mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
8145 lines
213 KiB
C
8145 lines
213 KiB
C
/**********************************************************************
|
|
|
|
array.c -
|
|
|
|
$Author$
|
|
created at: Fri Aug 6 09:46:12 JST 1993
|
|
|
|
Copyright (C) 1993-2007 Yukihiro Matsumoto
|
|
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
|
|
Copyright (C) 2000 Information-technology Promotion Agency, Japan
|
|
|
|
**********************************************************************/
|
|
|
|
#include "debug_counter.h"
|
|
#include "id.h"
|
|
#include "internal.h"
|
|
#include "internal/array.h"
|
|
#include "internal/compar.h"
|
|
#include "internal/enum.h"
|
|
#include "internal/gc.h"
|
|
#include "internal/hash.h"
|
|
#include "internal/numeric.h"
|
|
#include "internal/object.h"
|
|
#include "internal/proc.h"
|
|
#include "internal/rational.h"
|
|
#include "internal/vm.h"
|
|
#include "probes.h"
|
|
#include "ruby/encoding.h"
|
|
#include "ruby/st.h"
|
|
#include "ruby/util.h"
|
|
#include "transient_heap.h"
|
|
#include "builtin.h"
|
|
|
|
#if !ARRAY_DEBUG
|
|
# undef NDEBUG
|
|
# define NDEBUG
|
|
#endif
|
|
#include "ruby_assert.h"
|
|
|
|
VALUE rb_cArray;
|
|
|
|
/* for OPTIMIZED_CMP: */
|
|
#define id_cmp idCmp
|
|
|
|
#define ARY_DEFAULT_SIZE 16
|
|
#define ARY_MAX_SIZE (LONG_MAX / (int)sizeof(VALUE))
|
|
#define SMALL_ARRAY_LEN 16
|
|
|
|
RBIMPL_ATTR_MAYBE_UNUSED()
|
|
static int
|
|
should_be_T_ARRAY(VALUE ary)
|
|
{
|
|
return RB_TYPE_P(ary, T_ARRAY);
|
|
}
|
|
|
|
RBIMPL_ATTR_MAYBE_UNUSED()
|
|
static int
|
|
should_not_be_shared_and_embedded(VALUE ary)
|
|
{
|
|
return !FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG);
|
|
}
|
|
|
|
#define ARY_SHARED_P(ary) \
|
|
(assert(should_be_T_ARRAY((VALUE)(ary))), \
|
|
assert(should_not_be_shared_and_embedded((VALUE)ary)), \
|
|
FL_TEST_RAW((ary),ELTS_SHARED)!=0)
|
|
|
|
#define ARY_EMBED_P(ary) \
|
|
(assert(should_be_T_ARRAY((VALUE)(ary))), \
|
|
assert(should_not_be_shared_and_embedded((VALUE)ary)), \
|
|
FL_TEST_RAW((ary), RARRAY_EMBED_FLAG) != 0)
|
|
|
|
#define ARY_HEAP_PTR(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.ptr)
|
|
#define ARY_HEAP_LEN(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.len)
|
|
#define ARY_HEAP_CAPA(a) (assert(!ARY_EMBED_P(a)), assert(!ARY_SHARED_ROOT_P(a)), \
|
|
RARRAY(a)->as.heap.aux.capa)
|
|
|
|
#define ARY_EMBED_PTR(a) (assert(ARY_EMBED_P(a)), RARRAY(a)->as.ary)
|
|
#define ARY_EMBED_LEN(a) \
|
|
(assert(ARY_EMBED_P(a)), \
|
|
(long)((RBASIC(a)->flags >> RARRAY_EMBED_LEN_SHIFT) & \
