mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
929e9713bb
* complex.c (f_divide): canonicalize rationals to simplify integer complex results. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@64610 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2283 lines
49 KiB
C
2283 lines
49 KiB
C
/*
|
|
complex.c: Coded by Tadayoshi Funaba 2008-2012
|
|
|
|
This implementation is based on Keiju Ishitsuka's Complex library
|
|
which is written in ruby.
|
|
*/
|
|
|
|
#include "ruby/config.h"
|
|
#if defined _MSC_VER
|
|
/* Microsoft Visual C does not define M_PI and others by default */
|
|
# define _USE_MATH_DEFINES 1
|
|
#endif
|
|
#include <math.h>
|
|
#include "internal.h"
|
|
#include "id.h"
|
|
|
|
#define NDEBUG
|
|
#include "ruby_assert.h"
|
|
|
|
#define ZERO INT2FIX(0)
|
|
#define ONE INT2FIX(1)
|
|
#define TWO INT2FIX(2)
|
|
#if USE_FLONUM
|
|
#define RFLOAT_0 DBL2NUM(0)
|
|
#else
|
|
static VALUE RFLOAT_0;
|
|
#endif
|
|
#if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun) && \
|
|
!defined(signbit)
|
|
extern int signbit(double);
|
|
#endif
|
|
|
|
VALUE rb_cComplex;
|
|
|
|
static VALUE nucomp_abs(VALUE self);
|
|
static VALUE nucomp_arg(VALUE self);
|
|
|
|
static ID id_abs, id_arg,
|
|
id_denominator, id_fdiv, id_numerator, id_quo,
|
|
id_real_p, id_i_real, id_i_imag,
|
|
id_finite_p, id_infinite_p, id_rationalize,
|
|
id_PI;
|
|
#define id_to_i idTo_i
|
|
#define id_to_r idTo_r
|
|
#define id_negate idUMinus
|
|
#define id_expt idPow
|
|
#define id_to_f idTo_f
|
|
|
|
#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
|
|
|
|
#define binop(n,op) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x, VALUE y)\
|
|
{\
|
|
return rb_funcall(x, (op), 1, y);\
|
|
}
|
|
|
|
#define fun1(n) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x)\
|
|
{\
|
|
return rb_funcall(x, id_##n, 0);\
|
|
}
|
|
|
|
#define fun2(n) \
|
|
inline static VALUE \
|
|
f_##n(VALUE x, VALUE y)\
|
|
{\
|
|
return rb_funcall(x, id_##n, 1, y);\
|
|
}
|
|
|
|
#define PRESERVE_SIGNEDZERO
|
|
|
|
inline static VALUE
|
|
f_add(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_ZERO_P(y))
|
|
return x;
|
|
if (FIXNUM_ZERO_P(x))
|
|
return y;
|
|
return rb_funcall(x, '+', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_div(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y) && FIX2LONG(y) == 1)
|
|
return x;
|
|
return rb_funcall(x, '/', 1, y);
|
|
}
|
|
|
|
inline static int
|
|
f_gt_p(VALUE x, VALUE y)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return (SIGNED_VALUE)x > (SIGNED_VALUE)y;
|
|
return RTEST(rb_int_gt(x, y));
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(x))
|
|
return RTEST(rb_float_gt(x, y));
|
|
else if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
int const cmp = rb_cmpint(rb_rational_cmp(x, y), x, y);
|
|
return cmp > 0;
|
|
}
|
|
return RTEST(rb_funcall(x, '>', 1, y));
|
|
}
|
|
|
|
inline static VALUE
|
|
f_mul(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_ZERO_P(y) && RB_INTEGER_TYPE_P(x))
|
|
return ZERO;
|
|
if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y))
|
|
return ZERO;
|
|
if (y == ONE) return x;
|
|
if (x == ONE) return y;
|
|
return rb_funcall(x, '*', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_sub(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_ZERO_P(y))
|
|
return x;
|
|
return rb_funcall(x, '-', 1, y);
|
|
}
|
|
|
|
fun1(abs)
|
|
fun1(arg)
|
|
fun1(denominator)
|
|
|
|
static VALUE nucomp_negate(VALUE self);
|
|
|
|
inline static VALUE
|
|
f_negate(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
return rb_int_uminus(x);
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(x)) {
|
|
return rb_float_uminus(x);
|
|
}
|
|
else if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
return rb_rational_uminus(x);
|
|
}
|
|
else if (RB_TYPE_P(x, T_COMPLEX)) {
|
|
return nucomp_negate(x);
|
|
}
|
|
return rb_funcall(x, id_negate, 0);
|
|
}
|
|
|
|
fun1(numerator)
|
|
fun1(real_p)
|
|
|
|
inline static VALUE
|
|
f_to_i(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_STRING))
|
|
return rb_str_to_inum(x, 10, 0);
|
|
return rb_funcall(x, id_to_i, 0);
|
|
}
|
|
inline static VALUE
|
|
f_to_f(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_STRING))
|
|
return DBL2NUM(rb_str_to_dbl(x, 0));
|
|
return rb_funcall(x, id_to_f, 0);
|
|
}
|
|
|
|
fun1(to_r)
|
|
|
|
inline static int
|
|
f_eqeq_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return x == y;
|
|
else if (RB_FLOAT_TYPE_P(x) || RB_FLOAT_TYPE_P(y))
|
|
return NUM2DBL(x) == NUM2DBL(y);
|
|
return (int)rb_equal(x, y);
|
|
}
|
|
|
|
fun2(expt)
|
|
fun2(fdiv)
|
|
fun2(quo)
|
|
|
|
inline static int
|
|
f_negative_p(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return INT_NEGATIVE_P(x);
|
|
else if (RB_FLOAT_TYPE_P(x))
|
|
return RFLOAT_VALUE(x) < 0.0;
|
|
else if (RB_TYPE_P(x, T_RATIONAL))
|
|
return INT_NEGATIVE_P(RRATIONAL(x)->num);
|
|
return rb_num_negative_p(x);
|
|
}
|
|
|
|
#define f_positive_p(x) (!f_negative_p(x))
|
|
|
|
inline static int
|
|
f_zero_p(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
return FIXNUM_ZERO_P(x);
|
|
}
|
|
else if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
const VALUE num = RRATIONAL(x)->num;
|
|
return FIXNUM_ZERO_P(num);
|
|
}
|
|
return (int)rb_equal(x, ZERO);
|
|
}
|
|
|
|
#define f_nonzero_p(x) (!f_zero_p(x))
|
|
|
|
VALUE rb_flo_is_finite_p(VALUE num);
|
|
inline static int
|
|
f_finite_p(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
return TRUE;
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(x)) {
|
|
return (int)rb_flo_is_finite_p(x);
|
|
}
|
|
else if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
return TRUE;
|
|
}
|
|
return RTEST(rb_funcallv(x, id_finite_p, 0, 0));
|
|
}
|
|
|
|
VALUE rb_flo_is_infinite_p(VALUE num);
|
|
inline static VALUE
|
|
f_infinite_p(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
return Qnil;
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(x)) {
|
|
return rb_flo_is_infinite_p(x);
|
|
}
|
|
else if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
return Qnil;
|
|
}
|
|
return rb_funcallv(x, id_infinite_p, 0, 0);
|
|
}
|
|
|
|
inline static int
|
|
f_kind_of_p(VALUE x, VALUE c)
|
|
{
|
|
return (int)rb_obj_is_kind_of(x, c);
|
|
}
|
|
|
|
inline static int
|
|
k_numeric_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cNumeric);
|
|
}
|
|
|
|
#define k_exact_p(x) (!RB_FLOAT_TYPE_P(x))
|
|
|
|
#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
|
|
|
|
#define get_dat1(x) \
|
|
struct RComplex *dat = RCOMPLEX(x)
|
|
|
|
#define get_dat2(x,y) \
|
|
struct RComplex *adat = RCOMPLEX(x), *bdat = RCOMPLEX(y)
|
|
|
|
inline static VALUE
|
|
nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag)
|
|
{
|
|
NEWOBJ_OF(obj, struct RComplex, klass, T_COMPLEX | (RGENGC_WB_PROTECTED_COMPLEX ? FL_WB_PROTECTED : 0));
|
|
|
|
RCOMPLEX_SET_REAL(obj, real);
|
|
RCOMPLEX_SET_IMAG(obj, imag);
|
|
OBJ_FREEZE_RAW(obj);
|
|
|
|
return (VALUE)obj;
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_s_alloc(VALUE klass)
|
|
{
|
|
return nucomp_s_new_internal(klass, ZERO, ZERO);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_complex_new_bang1(VALUE klass, VALUE x)
|
|
{
|
|
assert(!RB_TYPE_P(x, T_COMPLEX));
|
|
return nucomp_s_new_internal(klass, x, ZERO);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!RB_TYPE_P(x, T_COMPLEX));
|
|
assert(!RB_TYPE_P(y, T_COMPLEX));
|
|
return nucomp_s_new_internal(klass, x, y);
|
|
}
|
|
|
|
#ifdef CANONICALIZATION_FOR_MATHN
|
|
static int canonicalization = 0;
|
|
|
|
RUBY_FUNC_EXPORTED void
|
|
nucomp_canonicalization(int f)
|
|
{
|
|
canonicalization = f;
|
|
}
|
|
#else
|
|
#define canonicalization 0
|
|
#endif
|
|
|
|
inline static void
|
|
nucomp_real_check(VALUE num)
|
|
{
|
|
if (!RB_INTEGER_TYPE_P(num) &&
|
|
!RB_FLOAT_TYPE_P(num) &&
|
|
!RB_TYPE_P(num, T_RATIONAL)) {
|
|
if (!k_numeric_p(num) || !f_real_p(num))
|
|
rb_raise(rb_eTypeError, "not a real");
|
|
}
|
|
}
|
|
|
|
inline static VALUE
|
|
nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
|
|
{
|
|
int complex_r, complex_i;
|
|
#ifdef CANONICALIZATION_FOR_MATHN
|
|
if (k_exact_zero_p(imag) && canonicalization)
|
|
return real;
|
|
#endif
|
|
complex_r = RB_TYPE_P(real, T_COMPLEX);
|
|
complex_i = RB_TYPE_P(imag, T_COMPLEX);
|
|
if (!complex_r && !complex_i) {
|
|
return nucomp_s_new_internal(klass, real, imag);
|
|
}
|
|
else if (!complex_r) {
|
|
get_dat1(imag);
|
|
|
|
return nucomp_s_new_internal(klass,
|
|
f_sub(real, dat->imag),
|
|
f_add(ZERO, dat->real));
|
|
}
|
|
else if (!complex_i) {
|
|
get_dat1(real);
|
|
|
|
return nucomp_s_new_internal(klass,
|
|
dat->real,
|
|
f_add(dat->imag, imag));
|
|
}
|
|
else {
|
|
get_dat2(real, imag);
|
|
|
|
return nucomp_s_new_internal(klass,
|
|
f_sub(adat->real, bdat->imag),
|
|
f_add(adat->imag, bdat->real));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Complex.rect(real[, imag]) -> complex
|
|
* Complex.rectangular(real[, imag]) -> complex
|
|
*
|
|
* Returns a complex object which denotes the given rectangular form.
