);
for (p = new_argv[1]; *p != '\0'; p++)
if (*p == '/')
*p = '\\';
new_argv[0] = COMMAND;
argv = new_argv;
prog = dln_find_exe_r(argv[0], 0, fbuf, sizeof(fbuf));
if (!prog) {
errno = ENOENT;
return -1;
}
}
}
#endif /* __EMX__ */
before_exec();
execv(prog, argv);
preserving_errno(try_with_sh(prog, argv); after_exec());
#if defined(__EMX__) || defined(OS2)
if (new_argv) {
xfree(new_argv[0]);
xfree(new_argv);
}
#endif
return -1;
}
int
rb_proc_exec_n(int argc, VALUE *argv, const char *prog)
{
char **args;
int i;
int ret = -1;
VALUE v;
args = ALLOC_ARGV(argc+1, v);
for (i=0; i<argc; i++) {
args[i] = RSTRING_PTR(argv[i]);
}
args[i] = 0;
if (args[0]) {
ret = proc_exec_v(args, prog);
}
ALLOCV_END(v);
return -1;
}
int
rb_proc_exec(const char *str)
{
#ifndef _WIN32
const char *s = str;
char *ss, *t;
char **argv, **a;
VALUE v;
int ret = -1;
#endif
while (*str && ISSPACE(*str))
str++;
#ifdef _WIN32
before_exec();
rb_w32_spawn(P_OVERLAY, (char *)str, 0);
after_exec();
return -1;
#else
for (s=str; *s; s++) {
if (ISSPACE(*s)) {
const char *p, *nl = NULL;
for (p = s; ISSPACE(*p); p++) {
if (*p == '\n') nl = p;
}
if (!*p) break;
if (nl) s = nl;
}
if (*s != ' ' && !ISALPHA(*s) && strchr("*?{}[]<>()~&|\\$;'`\"\n",*s)) {
#if defined(__CYGWIN32__) || defined(__EMX__)
char fbuf[MAXPATHLEN];
char *shell = dln_find_exe_r("sh", 0, fbuf, sizeof(fbuf));
int status = -1;
before_exec();
if (shell)
execl(shell, "sh", "-c", str, (char *) NULL);
else
status = system(str);
after_exec();
if (status != -1)
exit(status);
#else
before_exec();
execl("/bin/sh", "sh", "-c", str, (char *)NULL);
preserving_errno(after_exec());
#endif
return -1;
}
}
a = argv = ALLOC_ARGV_WITH_STR((s-str)/2+2, v, ss, s-str+1);
memcpy(ss, str, s-str);
ss[s-str] = '\0';
if ((*a++ = strtok(ss, " \t")) != 0) {
while ((t = strtok(NULL, " \t")) != 0) {
*a++ = t;
}
*a = NULL;
}
if (argv[0]) {
ret = proc_exec_v(argv, 0);
}
else {
errno = ENOENT;
}
ALLOCV_END(v);
return ret;
#endif /* _WIN32 */
}
#if defined(_WIN32)
#define HAVE_SPAWNV 1
#endif
#if !defined(HAVE_FORK) && defined(HAVE_SPAWNV)
#if defined(_WIN32)
#define proc_spawn_v(argv, prog) rb_w32_aspawn(P_NOWAIT, (prog), (argv))
#else
static rb_pid_t
proc_spawn_v(char **argv, char *prog)
{
char fbuf[MAXPATHLEN];
rb_pid_t status;
if (!prog)
prog = argv[0];
security(prog);
prog = dln_find_exe_r(prog, 0, fbuf, sizeof(fbuf));
if (!prog)
return -1;
before_exec();
status = spawnv(P_WAIT, prog, argv);
preserving_errno({
rb_last_status_set(status == -1 ? 127 : status, 0);
*argv = (char *)prog;
*--argv = (char *)"sh";
status = spawnv("/bin/sh", argv);
after_exec();
});
return status;
}
#endif
static rb_pid_t
proc_spawn_n(int argc, VALUE *argv, VALUE prog)
{
char **args;
int i;
VALUE v;
rb_pid_t pid = -1;
args = ALLOC_ARGV(argc + 1, v);
for (i = 0; i < argc; i++) {
args[i] = RSTRING_PTR(argv[i]);
}
args[i] = (char*) 0;
if (args[0])
pid = proc_spawn_v(args, prog ? RSTRING_PTR(prog) : 0);
ALLOCV_END(v);
return pid;
}
#if defined(_WIN32)
#define proc_spawn(str) rb_w32_spawn(P_NOWAIT, (str), 0)
#else
static rb_pid_t
proc_spawn(char *str)
{
char fbuf[MAXPATHLEN];
char *s, *t;
char **argv, **a;
rb_pid_t status;
VALUE v;
for (s = str; *s; s++) {
if (*s != ' ' && !ISALPHA(*s) && strchr("*?{}[]<>()~&|\\$;'`\"\n",*s)) {
char *shell = dln_find_exe_r("sh", 0, fbuf, sizeof(fbuf));
before_exec();
status = shell?spawnl(P_WAIT,shell,"sh","-c",str,(char*)NULL):system(str);
rb_last_status_set(status == -1 ? 127 : status, 0);
after_exec();
return status;
}
}
a = argv = ALLOC_ARGV_WITH_STR((s - str) / 2 + 2, v, s, s - str + 1);
strcpy(s, str);
if (*a++ = strtok(s, " \t")) {
while (t = strtok(NULL, " \t"))
*a++ = t;
*a = NULL;
}
status = argv[0] ? proc_spawn_v(argv, 0) : -1;
ALLOCV_END(v);
return status;
}
#endif
#endif
static VALUE
hide_obj(VALUE obj)
{
RBASIC(obj)->klass = 0;
return obj;
}
enum {
EXEC_OPTION_PGROUP,
EXEC_OPTION_RLIMIT,
EXEC_OPTION_UNSETENV_OTHERS,
EXEC_OPTION_ENV,
EXEC_OPTION_CHDIR,
EXEC_OPTION_UMASK,
EXEC_OPTION_DUP2,
EXEC_OPTION_CLOSE,
EXEC_OPTION_OPEN,
EXEC_OPTION_DUP2_CHILD,
EXEC_OPTION_CLOSE_OTHERS
};
static VALUE
check_exec_redirect_fd(VALUE v, int iskey)
{
VALUE tmp;
int fd;
if (FIXNUM_P(v)) {
fd = FIX2INT(v);
}
else if (SYMBOL_P(v)) {
ID id = SYM2ID(v);
if (id == rb_intern("in"))
fd = 0;
else if (id == rb_intern("out"))
fd = 1;
else if (id == rb_intern("err"))
fd = 2;
else
goto wrong;
}
else if (!NIL_P(tmp = rb_check_convert_type(v, T_FILE, "IO", "to_io"))) {
rb_io_t *fptr;
GetOpenFile(tmp, fptr);
if (fptr->tied_io_for_writing)
rb_raise(rb_eArgError, "duplex IO redirection");
fd = fptr->fd;
}
else {
rb_raise(rb_eArgError, "wrong exec redirect");
}
if (fd < 0) {
wrong:
rb_raise(rb_eArgError, "negative file descriptor");
}
#ifdef _WIN32
else if (fd >= 3 && iskey) {
rb_raise(rb_eArgError, "wrong file descriptor (%d)", fd);
}
#endif
return INT2FIX(fd);
}
static void
check_exec_redirect(VALUE key, VALUE val, VALUE options)
{
int index;
VALUE ary, param;
VALUE path, flags, perm;
ID id;
switch (TYPE(val)) {
case T_SYMBOL:
id = SYM2ID(val);
if (id == rb_intern("close")) {
index = EXEC_OPTION_CLOSE;
param = Qnil;
}
else if (id == rb_intern("in")) {
index = EXEC_OPTION_DUP2;
param = INT2FIX(0);
}
else if (id == rb_intern("out")) {
index = EXEC_OPTION_DUP2;
param = INT2FIX(1);
}
else if (id == rb_intern("err")) {
index = EXEC_OPTION_DUP2;
param = INT2FIX(2);
}
else {
rb_raise(rb_eArgError, "wrong exec redirect symbol: %s",
rb_id2name(id));
}
break;
case T_FILE:
val = check_exec_redirect_fd(val, 0);
/* fall through */
case T_FIXNUM:
index = EXEC_OPTION_DUP2;
param = val;
break;
case T_ARRAY:
path = rb_ary_entry(val, 0);
if (RARRAY_LEN(val) == 2 && SYMBOL_P(path) &&
SYM2ID(path) == rb_intern("child")) {
index = EXEC_OPTION_DUP2_CHILD;
param = check_exec_redirect_fd(rb_ary_entry(val, 1), 0);
}
else {
index = EXEC_OPTION_OPEN;
FilePathValue(path);
flags = rb_ary_entry(val, 1);
if (NIL_P(flags))
flags = INT2NUM(O_RDONLY);
else if (TYPE(flags) == T_STRING)
flags = INT2NUM(rb_io_modestr_oflags(StringValueCStr(flags)));
else
flags = rb_to_int(flags);
perm = rb_ary_entry(val, 2);
perm = NIL_P(perm) ? INT2FIX(0644) : rb_to_int(perm);
param = hide_obj(rb_ary_new3(3, hide_obj(rb_str_dup(path)),
flags, perm));
}
break;
case T_STRING:
index = EXEC_OPTION_OPEN;
path = val;
FilePathValue(path);
if (TYPE(key) == T_FILE)
key = check_exec_redirect_fd(key, 1);
if (FIXNUM_P(key) && (FIX2INT(key) == 1 || FIX2INT(key) == 2))
flags = INT2NUM(O_WRONLY|O_CREAT|O_TRUNC);
else
flags = INT2NUM(O_RDONLY);
perm = INT2FIX(0644);
param = hide_obj(rb_ary_new3(3, hide_obj(rb_str_dup(path)),
flags, perm));
break;
default:
rb_raise(rb_eArgError, "wrong exec redirect action");
}
ary = rb_ary_entry(options, index);
if (NIL_P(ary)) {
ary = hide_obj(rb_ary_new());
rb_ary_store(options, index, ary);
}
if (TYPE(key) != T_ARRAY) {
VALUE fd = check_exec_redirect_fd(key, !NIL_P(param));
rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param)));
}
else {
int i, n=0;
for (i = 0 ; i < RARRAY_LEN(key); i++) {
VALUE v = RARRAY_PTR(key)[i];
VALUE fd = check_exec_redirect_fd(v, !NIL_P(param));
rb_ary_push(ary, hide_obj(rb_assoc_new(fd, param)));
n++;
}
}
}
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
static int rlimit_type_by_lname(const char *name);
#endif
int
rb_exec_arg_addopt(struct rb_exec_arg *e, VALUE key, VALUE val)
{
VALUE options = e->options;
ID id;
#ifdef RLIM2NUM
int rtype;
#endif
rb_secure(2);
switch (TYPE(key)) {
case T_SYMBOL:
id = SYM2ID(key);
#ifdef HAVE_SETPGID
if (id == rb_intern("pgroup")) {
if (!NIL_P(rb_ary_entry(options, EXEC_OPTION_PGROUP))) {
rb_raise(rb_eArgError, "pgroup option specified twice");
}
if (!RTEST(val))
val = Qfalse;
else if (val == Qtrue)
val = INT2FIX(0);
else {
pid_t pgroup = NUM2PIDT(val);
if (pgroup < 0) {
rb_raise(rb_eArgError, "negative process group ID : %ld", (long)pgroup);
}
val = PIDT2NUM(pgroup);
}
rb_ary_store(options, EXEC_OPTION_PGROUP, val);
}
else
#endif
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
if (strncmp("rlimit_", rb_id2name(id), 7) == 0 &&
(rtype = rlimit_type_by_lname(rb_id2name(id)+7)) != -1) {
VALUE ary = rb_ary_entry(options, EXEC_OPTION_RLIMIT);
VALUE tmp, softlim, hardlim;
if (NIL_P(ary)) {
ary = hide_obj(rb_ary_new());
rb_ary_store(options, EXEC_OPTION_RLIMIT, ary);
}
tmp = rb_check_array_type(val);
if (!NIL_P(tmp)) {
if (RARRAY_LEN(tmp) == 1)
softlim = hardlim = rb_to_int(rb_ary_entry(tmp, 0));
else if (RARRAY_LEN(tmp) == 2) {
softlim = rb_to_int(rb_ary_entry(tmp, 0));
hardlim = rb_to_int(rb_ary_entry(tmp, 1));
}
else {
rb_raise(rb_eArgError, "wrong exec rlimit option");
}
}
else {
softlim = hardlim = rb_to_int(val);
}
tmp = hide_obj(rb_ary_new3(3, INT2NUM(rtype), softlim, hardlim));
rb_ary_push(ary, tmp);
}
else
#endif
if (id == rb_intern("unsetenv_others")) {
if (!NIL_P(rb_ary_entry(options, EXEC_OPTION_UNSETENV_OTHERS))) {
rb_raise(rb_eArgError, "unsetenv_others option specified twice");
}
val = RTEST(val) ? Qtrue : Qfalse;
rb_ary_store(options, EXEC_OPTION_UNSETENV_OTHERS, val);
}
else if (id == rb_intern("chdir")) {
if (!NIL_P(rb_ary_entry(options, EXEC_OPTION_CHDIR))) {
rb_raise(rb_eArgError, "chdir option specified twice");
}
FilePathValue(val);
rb_ary_store(options, EXEC_OPTION_CHDIR,
hide_obj(rb_str_dup(val)));
}
else if (id == rb_intern("umask")) {
mode_t cmask = NUM2MODET(val);
if (!NIL_P(rb_ary_entry(options, EXEC_OPTION_UMASK))) {
rb_raise(rb_eArgError, "umask option specified twice");
}
rb_ary_store(options, EXEC_OPTION_UMASK, LONG2NUM(cmask));
}
else if (id == rb_intern("close_others")) {
if (!NIL_P(rb_ary_entry(options, EXEC_OPTION_CLOSE_OTHERS))) {
rb_raise(rb_eArgError, "close_others option specified twice");
}
val = RTEST(val) ? Qtrue : Qfalse;
rb_ary_store(options, EXEC_OPTION_CLOSE_OTHERS, val);
}
else if (id == rb_intern("in")) {
key = INT2FIX(0);
goto redirect;
}
else if (id == rb_intern("out")) {
key = INT2FIX(1);
goto redirect;
}
else if (id == rb_intern("err")) {
key = INT2FIX(2);
goto redirect;
}
else {
rb_raise(rb_eArgError, "wrong exec option symbol: %s",
rb_id2name(id));
}
break;
case T_FIXNUM:
case T_FILE:
case T_ARRAY:
redirect:
check_exec_redirect(key, val, options);
break;
default:
rb_raise(rb_eArgError, "wrong exec option");
}
return ST_CONTINUE;
}
static int
check_exec_options_i(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
struct rb_exec_arg *e = (struct rb_exec_arg *)arg;
return rb_exec_arg_addopt(e, key, val);
}
static VALUE
check_exec_fds(VALUE options)
{
VALUE h = rb_hash_new();
VALUE ary;
int index, maxhint = -1;
long i;
for (index = EXEC_OPTION_DUP2; index <= EXEC_OPTION_DUP2_CHILD; index++) {
ary = rb_ary_entry(options, index);
if (NIL_P(ary))
continue;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_PTR(ary)[i];
int fd = FIX2INT(RARRAY_PTR(elt)[0]);
if (RTEST(rb_hash_lookup(h, INT2FIX(fd)))) {
rb_raise(rb_eArgError, "fd %d specified twice", fd);
}
if (index == EXEC_OPTION_OPEN || index == EXEC_OPTION_DUP2)
rb_hash_aset(h, INT2FIX(fd), Qtrue);
else if (index == EXEC_OPTION_DUP2_CHILD)
rb_hash_aset(h, INT2FIX(fd), RARRAY_PTR(elt)[1]);
else /* index == EXEC_OPTION_CLOSE */
rb_hash_aset(h, INT2FIX(fd), INT2FIX(-1));
if (maxhint < fd)
maxhint = fd;
if (index == EXEC_OPTION_DUP2 || index == EXEC_OPTION_DUP2_CHILD) {
fd = FIX2INT(RARRAY_PTR(elt)[1]);
if (maxhint < fd)
maxhint = fd;
}
}
}
ary = rb_ary_entry(options, EXEC_OPTION_DUP2_CHILD);
if (!NIL_P(ary)) {
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_PTR(ary)[i];
int newfd = FIX2INT(RARRAY_PTR(elt)[0]);
int oldfd = FIX2INT(RARRAY_PTR(elt)[1]);
int lastfd = oldfd;
VALUE val = rb_hash_lookup(h, INT2FIX(lastfd));
long depth = 0;
while (FIXNUM_P(val) && 0 <= FIX2INT(val)) {
lastfd = FIX2INT(val);
val = rb_hash_lookup(h, val);
if (RARRAY_LEN(ary) < depth)
rb_raise(rb_eArgError, "cyclic child fd redirection from %d", oldfd);
depth++;
}
if (val != Qtrue)
rb_raise(rb_eArgError, "child fd %d is not redirected", oldfd);
if (oldfd != lastfd) {
VALUE val2;
rb_ary_store(elt, 1, INT2FIX(lastfd));
rb_hash_aset(h, INT2FIX(newfd), INT2FIX(lastfd));
val = INT2FIX(oldfd);
while (FIXNUM_P(val2 = rb_hash_lookup(h, val))) {
rb_hash_aset(h, val, INT2FIX(lastfd));
val = val2;
}
}
}
}
if (rb_ary_entry(options, EXEC_OPTION_CLOSE_OTHERS) != Qfalse) {
rb_ary_store(options, EXEC_OPTION_CLOSE_OTHERS, INT2FIX(maxhint));
}
return h;
}
static void
rb_check_exec_options(VALUE opthash, struct rb_exec_arg *e)
{
if (RHASH_EMPTY_P(opthash))
return;
st_foreach(RHASH_TBL(opthash), check_exec_options_i, (st_data_t)e);
}
static int
check_exec_env_i(st_data_t st_key, st_data_t st_val, st_data_t arg)
{
VALUE key = (VALUE)st_key;
VALUE val = (VALUE)st_val;
VALUE env = (VALUE)arg;
char *k;
k = StringValueCStr(key);
if (strchr(k, '='))
rb_raise(rb_eArgError, "environment name contains a equal : %s", k);
if (!NIL_P(val))
StringValueCStr(val);
rb_ary_push(env, hide_obj(rb_assoc_new(key, val)));
return ST_CONTINUE;
}
static VALUE
rb_check_exec_env(VALUE hash)
{
VALUE env;
env = hide_obj(rb_ary_new());
st_foreach(RHASH_TBL(hash), check_exec_env_i, (st_data_t)env);
return env;
}
static VALUE
rb_check_argv(int argc, VALUE *argv)
{
VALUE tmp, prog;
int i;
const char *name = 0;
if (argc == 0) {
rb_raise(rb_eArgError, "wrong number of arguments");
}
prog = 0;
tmp = rb_check_array_type(argv[0]);
if (!NIL_P(tmp)) {
if (RARRAY_LEN(tmp) != 2) {
rb_raise(rb_eArgError, "wrong first argument");
}
prog = RARRAY_PTR(tmp)[0];
argv[0] = RARRAY_PTR(tmp)[1];
SafeStringValue(prog);
StringValueCStr(prog);
prog = rb_str_new4(prog);
name = RSTRING_PTR(prog);
}
for (i = 0; i < argc; i++) {
SafeStringValue(argv[i]);
argv[i] = rb_str_new4(argv[i]);
StringValueCStr(argv[i]);
}
security(name ? name : RSTRING_PTR(argv[0]));
return prog;
}
static VALUE
rb_exec_getargs(int *argc_p, VALUE **argv_p, int accept_shell, VALUE *env_ret, VALUE *opthash_ret, struct rb_exec_arg *e)
{
VALUE hash, prog;
if (0 < *argc_p) {
hash = rb_check_convert_type((*argv_p)[*argc_p-1], T_HASH, "Hash", "to_hash");
if (!NIL_P(hash)) {
*opthash_ret = hash;
(*argc_p)--;
}
}
if (0 < *argc_p) {
hash = rb_check_convert_type((*argv_p)[0], T_HASH, "Hash", "to_hash");
if (!NIL_P(hash)) {
*env_ret = hash;
(*argc_p)--;
(*argv_p)++;
}
}
prog = rb_check_argv(*argc_p, *argv_p);
if (!prog) {
prog = (*argv_p)[0];
if (accept_shell && *argc_p == 1) {
*argc_p = 0;
*argv_p = 0;
}
}
return prog;
}
static void
rb_exec_fillarg(VALUE prog, int argc, VALUE *argv, VALUE env, VALUE opthash, struct rb_exec_arg *e)
{
VALUE options;
MEMZERO(e, struct rb_exec_arg, 1);
options = hide_obj(rb_ary_new());
e->options = options;
if (!NIL_P(opthash)) {
rb_check_exec_options(opthash, e);
}
if (!NIL_P(env)) {
env = rb_check_exec_env(env);
rb_ary_store(options, EXEC_OPTION_ENV, env);
}
e->argc = argc;
e->argv = argv;
e->prog = prog ? RSTRING_PTR(prog) : 0;
}
VALUE
rb_exec_arg_init(int argc, VALUE *argv, int accept_shell, struct rb_exec_arg *e)
{
VALUE prog;
VALUE env = Qnil, opthash = Qnil;
prog = rb_exec_getargs(&argc, &argv, accept_shell, &env, &opthash, e);
rb_exec_fillarg(prog, argc, argv, env, opthash, e);
return prog;
}
void
rb_exec_arg_fixup(struct rb_exec_arg *e)
{
e->redirect_fds = check_exec_fds(e->options);
}
/*
* call-seq:
* exec([env,] command... [,options])
*
* Replaces the current process by running the given external _command_.