|
|
(RARRAY_EMBED_LEN_MASK >> RARRAY_EMBED_LEN_SHIFT)))
|
|
#define ARY_HEAP_SIZE(a) (assert(!ARY_EMBED_P(a)), assert(ARY_OWNS_HEAP_P(a)), ARY_CAPA(a) * sizeof(VALUE))
|
|
|
|
#define ARY_OWNS_HEAP_P(a) (assert(should_be_T_ARRAY((VALUE)(a))), \
|
|
!FL_TEST_RAW((a), ELTS_SHARED|RARRAY_EMBED_FLAG))
|
|
|
|
#define FL_SET_EMBED(a) do { \
|
|
assert(!ARY_SHARED_P(a)); \
|
|
FL_SET((a), RARRAY_EMBED_FLAG); \
|
|
RARY_TRANSIENT_UNSET(a); \
|
|
ary_verify(a); \
|
|
} while (0)
|
|
|
|
#define FL_UNSET_EMBED(ary) FL_UNSET((ary), RARRAY_EMBED_FLAG|RARRAY_EMBED_LEN_MASK)
|
|
#define FL_SET_SHARED(ary) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
FL_SET((ary), ELTS_SHARED); \
|
|
} while (0)
|
|
#define FL_UNSET_SHARED(ary) FL_UNSET((ary), ELTS_SHARED)
|
|
|
|
#define ARY_SET_PTR(ary, p) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
assert(!OBJ_FROZEN(ary)); \
|
|
RARRAY(ary)->as.heap.ptr = (p); \
|
|
} while (0)
|
|
#define ARY_SET_EMBED_LEN(ary, n) do { \
|
|
long tmp_n = (n); \
|
|
assert(ARY_EMBED_P(ary)); \
|
|
assert(!OBJ_FROZEN(ary)); \
|
|
RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK; \
|
|
RBASIC(ary)->flags |= (tmp_n) << RARRAY_EMBED_LEN_SHIFT; \
|
|
} while (0)
|
|
#define ARY_SET_HEAP_LEN(ary, n) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
RARRAY(ary)->as.heap.len = (n); \
|
|
} while (0)
|
|
#define ARY_SET_LEN(ary, n) do { \
|
|
if (ARY_EMBED_P(ary)) { \
|
|
ARY_SET_EMBED_LEN((ary), (n)); \
|
|
} \
|
|
else { \
|
|
ARY_SET_HEAP_LEN((ary), (n)); \
|
|
} \
|
|
assert(RARRAY_LEN(ary) == (n)); \
|
|
} while (0)
|
|
#define ARY_INCREASE_PTR(ary, n) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
assert(!OBJ_FROZEN(ary)); \
|
|
RARRAY(ary)->as.heap.ptr += (n); \
|
|
} while (0)
|
|
#define ARY_INCREASE_LEN(ary, n) do { \
|
|
assert(!OBJ_FROZEN(ary)); \
|
|
if (ARY_EMBED_P(ary)) { \
|
|
ARY_SET_EMBED_LEN((ary), RARRAY_LEN(ary)+(n)); \
|
|
} \
|
|
else { \
|
|
RARRAY(ary)->as.heap.len += (n); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define ARY_CAPA(ary) (ARY_EMBED_P(ary) ? RARRAY_EMBED_LEN_MAX : \
|
|
ARY_SHARED_ROOT_P(ary) ? RARRAY_LEN(ary) : ARY_HEAP_CAPA(ary))
|
|
#define ARY_SET_CAPA(ary, n) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
assert(!ARY_SHARED_P(ary)); \
|
|
assert(!OBJ_FROZEN(ary)); \
|
|
RARRAY(ary)->as.heap.aux.capa = (n); \
|
|
} while (0)
|
|
|
|
#define ARY_SHARED_ROOT(ary) (assert(ARY_SHARED_P(ary)), RARRAY(ary)->as.heap.aux.shared_root)
|
|
#define ARY_SET_SHARED(ary, value) do { \
|
|
const VALUE _ary_ = (ary); \