|
|
*
|
|
* Complex.rectangular(1, 2) #=> (1+2i)
|
|
*/
|
|
static VALUE
|
|
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE real, imag;
|
|
|
|
switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
|
|
case 1:
|
|
nucomp_real_check(real);
|
|
imag = ZERO;
|
|
break;
|
|
default:
|
|
nucomp_real_check(real);
|
|
nucomp_real_check(imag);
|
|
break;
|
|
}
|
|
|
|
return nucomp_s_canonicalize_internal(klass, real, imag);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_complex_new2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!RB_TYPE_P(x, T_COMPLEX));
|
|
return nucomp_s_canonicalize_internal(klass, x, y);
|
|
}
|
|
|
|
static VALUE nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise);
|
|
static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
|
|
|
|
/*
|
|
* call-seq:
|
|
* Complex(x[, y]) -> numeric
|
|
*
|
|
* Returns x+i*y;
|
|
*
|
|
* Complex(1, 2) #=> (1+2i)
|
|
* Complex('1+2i') #=> (1+2i)
|
|
* Complex(nil) #=> TypeError
|
|
* Complex(1, nil) #=> TypeError
|
|
*
|
|
* Syntax of string form:
|
|
*
|
|
* string form = extra spaces , complex , extra spaces ;
|
|
* complex = real part | [ sign ] , imaginary part
|
|
* | real part , sign , imaginary part
|
|
* | rational , "@" , rational ;
|
|
* real part = rational ;
|
|
* imaginary part = imaginary unit | unsigned rational , imaginary unit ;
|
|
* rational = [ sign ] , unsigned rational ;
|
|
* unsigned rational = numerator | numerator , "/" , denominator ;
|
|
* numerator = integer part | fractional part | integer part , fractional part ;
|
|
* denominator = digits ;
|
|
* integer part = digits ;
|
|
* fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
|
|
* imaginary unit = "i" | "I" | "j" | "J" ;
|
|
* sign = "-" | "+" ;
|
|
* digits = digit , { digit | "_" , digit };
|
|
* digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
|
|
* extra spaces = ? \s* ? ;
|
|
*
|
|
* See String#to_c.
|
|
*/
|
|
static VALUE
|
|
nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE a1, a2, opts = Qnil;
|
|
int raise = TRUE;
|
|
|
|
if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) {
|
|
a2 = Qundef;
|
|
}
|
|
if (!NIL_P(opts)) {
|
|
static ID kwds[1];
|
|
VALUE exception;
|
|
if (!kwds[0]) {
|
|
kwds[0] = rb_intern_const("exception");
|
|
}
|
|
rb_get_kwargs(opts, kwds, 0, 1, &exception);
|
|
raise = (exception != Qfalse);
|
|
}
|
|
return nucomp_convert(rb_cComplex, a1, a2, raise);
|
|
}
|
|
|
|
#define imp1(n) \
|
|
inline static VALUE \
|
|
m_##n##_bang(VALUE x)\
|
|
{\
|
|
return rb_math_##n(x);\
|
|
}
|
|
|
|
imp1(cos)
|
|
imp1(cosh)
|
|
imp1(exp)
|
|
|
|
static VALUE
|
|
m_log_bang(VALUE x)
|
|
{
|
|
return rb_math_log(1, &x);
|
|
}
|
|
|
|
imp1(sin)
|
|
imp1(sinh)
|
|
|
|
static VALUE
|
|
m_cos(VALUE x)
|
|
{
|
|
if (!RB_TYPE_P(x, T_COMPLEX))
|
|
return m_cos_bang(x);
|
|
{
|
|
get_dat1(x);
|
|
return f_complex_new2(rb_cComplex,
|
|
f_mul(m_cos_bang(dat->real),
|
|
m_cosh_bang(dat->imag)),
|
|
f_mul(f_negate(m_sin_bang(dat->real)),
|
|
m_sinh_bang(dat->imag)));
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
m_sin(VALUE x)
|
|
{
|
|
if (!RB_TYPE_P(x, T_COMPLEX))
|
|
return m_sin_bang(x);
|
|
{
|
|
get_dat1(x);
|
|
return f_complex_new2(rb_cComplex,
|
|
f_mul(m_sin_bang(dat->real),
|
|
m_cosh_bang(dat->imag)),
|
|
f_mul(m_cos_bang(dat->real),
|
|
m_sinh_bang(dat->imag)));
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
f_complex_polar(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!RB_TYPE_P(x, T_COMPLEX));
|
|
assert(!RB_TYPE_P(y, T_COMPLEX));
|
|
if (f_zero_p(x) || f_zero_p(y)) {
|
|
if (canonicalization) return x;
|
|
return nucomp_s_new_internal(klass, x, RFLOAT_0);
|
|
}
|
|
if (RB_FLOAT_TYPE_P(y)) {
|
|
const double arg = RFLOAT_VALUE(y);
|
|
if (arg == M_PI) {
|
|
x = f_negate(x);
|
|
if (canonicalization) return x;
|
|
y = RFLOAT_0;
|
|
}
|
|
else if (arg == M_PI_2) {
|
|
y = x;
|
|
x = RFLOAT_0;
|
|
}
|
|
else if (arg == M_PI_2+M_PI) {
|
|
y = f_negate(x);
|
|
x = RFLOAT_0;
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(x)) {
|
|
const double abs = RFLOAT_VALUE(x);
|
|
const double real = abs * cos(arg), imag = abs * sin(arg);
|
|
x = DBL2NUM(real);
|
|
if (canonicalization && imag == 0.0) return x;
|
|
y = DBL2NUM(imag);
|
|
}
|
|
else {
|
|
y = f_mul(x, DBL2NUM(sin(arg)));
|
|
x = f_mul(x, DBL2NUM(cos(arg)));
|
|
if (canonicalization && f_zero_p(y)) return x;
|
|
}
|
|
return nucomp_s_new_internal(klass, x, y);
|
|
}
|
|
return nucomp_s_canonicalize_internal(klass,
|
|
f_mul(x, m_cos(y)),
|
|
f_mul(x, m_sin(y)));
|
|
}
|
|
|
|
/* returns a Complex or Float of ang*PI-rotated abs */
|
|
VALUE
|
|
rb_dbl_complex_polar(double abs, double ang)
|
|
{
|
|
double fi;
|
|
const double fr = modf(ang, &fi);
|
|
int pos = fr == +0.5;
|
|
|
|
if (pos || fr == -0.5) {
|
|
if ((modf(fi / 2.0, &fi) != fr) ^ pos) abs = -abs;
|
|
return rb_complex_new(RFLOAT_0, DBL2NUM(abs));
|
|
}
|
|
else if (fr == 0.0) {
|
|
if (modf(fi / 2.0, &fi) != 0.0) abs = -abs;
|
|
return DBL2NUM(abs);
|
|
}
|
|
else {
|
|
ang *= M_PI;
|
|
return rb_complex_new(DBL2NUM(abs * cos(ang)), DBL2NUM(abs * sin(ang)));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Complex.polar(abs[, arg]) -> complex
|
|
*
|
|
* Returns a complex object which denotes the given polar form.