* _command..._ is one of following forms.
*
* commandline : command line string which is passed to the standard shell
* cmdname, arg1, ... : command name and one or more arguments (no shell)
* [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
*
* If single string is given as the command,
* it is taken as a command line that is subject to shell expansion before being executed.
*
* The standard shell means always <code>"/bin/sh"</code> on Unix-like systems,
* <code>ENV["RUBYSHELL"]</code> or <code>ENV["COMSPEC"]</code> on Windows NT series, and
* similar.
*
* If two or more +string+ given,
* the first is taken as a command name and
* the rest are passed as parameters to command with no shell expansion.
*
* If a two-element array at the beginning of the command,
* the first element is the command to be executed,
* and the second argument is used as the <code>argv[0]</code> value,
* which may show up in process listings.
*
* In order to execute the command, one of the <code>exec(2)</code>
* system calls is used, so the running command may inherit some of the environment
* of the original program (including open file descriptors).
* This behavior is modified by env and options.
* See <code>spawn</code> for details.
*
* Raises SystemCallError if the command couldn't execute (typically
* <code>Errno::ENOENT</code> when it was not found).
*
* exec "echo *" # echoes list of files in current directory
* # never get here
*
*
* exec "echo", "*" # echoes an asterisk
* # never get here
*/
VALUE
rb_f_exec(int argc, VALUE *argv)
{
struct rb_exec_arg earg;
#define CHILD_ERRMSG_BUFLEN 80
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
rb_exec_arg_init(argc, argv, TRUE, &earg);
if (NIL_P(rb_ary_entry(earg.options, EXEC_OPTION_CLOSE_OTHERS)))
rb_exec_arg_addopt(&earg, ID2SYM(rb_intern("close_others")), Qfalse);
rb_exec_arg_fixup(&earg);
rb_exec_err(&earg, errmsg, sizeof(errmsg));
if (errmsg[0])
rb_sys_fail(errmsg);
rb_sys_fail(earg.prog);
return Qnil; /* dummy */
}
#define ERRMSG(str) do { if (errmsg && 0 < errmsg_buflen) strlcpy(errmsg, (str), errmsg_buflen); } while (0)
/*#define DEBUG_REDIRECT*/
#if defined(DEBUG_REDIRECT)
#include <stdarg.h>
static void
ttyprintf(const char *fmt, ...)
{
va_list ap;
FILE *tty;
int save = errno;
#ifdef _WIN32
tty = fopen("con", "w");
#else
tty = fopen("/dev/tty", "w");
#endif
if (!tty)
return;
va_start(ap, fmt);
vfprintf(tty, fmt, ap);
va_end(ap);
fclose(tty);
errno = save;
}
static int
redirect_dup(int oldfd)
{
int ret;
ret = dup(oldfd);
ttyprintf("dup(%d) => %d\n", oldfd, ret);
return ret;
}
static int
redirect_dup2(int oldfd, int newfd)
{
int ret;
ret = dup2(oldfd, newfd);
ttyprintf("dup2(%d, %d)\n", oldfd, newfd);
return ret;
}
static int
redirect_close(int fd)
{
int ret;
ret = close(fd);
ttyprintf("close(%d)\n", fd);
return ret;
}
static int
redirect_open(const char *pathname, int flags, mode_t perm)
{
int ret;
ret = open(pathname, flags, perm);
ttyprintf("open(\"%s\", 0x%x, 0%o) => %d\n", pathname, flags, perm, ret);
return ret;
}
#else
#define redirect_dup(oldfd) dup(oldfd)
#define redirect_dup2(oldfd, newfd) dup2((oldfd), (newfd))
#define redirect_close(fd) close(fd)
#define redirect_open(pathname, flags, perm) open((pathname), (flags), (perm))
#endif
static int
save_redirect_fd(int fd, VALUE save, char *errmsg, size_t errmsg_buflen)
{
if (!NIL_P(save)) {
VALUE newary;
int save_fd = redirect_dup(fd);
if (save_fd == -1) {
if (errno == EBADF)
return 0;
ERRMSG("dup");
return -1;
}
newary = rb_ary_entry(save, EXEC_OPTION_DUP2);
if (NIL_P(newary)) {
newary = hide_obj(rb_ary_new());
rb_ary_store(save, EXEC_OPTION_DUP2, newary);
}
rb_ary_push(newary,
hide_obj(rb_assoc_new(INT2FIX(fd), INT2FIX(save_fd))));
newary = rb_ary_entry(save, EXEC_OPTION_CLOSE);
if (NIL_P(newary)) {
newary = hide_obj(rb_ary_new());
rb_ary_store(save, EXEC_OPTION_CLOSE, newary);
}
rb_ary_push(newary, hide_obj(rb_assoc_new(INT2FIX(save_fd), Qnil)));
}
return 0;
}
static VALUE
save_env_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
rb_ary_push(ary, hide_obj(rb_ary_dup(argv[0])));
return Qnil;
}
static void
save_env(VALUE save)
{
if (!NIL_P(save) && NIL_P(rb_ary_entry(save, EXEC_OPTION_ENV))) {
VALUE env = rb_const_get(rb_cObject, rb_intern("ENV"));
if (RTEST(env)) {
VALUE ary = hide_obj(rb_ary_new());
rb_block_call(env, rb_intern("each"), 0, 0, save_env_i,
(VALUE)ary);
rb_ary_store(save, EXEC_OPTION_ENV, ary);
}
rb_ary_store(save, EXEC_OPTION_UNSETENV_OTHERS, Qtrue);
}
}
static int
intcmp(const void *a, const void *b)
{
return *(int*)a - *(int*)b;
}
static int
intrcmp(const void *a, const void *b)
{
return *(int*)b - *(int*)a;
}
static int
run_exec_dup2(VALUE ary, VALUE save, char *errmsg, size_t errmsg_buflen)
{
long n, i;
int ret;
int extra_fd = -1;
struct fd_pair {
int oldfd;
int newfd;
long older_index;
long num_newer;
} *pairs = 0;
n = RARRAY_LEN(ary);
pairs = (struct fd_pair *)malloc(sizeof(struct fd_pair) * n);
if (pairs == NULL) {
ERRMSG("malloc");
return -1;
}
/* initialize oldfd and newfd: O(n) */
for (i = 0; i < n; i++) {
VALUE elt = RARRAY_PTR(ary)[i];
pairs[i].oldfd = FIX2INT(RARRAY_PTR(elt)[1]);
pairs[i].newfd = FIX2INT(RARRAY_PTR(elt)[0]); /* unique */
pairs[i].older_index = -1;
}
/* sort the table by oldfd: O(n log n) */
if (!RTEST(save))
qsort(pairs, n, sizeof(struct fd_pair), intcmp);
else
qsort(pairs, n, sizeof(struct fd_pair), intrcmp);
/* initialize older_index and num_newer: O(n log n) */
for (i = 0; i < n; i++) {
int newfd = pairs[i].newfd;
struct fd_pair key, *found;
key.oldfd = newfd;
found = bsearch(&key, pairs, n, sizeof(struct fd_pair), intcmp);
pairs[i].num_newer = 0;
if (found) {
while (pairs < found && (found-1)->oldfd == newfd)
found--;
while (found < pairs+n && found->oldfd == newfd) {
pairs[i].num_newer++;
found->older_index = i;
found++;
}
}
}
/* non-cyclic redirection: O(n) */
for (i = 0; i < n; i++) {
long j = i;
while (j != -1 && pairs[j].oldfd != -1 && pairs[j].num_newer == 0) {
if (save_redirect_fd(pairs[j].newfd, save, errmsg, errmsg_buflen) < 0)
goto fail;
ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd);
if (ret == -1) {
ERRMSG("dup2");
goto fail;
}
pairs[j].oldfd = -1;
j = pairs[j].older_index;
if (j != -1)
pairs[j].num_newer--;
}
}
/* cyclic redirection: O(n) */
for (i = 0; i < n; i++) {
long j;
if (pairs[i].oldfd == -1)
continue;
if (pairs[i].oldfd == pairs[i].newfd) { /* self cycle */
#ifdef F_GETFD
int fd = pairs[i].oldfd;
ret = fcntl(fd, F_GETFD);
if (ret == -1) {
ERRMSG("fcntl(F_GETFD)");
goto fail;
}
if (ret & FD_CLOEXEC) {
ret &= ~FD_CLOEXEC;
ret = fcntl(fd, F_SETFD, ret);
if (ret == -1) {
ERRMSG("fcntl(F_SETFD)");
goto fail;
}
}
#endif
pairs[i].oldfd = -1;
continue;
}
if (extra_fd == -1) {
extra_fd = redirect_dup(pairs[i].oldfd);
if (extra_fd == -1) {
ERRMSG("dup");
goto fail;
}
}
else {
ret = redirect_dup2(pairs[i].oldfd, extra_fd);
if (ret == -1) {
ERRMSG("dup2");
goto fail;
}
}
pairs[i].oldfd = extra_fd;
j = pairs[i].older_index;
pairs[i].older_index = -1;
while (j != -1) {
ret = redirect_dup2(pairs[j].oldfd, pairs[j].newfd);
if (ret == -1) {
ERRMSG("dup2");
goto fail;
}
pairs[j].oldfd = -1;
j = pairs[j].older_index;
}
}
if (extra_fd != -1) {
ret = redirect_close(extra_fd);
if (ret == -1) {
ERRMSG("close");
goto fail;
}
}
xfree(pairs);
return 0;
fail:
xfree(pairs);
return -1;
}
static int
run_exec_close(VALUE ary, char *errmsg, size_t errmsg_buflen)
{
long i;
int ret;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_PTR(ary)[i];
int fd = FIX2INT(RARRAY_PTR(elt)[0]);
ret = redirect_close(fd);
if (ret == -1) {
ERRMSG("close");
return -1;
}
}
return 0;
}
static int
run_exec_open(VALUE ary, VALUE save, char *errmsg, size_t errmsg_buflen)
{
long i;
int ret;
for (i = 0; i < RARRAY_LEN(ary);) {
VALUE elt = RARRAY_PTR(ary)[i];
int fd = FIX2INT(RARRAY_PTR(elt)[0]);
VALUE param = RARRAY_PTR(elt)[1];
char *path = RSTRING_PTR(RARRAY_PTR(param)[0]);
int flags = NUM2INT(RARRAY_PTR(param)[1]);
int perm = NUM2INT(RARRAY_PTR(param)[2]);
int need_close = 1;
int fd2 = redirect_open(path, flags, perm);
if (fd2 == -1) {
ERRMSG("open");
return -1;
}
while (i < RARRAY_LEN(ary) &&
(elt = RARRAY_PTR(ary)[i], RARRAY_PTR(elt)[1] == param)) {
fd = FIX2INT(RARRAY_PTR(elt)[0]);
if (fd == fd2) {
need_close = 0;
}
else {
if (save_redirect_fd(fd, save, errmsg, errmsg_buflen) < 0)
return -1;
ret = redirect_dup2(fd2, fd);
if (ret == -1) {
ERRMSG("dup2");
return -1;
}
}
i++;
}
if (need_close) {
ret = redirect_close(fd2);
if (ret == -1) {
ERRMSG("close");
return -1;
}
}
}
return 0;
}
static int
run_exec_dup2_child(VALUE ary, VALUE save, char *errmsg, size_t errmsg_buflen)
{
long i;
int ret;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_PTR(ary)[i];
int newfd = FIX2INT(RARRAY_PTR(elt)[0]);
int oldfd = FIX2INT(RARRAY_PTR(elt)[1]);
if (save_redirect_fd(newfd, save, errmsg, errmsg_buflen) < 0)
return -1;
ret = redirect_dup2(oldfd, newfd);
if (ret == -1) {
ERRMSG("dup2");
return -1;
}
}
return 0;
}
#ifdef HAVE_SETPGID
static int
run_exec_pgroup(VALUE obj, VALUE save, char *errmsg, size_t errmsg_buflen)
{
/*
* If FD_CLOEXEC is available, rb_fork waits the child's execve.