|
|
const VALUE _value_ = (value); \
|
|
assert(!ARY_EMBED_P(_ary_)); \
|
|
assert(ARY_SHARED_P(_ary_)); \
|
|
assert(ARY_SHARED_ROOT_P(_value_)); \
|
|
RB_OBJ_WRITE(_ary_, &RARRAY(_ary_)->as.heap.aux.shared_root, _value_); \
|
|
} while (0)
|
|
#define RARRAY_SHARED_ROOT_FLAG FL_USER5
|
|
#define ARY_SHARED_ROOT_P(ary) (assert(should_be_T_ARRAY((VALUE)(ary))), \
|
|
FL_TEST_RAW((ary), RARRAY_SHARED_ROOT_FLAG))
|
|
#define ARY_SHARED_ROOT_REFCNT(ary) \
|
|
(assert(ARY_SHARED_ROOT_P(ary)), RARRAY(ary)->as.heap.aux.capa)
|
|
#define ARY_SHARED_ROOT_OCCUPIED(ary) (ARY_SHARED_ROOT_REFCNT(ary) == 1)
|
|
#define ARY_SET_SHARED_ROOT_REFCNT(ary, value) do { \
|
|
assert(ARY_SHARED_ROOT_P(ary)); \
|
|
RARRAY(ary)->as.heap.aux.capa = (value); \
|
|
} while (0)
|
|
#define FL_SET_SHARED_ROOT(ary) do { \
|
|
assert(!ARY_EMBED_P(ary)); \
|
|
assert(!RARRAY_TRANSIENT_P(ary)); \
|
|
FL_SET((ary), RARRAY_SHARED_ROOT_FLAG); \
|
|
} while (0)
|
|
|
|
static inline void
|
|
ARY_SET(VALUE a, long i, VALUE v)
|
|
{
|
|
assert(!ARY_SHARED_P(a));
|
|
assert(!OBJ_FROZEN(a));
|
|
|
|
RARRAY_ASET(a, i, v);
|
|
}
|
|
#undef RARRAY_ASET
|
|
|
|
|
|
#if ARRAY_DEBUG
|
|
#define ary_verify(ary) ary_verify_(ary, __FILE__, __LINE__)
|
|
|
|
static VALUE
|
|
ary_verify_(VALUE ary, const char *file, int line)
|
|
{
|
|
assert(RB_TYPE_P(ary, T_ARRAY));
|
|
|
|
if (FL_TEST(ary, ELTS_SHARED)) {
|
|
VALUE root = RARRAY(ary)->as.heap.aux.shared_root;
|
|
const VALUE *ptr = ARY_HEAP_PTR(ary);
|
|
const VALUE *root_ptr = RARRAY_CONST_PTR_TRANSIENT(root);
|
|
long len = ARY_HEAP_LEN(ary), root_len = RARRAY_LEN(root);
|
|
assert(FL_TEST(root, RARRAY_SHARED_ROOT_FLAG));
|
|
assert(root_ptr <= ptr && ptr + len <= root_ptr + root_len);
|
|
ary_verify(root);
|
|
}
|
|
else if (ARY_EMBED_P(ary)) {
|
|
assert(!RARRAY_TRANSIENT_P(ary));
|
|
assert(!ARY_SHARED_P(ary));
|
|
assert(RARRAY_LEN(ary) <= RARRAY_EMBED_LEN_MAX);
|
|
}
|
|
else {
|
|
#if 1
|
|
const VALUE *ptr = RARRAY_CONST_PTR_TRANSIENT(ary);
|
|
long i, len = RARRAY_LEN(ary);
|
|
volatile VALUE v;
|
|
if (len > 1) len = 1; /* check only HEAD */
|
|
for (i=0; i<len; i++) {
|
|
v = ptr[i]; /* access check */
|
|
}
|
|
v = v;
|
|
#endif
|
|
}
|
|
|
|
#if USE_TRANSIENT_HEAP
|
|
if (RARRAY_TRANSIENT_P(ary)) {
|
|
assert(rb_transient_heap_managed_ptr_p(RARRAY_CONST_PTR_TRANSIENT(ary)));
|
|
}
|
|
#endif
|
|
|
|
rb_transient_heap_verify();
|
|
|
|
return ary;
|
|
}
|
|
|
|
void
|
|
rb_ary_verify(VALUE ary)
|
|
{
|
|
ary_verify(ary);
|
|
}
|
|
#else
|
|
#define ary_verify(ary) ((void)0)