|
|
*
|
|
* Complex.polar(3, 0) #=> (3.0+0.0i)
|
|
* Complex.polar(3, Math::PI/2) #=> (1.836909530733566e-16+3.0i)
|
|
* Complex.polar(3, Math::PI) #=> (-3.0+3.673819061467132e-16i)
|
|
* Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i)
|
|
*/
|
|
static VALUE
|
|
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE abs, arg;
|
|
|
|
switch (rb_scan_args(argc, argv, "11", &abs, &arg)) {
|
|
case 1:
|
|
nucomp_real_check(abs);
|
|
if (canonicalization) return abs;
|
|
return nucomp_s_new_internal(klass, abs, ZERO);
|
|
default:
|
|
nucomp_real_check(abs);
|
|
nucomp_real_check(arg);
|
|
break;
|
|
}
|
|
return f_complex_polar(klass, abs, arg);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.real -> real
|
|
*
|
|
* Returns the real part.
|
|
*
|
|
* Complex(7).real #=> 7
|
|
* Complex(9, -4).real #=> 9
|
|
*/
|
|
static VALUE
|
|
nucomp_real(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->real;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.imag -> real
|
|
* cmp.imaginary -> real
|
|
*
|
|
* Returns the imaginary part.
|
|
*
|
|
* Complex(7).imaginary #=> 0
|
|
* Complex(9, -4).imaginary #=> -4
|
|
*/
|
|
static VALUE
|
|
nucomp_imag(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->imag;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* -cmp -> complex
|
|
*
|
|
* Returns negation of the value.
|
|
*
|
|
* -Complex(1, 2) #=> (-1-2i)
|
|
*/
|
|
static VALUE
|
|
nucomp_negate(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_negate(dat->real), f_negate(dat->imag));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp + numeric -> complex
|
|
*
|
|
* Performs addition.
|
|
*
|
|
* Complex(2, 3) + Complex(2, 3) #=> (4+6i)
|
|
* Complex(900) + Complex(1) #=> (901+0i)
|
|
* Complex(-2, 9) + Complex(-9, 2) #=> (-11+11i)
|
|
* Complex(9, 8) + 4 #=> (13+8i)
|
|
* Complex(20, 9) + 9.8 #=> (29.8+9i)
|
|
*/
|
|
VALUE
|
|
rb_complex_plus(VALUE self, VALUE other)
|
|
{
|
|
if (RB_TYPE_P(other, T_COMPLEX)) {
|
|
VALUE real, imag;
|
|
|
|
get_dat2(self, other);
|
|
|
|
real = f_add(adat->real, bdat->real);
|
|
imag = f_add(adat->imag, bdat->imag);
|
|
|
|
return f_complex_new2(CLASS_OF(self), real, imag);
|
|
}
|
|
if (k_numeric_p(other) && f_real_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_add(dat->real, other), dat->imag);
|
|
}
|
|
return rb_num_coerce_bin(self, other, '+');
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp - numeric -> complex
|
|
*
|
|
* Performs subtraction.
|
|
*
|
|
* Complex(2, 3) - Complex(2, 3) #=> (0+0i)
|
|
* Complex(900) - Complex(1) #=> (899+0i)
|
|
* Complex(-2, 9) - Complex(-9, 2) #=> (7+7i)
|
|
* Complex(9, 8) - 4 #=> (5+8i)
|
|
* Complex(20, 9) - 9.8 #=> (10.2+9i)
|
|
*/
|
|
static VALUE
|
|
nucomp_sub(VALUE self, VALUE other)
|
|
{
|
|
if (RB_TYPE_P(other, T_COMPLEX)) {
|
|
VALUE real, imag;
|
|
|
|
get_dat2(self, other);
|
|
|
|
real = f_sub(adat->real, bdat->real);
|
|
imag = f_sub(adat->imag, bdat->imag);
|
|
|
|
return f_complex_new2(CLASS_OF(self), real, imag);
|
|
}
|
|
if (k_numeric_p(other) && f_real_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_sub(dat->real, other), dat->imag);
|
|
}
|
|
return rb_num_coerce_bin(self, other, '-');
|
|
}
|
|
|
|
static VALUE
|
|
safe_mul(VALUE a, VALUE b, int az, int bz)
|
|
{
|
|
double v;
|
|
if (!az && bz && RB_FLOAT_TYPE_P(a) && (v = RFLOAT_VALUE(a), !isnan(v))) {
|
|
a = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0);
|
|
}
|
|
if (!bz && az && RB_FLOAT_TYPE_P(b) && (v = RFLOAT_VALUE(b), !isnan(v))) {
|
|
b = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0);
|
|
}
|
|
return f_mul(a, b);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp * numeric -> complex
|
|
*
|
|
* Performs multiplication.
|
|
*
|
|
* Complex(2, 3) * Complex(2, 3) #=> (-5+12i)
|
|
* Complex(900) * Complex(1) #=> (900+0i)
|
|
* Complex(-2, 9) * Complex(-9, 2) #=> (0-85i)
|
|
* Complex(9, 8) * 4 #=> (36+32i)
|
|
* Complex(20, 9) * 9.8 #=> (196.0+88.2i)
|
|
*/
|
|
VALUE
|
|
rb_complex_mul(VALUE self, VALUE other)
|
|
{
|
|
if (RB_TYPE_P(other, T_COMPLEX)) {
|
|
VALUE real, imag;
|
|
VALUE areal, aimag, breal, bimag;
|
|
int arzero, aizero, brzero, bizero;
|
|
|
|
get_dat2(self, other);
|
|
|
|
arzero = f_zero_p(areal = adat->real);
|
|
aizero = f_zero_p(aimag = adat->imag);
|
|
brzero = f_zero_p(breal = bdat->real);
|
|
bizero = f_zero_p(bimag = bdat->imag);
|
|
real = f_sub(safe_mul(areal, breal, arzero, brzero),
|
|
safe_mul(aimag, bimag, aizero, bizero));
|
|
imag = f_add(safe_mul(areal, bimag, arzero, bizero),
|
|
safe_mul(aimag, breal, aizero, brzero));
|
|
|
|
return f_complex_new2(CLASS_OF(self), real, imag);
|
|
}
|
|
if (k_numeric_p(other) && f_real_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_mul(dat->real, other),
|
|
f_mul(dat->imag, other));
|
|
}
|
|
return rb_num_coerce_bin(self, other, '*');
|
|
}
|
|
#define nucomp_mul rb_complex_mul
|
|
|
|
inline static VALUE
|
|
f_divide(VALUE self, VALUE other,
|
|
VALUE (*func)(VALUE, VALUE), ID id)
|
|
{
|
|
if (RB_TYPE_P(other, T_COMPLEX)) {
|
|
VALUE r, n, x, y;
|
|
int flo;
|
|
get_dat2(self, other);
|
|
|
|
flo = (RB_FLOAT_TYPE_P(adat->real) || RB_FLOAT_TYPE_P(adat->imag) ||
|
|
RB_FLOAT_TYPE_P(bdat->real) || RB_FLOAT_TYPE_P(bdat->imag));
|
|
|
|
if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) {
|
|
r = (*func)(bdat->imag, bdat->real);
|
|
n = f_mul(bdat->real, f_add(ONE, f_mul(r, r)));
|
|
if (flo)
|
|
return f_complex_new2(CLASS_OF(self),
|
|
(*func)(self, n),
|
|
(*func)(f_negate(f_mul(self, r)), n));
|
|
x = (*func)(f_add(adat->real, f_mul(adat->imag, r)), n);
|
|
y = (*func)(f_sub(adat->imag, f_mul(adat->real, r)), n);
|
|
}
|
|
else {
|
|
r = (*func)(bdat->real, bdat->imag);
|
|
n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r)));
|
|
if (flo)
|
|
return f_complex_new2(CLASS_OF(self),
|
|
(*func)(f_mul(self, r), n),
|
|
(*func)(f_negate(self), n));
|
|
x = (*func)(f_add(f_mul(adat->real, r), adat->imag), n);
|
|
y = (*func)(f_sub(f_mul(adat->imag, r), adat->real), n);
|
|
}
|
|
x = rb_rational_canonicalize(x);
|
|
y = rb_rational_canonicalize(y);
|
|
return f_complex_new2(CLASS_OF(self), x, y);
|
|
}
|
|
if (k_numeric_p(other) && f_real_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_complex_new2(CLASS_OF(self),
|
|
(*func)(dat->real, other),
|
|
(*func)(dat->imag, other));
|
|
}
|
|
return rb_num_coerce_bin(self, other, id);
|
|
}
|
|
|
|
#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0")
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp / numeric -> complex
|
|
* cmp.quo(numeric) -> complex
|
|
*
|
|
* Performs division.