* So setpgid is done in the child when rb_fork is returned in the parent.
* No race condition, even without setpgid from the parent.
* (Is there an environment which has setpgid but FD_CLOEXEC?)
*/
int ret;
pid_t pgroup;
if (!NIL_P(save)) {
/* maybe meaningless with no fork environment... */
rb_ary_store(save, EXEC_OPTION_PGROUP, PIDT2NUM(getpgrp()));
}
pgroup = NUM2PIDT(obj);
if (pgroup == 0) {
pgroup = getpid();
}
ret = setpgid(getpid(), pgroup);
if (ret == -1) ERRMSG("setpgid");
return ret;
}
#endif
#if defined(HAVE_SETRLIMIT) && defined(RLIM2NUM)
static int
run_exec_rlimit(VALUE ary, VALUE save, char *errmsg, size_t errmsg_buflen)
{
long i;
for (i = 0; i < RARRAY_LEN(ary); i++) {
VALUE elt = RARRAY_PTR(ary)[i];
int rtype = NUM2INT(RARRAY_PTR(elt)[0]);
struct rlimit rlim;
if (!NIL_P(save)) {
VALUE tmp, newary;
if (getrlimit(rtype, &rlim) == -1) {
ERRMSG("getrlimit");
return -1;
}
tmp = hide_obj(rb_ary_new3(3, RARRAY_PTR(elt)[0],
RLIM2NUM(rlim.rlim_cur),
RLIM2NUM(rlim.rlim_max)));
newary = rb_ary_entry(save, EXEC_OPTION_RLIMIT);
if (NIL_P(newary)) {
newary = hide_obj(rb_ary_new());
rb_ary_store(save, EXEC_OPTION_RLIMIT, newary);
}
rb_ary_push(newary, tmp);
}
rlim.rlim_cur = NUM2RLIM(RARRAY_PTR(elt)[1]);
rlim.rlim_max = NUM2RLIM(RARRAY_PTR(elt)[2]);
if (setrlimit(rtype, &rlim) == -1) {
ERRMSG("setrlimit");
return -1;
}
}
return 0;
}
#endif
int
rb_run_exec_options_err(const struct rb_exec_arg *e, struct rb_exec_arg *s, char *errmsg, size_t errmsg_buflen)
{
VALUE options = e->options;
VALUE soptions = Qnil;
VALUE obj;
if (!RTEST(options))
return 0;
if (s) {
s->argc = 0;
s->argv = NULL;
s->prog = NULL;
s->options = soptions = hide_obj(rb_ary_new());
s->redirect_fds = Qnil;
}
#ifdef HAVE_SETPGID
obj = rb_ary_entry(options, EXEC_OPTION_PGROUP);
if (RTEST(obj)) {
if (run_exec_pgroup(obj, soptions, errmsg, errmsg_buflen) == -1)
return -1;
}
#endif
#if defined(HAVE_SETRLIMIT) && defined(RLIM2NUM)
obj = rb_ary_entry(options, EXEC_OPTION_RLIMIT);
if (!NIL_P(obj)) {
if (run_exec_rlimit(obj, soptions, errmsg, errmsg_buflen) == -1)
return -1;
}
#endif
obj = rb_ary_entry(options, EXEC_OPTION_UNSETENV_OTHERS);
if (RTEST(obj)) {
save_env(soptions);
rb_env_clear();
}
obj = rb_ary_entry(options, EXEC_OPTION_ENV);
if (!NIL_P(obj)) {
long i;
save_env(soptions);
for (i = 0; i < RARRAY_LEN(obj); i++) {
VALUE pair = RARRAY_PTR(obj)[i];
VALUE key = RARRAY_PTR(pair)[0];
VALUE val = RARRAY_PTR(pair)[1];
if (NIL_P(val))
ruby_setenv(StringValueCStr(key), 0);
else
ruby_setenv(StringValueCStr(key), StringValueCStr(val));
}
}
obj = rb_ary_entry(options, EXEC_OPTION_CHDIR);
if (!NIL_P(obj)) {
if (!NIL_P(soptions)) {
char *cwd = my_getcwd();
rb_ary_store(soptions, EXEC_OPTION_CHDIR,
hide_obj(rb_str_new2(cwd)));
xfree(cwd);
}
if (chdir(RSTRING_PTR(obj)) == -1) {
ERRMSG("chdir");
return -1;
}
}
obj = rb_ary_entry(options, EXEC_OPTION_UMASK);
if (!NIL_P(obj)) {
mode_t mask = NUM2MODET(obj);
mode_t oldmask = umask(mask); /* never fail */
if (!NIL_P(soptions))
rb_ary_store(soptions, EXEC_OPTION_UMASK, MODET2NUM(oldmask));
}
obj = rb_ary_entry(options, EXEC_OPTION_DUP2);
if (!NIL_P(obj)) {
if (run_exec_dup2(obj, soptions, errmsg, errmsg_buflen) == -1)
return -1;
}
obj = rb_ary_entry(options, EXEC_OPTION_CLOSE);
if (!NIL_P(obj)) {
if (!NIL_P(soptions))
rb_warn("cannot close fd before spawn");
else {
if (run_exec_close(obj, errmsg, errmsg_buflen) == -1)
return -1;
}
}
#ifdef HAVE_FORK
obj = rb_ary_entry(options, EXEC_OPTION_CLOSE_OTHERS);
if (obj != Qfalse) {
rb_close_before_exec(3, FIX2INT(obj), e->redirect_fds);
}
#endif
obj = rb_ary_entry(options, EXEC_OPTION_OPEN);
if (!NIL_P(obj)) {
if (run_exec_open(obj, soptions, errmsg, errmsg_buflen) == -1)
return -1;
}
obj = rb_ary_entry(options, EXEC_OPTION_DUP2_CHILD);
if (!NIL_P(obj)) {
if (run_exec_dup2_child(obj, soptions, errmsg, errmsg_buflen) == -1)
return -1;
}
return 0;
}
int
rb_run_exec_options(const struct rb_exec_arg *e, struct rb_exec_arg *s)
{
return rb_run_exec_options_err(e, s, NULL, 0);
}
int
rb_exec_err(const struct rb_exec_arg *e, char *errmsg, size_t errmsg_buflen)
{
int argc = e->argc;
VALUE *argv = e->argv;
const char *prog = e->prog;
if (rb_run_exec_options_err(e, NULL, errmsg, errmsg_buflen) < 0) {
return -1;
}
if (argc == 0) {
rb_proc_exec(prog);
}
else {
rb_proc_exec_n(argc, argv, prog);
}
return -1;
}
int
rb_exec(const struct rb_exec_arg *e)
{
#if !defined FD_CLOEXEC && !defined HAVE_SPAWNV
char errmsg[80] = { '\0' };
int ret = rb_exec_err(e, errmsg, sizeof(errmsg));
preserving_errno(
if (errmsg[0]) {
fprintf(stderr, "%s\n", errmsg);
}
else {
fprintf(stderr, "%s:%d: command not found: %s\n",
rb_sourcefile(), rb_sourceline(), e->prog);
}
);
return ret;
#else
return rb_exec_err(e, NULL, 0);
#endif
}
#ifdef HAVE_FORK
static int
rb_exec_atfork(void* arg, char *errmsg, size_t errmsg_buflen)
{
rb_thread_atfork_before_exec();
return rb_exec_err(arg, errmsg, errmsg_buflen);
}
#endif
#ifdef HAVE_FORK
#ifdef FD_CLOEXEC
#if SIZEOF_INT == SIZEOF_LONG
#define proc_syswait (VALUE (*)(VALUE))rb_syswait
#else
static VALUE
proc_syswait(VALUE pid)
{
rb_syswait((int)pid);
return Qnil;
}
#endif
#endif
static int
move_fds_to_avoid_crash(int *fdp, int n, VALUE fds)
{
long min = 0;
int i;
for (i = 0; i < n; i++) {
int ret;
while (RTEST(rb_hash_lookup(fds, INT2FIX(fdp[i])))) {
if (min <= fdp[i])
min = fdp[i]+1;
while (RTEST(rb_hash_lookup(fds, INT2FIX(min))))
min++;
ret = fcntl(fdp[i], F_DUPFD, min);
if (ret == -1)
return -1;
close(fdp[i]);
fdp[i] = ret;
}
}
return 0;
}
static int
pipe_nocrash(int filedes[2], VALUE fds)
{
int ret;
ret = rb_pipe(filedes);
if (ret == -1)
return -1;
if (RTEST(fds)) {
int save = errno;
if (move_fds_to_avoid_crash(filedes, 2, fds) == -1) {
close(filedes[0]);
close(filedes[1]);
return -1;
}
errno = save;
}
return ret;
}
struct chfunc_protect_t {
int (*chfunc)(void*, char *, size_t);
void *arg;
char *errmsg;
size_t buflen;
};
static VALUE
chfunc_protect(VALUE arg)
{
struct chfunc_protect_t *p = (struct chfunc_protect_t *)arg;
return (VALUE)(*p->chfunc)(p->arg, p->errmsg, p->buflen);
}
#ifndef O_BINARY
#define O_BINARY 0
#endif
/*
* Forks child process, and returns the process ID in the parent
* process.
*
* If +status+ is given, protects from any exceptions and sets the
* jump status to it.
*
* In the child process, just returns 0 if +chfunc+ is +NULL+.
* Otherwise +chfunc+ will be called with +charg+, and then the child
* process exits with +EXIT_SUCCESS+ when it returned zero.
*
* In the case of the function is called and returns non-zero value,
* the child process exits with non-+EXIT_SUCCESS+ value (normally
* 127). And, on the platforms where +FD_CLOEXEC+ is available,
* +errno+ is propagated to the parent process, and this function
* returns -1 in the parent process. On the other platforms, just
* returns pid.
*
* If fds is not Qnil, internal pipe for the errno propagation is
* arranged to avoid conflicts of the hash keys in +fds+.
*
* +chfunc+ must not raise any exceptions.
*/
rb_pid_t
rb_fork_err(int *status, int (*chfunc)(void*, char *, size_t), void *charg, VALUE fds,
char *errmsg, size_t errmsg_buflen)
{
rb_pid_t pid;
int err, state = 0;
#ifdef FD_CLOEXEC
int ep[2];
VALUE io = Qnil;
#endif
#define prefork() ( \
rb_io_flush(rb_stdout), \
rb_io_flush(rb_stderr) \
)
prefork();
#ifdef FD_CLOEXEC
if (chfunc) {
if (pipe_nocrash(ep, fds)) return -1;
if (fcntl(ep[1], F_SETFD, FD_CLOEXEC)) {
preserving_errno((close(ep[0]), close(ep[1])));
return -1;
}
}
#endif
for (; before_fork(), (pid = fork()) < 0; prefork()) {
after_fork();
switch (errno) {
case EAGAIN:
#if defined(EWOULDBLOCK) && EWOULDBLOCK != EAGAIN
case EWOULDBLOCK:
#endif
if (!status && !chfunc) {
rb_thread_sleep(1);
continue;
}
else {
rb_protect((VALUE (*)())rb_thread_sleep, 1, &state);
if (status) *status = state;
if (!state) continue;
}
default:
#ifdef FD_CLOEXEC
if (chfunc) {
preserving_errno((close(ep[0]), close(ep[1])));
}
#endif
if (state && !status) rb_jump_tag(state);
return -1;
}
}
if (!pid) {
forked_child = 1;
if (chfunc) {
struct chfunc_protect_t arg;
arg.chfunc = chfunc;
arg.arg = charg;
arg.errmsg = errmsg;
arg.buflen = errmsg_buflen;
#ifdef FD_CLOEXEC
close(ep[0]);
#endif
if (!(int)rb_protect(chfunc_protect, (VALUE)&arg, &state)) _exit(EXIT_SUCCESS);
#ifdef FD_CLOEXEC
if (write(ep[1], &state, sizeof(state)) == sizeof(state) && state) {
VALUE errinfo = rb_errinfo();
io = rb_io_fdopen(ep[1], O_WRONLY|O_BINARY, NULL);
rb_marshal_dump(errinfo, io);
rb_io_flush(io);
}
err = errno;
if (write(ep[1], &err, sizeof(err)) < 0) err = errno;
if (errmsg && 0 < errmsg_buflen) {
errmsg[errmsg_buflen-1] = '\0';
errmsg_buflen = strlen(errmsg);
if (errmsg_buflen > 0 &&write(ep[1], errmsg, errmsg_buflen) < 0)
err = errno;
}
if (!NIL_P(io)) rb_io_close(io);
#endif
#if EXIT_SUCCESS == 127
_exit(EXIT_FAILURE);
#else
_exit(127);
#endif
}
}
after_fork();
#ifdef FD_CLOEXEC
if (pid && chfunc) {
ssize_t size;
VALUE exc = Qnil;
close(ep[1]);
if ((read(ep[0], &state, sizeof(state))) == sizeof(state) && state) {
io = rb_io_fdopen(ep[0], O_RDONLY|O_BINARY, NULL);
exc = rb_marshal_load(io);
rb_set_errinfo(exc);
}
#define READ_FROM_CHILD(ptr, len) \
(NIL_P(io) ? read(ep[0], (ptr), (len)) : rb_io_bufread(io, (ptr), (len)))
if ((size = READ_FROM_CHILD(&err, sizeof(err))) < 0) {
err = errno;
}
if (size == sizeof(err) &&
errmsg && 0 < errmsg_buflen) {
ssize_t ret = READ_FROM_CHILD(errmsg, errmsg_buflen-1);
if (0 <= ret) {
errmsg[ret] = '\0';
}
}
if (NIL_P(io))
close(ep[0]);
else
rb_io_close(io);
if (state || size) {
if (status) {
*status = state;
rb_protect(proc_syswait, (VALUE)pid, status);
}
else {
rb_syswait(pid);
if (state) rb_exc_raise(exc);
}
errno = err;
return -1;
}
}
#endif
return pid;
}
struct chfunc_wrapper_t {
int (*chfunc)(void*);
void *arg;
};
static int
chfunc_wrapper(void *arg_, char *errmsg, size_t errmsg_buflen)
{
struct chfunc_wrapper_t *arg = arg_;
return arg->chfunc(arg->arg);
}
rb_pid_t
rb_fork(int *status, int (*chfunc)(void*), void *charg, VALUE fds)
{
if (chfunc) {
struct chfunc_wrapper_t warg;
warg.chfunc = chfunc;
warg.arg = charg;
return rb_fork_err(status, chfunc_wrapper, &warg, fds, NULL, 0);
}
else {
return rb_fork_err(status, NULL, NULL, fds, NULL, 0);
}
}
#endif
#if defined(HAVE_FORK) && !defined(CANNOT_FORK_WITH_PTHREAD)
/*
* call-seq:
* Kernel.fork [{ block }] -> fixnum or nil
* Process.fork [{ block }] -> fixnum or nil
*
* Creates a subprocess. If a block is specified, that block is run
* in the subprocess, and the subprocess terminates with a status of
* zero. Otherwise, the +fork+ call returns twice, once in
* the parent, returning the process ID of the child, and once in
* the child, returning _nil_. The child process can exit using
* <code>Kernel.exit!</code> to avoid running any
* <code>at_exit</code> functions. The parent process should
* use <code>Process.wait</code> to collect the termination statuses
* of its children or use <code>Process.detach</code> to register
* disinterest in their status; otherwise, the operating system
* may accumulate zombie processes.
*
* The thread calling fork is the only thread in the created child process.
* fork doesn't copy other threads.
*
* If fork is not usable, Process.respond_to?(:fork) returns false.
*/
static VALUE
rb_f_fork(VALUE obj)
{
rb_pid_t pid;
rb_secure(2);
switch (pid = rb_fork(0, 0, 0, Qnil)) {
case 0:
rb_thread_atfork();
if (rb_block_given_p()) {
int status;
rb_protect(rb_yield, Qundef, &status);
ruby_stop(status);
}
return Qnil;
case -1:
rb_sys_fail("fork(2)");
return Qnil;
default:
return PIDT2NUM(pid);
}
}
#else
#define rb_f_fork rb_f_notimplement
#endif
/*
* call-seq:
* Process.exit!(status=false)
*
* Exits the process immediately. No exit handlers are
* run. <em>status</em> is returned to the underlying system as the
* exit status.
*
* Process.exit!(true)
*/
static VALUE
rb_f_exit_bang(int argc, VALUE *argv, VALUE obj)
{
VALUE status;
int istatus;
rb_secure(4);
if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
switch (status) {
case Qtrue:
istatus = EXIT_SUCCESS;
break;
case Qfalse:
istatus = EXIT_FAILURE;
break;
default:
istatus = NUM2INT(status);
break;
}
}
else {
istatus = EXIT_FAILURE;
}
_exit(istatus);
return Qnil; /* not reached */
}
void
rb_exit(int status)
{
if (GET_THREAD()->tag) {
VALUE args[2];
args[0] = INT2NUM(status);
args[1] = rb_str_new2("exit");
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
ruby_finalize();
exit(status);
}
/*
* call-seq:
* exit(status=true)
* Kernel::exit(status=true)
* Process::exit(status=true)
*
* Initiates the termination of the Ruby script by raising the
* <code>SystemExit</code> exception. This exception may be caught. The
* optional parameter is used to return a status code to the invoking
* environment.