|
|
#endif
|
|
|
|
VALUE *
|
|
rb_ary_ptr_use_start(VALUE ary)
|
|
{
|
|
#if ARRAY_DEBUG
|
|
FL_SET_RAW(ary, RARRAY_PTR_IN_USE_FLAG);
|
|
#endif
|
|
return (VALUE *)RARRAY_CONST_PTR_TRANSIENT(ary);
|
|
}
|
|
|
|
void
|
|
rb_ary_ptr_use_end(VALUE ary)
|
|
{
|
|
#if ARRAY_DEBUG
|
|
FL_UNSET_RAW(ary, RARRAY_PTR_IN_USE_FLAG);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
rb_mem_clear(VALUE *mem, long size)
|
|
{
|
|
while (size--) {
|
|
*mem++ = Qnil;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ary_mem_clear(VALUE ary, long beg, long size)
|
|
{
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
|
|
rb_mem_clear(ptr + beg, size);
|
|
});
|
|
}
|
|
|
|
static inline void
|
|
memfill(register VALUE *mem, register long size, register VALUE val)
|
|
{
|
|
while (size--) {
|
|
*mem++ = val;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ary_memfill(VALUE ary, long beg, long size, VALUE val)
|
|
{
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
|
|
memfill(ptr + beg, size, val);
|
|
RB_OBJ_WRITTEN(ary, Qundef, val);
|
|
});
|
|
}
|
|
|
|
static void
|
|
ary_memcpy0(VALUE ary, long beg, long argc, const VALUE *argv, VALUE buff_owner_ary)
|
|
{
|
|
assert(!ARY_SHARED_P(buff_owner_ary));
|
|
|
|
if (argc > (int)(128/sizeof(VALUE)) /* is magic number (cache line size) */) {
|
|
rb_gc_writebarrier_remember(buff_owner_ary);
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
|
|
MEMCPY(ptr+beg, argv, VALUE, argc);
|
|
});
|
|
}
|
|
else {
|
|
int i;
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
|
|
for (i=0; i<argc; i++) {
|
|
RB_OBJ_WRITE(buff_owner_ary, &ptr[i+beg], argv[i]);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
static void
|
|
ary_memcpy(VALUE ary, long beg, long argc, const VALUE *argv)
|
|
{
|
|
ary_memcpy0(ary, beg, argc, argv, ary);
|
|
}
|
|
|
|
static VALUE *
|
|
ary_heap_alloc(VALUE ary, size_t capa)
|
|
{
|
|
VALUE *ptr = rb_transient_heap_alloc(ary, sizeof(VALUE) * capa);
|
|
|
|
if (ptr != NULL) {
|
|
RARY_TRANSIENT_SET(ary);
|
|
}
|
|
else {
|
|
RARY_TRANSIENT_UNSET(ary);
|
|
ptr = ALLOC_N(VALUE, capa);
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static void
|
|
ary_heap_free_ptr(VALUE ary, const VALUE *ptr, long size)
|
|
{
|
|
if (RARRAY_TRANSIENT_P(ary)) {
|
|
/* ignore it */
|
|
}
|
|
else {
|
|
ruby_sized_xfree((void *)ptr, size);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ary_heap_free(VALUE ary)
|
|
{
|
|
if (RARRAY_TRANSIENT_P(ary)) {
|
|
RARY_TRANSIENT_UNSET(ary);
|
|
}
|
|
else {
|
|