|
|
*
|
|
* Complex(2, 3) / Complex(2, 3) #=> ((1/1)+(0/1)*i)
|
|
* Complex(900) / Complex(1) #=> ((900/1)+(0/1)*i)
|
|
* Complex(-2, 9) / Complex(-9, 2) #=> ((36/85)-(77/85)*i)
|
|
* Complex(9, 8) / 4 #=> ((9/4)+(2/1)*i)
|
|
* Complex(20, 9) / 9.8 #=> (2.0408163265306123+0.9183673469387754i)
|
|
*/
|
|
static VALUE
|
|
nucomp_div(VALUE self, VALUE other)
|
|
{
|
|
return f_divide(self, other, f_quo, id_quo);
|
|
}
|
|
|
|
#define nucomp_quo nucomp_div
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.fdiv(numeric) -> complex
|
|
*
|
|
* Performs division as each part is a float, never returns a float.
|
|
*
|
|
* Complex(11, 22).fdiv(3) #=> (3.6666666666666665+7.333333333333333i)
|
|
*/
|
|
static VALUE
|
|
nucomp_fdiv(VALUE self, VALUE other)
|
|
{
|
|
return f_divide(self, other, f_fdiv, id_fdiv);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_reciprocal(VALUE x)
|
|
{
|
|
return f_quo(ONE, x);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp ** numeric -> complex
|
|
*
|
|
* Performs exponentiation.
|
|
*
|
|
* Complex('i') ** 2 #=> (-1+0i)
|
|
* Complex(-8) ** Rational(1, 3) #=> (1.0000000000000002+1.7320508075688772i)
|
|
*/
|
|
static VALUE
|
|
nucomp_expt(VALUE self, VALUE other)
|
|
{
|
|
if (k_numeric_p(other) && k_exact_zero_p(other))
|
|
return f_complex_new_bang1(CLASS_OF(self), ONE);
|
|
|
|
if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1))
|
|
other = RRATIONAL(other)->num; /* c14n */
|
|
|
|
if (RB_TYPE_P(other, T_COMPLEX)) {
|
|
get_dat1(other);
|
|
|
|
if (k_exact_zero_p(dat->imag))
|
|
other = dat->real; /* c14n */
|
|
}
|
|
|
|
if (RB_TYPE_P(other, T_COMPLEX)) {
|
|
VALUE r, theta, nr, ntheta;
|
|
|
|
get_dat1(other);
|
|
|
|
r = f_abs(self);
|
|
theta = f_arg(self);
|
|
|
|
nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
|
|
f_mul(dat->imag, theta)));
|
|
ntheta = f_add(f_mul(theta, dat->real),
|
|
f_mul(dat->imag, m_log_bang(r)));
|
|
return f_complex_polar(CLASS_OF(self), nr, ntheta);
|
|
}
|
|
if (FIXNUM_P(other)) {
|
|
if (f_gt_p(other, ZERO)) {
|
|
VALUE x, z;
|
|
long n;
|
|
|
|
x = self;
|
|
z = x;
|
|
n = FIX2LONG(other) - 1;
|
|
|
|
while (n) {
|
|
long q, r;
|
|
|
|
while (1) {
|
|
get_dat1(x);
|
|
|
|
q = n / 2;
|
|
r = n % 2;
|
|
|
|
if (r)
|
|
break;
|
|
|
|
x = nucomp_s_new_internal(CLASS_OF(self),
|
|
f_sub(f_mul(dat->real, dat->real),
|
|
f_mul(dat->imag, dat->imag)),
|
|
f_mul(f_mul(TWO, dat->real), dat->imag));
|
|
n = q;
|
|
}
|
|
z = f_mul(z, x);
|
|
n--;
|
|
}
|
|
return z;
|
|
}
|
|
return f_expt(f_reciprocal(self), rb_int_uminus(other));
|
|
}
|
|
if (k_numeric_p(other) && f_real_p(other)) {
|
|
VALUE r, theta;
|
|
|
|
if (RB_TYPE_P(other, T_BIGNUM))
|
|
rb_warn("in a**b, b may be too big");
|
|
|
|
r = f_abs(self);
|
|
theta = f_arg(self);
|
|
|
|
return f_complex_polar(CLASS_OF(self), f_expt(r, other),
|
|
f_mul(theta, other));
|
|
}
|
|
return rb_num_coerce_bin(self, other, id_expt);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp == object -> true or false
|
|
*
|
|
* Returns true if cmp equals object numerically.
|
|
*
|
|
* Complex(2, 3) == Complex(2, 3) #=> true
|
|
* Complex(5) == 5 #=> true
|
|
* Complex(0) == 0.0 #=> true
|
|
* Complex('1/3') == 0.33 #=> false
|
|
* Complex('1/2') == '1/2' #=> false
|
|
*/
|
|
static VALUE
|
|
nucomp_eqeq_p(VALUE self, VALUE other)
|
|
{
|
|
if (RB_TYPE_P(other, T_COMPLEX)) {
|
|
get_dat2(self, other);
|
|
|
|
return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
|
|
f_eqeq_p(adat->imag, bdat->imag));
|
|
}
|
|
if (k_numeric_p(other) && f_real_p(other)) {
|
|
get_dat1(self);
|
|
|
|
return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
|
|
}
|
|
return f_boolcast(f_eqeq_p(other, self));
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_coerce(VALUE self, VALUE other)
|
|
{
|
|
if (k_numeric_p(other) && f_real_p(other))
|
|
return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
|
|
if (RB_TYPE_P(other, T_COMPLEX))
|
|
return rb_assoc_new(other, self);
|
|
|
|
rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
|
|
rb_obj_class(other), rb_obj_class(self));
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.abs -> real
|
|
* cmp.magnitude -> real
|
|
*
|
|
* Returns the absolute part of its polar form.
|
|
*
|
|
* Complex(-1).abs #=> 1
|
|
* Complex(3.0, -4.0).abs #=> 5.0
|
|
*/
|
|
static VALUE
|
|
nucomp_abs(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (f_zero_p(dat->real)) {
|
|
VALUE a = f_abs(dat->imag);
|
|
if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag))
|
|
a = f_to_f(a);
|
|
return a;
|
|
}
|
|
if (f_zero_p(dat->imag)) {
|
|
VALUE a = f_abs(dat->real);
|
|
if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag))
|
|
a = f_to_f(a);
|
|
return a;
|
|
}
|
|
return rb_math_hypot(dat->real, dat->imag);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.abs2 -> real
|
|
*
|
|
* Returns square of the absolute value.
|
|
*
|
|
* Complex(-1).abs2 #=> 1
|
|
* Complex(3.0, -4.0).abs2 #=> 25.0
|
|
*/
|
|
static VALUE
|
|
nucomp_abs2(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_add(f_mul(dat->real, dat->real),
|
|
f_mul(dat->imag, dat->imag));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.arg -> float
|
|
* cmp.angle -> float
|
|
* cmp.phase -> float
|
|
*
|
|
* Returns the angle part of its polar form.
|
|
*
|
|
* Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
|
|
*/
|
|
static VALUE
|
|
nucomp_arg(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_math_atan2(dat->imag, dat->real);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.rect -> array
|
|
* cmp.rectangular -> array
|
|
*
|
|
* Returns an array; [cmp.real, cmp.imag].
|
|
*
|
|
* Complex(1, 2).rectangular #=> [1, 2]
|
|
*/
|
|
static VALUE
|
|
nucomp_rect(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_assoc_new(dat->real, dat->imag);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.polar -> array
|
|
*
|
|
* Returns an array; [cmp.abs, cmp.arg].
|
|
*
|
|
* Complex(1, 2).polar #=> [2.23606797749979, 1.1071487177940904]
|
|
*/
|
|
static VALUE
|
|
nucomp_polar(VALUE self)
|
|
{
|
|
return rb_assoc_new(f_abs(self), f_arg(self));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.conj -> complex
|
|
* cmp.conjugate -> complex
|
|
*
|
|
* Returns the complex conjugate.
|
|
*
|
|
* Complex(1, 2).conjugate #=> (1-2i)
|
|
*/
|
|
static VALUE
|
|
nucomp_conj(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.real? -> false
|
|
*
|
|
* Returns false.