* +true+ and +FALSE+ of _status_ means success and failure
* respectively. The interpretation of other integer values are
* system dependent.
*
* begin
* exit
* puts "never get here"
* rescue SystemExit
* puts "rescued a SystemExit exception"
* end
* puts "after begin block"
*
* <em>produces:</em>
*
* rescued a SystemExit exception
* after begin block
*
* Just prior to termination, Ruby executes any <code>at_exit</code> functions
* (see Kernel::at_exit) and runs any object finalizers (see
* ObjectSpace::define_finalizer).
*
* at_exit { puts "at_exit function" }
* ObjectSpace.define_finalizer("string", proc { puts "in finalizer" })
* exit
*
* <em>produces:</em>
*
* at_exit function
* in finalizer
*/
VALUE
rb_f_exit(int argc, VALUE *argv)
{
VALUE status;
int istatus;
rb_secure(4);
if (argc > 0 && rb_scan_args(argc, argv, "01", &status) == 1) {
switch (status) {
case Qtrue:
istatus = EXIT_SUCCESS;
break;
case Qfalse:
istatus = EXIT_FAILURE;
break;
default:
istatus = NUM2INT(status);
#if EXIT_SUCCESS != 0
if (istatus == 0)
istatus = EXIT_SUCCESS;
#endif
break;
}
}
else {
istatus = EXIT_SUCCESS;
}
rb_exit(istatus);
return Qnil; /* not reached */
}
/*
* call-seq:
* abort
* Kernel::abort([msg])
* Process::abort([msg])
*
* Terminate execution immediately, effectively by calling
* <code>Kernel.exit(false)</code>. If _msg_ is given, it is written
* to STDERR prior to terminating.
*/
VALUE
rb_f_abort(int argc, VALUE *argv)
{
rb_secure(4);
if (argc == 0) {
if (!NIL_P(GET_THREAD()->errinfo)) {
ruby_error_print();
}
rb_exit(EXIT_FAILURE);
}
else {
VALUE args[2];
rb_scan_args(argc, argv, "1", &args[1]);
StringValue(argv[0]);
rb_io_puts(argc, argv, rb_stderr);
args[0] = INT2NUM(EXIT_FAILURE);
rb_exc_raise(rb_class_new_instance(2, args, rb_eSystemExit));
}
return Qnil; /* not reached */
}
void
rb_syswait(rb_pid_t pid)
{
static int overriding;
#ifdef SIGHUP
RETSIGTYPE (*hfunc)(int) = 0;
#endif
#ifdef SIGQUIT
RETSIGTYPE (*qfunc)(int) = 0;
#endif
RETSIGTYPE (*ifunc)(int) = 0;
int status;
int i, hooked = FALSE;
if (!overriding) {
#ifdef SIGHUP
hfunc = signal(SIGHUP, SIG_IGN);
#endif
#ifdef SIGQUIT
qfunc = signal(SIGQUIT, SIG_IGN);
#endif
ifunc = signal(SIGINT, SIG_IGN);
overriding = TRUE;
hooked = TRUE;
}
do {
i = rb_waitpid(pid, &status, 0);
} while (i == -1 && errno == EINTR);
if (hooked) {
#ifdef SIGHUP
signal(SIGHUP, hfunc);
#endif
#ifdef SIGQUIT
signal(SIGQUIT, qfunc);
#endif
signal(SIGINT, ifunc);
overriding = FALSE;
}
}
static VALUE
rb_exec_arg_prepare(struct rb_exec_arg *earg, int argc, VALUE *argv, int default_close_others)
{
VALUE prog = rb_exec_arg_init(argc, argv, TRUE, earg);
if (NIL_P(rb_ary_entry(earg->options, EXEC_OPTION_CLOSE_OTHERS))) {
VALUE v = default_close_others ? Qtrue : Qfalse;
rb_exec_arg_addopt(earg, ID2SYM(rb_intern("close_others")), v);
}
rb_exec_arg_fixup(earg);
return prog;
}
static rb_pid_t
rb_spawn_process(struct rb_exec_arg *earg, VALUE prog, char *errmsg, size_t errmsg_buflen)
{
rb_pid_t pid;
#if defined HAVE_FORK || !defined HAVE_SPAWNV
int status;
#endif
#if !defined HAVE_FORK
struct rb_exec_arg sarg;
int argc;
VALUE *argv;
#endif
#if defined HAVE_FORK
pid = rb_fork_err(&status, rb_exec_atfork, earg, earg->redirect_fds, errmsg, errmsg_buflen);
#else
if (rb_run_exec_options_err(earg, &sarg, errmsg, errmsg_buflen) < 0) {
return -1;
}
argc = earg->argc;
argv = earg->argv;
if (prog && argc) argv[0] = prog;
# if defined HAVE_SPAWNV
if (!argc) {
pid = proc_spawn(RSTRING_PTR(prog));
}
else {
pid = proc_spawn_n(argc, argv, prog);
}
# if defined(_WIN32)
if (pid == -1)
rb_last_status_set(0x7f << 8, 0);
# endif
# else
if (argc) prog = rb_ary_join(rb_ary_new4(argc, argv), rb_str_new2(" "));
status = system(StringValuePtr(prog));
rb_last_status_set((status & 0xff) << 8, 0);
# endif
rb_run_exec_options_err(&sarg, NULL, errmsg, errmsg_buflen);
#endif
return pid;
}
static rb_pid_t
rb_spawn_internal(int argc, VALUE *argv, int default_close_others,
char *errmsg, size_t errmsg_buflen)
{
struct rb_exec_arg earg;
VALUE prog = rb_exec_arg_prepare(&earg, argc, argv, default_close_others);
return rb_spawn_process(&earg, prog, errmsg, errmsg_buflen);
}
rb_pid_t
rb_spawn_err(int argc, VALUE *argv, char *errmsg, size_t errmsg_buflen)
{
return rb_spawn_internal(argc, argv, TRUE, errmsg, errmsg_buflen);
}
rb_pid_t
rb_spawn(int argc, VALUE *argv)
{
return rb_spawn_internal(argc, argv, TRUE, NULL, 0);
}
/*
* call-seq:
* system([env,] command... [,options]) -> true, false or nil
*
* Executes _command..._ in a subshell.
* _command..._ is one of following forms.
*
* commandline : command line string which is passed to the standard shell
* cmdname, arg1, ... : command name and one or more arguments (no shell)
* [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
*
* system returns +true+ if the command gives zero exit status,
* +false+ for non zero exit status.
* Returns +nil+ if command execution fails.
* An error status is available in <code>$?</code>.
* The arguments are processed in the same way as
* for <code>Kernel.spawn</code>.
*
* The hash arguments, env and options, are same as
* <code>exec</code> and <code>spawn</code>.
* See <code>Kernel.spawn</code> for details.
*
* system("echo *")
* system("echo", "*")
*
* <em>produces:</em>
*
* config.h main.rb
* *
*
* See <code>Kernel.exec</code> for the standard shell.
*/
static VALUE
rb_f_system(int argc, VALUE *argv)
{
rb_pid_t pid;
int status;
#if defined(SIGCLD) && !defined(SIGCHLD)
# define SIGCHLD SIGCLD
#endif
#ifdef SIGCHLD
RETSIGTYPE (*chfunc)(int);
chfunc = signal(SIGCHLD, SIG_DFL);
#endif
pid = rb_spawn_internal(argc, argv, FALSE, NULL, 0);
#if defined(HAVE_FORK) || defined(HAVE_SPAWNV)
if (pid > 0) {
rb_syswait(pid);
}
#endif
#ifdef SIGCHLD
signal(SIGCHLD, chfunc);
#endif
if (pid < 0) {
return Qnil;
}
status = PST2INT(rb_last_status_get());
if (status == EXIT_SUCCESS) return Qtrue;
return Qfalse;
}
/*
* call-seq:
* spawn([env,] command... [,options]) -> pid
* Process.spawn([env,] command... [,options]) -> pid
*
* spawn executes specified command and return its pid.
*
* This method doesn't wait for end of the command.
* The parent process should
* use <code>Process.wait</code> to collect
* the termination status of its child or
* use <code>Process.detach</code> to register
* disinterest in their status;
* otherwise, the operating system may accumulate zombie processes.
*
* spawn has bunch of options to specify process attributes:
*
* env: hash
* name => val : set the environment variable
* name => nil : unset the environment variable
* command...:
* commandline : command line string which is passed to the standard shell
* cmdname, arg1, ... : command name and one or more arguments (no shell)
* [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell)
* options: hash
* clearing environment variables:
* :unsetenv_others => true : clear environment variables except specified by env
* :unsetenv_others => false : don't clear (default)
* process group:
* :pgroup => true or 0 : make a new process group
* :pgroup => pgid : join to specified process group
* :pgroup => nil : don't change the process group (default)
* resource limit: resourcename is core, cpu, data, etc. See Process.setrlimit.
* :rlimit_resourcename => limit
* :rlimit_resourcename => [cur_limit, max_limit]
* current directory:
* :chdir => str
* umask:
* :umask => int
* redirection:
* key:
* FD : single file descriptor in child process
* [FD, FD, ...] : multiple file descriptor in child process
* value:
* FD : redirect to the file descriptor in parent process
* string : redirect to file with open(string, "r" or "w")
* [string] : redirect to file with open(string, File::RDONLY)
* [string, open_mode] : redirect to file with open(string, open_mode, 0644)
* [string, open_mode, perm] : redirect to file with open(string, open_mode, perm)
* [:child, FD] : redirect to the redirected file descriptor
* :close : close the file descriptor in child process
* FD is one of follows
* :in : the file descriptor 0 which is the standard input
* :out : the file descriptor 1 which is the standard output
* :err : the file descriptor 2 which is the standard error
* integer : the file descriptor of specified the integer
* io : the file descriptor specified as io.fileno
* file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not
* :close_others => false : inherit fds (default for system and exec)
* :close_others => true : don't inherit (default for spawn and IO.popen)
*
* If a hash is given as +env+, the environment is
* updated by +env+ before <code>exec(2)</code> in the child process.
* If a pair in +env+ has nil as the value, the variable is deleted.
*
* # set FOO as BAR and unset BAZ.
* pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
*
* If a hash is given as +options+,
* it specifies
* process group,
* resource limit,
* current directory,
* umask and
* redirects for the child process.
* Also, it can be specified to clear environment variables.
*
* The <code>:unsetenv_others</code> key in +options+ specifies
* to clear environment variables, other than specified by +env+.
*
* pid = spawn(command, :unsetenv_others=>true) # no environment variable
* pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only
*
* The <code>:pgroup</code> key in +options+ specifies a process group.
* The corresponding value should be true, zero or positive integer.
* true and zero means the process should be a process leader of a new
* process group.
* Other values specifies a process group to be belongs.
*
* pid = spawn(command, :pgroup=>true) # process leader
* pid = spawn(command, :pgroup=>10) # belongs to the process group 10
*
* The <code>:rlimit_</code><em>foo</em> key specifies a resource limit.
* <em>foo</em> should be one of resource types such as <code>core</code>.
* The corresponding value should be an integer or an array which have one or
* two integers: same as cur_limit and max_limit arguments for
* Process.setrlimit.
*
* cur, max = Process.getrlimit(:CORE)
* pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary.
* pid = spawn(command, :rlimit_core=>max) # enable core dump
* pid = spawn(command, :rlimit_core=>0) # never dump core.
*
* The <code>:chdir</code> key in +options+ specifies the current directory.
*
* pid = spawn(command, :chdir=>"/var/tmp")
*
* The <code>:umask</code> key in +options+ specifies the umask.
*
* pid = spawn(command, :umask=>077)
*
* The :in, :out, :err, a fixnum, an IO and an array key specifies a redirection.
* The redirection maps a file descriptor in the child process.
*
* For example, stderr can be merged into stdout as follows:
*
* pid = spawn(command, :err=>:out)
* pid = spawn(command, 2=>1)
* pid = spawn(command, STDERR=>:out)
* pid = spawn(command, STDERR=>STDOUT)
*
* The hash keys specifies a file descriptor
* in the child process started by <code>spawn</code>.
* :err, 2 and STDERR specifies the standard error stream (stderr).
*
* The hash values specifies a file descriptor
* in the parent process which invokes <code>spawn</code>.
* :out, 1 and STDOUT specifies the standard output stream (stdout).
*
* In the above example,
* the standard output in the child process is not specified.
* So it is inherited from the parent process.
*
* The standard input stream (stdin) can be specified by :in, 0 and STDIN.
*
* A filename can be specified as a hash value.
*
* pid = spawn(command, :in=>"/dev/null") # read mode
* pid = spawn(command, :out=>"/dev/null") # write mode
* pid = spawn(command, :err=>"log") # write mode
* pid = spawn(command, 3=>"/dev/null") # read mode
*
* For stdout and stderr,
* it is opened in write mode.
* Otherwise read mode is used.
*
* For specifying flags and permission of file creation explicitly,
* an array is used instead.
*
* pid = spawn(command, :in=>["file"]) # read mode is assumed
* pid = spawn(command, :in=>["file", "r"])
* pid = spawn(command, :out=>["log", "w"]) # 0644 assumed
* pid = spawn(command, :out=>["log", "w", 0600])
* pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])
*
* The array specifies a filename, flags and permission.
* The flags can be a string or an integer.
* If the flags is omitted or nil, File::RDONLY is assumed.
* The permission should be an integer.
* If the permission is omitted or nil, 0644 is assumed.
*
* If an array of IOs and integers are specified as a hash key,
* all the elements are redirected.
*
* # stdout and stderr is redirected to log file.
* # The file "log" is opened just once.
* pid = spawn(command, [:out, :err]=>["log", "w"])
*
* Another way to merge multiple file descriptors is [:child, fd].
* \[:child, fd] means the file descriptor in the child process.
* This is different from fd.
* For example, :err=>:out means redirecting child stderr to parent stdout.
* But :err=>[:child, :out] means redirecting child stderr to child stdout.
* They differs if stdout is redirected in the child process as follows.
*
* # stdout and stderr is redirected to log file.
* # The file "log" is opened just once.
* pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])
*
* \[:child, :out] can be used to merge stderr into stdout in IO.popen.
* In this case, IO.popen redirects stdout to a pipe in the child process
* and [:child, :out] refers the redirected stdout.
*
* io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]])
* p io.read #=> "out\nerr\n"
*
* spawn closes all non-standard unspecified descriptors by default.
* The "standard" descriptors are 0, 1 and 2.
* This behavior is specified by :close_others option.
* :close_others doesn't affect the standard descriptors which are
* closed only if :close is specified explicitly.
*
* pid = spawn(command, :close_others=>true) # close 3,4,5,... (default)
* pid = spawn(command, :close_others=>false) # don't close 3,4,5,...
*
* :close_others is true by default for spawn and IO.popen.
*
* So IO.pipe and spawn can be used as IO.popen.
*
* # similar to r = IO.popen(command)
* r, w = IO.pipe
* pid = spawn(command, :out=>w) # r, w is closed in the child process.
* w.close
*
* :close is specified as a hash value to close a fd individually.
*
* f = open(foo)
* system(command, f=>:close) # don't inherit f.
*
* If a file descriptor need to be inherited,
* io=>io can be used.
*
* # valgrind has --log-fd option for log destination.
* # log_w=>log_w indicates log_w.fileno inherits to child process.
* log_r, log_w = IO.pipe
* pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w)
* log_w.close
* p log_r.read
*
* It is also possible to exchange file descriptors.
*
* pid = spawn(command, :out=>:err, :err=>:out)
*
* The hash keys specify file descriptors in the child process.
* The hash values specifies file descriptors in the parent process.
* So the above specifies exchanging stdout and stderr.
* Internally, +spawn+ uses an extra file descriptor to resolve such cyclic
* file descriptor mapping.
*
* See <code>Kernel.exec</code> for the standard shell.
*/
static VALUE
rb_f_spawn(int argc, VALUE *argv)
{
rb_pid_t pid;
char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' };
struct rb_exec_arg earg;
pid = rb_spawn_process(&earg, rb_exec_arg_prepare(&earg, argc, argv, TRUE), errmsg, sizeof(errmsg));
if (pid == -1) {
const char *prog = errmsg;
if (!prog[0] && !(prog = earg.prog) && earg.argc) {
prog = RSTRING_PTR(earg.argv[0]);
}
rb_sys_fail(prog);
}
#if defined(HAVE_FORK) || defined(HAVE_SPAWNV)
return PIDT2NUM(pid);
#else
return Qnil;
#endif
}
/*
* call-seq:
* sleep([duration]) -> fixnum
*
* Suspends the current thread for _duration_ seconds (which may be any number,
* including a +Float+ with fractional seconds). Returns the actual number of
* seconds slept (rounded), which may be less than that asked for if another
* thread calls <code>Thread#run</code>. Called without an argument, sleep()
* will sleep forever.
*
* Time.new #=> 2008-03-08 19:56:19 +0900
* sleep 1.2 #=> 1
* Time.new #=> 2008-03-08 19:56:20 +0900
* sleep 1.9 #=> 2
* Time.new #=> 2008-03-08 19:56:22 +0900
*/
static VALUE
rb_f_sleep(int argc, VALUE *argv)
{
time_t beg, end;
beg = time(0);
if (argc == 0) {
rb_thread_sleep_forever();
}
else if (argc == 1) {
rb_thread_wait_for(rb_time_interval(argv[0]));
}
else {
rb_raise(rb_eArgError, "wrong number of arguments (%d for 0..1)", argc);
}
end = time(0) - beg;
return INT2FIX(end);
}
#if (defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)) || defined(HAVE_GETPGID)
/*
* call-seq:
* Process.getpgrp -> integer
*
* Returns the process group ID for this process. Not available on
* all platforms.
*
* Process.getpgid(0) #=> 25527
* Process.getpgrp #=> 25527
*/
static VALUE
proc_getpgrp(void)
{
rb_pid_t pgrp;
rb_secure(2);
#if defined(HAVE_GETPGRP) && defined(GETPGRP_VOID)
pgrp = getpgrp();
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#else /* defined(HAVE_GETPGID) */
pgrp = getpgid(0);
if (pgrp < 0) rb_sys_fail(0);
return PIDT2NUM(pgrp);
#endif
}
#else
#define proc_getpgrp rb_f_notimplement
#endif
#if defined(HAVE_SETPGID) || (defined(HAVE_SETPGRP) && defined(SETPGRP_VOID))
/*
* call-seq:
* Process.setpgrp -> 0
*
* Equivalent to <code>setpgid(0,0)</code>. Not available on all
* platforms.
*/
static VALUE
proc_setpgrp(void)
{
rb_secure(2);
/* check for posix setpgid() first; this matches the posix */
/* getpgrp() above. It appears that configure will set SETPGRP_VOID */
/* even though setpgrp(0,0) would be preferred. The posix call avoids */
/* this confusion. */
#ifdef HAVE_SETPGID
if (setpgid(0,0) < 0) rb_sys_fail(0);
#elif defined(HAVE_SETPGRP) && defined(SETPGRP_VOID)
if (setpgrp() < 0) rb_sys_fail(0);
#endif
return INT2FIX(0);
}
#else
#define proc_setpgrp rb_f_notimplement
#endif
#if defined(HAVE_GETPGID)
/*
* call-seq:
* Process.getpgid(pid) -> integer
*
* Returns the process group ID for the given process id. Not
* available on all platforms.
*
* Process.getpgid(Process.ppid()) #=> 25527
*/
static VALUE
proc_getpgid(VALUE obj, VALUE pid)
{
rb_pid_t i;
rb_secure(2);
i = getpgid(NUM2PIDT(pid));
if (i < 0) rb_sys_fail(0);
return PIDT2NUM(i);
}
#else
#define proc_getpgid rb_f_notimplement
#endif
#ifdef HAVE_SETPGID
/*
* call-seq:
* Process.setpgid(pid, integer) -> 0
*
* Sets the process group ID of _pid_ (0 indicates this
* process) to <em>integer</em>. Not available on all platforms.
*/
static VALUE
proc_setpgid(VALUE obj, VALUE pid, VALUE pgrp)
{
rb_pid_t ipid, ipgrp;
rb_secure(2);
ipid = NUM2PIDT(pid);
ipgrp = NUM2PIDT(pgrp);
if (setpgid(ipid, ipgrp) < 0) rb_sys_fail(0);
return INT2FIX(0);
}
#else
#define proc_setpgid rb_f_notimplement
#endif
#if defined(HAVE_SETSID) || (defined(HAVE_SETPGRP) && defined(TIOCNOTTY))
#if !defined(HAVE_SETSID)
static rb_pid_t ruby_setsid(void);
#define setsid() ruby_setsid()
#endif
/*
* call-seq:
* Process.setsid -> fixnum
*
* Establishes this process as a new session and process group
* leader, with no controlling tty. Returns the session id. Not
* available on all platforms.
*
* Process.setsid #=> 27422
*/
static VALUE
proc_setsid(void)
{
rb_pid_t pid;
rb_secure(2);
pid = setsid();
if (pid < 0) rb_sys_fail(0);
return PIDT2NUM(pid);
}
#if !defined(HAVE_SETSID)
#define HAVE_SETSID 1
static rb_pid_t
ruby_setsid(void)
{
rb_pid_t pid;
int ret;
pid = getpid();
#if defined(SETPGRP_VOID)
ret = setpgrp();
/* If `pid_t setpgrp(void)' is equivalent to setsid(),
`ret' will be the same value as `pid', and following open() will fail.
In Linux, `int setpgrp(void)' is equivalent to setpgid(0, 0). */
#else
ret = setpgrp(0, pid);
#endif
if (ret == -1) return -1;
if ((fd = open("/dev/tty", O_RDWR)) >= 0) {
ioctl(fd, TIOCNOTTY, NULL);
close(fd);
}
return pid;
}
#endif
#else
#define proc_setsid rb_f_notimplement
#endif
#ifdef HAVE_GETPRIORITY
/*
* call-seq:
* Process.getpriority(kind, integer) -> fixnum
*
* Gets the scheduling priority for specified process, process group,
* or user. <em>kind</em> indicates the kind of entity to find: one
* of <code>Process::PRIO_PGRP</code>,
* <code>Process::PRIO_USER</code>, or
* <code>Process::PRIO_PROCESS</code>. _integer_ is an id
* indicating the particular process, process group, or user (an id
* of 0 means _current_). Lower priorities are more favorable
* for scheduling. Not available on all platforms.
*
* Process.getpriority(Process::PRIO_USER, 0) #=> 19
* Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
*/
static VALUE
proc_getpriority(VALUE obj, VALUE which, VALUE who)
{
int prio, iwhich, iwho;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
errno = 0;
prio = getpriority(iwhich, iwho);
if (errno) rb_sys_fail(0);
return INT2FIX(prio);
}
#else
#define proc_getpriority rb_f_notimplement
#endif
#ifdef HAVE_GETPRIORITY
/*
* call-seq:
* Process.setpriority(kind, integer, priority) -> 0
*
* See <code>Process#getpriority</code>.
*
* Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0
* Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0
* Process.getpriority(Process::PRIO_USER, 0) #=> 19
* Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
*/
static VALUE
proc_setpriority(VALUE obj, VALUE which, VALUE who, VALUE prio)
{
int iwhich, iwho, iprio;
rb_secure(2);
iwhich = NUM2INT(which);
iwho = NUM2INT(who);
iprio = NUM2INT(prio);
if (setpriority(iwhich, iwho, iprio) < 0)
rb_sys_fail(0);
return INT2FIX(0);
}
#else
#define proc_setpriority rb_f_notimplement
#endif
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
static int
rlimit_resource_name2int(const char *name, int casetype)
{
int resource;
const char *p;
#define RESCHECK(r) \
do { \
if (STRCASECMP(name, #r) == 0) { \
resource = RLIMIT_##r; \
goto found; \
} \
} while (0)
switch (TOUPPER(*name)) {
case 'A':
#ifdef RLIMIT_AS
RESCHECK(AS);
#endif
break;
case 'C':
#ifdef RLIMIT_CORE
RESCHECK(CORE);
#endif
#ifdef RLIMIT_CPU
RESCHECK(CPU);
#endif
break;
case 'D':
#ifdef RLIMIT_DATA
RESCHECK(DATA);
#endif
break;
case 'F':
#ifdef RLIMIT_FSIZE
RESCHECK(FSIZE);
#endif
break;
case 'M':
#ifdef RLIMIT_MEMLOCK
RESCHECK(MEMLOCK);
#endif
#ifdef RLIMIT_MSGQUEUE
RESCHECK(MSGQUEUE);
#endif
break;
case 'N':
#ifdef RLIMIT_NOFILE
RESCHECK(NOFILE);
#endif
#ifdef RLIMIT_NPROC
RESCHECK(NPROC);
#endif
#ifdef RLIMIT_NICE
RESCHECK(NICE);
#endif
break;
case 'R':
#ifdef RLIMIT_RSS
RESCHECK(RSS);
#endif
#ifdef RLIMIT_RTPRIO
RESCHECK(RTPRIO);
#endif
#ifdef RLIMIT_RTTIME
RESCHECK(RTTIME);
#endif
break;
case 'S':
#ifdef RLIMIT_STACK
RESCHECK(STACK);
#endif
#ifdef RLIMIT_SBSIZE
RESCHECK(SBSIZE);
#endif
#ifdef RLIMIT_SIGPENDING
RESCHECK(SIGPENDING);
#endif
break;
}
return -1;
found:
switch (casetype) {
case 0:
for (p = name; *p; p++)
if (!ISUPPER(*p))
return -1;
break;
case 1:
for (p = name; *p; p++)
if (!ISLOWER(*p))
return -1;
break;
default:
rb_bug("unexpected casetype");
}
return resource;
#undef RESCHECK
}
static int
rlimit_type_by_hname(const char *name)
{
return rlimit_resource_name2int(name, 0);
}
static int
rlimit_type_by_lname(const char *name)
{
return rlimit_resource_name2int(name, 1);
}
static int
rlimit_resource_type(VALUE rtype)
{
const char *name;
VALUE v;
int r;
switch (TYPE(rtype)) {
case T_SYMBOL:
name = rb_id2name(SYM2ID(rtype));
break;
default:
v = rb_check_string_type(rtype);
if (!NIL_P(v)) {
rtype = v;
case T_STRING:
name = StringValueCStr(rtype);
break;
}
/* fall through */
case T_FIXNUM:
case T_BIGNUM:
return NUM2INT(rtype);
}
r = rlimit_type_by_hname(name);
if (r != -1)
return r;
rb_raise(rb_eArgError, "invalid resource name: %s", name);
}
static rlim_t
rlimit_resource_value(VALUE rval)
{
const char *name;
VALUE v;
switch (TYPE(rval)) {
case T_SYMBOL:
name = rb_id2name(SYM2ID(rval));
break;
default:
v = rb_check_string_type(rval);
if (!NIL_P(v)) {
rval = v;
case T_STRING:
name = StringValueCStr(rval);
break;
}
/* fall through */
case T_FIXNUM:
case T_BIGNUM:
return NUM2RLIM(rval);
}
#ifdef RLIM_INFINITY
if (strcmp(name, "INFINITY") == 0) return RLIM_INFINITY;
#endif
#ifdef RLIM_SAVED_MAX
if (strcmp(name, "SAVED_MAX") == 0) return RLIM_SAVED_MAX;
#endif
#ifdef RLIM_SAVED_CUR
if (strcmp(name, "SAVED_CUR") == 0) return RLIM_SAVED_CUR;
#endif
rb_raise(rb_eArgError, "invalid resource value: %s", name);
}
#endif
#if defined(HAVE_GETRLIMIT) && defined(RLIM2NUM)
/*
* call-seq:
* Process.getrlimit(resource) -> [cur_limit, max_limit]
*
* Gets the resource limit of the process.
* _cur_limit_ means current (soft) limit and
* _max_limit_ means maximum (hard) limit.
*
* _resource_ indicates the kind of resource to limit.
* It is specified as a symbol such as <code>:CORE</code>,
* a string such as <code>"CORE"</code> or
* a constant such as <code>Process::RLIMIT_CORE</code>.
* See Process.setrlimit for details.
*
* _cur_limit_ and _max_limit_ may be <code>Process::RLIM_INFINITY</code>,
* <code>Process::RLIM_SAVED_MAX</code> or
* <code>Process::RLIM_SAVED_CUR</code>.
* See Process.setrlimit and the system getrlimit(2) manual for details.
*/
static VALUE
proc_getrlimit(VALUE obj, VALUE resource)
{
struct rlimit rlim;
rb_secure(2);
if (getrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("getrlimit");
}
return rb_assoc_new(RLIM2NUM(rlim.rlim_cur), RLIM2NUM(rlim.rlim_max));
}
#else
#define proc_getrlimit rb_f_notimplement
#endif
#if defined(HAVE_SETRLIMIT) && defined(NUM2RLIM)
/*
* call-seq:
* Process.setrlimit(resource, cur_limit, max_limit) -> nil
* Process.setrlimit(resource, cur_limit) -> nil
*
* Sets the resource limit of the process.
* _cur_limit_ means current (soft) limit and
* _max_limit_ means maximum (hard) limit.
*
* If _max_limit_ is not given, _cur_limit_ is used.
*
* _resource_ indicates the kind of resource to limit.
* It should be a symbol such as <code>:CORE</code>,
* a string such as <code>"CORE"</code> or
* a constant such as <code>Process::RLIMIT_CORE</code>.
* The available resources are OS dependent.
* Ruby may support following resources.
*
* [AS] total available memory (bytes) (SUSv3, NetBSD, FreeBSD, OpenBSD but 4.4BSD-Lite)
* [CORE] core size (bytes) (SUSv3)
* [CPU] CPU time (seconds) (SUSv3)
* [DATA] data segment (bytes) (SUSv3)
* [FSIZE] file size (bytes) (SUSv3)
* [MEMLOCK] total size for mlock(2) (bytes) (4.4BSD, GNU/Linux)
* [MSGQUEUE] allocation for POSIX message queues (bytes) (GNU/Linux)
* [NICE] ceiling on process's nice(2) value (number) (GNU/Linux)
* [NOFILE] file descriptors (number) (SUSv3)
* [NPROC] number of processes for the user (number) (4.4BSD, GNU/Linux)
* [RSS] resident memory size (bytes) (4.2BSD, GNU/Linux)
* [RTPRIO] ceiling on the process's real-time priority (number) (GNU/Linux)
* [RTTIME] CPU time for real-time process (us) (GNU/Linux)
* [SBSIZE] all socket buffers (bytes) (NetBSD, FreeBSD)
* [SIGPENDING] number of queued signals allowed (signals) (GNU/Linux)
* [STACK] stack size (bytes) (SUSv3)
*
* _cur_limit_ and _max_limit_ may be
* <code>:INFINITY</code>, <code>"INFINITY"</code> or
* <code>Process::RLIM_INFINITY</code>,
* which means that the resource is not limited.
* They may be <code>Process::RLIM_SAVED_MAX</code>,
* <code>Process::RLIM_SAVED_CUR</code> and
* corresponding symbols and strings too.
* See system setrlimit(2) manual for details.
*
* The following example raises the soft limit of core size to
* the hard limit to try to make core dump possible.
*
* Process.setrlimit(:CORE, Process.getrlimit(:CORE)[1])
*
*/
static VALUE
proc_setrlimit(int argc, VALUE *argv, VALUE obj)
{
VALUE resource, rlim_cur, rlim_max;
struct rlimit rlim;
rb_secure(2);
rb_scan_args(argc, argv, "21", &resource, &rlim_cur, &rlim_max);
if (rlim_max == Qnil)
rlim_max = rlim_cur;
rlim.rlim_cur = rlimit_resource_value(rlim_cur);
rlim.rlim_max = rlimit_resource_value(rlim_max);
if (setrlimit(rlimit_resource_type(resource), &rlim) < 0) {
rb_sys_fail("setrlimit");
}
return Qnil;
}
#else
#define proc_setrlimit rb_f_notimplement
#endif
static int under_uid_switch = 0;
static void
check_uid_switch(void)
{
rb_secure(2);
if (under_uid_switch) {
rb_raise(rb_eRuntimeError, "can't handle UID while evaluating block given to Process::UID.switch method");
}
}
static int under_gid_switch = 0;
static void
check_gid_switch(void)
{
rb_secure(2);
if (under_gid_switch) {
rb_raise(rb_eRuntimeError, "can't handle GID while evaluating block given to Process::UID.switch method");
}
}
/*********************************************************************
* Document-class: Process::Sys
*
* The <code>Process::Sys</code> module contains UID and GID
* functions which provide direct bindings to the system calls of the
* same names instead of the more-portable versions of the same
* functionality found in the <code>Process</code>,
* <code>Process::UID</code>, and <code>Process::GID</code> modules.
*/
#if defined HAVE_SETUID
/*
* call-seq:
* Process::Sys.setuid(integer) -> nil
*
* Set the user ID of the current process to _integer_. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setuid(VALUE obj, VALUE id)
{
check_uid_switch();
if (setuid(NUM2UIDT(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setuid rb_f_notimplement
#endif
#if defined HAVE_SETRUID
/*
* call-seq:
* Process::Sys.setruid(integer) -> nil
*
* Set the real user ID of the calling process to _integer_.
* Not available on all platforms.