|
|
*/
|
|
static VALUE
|
|
nucomp_false(VALUE self)
|
|
{
|
|
return Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.denominator -> integer
|
|
*
|
|
* Returns the denominator (lcm of both denominator - real and imag).
|
|
*
|
|
* See numerator.
|
|
*/
|
|
static VALUE
|
|
nucomp_denominator(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.numerator -> numeric
|
|
*
|
|
* Returns the numerator.
|
|
*
|
|
* 1 2 3+4i <- numerator
|
|
* - + -i -> ----
|
|
* 2 3 6 <- denominator
|
|
*
|
|
* c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i)
|
|
* n = c.numerator #=> (3+4i)
|
|
* d = c.denominator #=> 6
|
|
* n / d #=> ((1/2)+(2/3)*i)
|
|
* Complex(Rational(n.real, d), Rational(n.imag, d))
|
|
* #=> ((1/2)+(2/3)*i)
|
|
* See denominator.
|
|
*/
|
|
static VALUE
|
|
nucomp_numerator(VALUE self)
|
|
{
|
|
VALUE cd;
|
|
|
|
get_dat1(self);
|
|
|
|
cd = f_denominator(self);
|
|
return f_complex_new2(CLASS_OF(self),
|
|
f_mul(f_numerator(dat->real),
|
|
f_div(cd, f_denominator(dat->real))),
|
|
f_mul(f_numerator(dat->imag),
|
|
f_div(cd, f_denominator(dat->imag))));
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_hash(VALUE self)
|
|
{
|
|
st_index_t v, h[2];
|
|
VALUE n;
|
|
|
|
get_dat1(self);
|
|
n = rb_hash(dat->real);
|
|
h[0] = NUM2LONG(n);
|
|
n = rb_hash(dat->imag);
|
|
h[1] = NUM2LONG(n);
|
|
v = rb_memhash(h, sizeof(h));
|
|
return ST2FIX(v);
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_eql_p(VALUE self, VALUE other)
|
|
{
|
|
if (RB_TYPE_P(other, T_COMPLEX)) {
|
|
get_dat2(self, other);
|
|
|
|
return f_boolcast((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
|
|
(CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
|
|
f_eqeq_p(self, other));
|
|
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
inline static int
|
|
f_signbit(VALUE x)
|
|
{
|
|
if (RB_FLOAT_TYPE_P(x)) {
|
|
double f = RFLOAT_VALUE(x);
|
|
return !isnan(f) && signbit(f);
|
|
}
|
|
return f_negative_p(x);
|
|
}
|
|
|
|
inline static int
|
|
f_tpositive_p(VALUE x)
|
|
{
|
|
return !f_signbit(x);
|
|
}
|
|
|
|
static VALUE
|
|
f_format(VALUE self, VALUE (*func)(VALUE))
|
|
{
|
|
VALUE s;
|
|
int impos;
|
|
|
|
get_dat1(self);
|
|
|
|
impos = f_tpositive_p(dat->imag);
|
|
|
|
s = (*func)(dat->real);
|
|
rb_str_cat2(s, !impos ? "-" : "+");
|
|
|
|
rb_str_concat(s, (*func)(f_abs(dat->imag)));
|
|
if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1]))
|
|
rb_str_cat2(s, "*");
|
|
rb_str_cat2(s, "i");
|
|
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.to_s -> string
|
|
*
|
|
* Returns the value as a string.
|
|
*
|
|
* Complex(2).to_s #=> "2+0i"
|
|
* Complex('-8/6').to_s #=> "-4/3+0i"
|
|
* Complex('1/2i').to_s #=> "0+1/2i"
|
|
* Complex(0, Float::INFINITY).to_s #=> "0+Infinity*i"
|
|
* Complex(Float::NAN, Float::NAN).to_s #=> "NaN+NaN*i"
|
|
*/
|
|
static VALUE
|
|
nucomp_to_s(VALUE self)
|
|
{
|
|
return f_format(self, rb_String);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.inspect -> string
|
|
*
|
|
* Returns the value as a string for inspection.
|
|
*
|
|
* Complex(2).inspect #=> "(2+0i)"
|
|
* Complex('-8/6').inspect #=> "((-4/3)+0i)"
|
|
* Complex('1/2i').inspect #=> "(0+(1/2)*i)"
|
|
* Complex(0, Float::INFINITY).inspect #=> "(0+Infinity*i)"
|
|
* Complex(Float::NAN, Float::NAN).inspect #=> "(NaN+NaN*i)"
|
|
*/
|
|
static VALUE
|
|
nucomp_inspect(VALUE self)
|
|
{
|
|
VALUE s;
|
|
|
|
s = rb_usascii_str_new2("(");
|
|
rb_str_concat(s, f_format(self, rb_inspect));
|
|
rb_str_cat2(s, ")");
|
|
|
|
return s;
|
|
}
|
|
|
|
#define FINITE_TYPE_P(v) (RB_INTEGER_TYPE_P(v) || RB_TYPE_P(v, T_RATIONAL))
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.finite? -> true or false
|
|
*
|
|
* Returns +true+ if +cmp+'s real and imaginary parts are both finite numbers,
|
|
* otherwise returns +false+.
|
|
*/
|
|
static VALUE
|
|
rb_complex_finite_p(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (f_finite_p(dat->real) && f_finite_p(dat->imag)) {
|
|
return Qtrue;
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.infinite? -> nil or 1
|
|
*
|
|
* Returns +1+ if +cmp+'s real or imaginary part is an infinite number,
|
|
* otherwise returns +nil+.
|
|
*
|
|
* For example:
|
|
*
|
|
* (1+1i).infinite? #=> nil
|
|
* (Float::INFINITY + 1i).infinite? #=> 1
|
|
*/
|
|
static VALUE
|
|
rb_complex_infinite_p(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (NIL_P(f_infinite_p(dat->real)) && NIL_P(f_infinite_p(dat->imag))) {
|
|
return Qnil;
|
|
}
|
|
return ONE;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_dumper(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_loader(VALUE self, VALUE a)
|
|
{
|
|
get_dat1(self);
|
|
|
|
RCOMPLEX_SET_REAL(dat, rb_ivar_get(a, id_i_real));
|
|
RCOMPLEX_SET_IMAG(dat, rb_ivar_get(a, id_i_imag));
|
|
OBJ_FREEZE_RAW(self);
|
|
|
|
return self;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_marshal_dump(VALUE self)
|
|
{
|
|
VALUE a;
|
|
get_dat1(self);
|
|
|
|
a = rb_assoc_new(dat->real, dat->imag);
|
|
rb_copy_generic_ivar(a, self);
|
|
return a;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nucomp_marshal_load(VALUE self, VALUE a)
|
|
{
|
|
Check_Type(a, T_ARRAY);
|
|
if (RARRAY_LEN(a) != 2)
|
|
rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a));
|
|
rb_ivar_set(self, id_i_real, RARRAY_AREF(a, 0));
|
|
rb_ivar_set(self, id_i_imag, RARRAY_AREF(a, 1));
|
|
return self;
|
|
}
|
|
|
|
/* --- */
|
|
|
|
VALUE
|
|
rb_complex_raw(VALUE x, VALUE y)
|
|
{
|
|
return nucomp_s_new_internal(rb_cComplex, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_complex_new(VALUE x, VALUE y)
|
|
{
|
|
return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_complex_polar(VALUE x, VALUE y)
|
|
{
|
|
return f_complex_polar(rb_cComplex, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_Complex(VALUE x, VALUE y)
|
|
{
|
|
VALUE a[2];
|
|
a[0] = x;
|
|
a[1] = y;
|
|
return nucomp_s_convert(2, a, rb_cComplex);
|
|
}
|
|
|
|
VALUE
|
|
rb_complex_abs(VALUE cmp)
|
|
{
|
|
return nucomp_abs(cmp);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.to_i -> integer
|
|
*
|
|
* Returns the value as an integer if possible (the imaginary part
|
|
* should be exactly zero).
|
|
*
|
|
* Complex(1, 0).to_i #=> 1
|
|
* Complex(1, 0.0).to_i # RangeError
|
|
* Complex(1, 2).to_i # RangeError
|
|
*/
|
|
static VALUE
|
|
nucomp_to_i(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (!k_exact_zero_p(dat->imag)) {
|
|
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
|
|
self);
|
|
}
|
|
return f_to_i(dat->real);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.to_f -> float
|
|
*
|
|
* Returns the value as a float if possible (the imaginary part should
|
|
* be exactly zero).
|
|
*
|
|
* Complex(1, 0).to_f #=> 1.0
|
|
* Complex(1, 0.0).to_f # RangeError
|
|
* Complex(1, 2).to_f # RangeError
|
|
*/
|
|
static VALUE
|
|
nucomp_to_f(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (!k_exact_zero_p(dat->imag)) {
|
|
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
|
|
self);
|
|
}
|
|
return f_to_f(dat->real);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.to_r -> rational
|
|
*
|
|
* Returns the value as a rational if possible (the imaginary part
|
|
* should be exactly zero).
|
|
*
|
|
* Complex(1, 0).to_r #=> (1/1)
|
|
* Complex(1, 0.0).to_r # RangeError
|
|
* Complex(1, 2).to_r # RangeError
|
|
*
|
|
* See rationalize.
|
|
*/
|
|
static VALUE
|
|
nucomp_to_r(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (!k_exact_zero_p(dat->imag)) {
|
|
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
|
|
self);
|
|
}
|
|
return f_to_r(dat->real);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* cmp.rationalize([eps]) -> rational
|
|
*
|
|
* Returns the value as a rational if possible (the imaginary part
|
|
* should be exactly zero).
|
|
*
|
|
* Complex(1.0/3, 0).rationalize #=> (1/3)
|
|
* Complex(1, 0.0).rationalize # RangeError
|
|
* Complex(1, 2).rationalize # RangeError
|
|
*
|
|
* See to_r.
|
|
*/
|
|
static VALUE
|
|
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
|
|
rb_scan_args(argc, argv, "01", NULL);
|
|
|
|
if (!k_exact_zero_p(dat->imag)) {
|
|
rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
|
|
self);
|
|
}
|
|
return rb_funcallv(dat->real, id_rationalize, argc, argv);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* complex.to_c -> self
|
|
*
|
|
* Returns self.
|
|
*
|
|
* Complex(2).to_c #=> (2+0i)
|
|
* Complex(-8, 6).to_c #=> (-8+6i)
|
|
*/
|
|
static VALUE
|
|
nucomp_to_c(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* nil.to_c -> (0+0i)
|
|
*
|
|
* Returns zero as a complex.
|
|
*/
|
|
static VALUE
|
|
nilclass_to_c(VALUE self)
|
|
{
|
|
return rb_complex_new1(INT2FIX(0));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.to_c -> complex
|
|
*
|
|
* Returns the value as a complex.
|
|
*/
|
|
static VALUE
|
|
numeric_to_c(VALUE self)
|
|
{
|
|
return rb_complex_new1(self);
|
|
}
|
|
|
|
#include <ctype.h>
|
|
|
|
inline static int
|
|
issign(int c)
|
|
{
|
|
return (c == '-' || c == '+');
|
|
}
|
|
|
|
static int
|
|
read_sign(const char **s,
|
|
char **b)
|
|
{
|
|
int sign = '?';
|
|
|
|
if (issign(**s)) {
|
|
sign = **b = **s;
|
|
(*s)++;
|
|
(*b)++;
|
|
}
|
|
return sign;
|
|
}
|
|
|
|
inline static int
|
|
isdecimal(int c)
|
|
{
|
|
return isdigit((unsigned char)c);
|
|
}
|
|
|
|
static int
|
|
read_digits(const char **s, int strict,
|
|
char **b)
|
|
{
|
|
int us = 1;
|
|
|
|
if (!isdecimal(**s))
|
|
return 0;
|
|
|
|
while (isdecimal(**s) || **s == '_') {
|
|
if (**s == '_') {
|
|
if (strict) {
|
|
if (us)
|
|
return 0;
|
|
}
|
|
us = 1;
|
|
}
|
|
else {
|
|
**b = **s;
|
|
(*b)++;
|
|
us = 0;
|
|
}
|
|
(*s)++;
|
|
}
|
|
if (us)
|
|
do {
|
|
(*s)--;
|
|
} while (**s == '_');
|
|
return 1;
|
|
}
|
|
|
|
inline static int
|
|
islettere(int c)
|
|
{
|
|
return (c == 'e' || c == 'E');
|
|
}
|
|
|
|
static int
|
|
read_num(const char **s, int strict,
|
|
char **b)
|
|
{
|
|
if (**s != '.') {
|
|
if (!read_digits(s, strict, b))
|
|
return 0;
|
|
}
|
|
|
|
if (**s == '.') {
|
|
**b = **s;
|
|
(*s)++;
|
|
(*b)++;
|
|
if (!read_digits(s, strict, b)) {
|
|
(*b)--;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (islettere(**s)) {
|
|
**b = **s;
|
|
(*s)++;
|
|
(*b)++;
|
|
read_sign(s, b);
|
|
if (!read_digits(s, strict, b)) {
|
|
(*b)--;
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
inline static int
|
|
read_den(const char **s, int strict,
|
|
char **b)
|
|
{
|
|
if (!read_digits(s, strict, b))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
read_rat_nos(const char **s, int strict,
|
|
char **b)
|
|
{
|
|
if (!read_num(s, strict, b))
|
|
return 0;
|
|
if (**s == '/') {
|
|
**b = **s;
|
|
(*s)++;
|
|
(*b)++;
|
|
if (!read_den(s, strict, b)) {
|
|
(*b)--;
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
read_rat(const char **s, int strict,
|
|
char **b)
|
|
{
|
|
read_sign(s, b);
|
|
if (!read_rat_nos(s, strict, b))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
inline static int
|
|
isimagunit(int c)
|
|
{
|
|
return (c == 'i' || c == 'I' ||
|
|
c == 'j' || c == 'J');
|
|
}
|
|
|
|
static VALUE
|
|
str2num(char *s)
|
|
{
|
|
if (strchr(s, '/'))
|
|
return rb_cstr_to_rat(s, 0);
|
|
if (strpbrk(s, ".eE"))
|
|
return DBL2NUM(rb_cstr_to_dbl(s, 0));
|
|
return rb_cstr_to_inum(s, 10, 0);
|
|
}
|
|
|
|
static int
|
|
read_comp(const char **s, int strict,
|
|
VALUE *ret, char **b)
|
|
{
|
|
char *bb;
|
|
int sign;
|
|
VALUE num, num2;
|
|
|
|
bb = *b;
|
|
|
|
sign = read_sign(s, b);
|
|
|
|
if (isimagunit(**s)) {
|
|
(*s)++;
|
|
num = INT2FIX((sign == '-') ? -1 : + 1);
|
|
*ret = rb_complex_new2(ZERO, num);
|
|
return 1; /* e.g. "i" */
|
|
}
|
|
|
|
if (!read_rat_nos(s, strict, b)) {
|
|
**b = '\0';
|
|
num = str2num(bb);
|
|
*ret = rb_complex_new2(num, ZERO);
|
|
return 0; /* e.g. "-" */
|
|
}
|
|
**b = '\0';
|
|
num = str2num(bb);
|
|
|
|
if (isimagunit(**s)) {
|
|
(*s)++;
|
|
*ret = rb_complex_new2(ZERO, num);
|
|
return 1; /* e.g. "3i" */
|
|
}
|
|
|
|
if (**s == '@') {
|
|
int st;
|
|
|
|
(*s)++;
|
|
bb = *b;
|
|
st = read_rat(s, strict, b);
|
|
**b = '\0';
|
|
if (strlen(bb) < 1 ||
|
|
!isdecimal(*(bb + strlen(bb) - 1))) {
|
|
*ret = rb_complex_new2(num, ZERO);
|
|
return 0; /* e.g. "1@-" */
|
|
}
|
|
num2 = str2num(bb);
|
|
*ret = rb_complex_polar(num, num2);
|
|
if (!st)
|
|
return 0; /* e.g. "1@2." */
|
|
else
|
|
return 1; /* e.g. "1@2" */
|
|
}
|
|
|
|
if (issign(**s)) {
|
|
bb = *b;
|
|
sign = read_sign(s, b);
|
|
if (isimagunit(**s))
|
|
num2 = INT2FIX((sign == '-') ? -1 : + 1);
|
|
else {
|
|
if (!read_rat_nos(s, strict, b)) {
|
|
*ret = rb_complex_new2(num, ZERO);
|
|
return 0; /* e.g. "1+xi" */
|
|
}
|
|
**b = '\0';
|
|
num2 = str2num(bb);
|
|
}
|
|
if (!isimagunit(**s)) {
|
|
*ret = rb_complex_new2(num, ZERO);
|
|
return 0; /* e.g. "1+3x" */
|
|
}
|
|
(*s)++;
|
|
*ret = rb_complex_new2(num, num2);
|
|
return 1; /* e.g. "1+2i" */
|
|
}
|
|
/* !(@, - or +) */
|
|
{
|
|
*ret = rb_complex_new2(num, ZERO);
|
|
return 1; /* e.g. "3" */
|
|
}
|
|
}
|
|
|
|
inline static void
|
|
skip_ws(const char **s)
|
|
{
|
|
while (isspace((unsigned char)**s))
|
|
(*s)++;
|
|
}
|
|
|
|
static int
|
|
parse_comp(const char *s, int strict, VALUE *num)
|
|
{
|
|
char *buf, *b;
|
|
VALUE tmp;
|
|
int ret = 1;
|
|
|
|
buf = ALLOCV_N(char, tmp, strlen(s) + 1);
|
|
b = buf;
|
|
|
|
skip_ws(&s);
|
|
if (!read_comp(&s, strict, num, &b)) {
|
|
ret = 0;
|
|
}
|
|
else {
|
|
skip_ws(&s);
|
|
|
|
if (strict)
|
|
if (*s != '\0')
|
|
ret = 0;
|
|
}
|
|
ALLOCV_END(tmp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static VALUE
|
|
string_to_c_strict(VALUE self, int raise)
|
|
{
|
|
char *s;
|
|
VALUE num;
|
|
|
|
rb_must_asciicompat(self);
|
|
|
|
s = RSTRING_PTR(self);
|
|
|
|
if (!s || memchr(s, '\0', RSTRING_LEN(self))) {
|
|
if (!raise) return Qnil;
|
|
rb_raise(rb_eArgError, "string contains null byte");
|
|
}
|
|
|
|
if (s && s[RSTRING_LEN(self)]) {
|
|
rb_str_modify(self);
|
|
s = RSTRING_PTR(self);
|
|
s[RSTRING_LEN(self)] = '\0';
|
|
}
|
|
|
|
if (!s)
|
|
s = (char *)"";
|
|
|
|
if (!parse_comp(s, 1, &num)) {
|
|
if (!raise) return Qnil;
|
|
rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE,
|
|
self);
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* str.to_c -> complex
|
|
*
|
|
* Returns a complex which denotes the string form. The parser
|
|
* ignores leading whitespaces and trailing garbage. Any digit
|
|
* sequences can be separated by an underscore. Returns zero for null
|
|
* or garbage string.