*
*/
static VALUE
p_sys_setruid(VALUE obj, VALUE id)
{
check_uid_switch();
if (setruid(NUM2UIDT(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setruid rb_f_notimplement
#endif
#if defined HAVE_SETEUID
/*
* call-seq:
* Process::Sys.seteuid(integer) -> nil
*
* Set the effective user ID of the calling process to
* _integer_. Not available on all platforms.
*
*/
static VALUE
p_sys_seteuid(VALUE obj, VALUE id)
{
check_uid_switch();
if (seteuid(NUM2UIDT(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_seteuid rb_f_notimplement
#endif
#if defined HAVE_SETREUID
/*
* call-seq:
* Process::Sys.setreuid(rid, eid) -> nil
*
* Sets the (integer) real and/or effective user IDs of the current
* process to _rid_ and _eid_, respectively. A value of
* <code>-1</code> for either means to leave that ID unchanged. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setreuid(VALUE obj, VALUE rid, VALUE eid)
{
check_uid_switch();
if (setreuid(NUM2UIDT(rid),NUM2UIDT(eid)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setreuid rb_f_notimplement
#endif
#if defined HAVE_SETRESUID
/*
* call-seq:
* Process::Sys.setresuid(rid, eid, sid) -> nil
*
* Sets the (integer) real, effective, and saved user IDs of the
* current process to _rid_, _eid_, and _sid_ respectively. A
* value of <code>-1</code> for any value means to
* leave that ID unchanged. Not available on all platforms.
*
*/
static VALUE
p_sys_setresuid(VALUE obj, VALUE rid, VALUE eid, VALUE sid)
{
check_uid_switch();
if (setresuid(NUM2UIDT(rid),NUM2UIDT(eid),NUM2UIDT(sid)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setresuid rb_f_notimplement
#endif
/*
* call-seq:
* Process.uid -> fixnum
* Process::UID.rid -> fixnum
* Process::Sys.getuid -> fixnum
*
* Returns the (real) user ID of this process.
*
* Process.uid #=> 501
*/
static VALUE
proc_getuid(VALUE obj)
{
rb_uid_t uid = getuid();
return UIDT2NUM(uid);
}
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETRUID) || defined(HAVE_SETUID)
/*
* call-seq:
* Process.uid= integer -> numeric
*
* Sets the (integer) user ID for this process. Not available on all
* platforms.
*/
static VALUE
proc_setuid(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = NUM2UIDT(id);
#if defined(HAVE_SETRESUID)
if (setresuid(uid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRUID
if (setruid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
{
if (geteuid() == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return id;
}
#else
#define proc_setuid rb_f_notimplement
#endif
/********************************************************************
*
* Document-class: Process::UID
*
* The <code>Process::UID</code> module contains a collection of
* module functions which can be used to portably get, set, and
* switch the current process's real, effective, and saved user IDs.
*
*/
static rb_uid_t SAVED_USER_ID = -1;
#ifdef BROKEN_SETREUID
int
setreuid(rb_uid_t ruid, rb_uid_t euid)
{
if (ruid != -1 && ruid != getuid()) {
if (euid == -1) euid = geteuid();
if (setuid(ruid) < 0) return -1;
}
if (euid != -1 && euid != geteuid()) {
if (seteuid(euid) < 0) return -1;
}
return 0;
}
#endif
/*
* call-seq:
* Process::UID.change_privilege(integer) -> fixnum
*
* Change the current process's real and effective user ID to that
* specified by _integer_. Returns the new user ID. Not
* available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 0]
* Process::UID.change_privilege(31) #=> 31
* [Process.uid, Process.euid] #=> [31, 31]
*/
static VALUE
p_uid_change_privilege(VALUE obj, VALUE id)
{
rb_uid_t uid;
check_uid_switch();
uid = NUM2UIDT(id);
if (geteuid() == 0) { /* root-user */
#if defined(HAVE_SETRESUID)
if (setresuid(uid, uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETUID)
if (setuid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (getuid() == uid) {
if (SAVED_USER_ID == uid) {
if (setreuid(-1, uid) < 0) rb_sys_fail(0);
} else {
if (uid == 0) { /* (r,e,s) == (root, root, x) */
if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0);
if (setreuid(SAVED_USER_ID, 0) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0; /* (r,e,s) == (x, root, root) */
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
} else {
if (setreuid(0, -1) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
}
} else {
if (setreuid(uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
#elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID)
if (getuid() == uid) {
if (SAVED_USER_ID == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
} else {
if (uid == 0) {
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (setruid(0) < 0) rb_sys_fail(0);
} else {
if (setruid(0) < 0) rb_sys_fail(0);
SAVED_USER_ID = 0;
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
}
} else {
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
}
#else
rb_notimplement();
#endif
} else { /* unprivileged user */
#if defined(HAVE_SETRESUID)
if (setresuid((getuid() == uid)? (rb_uid_t)-1: uid,
(geteuid() == uid)? (rb_uid_t)-1: uid,
(SAVED_USER_ID == uid)? (rb_uid_t)-1: uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (SAVED_USER_ID == uid) {
if (setreuid((getuid() == uid)? (rb_uid_t)-1: uid,
(geteuid() == uid)? (rb_uid_t)-1: uid) < 0)
rb_sys_fail(0);
} else if (getuid() != uid) {
if (setreuid(uid, (geteuid() == uid)? (rb_uid_t)-1: uid) < 0)
rb_sys_fail(0);
SAVED_USER_ID = uid;
} else if (/* getuid() == uid && */ geteuid() != uid) {
if (setreuid(geteuid(), uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
} else { /* getuid() == uid && geteuid() == uid */
if (setreuid(-1, SAVED_USER_ID) < 0) rb_sys_fail(0);
if (setreuid(SAVED_USER_ID, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setreuid(uid, -1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETRUID) && defined(HAVE_SETEUID)
if (SAVED_USER_ID == uid) {
if (geteuid() != uid && seteuid(uid) < 0) rb_sys_fail(0);
if (getuid() != uid && setruid(uid) < 0) rb_sys_fail(0);
} else if (/* SAVED_USER_ID != uid && */ geteuid() == uid) {
if (getuid() != uid) {
if (setruid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
} else {
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setruid(uid) < 0) rb_sys_fail(0);
}
} else if (/* geteuid() != uid && */ getuid() == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
if (setruid(SAVED_USER_ID) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
if (setruid(uid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_44BSD_SETUID
if (getuid() == uid) {
/* (r,e,s)==(uid,?,?) ==> (uid,uid,uid) */
if (setuid(uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_SETEUID
if (getuid() == uid && SAVED_USER_ID == uid) {
if (seteuid(uid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_SETUID
if (getuid() == uid && SAVED_USER_ID == uid) {
if (setuid(uid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#else
rb_notimplement();
#endif
}
return id;
}
#if defined HAVE_SETGID
/*
* call-seq:
* Process::Sys.setgid(integer) -> nil
*
* Set the group ID of the current process to _integer_. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setgid(VALUE obj, VALUE id)
{
check_gid_switch();
if (setgid(NUM2GIDT(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setgid rb_f_notimplement
#endif
#if defined HAVE_SETRGID
/*
* call-seq:
* Process::Sys.setrgid(integer) -> nil
*
* Set the real group ID of the calling process to _integer_.
* Not available on all platforms.
*
*/
static VALUE
p_sys_setrgid(VALUE obj, VALUE id)
{
check_gid_switch();
if (setrgid(NUM2GIDT(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setrgid rb_f_notimplement
#endif
#if defined HAVE_SETEGID
/*
* call-seq:
* Process::Sys.setegid(integer) -> nil
*
* Set the effective group ID of the calling process to
* _integer_. Not available on all platforms.
*
*/
static VALUE
p_sys_setegid(VALUE obj, VALUE id)
{
check_gid_switch();
if (setegid(NUM2GIDT(id)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setegid rb_f_notimplement
#endif
#if defined HAVE_SETREGID
/*
* call-seq:
* Process::Sys.setregid(rid, eid) -> nil
*
* Sets the (integer) real and/or effective group IDs of the current
* process to <em>rid</em> and <em>eid</em>, respectively. A value of
* <code>-1</code> for either means to leave that ID unchanged. Not
* available on all platforms.
*
*/
static VALUE
p_sys_setregid(VALUE obj, VALUE rid, VALUE eid)
{
check_gid_switch();
if (setregid(NUM2GIDT(rid),NUM2GIDT(eid)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setregid rb_f_notimplement
#endif
#if defined HAVE_SETRESGID
/*
* call-seq:
* Process::Sys.setresgid(rid, eid, sid) -> nil
*
* Sets the (integer) real, effective, and saved user IDs of the
* current process to <em>rid</em>, <em>eid</em>, and <em>sid</em>
* respectively. A value of <code>-1</code> for any value means to
* leave that ID unchanged. Not available on all platforms.
*
*/
static VALUE
p_sys_setresgid(VALUE obj, VALUE rid, VALUE eid, VALUE sid)
{
check_gid_switch();
if (setresgid(NUM2GIDT(rid),NUM2GIDT(eid),NUM2GIDT(sid)) != 0) rb_sys_fail(0);
return Qnil;
}
#else
#define p_sys_setresgid rb_f_notimplement
#endif
#if defined HAVE_ISSETUGID
/*
* call-seq:
* Process::Sys.issetugid -> true or false
*
* Returns +true+ if the process was created as a result
* of an execve(2) system call which had either of the setuid or
* setgid bits set (and extra privileges were given as a result) or
* if it has changed any of its real, effective or saved user or
* group IDs since it began execution.
*
*/
static VALUE
p_sys_issetugid(VALUE obj)
{
rb_secure(2);
if (issetugid()) {
return Qtrue;
} else {
return Qfalse;
}
}
#else
#define p_sys_issetugid rb_f_notimplement
#endif
/*
* call-seq:
* Process.gid -> fixnum
* Process::GID.rid -> fixnum
* Process::Sys.getgid -> fixnum
*
* Returns the (real) group ID for this process.
*
* Process.gid #=> 500
*/
static VALUE
proc_getgid(VALUE obj)
{
rb_gid_t gid = getgid();
return GIDT2NUM(gid);
}
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETRGID) || defined(HAVE_SETGID)
/*
* call-seq:
* Process.gid= fixnum -> fixnum
*
* Sets the group ID for this process.
*/
static VALUE
proc_setgid(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = NUM2GIDT(id);
#if defined(HAVE_SETRESGID)
if (setresgid(gid, -1, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETRGID
if (setrgid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
{
if (getegid() == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
}
#endif
return GIDT2NUM(gid);
}
#else
#define proc_setgid rb_f_notimplement
#endif
#if defined(HAVE_SETGROUPS) || defined(HAVE_GETGROUPS)
/*
* Maximum supplementary groups are platform dependent.
* FWIW, 65536 is enough big for our supported OSs.
*
* OS Name max groups
* -----------------------------------------------
* Linux Kernel >= 2.6.3 65536
* Linux Kernel < 2.6.3 32
* IBM AIX 5.2 64
* IBM AIX 5.3 ... 6.1 128
* IBM AIX 7.1 128 (can be configured to be up to 2048)
* OpenBSD, NetBSD 16
* FreeBSD < 8.0 16
* FreeBSD >=8.0 1023
* Darwin (Mac OS X) 16
* Sun Solaris 7,8,9,10 16
* Sun Solaris 11 / OpenSolaris 1024
* HP-UX 20
* Windows 1015
*/
#define RB_MAX_GROUPS (65536)
static int _maxgroups = -1;
static int get_sc_ngroups_max(void)
{
#ifdef _SC_NGROUPS_MAX
return (int)sysconf(_SC_NGROUPS_MAX);
#elif defined(NGROUPS_MAX)
return (int)NGROUPS_MAX;
#else
return -1;
#endif
}
static int maxgroups(void)
{
if (_maxgroups < 0) {
_maxgroups = get_sc_ngroups_max();
if (_maxgroups < 0)
_maxgroups = RB_MAX_GROUPS;
}
return _maxgroups;
}
#endif
#ifdef HAVE_GETGROUPS
/*
* call-seq:
* Process.groups -> array
*
* Get an <code>Array</code> of the gids of groups in the
* supplemental group access list for this process.
*
* Process.groups #=> [27, 6, 10, 11]
*
*/
static VALUE
proc_getgroups(VALUE obj)
{
VALUE ary;
int i, ngroups;
rb_gid_t *groups;
ngroups = getgroups(0, NULL);
if (ngroups == -1)
rb_sys_fail(0);
groups = ALLOCA_N(rb_gid_t, ngroups);
ngroups = getgroups(ngroups, groups);
if (ngroups == -1)
rb_sys_fail(0);
ary = rb_ary_new();
for (i = 0; i < ngroups; i++)
rb_ary_push(ary, GIDT2NUM(groups[i]));
return ary;
}
#else
#define proc_getgroups rb_f_notimplement
#endif
#ifdef HAVE_SETGROUPS
/*
* call-seq:
* Process.groups= array -> array
*
* Set the supplemental group access list to the given
* <code>Array</code> of group IDs.
*
* Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
* Process.groups = [27, 6, 10, 11] #=> [27, 6, 10, 11]
* Process.groups #=> [27, 6, 10, 11]
*
*/
static VALUE
proc_setgroups(VALUE obj, VALUE ary)
{
int ngroups, i;
rb_gid_t *groups;
#ifdef HAVE_GETGRNAM_R
long getgr_buf_len = sysconf(_SC_GETGR_R_SIZE_MAX);
char* getgr_buf;
if (getgr_buf_len < 0)
getgr_buf_len = 4096;
getgr_buf = ALLOCA_N(char, getgr_buf_len);
#endif
Check_Type(ary, T_ARRAY);
ngroups = RARRAY_LENINT(ary);
if (ngroups > maxgroups())
rb_raise(rb_eArgError, "too many groups, %d max", maxgroups());
groups = ALLOCA_N(rb_gid_t, ngroups);
for (i = 0; i < ngroups; i++) {
VALUE g = RARRAY_PTR(ary)[i];
if (FIXNUM_P(g)) {
groups[i] = NUM2GIDT(g);
}
else {
VALUE tmp = rb_check_string_type(g);
struct group grp;
struct group *p;
int ret;
if (NIL_P(tmp)) {
groups[i] = NUM2GIDT(g);
}
else {
const char *grpname = StringValueCStr(tmp);
#ifdef HAVE_GETGRNAM_R
ret = getgrnam_r(grpname, &grp, getgr_buf, getgr_buf_len, &p);
if (ret)
rb_sys_fail("getgrnam_r");
#else
p = getgrnam(grpname);
#endif
if (p == NULL) {
rb_raise(rb_eArgError,
"can't find group for %s", RSTRING_PTR(tmp));
}
groups[i] = p->gr_gid;
}
}
}
if (setgroups(ngroups, groups) == -1) /* ngroups <= maxgroups */
rb_sys_fail(0);
return proc_getgroups(obj);
}
#else
#define proc_setgroups rb_f_notimplement
#endif
#ifdef HAVE_INITGROUPS
/*
* call-seq:
* Process.initgroups(username, gid) -> array
*
* Initializes the supplemental group access list by reading the
* system group database and using all groups of which the given user
* is a member. The group with the specified <em>gid</em> is also
* added to the list. Returns the resulting <code>Array</code> of the
* gids of all the groups in the supplementary group access list. Not
* available on all platforms.
*
* Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27]
* Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11]
* Process.groups #=> [30, 6, 10, 11]
*
*/
static VALUE
proc_initgroups(VALUE obj, VALUE uname, VALUE base_grp)
{
if (initgroups(StringValuePtr(uname), NUM2GIDT(base_grp)) != 0) {
rb_sys_fail(0);
}
return proc_getgroups(obj);
}
#else
#define proc_initgroups rb_f_notimplement
#endif
#if defined(_SC_NGROUPS_MAX) || defined(NGROUPS_MAX)
/*
* call-seq:
* Process.maxgroups -> fixnum
*
* Returns the maximum number of gids allowed in the supplemental
* group access list.
*
* Process.maxgroups #=> 32
*/
static VALUE
proc_getmaxgroups(VALUE obj)
{
return INT2FIX(maxgroups());
}
#else
#define proc_getmaxgroups rb_f_notimplement
#endif
#ifdef HAVE_SETGROUPS
/*
* call-seq:
* Process.maxgroups= fixnum -> fixnum
*
* Sets the maximum number of gids allowed in the supplemental group
* access list.