|
|
*
|
|
* '9'.to_c #=> (9+0i)
|
|
* '2.5'.to_c #=> (2.5+0i)
|
|
* '2.5/1'.to_c #=> ((5/2)+0i)
|
|
* '-3/2'.to_c #=> ((-3/2)+0i)
|
|
* '-i'.to_c #=> (0-1i)
|
|
* '45i'.to_c #=> (0+45i)
|
|
* '3-4i'.to_c #=> (3-4i)
|
|
* '-4e2-4e-2i'.to_c #=> (-400.0-0.04i)
|
|
* '-0.0-0.0i'.to_c #=> (-0.0-0.0i)
|
|
* '1/2+3/4i'.to_c #=> ((1/2)+(3/4)*i)
|
|
* 'ruby'.to_c #=> (0+0i)
|
|
*
|
|
* See Kernel.Complex.
|
|
*/
|
|
static VALUE
|
|
string_to_c(VALUE self)
|
|
{
|
|
char *s;
|
|
VALUE num;
|
|
|
|
rb_must_asciicompat(self);
|
|
|
|
s = RSTRING_PTR(self);
|
|
|
|
if (s && s[RSTRING_LEN(self)]) {
|
|
rb_str_modify(self);
|
|
s = RSTRING_PTR(self);
|
|
s[RSTRING_LEN(self)] = '\0';
|
|
}
|
|
|
|
if (!s)
|
|
s = (char *)"";
|
|
|
|
(void)parse_comp(s, 0, &num);
|
|
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
to_complex(VALUE val)
|
|
{
|
|
return rb_convert_type(val, T_COMPLEX, "Complex", "to_c");
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise)
|
|
{
|
|
if (NIL_P(a1) || NIL_P(a2))
|
|
rb_raise(rb_eTypeError, "can't convert nil into Complex");
|
|
|
|
if (RB_TYPE_P(a1, T_STRING)) {
|
|
a1 = string_to_c_strict(a1, raise);
|
|
if (NIL_P(a1)) return Qnil;
|
|
}
|
|
|
|
if (RB_TYPE_P(a2, T_STRING)) {
|
|
a2 = string_to_c_strict(a2, raise);
|
|
if (NIL_P(a2)) return Qnil;
|
|
}
|
|
|
|
if (RB_TYPE_P(a1, T_COMPLEX)) {
|
|
{
|
|
get_dat1(a1);
|
|
|
|
if (k_exact_zero_p(dat->imag))
|
|
a1 = dat->real;
|
|
}
|
|
}
|
|
|
|
if (RB_TYPE_P(a2, T_COMPLEX)) {
|
|
{
|
|
get_dat1(a2);
|
|
|
|
if (k_exact_zero_p(dat->imag))
|
|
a2 = dat->real;
|
|
}
|
|
}
|
|
|
|
if (RB_TYPE_P(a1, T_COMPLEX)) {
|
|
if (a2 == Qundef || (k_exact_zero_p(a2)))
|
|
return a1;
|
|
}
|
|
|
|
if (a2 == Qundef) {
|
|
if (k_numeric_p(a1) && !f_real_p(a1))
|
|
return a1;
|
|
/* should raise exception for consistency */
|
|
if (!k_numeric_p(a1)) {
|
|
if (!raise)
|
|
return rb_protect(to_complex, a1, NULL);
|
|
return to_complex(a1);
|
|
}
|
|
}
|
|
else {
|
|
if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
|
|
(!f_real_p(a1) || !f_real_p(a2)))
|
|
return f_add(a1,
|
|
f_mul(a2,
|
|
f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
|
|
}
|
|
|
|
{
|
|
int argc;
|
|
VALUE argv2[2];
|
|
argv2[0] = a1;
|
|
if (a2 == Qundef) {
|
|
argv2[1] = Qnil;
|
|
argc = 1;
|
|
}
|
|
else {
|
|
if (!raise && !RB_INTEGER_TYPE_P(a2) && !RB_FLOAT_TYPE_P(a2) && !RB_TYPE_P(a2, T_RATIONAL))
|
|
return Qnil;
|
|
argv2[1] = a2;
|
|
argc = 2;
|
|
}
|
|
return nucomp_s_new(argc, argv2, klass);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE a1, a2;
|
|
|
|
if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) {
|
|
a2 = Qundef;
|
|
}
|
|
|
|
return nucomp_convert(klass, a1, a2, TRUE);
|
|
}
|
|
|
|
/* --- */
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.real -> self
|
|
*
|
|
* Returns self.
|
|
*/
|
|
static VALUE
|
|
numeric_real(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.imag -> 0
|
|
* num.imaginary -> 0
|
|
*
|
|
* Returns zero.
|
|
*/
|
|
static VALUE
|
|
numeric_imag(VALUE self)
|
|
{
|
|
return INT2FIX(0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.abs2 -> real
|
|
*
|
|
* Returns square of self.
|
|
*/
|
|
static VALUE
|
|
numeric_abs2(VALUE self)
|
|
{
|
|
return f_mul(self, self);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.arg -> 0 or float
|
|
* num.angle -> 0 or float
|
|
* num.phase -> 0 or float
|
|
*
|
|
* Returns 0 if the value is positive, pi otherwise.
|
|
*/
|
|
static VALUE
|
|
numeric_arg(VALUE self)
|
|
{
|
|
if (f_positive_p(self))
|
|
return INT2FIX(0);
|
|
return DBL2NUM(M_PI);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.rect -> array
|
|
* num.rectangular -> array
|
|
*
|
|
* Returns an array; [num, 0].
|
|
*/
|
|
static VALUE
|
|
numeric_rect(VALUE self)
|
|
{
|
|
return rb_assoc_new(self, INT2FIX(0));
|
|
}
|
|
|
|
static VALUE float_arg(VALUE self);
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.polar -> array
|
|
*
|
|
* Returns an array; [num.abs, num.arg].
|
|
*/
|
|
static VALUE
|
|
numeric_polar(VALUE self)
|
|
{
|
|
VALUE abs, arg;
|
|
|
|
if (RB_INTEGER_TYPE_P(self)) {
|
|
abs = rb_int_abs(self);
|
|
arg = numeric_arg(self);
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(self)) {
|
|
abs = rb_float_abs(self);
|
|
arg = float_arg(self);
|
|
}
|
|
else if (RB_TYPE_P(self, T_RATIONAL)) {
|
|
abs = rb_rational_abs(self);
|
|
arg = numeric_arg(self);
|
|
}
|
|
else {
|
|
abs = f_abs(self);
|
|
arg = f_arg(self);
|
|
}
|
|
return rb_assoc_new(abs, arg);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.conj -> self
|
|
* num.conjugate -> self
|
|
*
|
|
* Returns self.
|
|
*/
|
|
static VALUE
|
|
numeric_conj(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flo.arg -> 0 or float
|
|
* flo.angle -> 0 or float
|
|
* flo.phase -> 0 or float
|
|
*
|
|
* Returns 0 if the value is positive, pi otherwise.
|
|
*/
|
|
static VALUE
|
|
float_arg(VALUE self)
|
|
{
|
|
if (isnan(RFLOAT_VALUE(self)))
|
|
return self;
|
|
if (f_tpositive_p(self))
|
|
return INT2FIX(0);
|
|
return rb_const_get(rb_mMath, id_PI);
|
|
}
|
|
|
|
/*
|
|
* A complex number can be represented as a paired real number with
|
|
* imaginary unit; a+bi. Where a is real part, b is imaginary part
|
|
* and i is imaginary unit. Real a equals complex a+0i
|
|
* mathematically.
|
|
*
|
|
* Complex object can be created as literal, and also by using
|
|
* Kernel#Complex, Complex::rect, Complex::polar or to_c method.
|
|
*
|
|
* 2+1i #=> (2+1i)
|
|
* Complex(1) #=> (1+0i)
|
|
* Complex(2, 3) #=> (2+3i)
|
|
* Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i)
|
|
* 3.to_c #=> (3+0i)
|
|
*
|
|
* You can also create complex object from floating-point numbers or
|
|
* strings.
|
|
*
|
|
* Complex(0.3) #=> (0.3+0i)
|
|
* Complex('0.3-0.5i') #=> (0.3-0.5i)
|
|
* Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i)
|
|
* Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i)
|
|
*
|
|
* 0.3.to_c #=> (0.3+0i)
|
|
* '0.3-0.5i'.to_c #=> (0.3-0.5i)
|
|
* '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i)
|
|
* '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
|
|
*
|
|
* A complex object is either an exact or an inexact number.
|
|
*
|
|
* Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i)
|
|
* Complex(1, 1) / 2.0 #=> (0.5+0.5i)
|
|
*/
|
|
void
|
|
Init_Complex(void)
|
|
{
|
|
VALUE compat;
|
|
#undef rb_intern
|
|
#define rb_intern(str) rb_intern_const(str)
|
|
|
|
id_abs = rb_intern("abs");
|
|
id_arg = rb_intern("arg");
|
|
id_denominator = rb_intern("denominator");
|
|
id_fdiv = rb_intern("fdiv");
|
|
id_numerator = rb_intern("numerator");
|
|
id_quo = rb_intern("quo");
|
|
id_real_p = rb_intern("real?");
|
|
id_i_real = rb_intern("@real");
|
|
id_i_imag = rb_intern("@image"); /* @image, not @imag */
|
|
id_finite_p = rb_intern("finite?");
|
|
id_infinite_p = rb_intern("infinite?");
|
|
id_rationalize = rb_intern("rationalize");
|
|
id_PI = rb_intern("PI");
|
|
|
|
rb_cComplex = rb_define_class("Complex", rb_cNumeric);
|
|
|
|
rb_define_alloc_func(rb_cComplex, nucomp_s_alloc);
|
|
rb_undef_method(CLASS_OF(rb_cComplex), "allocate");
|
|
|
|
rb_undef_method(CLASS_OF(rb_cComplex), "new");
|
|
|
|
rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1);
|
|
rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1);
|
|
rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1);
|
|
|
|
rb_define_global_function("Complex", nucomp_f_complex, -1);
|
|
|
|
rb_undef_methods_from(rb_cComplex, rb_mComparable);
|
|
rb_undef_method(rb_cComplex, "%");
|
|
rb_undef_method(rb_cComplex, "<=>");
|
|
rb_undef_method(rb_cComplex, "div");
|
|
rb_undef_method(rb_cComplex, "divmod");
|
|
rb_undef_method(rb_cComplex, "floor");
|
|
rb_undef_method(rb_cComplex, "ceil");
|
|
rb_undef_method(rb_cComplex, "modulo");
|
|
rb_undef_method(rb_cComplex, "remainder");
|
|
rb_undef_method(rb_cComplex, "round");
|
|
rb_undef_method(rb_cComplex, "step");
|
|
rb_undef_method(rb_cComplex, "truncate");
|
|
rb_undef_method(rb_cComplex, "i");
|
|
|
|
rb_define_method(rb_cComplex, "real", nucomp_real, 0);
|
|
rb_define_method(rb_cComplex, "imaginary", nucomp_imag, 0);
|
|
rb_define_method(rb_cComplex, "imag", nucomp_imag, 0);
|
|
|
|
rb_define_method(rb_cComplex, "-@", nucomp_negate, 0);
|
|
rb_define_method(rb_cComplex, "+", rb_complex_plus, 1);
|
|
rb_define_method(rb_cComplex, "-", nucomp_sub, 1);
|
|
rb_define_method(rb_cComplex, "*", nucomp_mul, 1);
|
|
rb_define_method(rb_cComplex, "/", nucomp_div, 1);
|
|
rb_define_method(rb_cComplex, "quo", nucomp_quo, 1);
|
|
rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
|
|
rb_define_method(rb_cComplex, "**", nucomp_expt, 1);
|
|
|
|
rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1);
|
|
rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
|
|
|
|
rb_define_method(rb_cComplex, "abs", nucomp_abs, 0);
|
|
rb_define_method(rb_cComplex, "magnitude", nucomp_abs, 0);
|
|
rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0);
|
|
rb_define_method(rb_cComplex, "arg", nucomp_arg, 0);
|
|
rb_define_method(rb_cComplex, "angle", nucomp_arg, 0);
|
|
rb_define_method(rb_cComplex, "phase", nucomp_arg, 0);
|
|
rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0);
|
|
rb_define_method(rb_cComplex, "rect", nucomp_rect, 0);
|
|
rb_define_method(rb_cComplex, "polar", nucomp_polar, 0);
|
|
rb_define_method(rb_cComplex, "conjugate", nucomp_conj, 0);
|
|
rb_define_method(rb_cComplex, "conj", nucomp_conj, 0);
|
|
|
|
rb_define_method(rb_cComplex, "real?", nucomp_false, 0);
|
|
|
|
rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
|
|
rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
|
|
|
|
rb_define_method(rb_cComplex, "hash", nucomp_hash, 0);
|
|
rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1);
|
|
|
|
rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0);
|
|
rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0);
|
|
|
|
rb_undef_method(rb_cComplex, "positive?");
|
|
rb_undef_method(rb_cComplex, "negative?");
|
|
|
|
rb_define_method(rb_cComplex, "finite?", rb_complex_finite_p, 0);
|
|
rb_define_method(rb_cComplex, "infinite?", rb_complex_infinite_p, 0);
|
|
|
|
rb_define_private_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0);
|
|
/* :nodoc: */
|
|
compat = rb_define_class_under(rb_cComplex, "compatible", rb_cObject);
|
|
rb_define_private_method(compat, "marshal_load", nucomp_marshal_load, 1);
|
|
rb_marshal_define_compat(rb_cComplex, compat, nucomp_dumper, nucomp_loader);
|
|
|
|
/* --- */
|
|
|
|
rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
|
|
rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
|
|
rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
|
|
rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
|
|
rb_define_method(rb_cComplex, "to_c", nucomp_to_c, 0);
|
|
rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
|
|
rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
|
|
|
|
rb_define_method(rb_cString, "to_c", string_to_c, 0);
|
|
|
|
rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1);
|
|
|
|
/* --- */
|
|
|
|
rb_define_method(rb_cNumeric, "real", numeric_real, 0);
|
|
rb_define_method(rb_cNumeric, "imaginary", numeric_imag, 0);
|
|
rb_define_method(rb_cNumeric, "imag", numeric_imag, 0);
|
|
rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0);
|
|
rb_define_method(rb_cNumeric, "arg", numeric_arg, 0);
|
|
rb_define_method(rb_cNumeric, "angle", numeric_arg, 0);
|
|
rb_define_method(rb_cNumeric, "phase", numeric_arg, 0);
|
|
rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0);
|
|
rb_define_method(rb_cNumeric, "rect", numeric_rect, 0);
|
|
rb_define_method(rb_cNumeric, "polar", numeric_polar, 0);
|
|
rb_define_method(rb_cNumeric, "conjugate", numeric_conj, 0);
|
|
rb_define_method(rb_cNumeric, "conj", numeric_conj, 0);
|
|
|
|
rb_define_method(rb_cFloat, "arg", float_arg, 0);
|
|
rb_define_method(rb_cFloat, "angle", float_arg, 0);
|
|
rb_define_method(rb_cFloat, "phase", float_arg, 0);
|
|
|
|
/*
|
|
* The imaginary unit.
|
|
*/
|
|
rb_define_const(rb_cComplex, "I",
|
|
f_complex_new_bang2(rb_cComplex, ZERO, ONE));
|
|
|
|
#if !USE_FLONUM
|
|
rb_gc_register_mark_object(RFLOAT_0 = DBL2NUM(0.0));
|
|
#endif
|
|
|
|
rb_provide("complex.so"); /* for backward compatibility */
|
|
}
|
|
|
|
/*
|
|
Local variables:
|
|
c-file-style: "ruby"
|
|
End:
|
|
*/
|