*/
static VALUE
proc_setmaxgroups(VALUE obj, VALUE val)
{
int ngroups = FIX2INT(val);
int ngroups_max = get_sc_ngroups_max();
if (ngroups <= 0)
rb_raise(rb_eArgError, "maxgroups %d shold be positive", ngroups);
if (ngroups > RB_MAX_GROUPS)
ngroups = RB_MAX_GROUPS;
if (ngroups_max > 0 && ngroups > ngroups_max)
ngroups = ngroups_max;
_maxgroups = ngroups;
return INT2FIX(_maxgroups);
}
#else
#define proc_setmaxgroups rb_f_notimplement
#endif
#if defined(HAVE_DAEMON) || (defined(HAVE_FORK) && defined(HAVE_SETSID))
static int rb_daemon(int nochdir, int noclose);
/*
* call-seq:
* Process.daemon() -> 0
* Process.daemon(nochdir=nil,noclose=nil) -> 0
*
* Detach the process from controlling terminal and run in
* the background as system daemon. Unless the argument
* nochdir is true (i.e. non false), it changes the current
* working directory to the root ("/"). Unless the argument
* noclose is true, daemon() will redirect standard input,
* standard output and standard error to /dev/null.
* Return zero on success, or raise one of Errno::*.
*/
static VALUE
proc_daemon(int argc, VALUE *argv)
{
VALUE nochdir, noclose;
int n;
rb_secure(2);
rb_scan_args(argc, argv, "02", &nochdir, &noclose);
prefork();
n = rb_daemon(RTEST(nochdir), RTEST(noclose));
if (n < 0) rb_sys_fail("daemon");
return INT2FIX(n);
}
static int
rb_daemon(int nochdir, int noclose)
{
int err = 0;
#ifdef HAVE_DAEMON
before_fork();
err = daemon(nochdir, noclose);
after_fork();
#else
int n;
switch (rb_fork(0, 0, 0, Qnil)) {
case -1:
rb_sys_fail("daemon");
case 0:
break;
default:
_exit(EXIT_SUCCESS);
}
proc_setsid();
/* must not be process-leader */
switch (rb_fork(0, 0, 0, Qnil)) {
case -1:
return -1;
case 0:
break;
default:
_exit(EXIT_SUCCESS);
}
if (!nochdir)
err = chdir("/");
if (!noclose && (n = open("/dev/null", O_RDWR, 0)) != -1) {
(void)dup2(n, 0);
(void)dup2(n, 1);
(void)dup2(n, 2);
if (n > 2)
(void)close (n);
}
return err;
#endif
}
#else
#define proc_daemon rb_f_notimplement
#endif
/********************************************************************
*
* Document-class: Process::GID
*
* The <code>Process::GID</code> module contains a collection of
* module functions which can be used to portably get, set, and
* switch the current process's real, effective, and saved group IDs.
*
*/
static rb_gid_t SAVED_GROUP_ID = -1;
#ifdef BROKEN_SETREGID
int
setregid(rb_gid_t rgid, rb_gid_t egid)
{
if (rgid != -1 && rgid != getgid()) {
if (egid == -1) egid = getegid();
if (setgid(rgid) < 0) return -1;
}
if (egid != -1 && egid != getegid()) {
if (setegid(egid) < 0) return -1;
}
return 0;
}
#endif
/*
* call-seq:
* Process::GID.change_privilege(integer) -> fixnum
*
* Change the current process's real and effective group ID to that
* specified by _integer_. Returns the new group ID. Not
* available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 0]
* Process::GID.change_privilege(33) #=> 33
* [Process.gid, Process.egid] #=> [33, 33]
*/
static VALUE
p_gid_change_privilege(VALUE obj, VALUE id)
{
rb_gid_t gid;
check_gid_switch();
gid = NUM2GIDT(id);
if (geteuid() == 0) { /* root-user */
#if defined(HAVE_SETRESGID)
if (setresgid(gid, gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined HAVE_SETGID
if (setgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (getgid() == gid) {
if (SAVED_GROUP_ID == gid) {
if (setregid(-1, gid) < 0) rb_sys_fail(0);
} else {
if (gid == 0) { /* (r,e,s) == (root, y, x) */
if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0);
if (setregid(SAVED_GROUP_ID, 0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0; /* (r,e,s) == (x, root, root) */
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
} else { /* (r,e,s) == (z, y, x) */
if (setregid(0, 0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
}
} else {
if (setregid(gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
#elif defined(HAVE_SETRGID) && defined (HAVE_SETEGID)
if (getgid() == gid) {
if (SAVED_GROUP_ID == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
} else {
if (gid == 0) {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setrgid(0) < 0) rb_sys_fail(0);
} else {
if (setrgid(0) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = 0;
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
}
} else {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
}
#else
rb_notimplement();
#endif
} else { /* unprivileged user */
#if defined(HAVE_SETRESGID)
if (setresgid((getgid() == gid)? (rb_gid_t)-1: gid,
(getegid() == gid)? (rb_gid_t)-1: gid,
(SAVED_GROUP_ID == gid)? (rb_gid_t)-1: gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (SAVED_GROUP_ID == gid) {
if (setregid((getgid() == gid)? (rb_uid_t)-1: gid,
(getegid() == gid)? (rb_uid_t)-1: gid) < 0)
rb_sys_fail(0);
} else if (getgid() != gid) {
if (setregid(gid, (getegid() == gid)? (rb_uid_t)-1: gid) < 0)
rb_sys_fail(0);
SAVED_GROUP_ID = gid;
} else if (/* getgid() == gid && */ getegid() != gid) {
if (setregid(getegid(), gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setregid(gid, -1) < 0) rb_sys_fail(0);
} else { /* getgid() == gid && getegid() == gid */
if (setregid(-1, SAVED_GROUP_ID) < 0) rb_sys_fail(0);
if (setregid(SAVED_GROUP_ID, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setregid(gid, -1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETRGID) && defined(HAVE_SETEGID)
if (SAVED_GROUP_ID == gid) {
if (getegid() != gid && setegid(gid) < 0) rb_sys_fail(0);
if (getgid() != gid && setrgid(gid) < 0) rb_sys_fail(0);
} else if (/* SAVED_GROUP_ID != gid && */ getegid() == gid) {
if (getgid() != gid) {
if (setrgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
} else {
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setrgid(gid) < 0) rb_sys_fail(0);
}
} else if (/* getegid() != gid && */ getgid() == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
if (setrgid(SAVED_GROUP_ID) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
if (setrgid(gid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_44BSD_SETGID
if (getgid() == gid) {
/* (r,e,s)==(gid,?,?) ==> (gid,gid,gid) */
if (setgid(gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_SETEGID
if (getgid() == gid && SAVED_GROUP_ID == gid) {
if (setegid(gid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#elif defined HAVE_SETGID
if (getgid() == gid && SAVED_GROUP_ID == gid) {
if (setgid(gid) < 0) rb_sys_fail(0);
} else {
errno = EPERM;
rb_sys_fail(0);
}
#else
rb_notimplement();
#endif
}
return id;
}
/*
* call-seq:
* Process.euid -> fixnum
* Process::UID.eid -> fixnum
* Process::Sys.geteuid -> fixnum
*
* Returns the effective user ID for this process.
*
* Process.euid #=> 501
*/
static VALUE
proc_geteuid(VALUE obj)
{
rb_uid_t euid = geteuid();
return UIDT2NUM(euid);
}
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETEUID) || defined(HAVE_SETUID) || defined(_POSIX_SAVED_IDS)
/*
* call-seq:
* Process.euid= integer
*
* Sets the effective user ID for this process. Not available on all
* platforms.
*/
static VALUE
proc_seteuid(VALUE obj, VALUE euid)
{
rb_uid_t uid;
check_uid_switch();
uid = NUM2UIDT(euid);
#if defined(HAVE_SETRESUID)
if (setresuid(-1, uid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREUID
if (setreuid(-1, uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEUID
if (seteuid(uid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
if (uid == getuid()) {
if (setuid(uid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
#else
rb_notimplement();
#endif
return euid;
}
#endif
#if defined(HAVE_SETRESUID) || defined(HAVE_SETREUID) || defined(HAVE_SETEUID) || defined(HAVE_SETUID)
#define proc_seteuid_m proc_seteuid
#else
#define proc_seteuid_m rb_f_notimplement
#endif
static rb_uid_t
rb_seteuid_core(rb_uid_t euid)
{
rb_uid_t uid;
check_uid_switch();
uid = getuid();
#if defined(HAVE_SETRESUID)
if (uid != euid) {
if (setresuid(-1,euid,euid) < 0) rb_sys_fail(0);
SAVED_USER_ID = euid;
} else {
if (setresuid(-1,euid,-1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (setreuid(-1, euid) < 0) rb_sys_fail(0);
if (uid != euid) {
if (setreuid(euid,uid) < 0) rb_sys_fail(0);
if (setreuid(uid,euid) < 0) rb_sys_fail(0);
SAVED_USER_ID = euid;
}
#elif defined HAVE_SETEUID
if (seteuid(euid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETUID
if (geteuid() == 0) rb_sys_fail(0);
if (setuid(euid) < 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return euid;
}
/*
* call-seq:
* Process::UID.grant_privilege(integer) -> fixnum
* Process::UID.eid= integer -> fixnum
*
* Set the effective user ID, and if possible, the saved user ID of
* the process to the given _integer_. Returns the new
* effective user ID. Not available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 0]
* Process::UID.grant_privilege(31) #=> 31
* [Process.uid, Process.euid] #=> [0, 31]
*/
static VALUE
p_uid_grant_privilege(VALUE obj, VALUE id)
{
rb_seteuid_core(NUM2UIDT(id));
return id;
}
/*
* call-seq:
* Process.egid -> fixnum
* Process::GID.eid -> fixnum
* Process::Sys.geteid -> fixnum
*
* Returns the effective group ID for this process. Not available on
* all platforms.
*
* Process.egid #=> 500
*/
static VALUE
proc_getegid(VALUE obj)
{
rb_gid_t egid = getegid();
return GIDT2NUM(egid);
}
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID) || defined(_POSIX_SAVED_IDS)
/*
* call-seq:
* Process.egid = fixnum -> fixnum
*
* Sets the effective group ID for this process. Not available on all
* platforms.
*/
static VALUE
proc_setegid(VALUE obj, VALUE egid)
{
rb_gid_t gid;
check_gid_switch();
gid = NUM2GIDT(egid);
#if defined(HAVE_SETRESGID)
if (setresgid(-1, gid, -1) < 0) rb_sys_fail(0);
#elif defined HAVE_SETREGID
if (setregid(-1, gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETEGID
if (setegid(gid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
if (gid == getgid()) {
if (setgid(gid) < 0) rb_sys_fail(0);
}
else {
rb_notimplement();
}
#else
rb_notimplement();
#endif
return egid;
}
#endif
#if defined(HAVE_SETRESGID) || defined(HAVE_SETREGID) || defined(HAVE_SETEGID) || defined(HAVE_SETGID)
#define proc_setegid_m proc_setegid
#else
#define proc_setegid_m rb_f_notimplement
#endif
static rb_gid_t
rb_setegid_core(rb_gid_t egid)
{
rb_gid_t gid;
check_gid_switch();
gid = getgid();
#if defined(HAVE_SETRESGID)
if (gid != egid) {
if (setresgid(-1,egid,egid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = egid;
} else {
if (setresgid(-1,egid,-1) < 0) rb_sys_fail(0);
}
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (setregid(-1, egid) < 0) rb_sys_fail(0);
if (gid != egid) {
if (setregid(egid,gid) < 0) rb_sys_fail(0);
if (setregid(gid,egid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = egid;
}
#elif defined HAVE_SETEGID
if (setegid(egid) < 0) rb_sys_fail(0);
#elif defined HAVE_SETGID
if (geteuid() == 0 /* root user */) rb_sys_fail(0);
if (setgid(egid) < 0) rb_sys_fail(0);
#else
rb_notimplement();
#endif
return egid;
}
/*
* call-seq:
* Process::GID.grant_privilege(integer) -> fixnum
* Process::GID.eid = integer -> fixnum
*
* Set the effective group ID, and if possible, the saved group ID of
* the process to the given _integer_. Returns the new
* effective group ID. Not available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 0]
* Process::GID.grant_privilege(31) #=> 33
* [Process.gid, Process.egid] #=> [0, 33]
*/
static VALUE
p_gid_grant_privilege(VALUE obj, VALUE id)
{
rb_setegid_core(NUM2GIDT(id));
return id;
}
/*
* call-seq:
* Process::UID.re_exchangeable? -> true or false
*
* Returns +true+ if the real and effective user IDs of a
* process may be exchanged on the current platform.
*
*/
static VALUE
p_uid_exchangeable(void)
{
#if defined(HAVE_SETRESUID)
return Qtrue;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
return Qtrue;
#else
return Qfalse;
#endif
}
/*
* call-seq:
* Process::UID.re_exchange -> fixnum
*
* Exchange real and effective user IDs and return the new effective
* user ID. Not available on all platforms.
*
* [Process.uid, Process.euid] #=> [0, 31]
* Process::UID.re_exchange #=> 0
* [Process.uid, Process.euid] #=> [31, 0]
*/
static VALUE
p_uid_exchange(VALUE obj)
{
rb_uid_t uid, euid;
check_uid_switch();
uid = getuid();
euid = geteuid();
#if defined(HAVE_SETRESUID)
if (setresuid(euid, uid, uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#elif defined(HAVE_SETREUID) && !defined(OBSOLETE_SETREUID)
if (setreuid(euid,uid) < 0) rb_sys_fail(0);
SAVED_USER_ID = uid;
#else
rb_notimplement();
#endif
return UIDT2NUM(uid);
}
/*
* call-seq:
* Process::GID.re_exchangeable? -> true or false
*
* Returns +true+ if the real and effective group IDs of a
* process may be exchanged on the current platform.
*
*/
static VALUE
p_gid_exchangeable(void)
{
#if defined(HAVE_SETRESGID)
return Qtrue;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
return Qtrue;
#else
return Qfalse;
#endif
}
/*
* call-seq:
* Process::GID.re_exchange -> fixnum
*
* Exchange real and effective group IDs and return the new effective
* group ID. Not available on all platforms.
*
* [Process.gid, Process.egid] #=> [0, 33]
* Process::GID.re_exchange #=> 0
* [Process.gid, Process.egid] #=> [33, 0]
*/
static VALUE
p_gid_exchange(VALUE obj)
{
rb_gid_t gid, egid;
check_gid_switch();
gid = getgid();
egid = getegid();
#if defined(HAVE_SETRESGID)
if (setresgid(egid, gid, gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#elif defined(HAVE_SETREGID) && !defined(OBSOLETE_SETREGID)
if (setregid(egid,gid) < 0) rb_sys_fail(0);
SAVED_GROUP_ID = gid;
#else
rb_notimplement();
#endif
return GIDT2NUM(gid);
}
/* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */
/*
* call-seq:
* Process::UID.sid_available? -> true or false
*
* Returns +true+ if the current platform has saved user
* ID functionality.
*
*/
static VALUE
p_uid_have_saved_id(void)
{
#if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS)
return Qtrue;
#else
return Qfalse;
#endif
}
#if defined(HAVE_SETRESUID) || defined(HAVE_SETEUID) || defined(_POSIX_SAVED_IDS)
static VALUE
p_uid_sw_ensure(rb_uid_t id)
{
under_uid_switch = 0;
id = rb_seteuid_core(id);
return UIDT2NUM(id);
}
/*
* call-seq:
* Process::UID.switch -> fixnum
* Process::UID.switch {|| block} -> object
*
* Switch the effective and real user IDs of the current process. If
* a <em>block</em> is given, the user IDs will be switched back
* after the block is executed. Returns the new effective user ID if
* called without a block, and the return value of the block if one
* is given.
*
*/
static VALUE
p_uid_switch(VALUE obj)
{
rb_uid_t uid, euid;
check_uid_switch();
uid = getuid();
euid = geteuid();
if (uid != euid) {
proc_seteuid(obj, UIDT2NUM(uid));
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, SAVED_USER_ID);
} else {
return UIDT2NUM(euid);
}
} else if (euid != SAVED_USER_ID) {
proc_seteuid(obj, UIDT2NUM(SAVED_USER_ID));
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, euid);
} else {
return UIDT2NUM(uid);
}
} else {
errno = EPERM;
rb_sys_fail(0);
}
}
#else
static VALUE
p_uid_sw_ensure(VALUE obj)
{
under_uid_switch = 0;
return p_uid_exchange(obj);
}
static VALUE
p_uid_switch(VALUE obj)
{
rb_uid_t uid, euid;
check_uid_switch();
uid = getuid();
euid = geteuid();
if (uid == euid) {
errno = EPERM;
rb_sys_fail(0);
}
p_uid_exchange(obj);
if (rb_block_given_p()) {
under_uid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_uid_sw_ensure, obj);
} else {
return UIDT2NUM(euid);
}
}
#endif
/* [MG] :FIXME: Is this correct? I'm not sure how to phrase this. */
/*
* call-seq:
* Process::GID.sid_available? -> true or false
*
* Returns +true+ if the current platform has saved group
* ID functionality.
*
*/
static VALUE
p_gid_have_saved_id(void)
{
#if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS)
return Qtrue;
#else
return Qfalse;
#endif
}
#if defined(HAVE_SETRESGID) || defined(HAVE_SETEGID) || defined(_POSIX_SAVED_IDS)
static VALUE
p_gid_sw_ensure(rb_gid_t id)
{
under_gid_switch = 0;
id = rb_setegid_core(id);
return GIDT2NUM(id);
}
/*
* call-seq:
* Process::GID.switch -> fixnum
* Process::GID.switch {|| block} -> object
*
* Switch the effective and real group IDs of the current process. If
* a <em>block</em> is given, the group IDs will be switched back
* after the block is executed. Returns the new effective group ID if
* called without a block, and the return value of the block if one
* is given.
*
*/
static VALUE
p_gid_switch(VALUE obj)
{
rb_gid_t gid, egid;
check_gid_switch();
gid = getgid();
egid = getegid();
if (gid != egid) {
proc_setegid(obj, GIDT2NUM(gid));
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, SAVED_GROUP_ID);
} else {
return GIDT2NUM(egid);
}
}
else if (egid != SAVED_GROUP_ID) {
proc_setegid(obj, GIDT2NUM(SAVED_GROUP_ID));
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, egid);
} else {
return GIDT2NUM(gid);
}
}
else {
errno = EPERM;
rb_sys_fail(0);
}
}
#else
static VALUE
p_gid_sw_ensure(VALUE obj)
{
under_gid_switch = 0;
return p_gid_exchange(obj);
}
static VALUE
p_gid_switch(VALUE obj)
{
rb_gid_t gid, egid;
check_gid_switch();
gid = getgid();
egid = getegid();
if (gid == egid) {
errno = EPERM;
rb_sys_fail(0);
}
p_gid_exchange(obj);
if (rb_block_given_p()) {
under_gid_switch = 1;
return rb_ensure(rb_yield, Qnil, p_gid_sw_ensure, obj);
} else {
return GIDT2NUM(egid);
}
}
#endif
#if defined(HAVE_TIMES)
/*
* call-seq:
* Process.times -> aStructTms
*
* Returns a <code>Tms</code> structure (see <code>Struct::Tms</code>)
* that contains user and system CPU times for this process,
* and also for children processes.
*
* t = Process.times
* [ t.utime, t.stime, t.cutime, t.cstime ] #=> [0.0, 0.02, 0.00, 0.00]
*/
VALUE
rb_proc_times(VALUE obj)
{
const double hertz =
#ifdef HAVE__SC_CLK_TCK
(double)sysconf(_SC_CLK_TCK);
#else
#ifndef HZ
# ifdef CLK_TCK
# define HZ CLK_TCK
# else
# define HZ 60
# endif
#endif /* HZ */
HZ;
#endif
struct tms buf;
volatile VALUE utime, stime, cutime, sctime;
times(&buf);
return rb_struct_new(rb_cProcessTms,
utime = DBL2NUM(buf.tms_utime / hertz),
stime = DBL2NUM(buf.tms_stime / hertz),
cutime = DBL2NUM(buf.tms_cutime / hertz),
sctime = DBL2NUM(buf.tms_cstime / hertz));
}
#else
#define rb_proc_times rb_f_notimplement
#endif
VALUE rb_mProcess;
VALUE rb_mProcUID;
VALUE rb_mProcGID;
VALUE rb_mProcID_Syscall;
/*
* The <code>Process</code> module is a collection of methods used to
* manipulate processes.
*/
void
Init_process(void)
{
rb_define_virtual_variable("$?", rb_last_status_get, 0);
rb_define_virtual_variable("$$", get_pid, 0);
rb_define_global_function("exec", rb_f_exec, -1);
rb_define_global_function("fork", rb_f_fork, 0);
rb_define_global_function("exit!", rb_f_exit_bang, -1);
rb_define_global_function("system", rb_f_system, -1);
rb_define_global_function("spawn", rb_f_spawn, -1);
rb_define_global_function("sleep", rb_f_sleep, -1);
rb_define_global_function("exit", rb_f_exit, -1);
rb_define_global_function("abort", rb_f_abort, -1);
rb_mProcess = rb_define_module("Process");
#ifdef WNOHANG
/* see Process.wait */
rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(WNOHANG));
#else
/* see Process.wait */
rb_define_const(rb_mProcess, "WNOHANG", INT2FIX(0));
#endif
#ifdef WUNTRACED
/* see Process.wait */
rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(WUNTRACED));
#else
/* see Process.wait */
rb_define_const(rb_mProcess, "WUNTRACED", INT2FIX(0));
#endif
rb_define_singleton_method(rb_mProcess, "exec", rb_f_exec, -1);
rb_define_singleton_method(rb_mProcess, "fork", rb_f_fork, 0);
rb_define_singleton_method(rb_mProcess, "spawn", rb_f_spawn, -1);
rb_define_singleton_method(rb_mProcess, "exit!", rb_f_exit_bang, -1);
rb_define_singleton_method(rb_mProcess, "exit", rb_f_exit, -1);
rb_define_singleton_method(rb_mProcess, "abort", rb_f_abort, -1);
rb_define_module_function(rb_mProcess, "kill", rb_f_kill, -1); /* in signal.c */
rb_define_module_function(rb_mProcess, "wait", proc_wait, -1);
rb_define_module_function(rb_mProcess, "wait2", proc_wait2, -1);
rb_define_module_function(rb_mProcess, "waitpid", proc_wait, -1);
rb_define_module_function(rb_mProcess, "waitpid2", proc_wait2, -1);
rb_define_module_function(rb_mProcess, "waitall", proc_waitall, 0);
rb_define_module_function(rb_mProcess, "detach", proc_detach, 1);
rb_cProcessStatus = rb_define_class_under(rb_mProcess, "Status", rb_cObject);
rb_undef_method(CLASS_OF(rb_cProcessStatus), "new");
rb_define_method(rb_cProcessStatus, "==", pst_equal, 1);
rb_define_method(rb_cProcessStatus, "&", pst_bitand, 1);
rb_define_method(rb_cProcessStatus, ">>", pst_rshift, 1);
rb_define_method(rb_cProcessStatus, "to_i", pst_to_i, 0);
rb_define_method(rb_cProcessStatus, "to_s", pst_to_s, 0);
rb_define_method(rb_cProcessStatus, "inspect", pst_inspect, 0);
rb_define_method(rb_cProcessStatus, "pid", pst_pid, 0);
rb_define_method(rb_cProcessStatus, "stopped?", pst_wifstopped, 0);
rb_define_method(rb_cProcessStatus, "stopsig", pst_wstopsig, 0);
rb_define_method(rb_cProcessStatus, "signaled?", pst_wifsignaled, 0);
rb_define_method(rb_cProcessStatus, "termsig", pst_wtermsig, 0);
rb_define_method(rb_cProcessStatus, "exited?", pst_wifexited, 0);
rb_define_method(rb_cProcessStatus, "exitstatus", pst_wexitstatus, 0);
rb_define_method(rb_cProcessStatus, "success?", pst_success_p, 0);
rb_define_method(rb_cProcessStatus, "coredump?", pst_wcoredump, 0);
rb_define_module_function(rb_mProcess, "pid", get_pid, 0);
rb_define_module_function(rb_mProcess, "ppid", get_ppid, 0);
rb_define_module_function(rb_mProcess, "getpgrp", proc_getpgrp, 0);
rb_define_module_function(rb_mProcess, "setpgrp", proc_setpgrp, 0);
rb_define_module_function(rb_mProcess, "getpgid", proc_getpgid, 1);
rb_define_module_function(rb_mProcess, "setpgid", proc_setpgid, 2);
rb_define_module_function(rb_mProcess, "setsid", proc_setsid, 0);
rb_define_module_function(rb_mProcess, "getpriority", proc_getpriority, 2);
rb_define_module_function(rb_mProcess, "setpriority", proc_setpriority, 3);
#ifdef HAVE_GETPRIORITY
/* see Process.setpriority */
rb_define_const(rb_mProcess, "PRIO_PROCESS", INT2FIX(PRIO_PROCESS));
/* see Process.setpriority */
rb_define_const(rb_mProcess, "PRIO_PGRP", INT2FIX(PRIO_PGRP));
/* see Process.setpriority */
rb_define_const(rb_mProcess, "PRIO_USER", INT2FIX(PRIO_USER));
#endif
rb_define_module_function(rb_mProcess, "getrlimit", proc_getrlimit, 1);
rb_define_module_function(rb_mProcess, "setrlimit", proc_setrlimit, -1);
#if defined(RLIM2NUM) && defined(RLIM_INFINITY)
{
VALUE inf = RLIM2NUM(RLIM_INFINITY);
#ifdef RLIM_SAVED_MAX
{
VALUE v = RLIM_INFINITY == RLIM_SAVED_MAX ? inf : RLIM2NUM(RLIM_SAVED_MAX);
/* see Process.setrlimit */
rb_define_const(rb_mProcess, "RLIM_SAVED_MAX", v);
}
#endif
/* see Process.setrlimit */
rb_define_const(rb_mProcess, "RLIM_INFINITY", inf);
#ifdef RLIM_SAVED_CUR
{
VALUE v = RLIM_INFINITY == RLIM_SAVED_CUR ? inf : RLIM2NUM(RLIM_SAVED_CUR);
/* see Process.setrlimit */
rb_define_const(rb_mProcess, "RLIM_SAVED_CUR", v);
}
#endif
}
#ifdef RLIMIT_AS
/* Maximum size of the process's virtual memory (address space) in bytes.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_AS", INT2FIX(RLIMIT_AS));
#endif
#ifdef RLIMIT_CORE
/* Maximum size of the core file.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_CORE", INT2FIX(RLIMIT_CORE));
#endif
#ifdef RLIMIT_CPU
/* CPU time limit in seconds.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_CPU", INT2FIX(RLIMIT_CPU));
#endif
#ifdef RLIMIT_DATA
/* Maximum size of the process's data segment.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_DATA", INT2FIX(RLIMIT_DATA));
#endif
#ifdef RLIMIT_FSIZE
/* Maximum size of files that the process may create.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_FSIZE", INT2FIX(RLIMIT_FSIZE));
#endif
#ifdef RLIMIT_MEMLOCK
/* Maximum number of bytes of memory that may be locked into RAM.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_MEMLOCK", INT2FIX(RLIMIT_MEMLOCK));
#endif
#ifdef RLIMIT_MSGQUEUE
/* Specifies the limit on the number of bytes that can be allocated
* for POSIX message queues for the real user ID of the calling process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_MSGQUEUE", INT2FIX(RLIMIT_MSGQUEUE));
#endif
#ifdef RLIMIT_NICE
/* Specifies a ceiling to which the process's nice value can be raised.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_NICE", INT2FIX(RLIMIT_NICE));
#endif
#ifdef RLIMIT_NOFILE
/* Specifies a value one greater than the maximum file descriptor
* number that can be opened by this process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_NOFILE", INT2FIX(RLIMIT_NOFILE));
#endif
#ifdef RLIMIT_NPROC
/* The maximum number of processes that can be created for the
* real user ID of the calling process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_NPROC", INT2FIX(RLIMIT_NPROC));
#endif
#ifdef RLIMIT_RSS
/* Specifies the limit (in pages) of the process's resident set.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_RSS", INT2FIX(RLIMIT_RSS));
#endif
#ifdef RLIMIT_RTPRIO
/* Specifies a ceiling on the real-time priority that may be set for this process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_RTPRIO", INT2FIX(RLIMIT_RTPRIO));
#endif
#ifdef RLIMIT_RTTIME
/* Specifies limit on CPU time this process scheduled under a real-time
* scheduling policy can consume.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_RTTIME", INT2FIX(RLIMIT_RTTIME));
#endif
#ifdef RLIMIT_SBSIZE
/* Maximum size of the socket buffer.
*/
rb_define_const(rb_mProcess, "RLIMIT_SBSIZE", INT2FIX(RLIMIT_SBSIZE));
#endif
#ifdef RLIMIT_SIGPENDING
/* Specifies a limit on the number of signals that may be queued for
* the real user ID of the calling process.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_SIGPENDING", INT2FIX(RLIMIT_SIGPENDING));
#endif
#ifdef RLIMIT_STACK
/* Maximum size of the stack, in bytes.
*
* see the system getrlimit(2) manual for details.
*/
rb_define_const(rb_mProcess, "RLIMIT_STACK", INT2FIX(RLIMIT_STACK));
#endif
#endif
rb_define_module_function(rb_mProcess, "uid", proc_getuid, 0);
rb_define_module_function(rb_mProcess, "uid=", proc_setuid, 1);
rb_define_module_function(rb_mProcess, "gid", proc_getgid, 0);
rb_define_module_function(rb_mProcess, "gid=", proc_setgid, 1);
rb_define_module_function(rb_mProcess, "euid", proc_geteuid, 0);
rb_define_module_function(rb_mProcess, "euid=", proc_seteuid_m, 1);
rb_define_module_function(rb_mProcess, "egid", proc_getegid, 0);
rb_define_module_function(rb_mProcess, "egid=", proc_setegid_m, 1);
rb_define_module_function(rb_mProcess, "initgroups", proc_initgroups, 2);
rb_define_module_function(rb_mProcess, "groups", proc_getgroups, 0);
rb_define_module_function(rb_mProcess, "groups=", proc_setgroups, 1);
rb_define_module_function(rb_mProcess, "maxgroups", proc_getmaxgroups, 0);
rb_define_module_function(rb_mProcess, "maxgroups=", proc_setmaxgroups, 1);
rb_define_module_function(rb_mProcess, "daemon", proc_daemon, -1);
rb_define_module_function(rb_mProcess, "times", rb_proc_times, 0);
#if defined(HAVE_TIMES) || defined(_WIN32)
rb_cProcessTms = rb_struct_define("Tms", "utime", "stime", "cutime", "cstime", NULL);
#endif
SAVED_USER_ID = geteuid();
SAVED_GROUP_ID = getegid();
rb_mProcUID = rb_define_module_under(rb_mProcess, "UID");
rb_mProcGID = rb_define_module_under(rb_mProcess, "GID");
rb_define_module_function(rb_mProcUID, "rid", proc_getuid, 0);
rb_define_module_function(rb_mProcGID, "rid", proc_getgid, 0);
rb_define_module_function(rb_mProcUID, "eid", proc_geteuid, 0);
rb_define_module_function(rb_mProcGID, "eid", proc_getegid, 0);
rb_define_module_function(rb_mProcUID, "change_privilege", p_uid_change_privilege, 1);
rb_define_module_function(rb_mProcGID, "change_privilege", p_gid_change_privilege, 1);
rb_define_module_function(rb_mProcUID, "grant_privilege", p_uid_grant_privilege, 1);
rb_define_module_function(rb_mProcGID, "grant_privilege", p_gid_grant_privilege, 1);
rb_define_alias(rb_singleton_class(rb_mProcUID), "eid=", "grant_privilege");
rb_define_alias(rb_singleton_class(rb_mProcGID), "eid=", "grant_privilege");
rb_define_module_function(rb_mProcUID, "re_exchange", p_uid_exchange, 0);
rb_define_module_function(rb_mProcGID, "re_exchange", p_gid_exchange, 0);
rb_define_module_function(rb_mProcUID, "re_exchangeable?", p_uid_exchangeable, 0);
rb_define_module_function(rb_mProcGID, "re_exchangeable?", p_gid_exchangeable, 0);
rb_define_module_function(rb_mProcUID, "sid_available?", p_uid_have_saved_id, 0);
rb_define_module_function(rb_mProcGID, "sid_available?", p_gid_have_saved_id, 0);
rb_define_module_function(rb_mProcUID, "switch", p_uid_switch, 0);
rb_define_module_function(rb_mProcGID, "switch", p_gid_switch, 0);
rb_mProcID_Syscall = rb_define_module_under(rb_mProcess, "Sys");
rb_define_module_function(rb_mProcID_Syscall, "getuid", proc_getuid, 0);
rb_define_module_function(rb_mProcID_Syscall, "geteuid", proc_geteuid, 0);
rb_define_module_function(rb_mProcID_Syscall, "getgid", proc_getgid, 0);
rb_define_module_function(rb_mProcID_Syscall, "getegid", proc_getegid, 0);
rb_define_module_function(rb_mProcID_Syscall, "setuid", p_sys_setuid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setgid", p_sys_setgid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setruid", p_sys_setruid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setrgid", p_sys_setrgid, 1);
rb_define_module_function(rb_mProcID_Syscall, "seteuid", p_sys_seteuid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setegid", p_sys_setegid, 1);
rb_define_module_function(rb_mProcID_Syscall, "setreuid", p_sys_setreuid, 2);
rb_define_module_function(rb_mProcID_Syscall, "setregid", p_sys_setregid, 2);
rb_define_module_function(rb_mProcID_Syscall, "setresuid", p_sys_setresuid, 3);
rb_define_module_function(rb_mProcID_Syscall, "setresgid", p_sys_setresgid, 3);
rb_define_module_function(rb_mProcID_Syscall, "issetugid", p_sys_issetugid, 0);
}