ary_heap_free_ptr(ary, ARY_HEAP_PTR(ary), ARY_HEAP_SIZE(ary));
|
|
}
|
|
}
|
|
|
|
static void
|
|
ary_heap_realloc(VALUE ary, size_t new_capa)
|
|
{
|
|
size_t old_capa = ARY_HEAP_CAPA(ary);
|
|
|
|
if (RARRAY_TRANSIENT_P(ary)) {
|
|
if (new_capa <= old_capa) {
|
|
/* do nothing */
|
|
}
|
|
else {
|
|
VALUE *new_ptr = rb_transient_heap_alloc(ary, sizeof(VALUE) * new_capa);
|
|
|
|
if (new_ptr == NULL) {
|
|
new_ptr = ALLOC_N(VALUE, new_capa);
|
|
RARY_TRANSIENT_UNSET(ary);
|
|
}
|
|
|
|
MEMCPY(new_ptr, ARY_HEAP_PTR(ary), VALUE, old_capa);
|
|
ARY_SET_PTR(ary, new_ptr);
|
|
}
|
|
}
|
|
else {
|
|
SIZED_REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, new_capa, old_capa);
|
|
}
|
|
ary_verify(ary);
|
|
}
|
|
|
|
#if USE_TRANSIENT_HEAP
|
|
static inline void
|
|
rb_ary_transient_heap_evacuate_(VALUE ary, int transient, int promote)
|
|
{
|
|
if (transient) {
|
|
VALUE *new_ptr;
|
|
const VALUE *old_ptr = ARY_HEAP_PTR(ary);
|
|
long capa = ARY_HEAP_CAPA(ary);
|
|
long len = ARY_HEAP_LEN(ary);
|
|
|
|
if (ARY_SHARED_ROOT_P(ary)) {
|
|
capa = len;
|
|
}
|
|
|
|
assert(ARY_OWNS_HEAP_P(ary));
|
|
assert(RARRAY_TRANSIENT_P(ary));
|
|
assert(!ARY_PTR_USING_P(ary));
|
|
|
|
if (promote) {
|
|
new_ptr = ALLOC_N(VALUE, capa);
|
|
RARY_TRANSIENT_UNSET(ary);
|
|
}
|
|
else {
|
|
new_ptr = ary_heap_alloc(ary, capa);
|
|
}
|
|
|
|
MEMCPY(new_ptr, old_ptr, VALUE, capa);
|
|
/* do not use ARY_SET_PTR() because they assert !frozen */
|
|
RARRAY(ary)->as.heap.ptr = new_ptr;
|
|
}
|
|
|
|
ary_verify(ary);
|
|
}
|
|
|
|
void
|
|
rb_ary_transient_heap_evacuate(VALUE ary, int promote)
|
|
{
|
|
rb_ary_transient_heap_evacuate_(ary, RARRAY_TRANSIENT_P(ary), promote);
|
|
}
|
|
|
|
void
|
|
rb_ary_detransient(VALUE ary)
|
|
{
|
|
assert(RARRAY_TRANSIENT_P(ary));
|
|
rb_ary_transient_heap_evacuate_(ary, TRUE, TRUE);
|
|
}
|
|
#else
|
|
void
|
|
rb_ary_detransient(VALUE ary)
|
|
{
|
|
/* do nothing */
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ary_resize_capa(VALUE ary, long capacity)
|
|
{
|
|
assert(RARRAY_LEN(ary) <= capacity);
|
|
assert(!OBJ_FROZEN(ary));
|
|
assert(!ARY_SHARED_P(ary));
|
|
|
|
if (capacity > RARRAY_EMBED_LEN_MAX) {
|
|
if (ARY_EMBED_P(ary)) {
|
|
long len = ARY_EMBED_LEN(ary);
|
|
VALUE *ptr = ary_heap_alloc(ary, capacity);
|
|
|
|
MEMCPY(ptr, ARY_EMBED_PTR(ary), VALUE, len);
|
|
FL_UNSET_EMBED(ary);
|
|
ARY_SET_PTR(ary, ptr);
|
|
ARY_SET_HEAP_LEN(ary, len);
|
|
}
|
|
else {
|
|
ary_heap_realloc(ary, capacity);
|
|
}
|
|
ARY_SET_CAPA(ary, capacity);
|
|
}
|
|
else {
|
|
if (!ARY_EMBED_P(ary)) {
|
|
long len = ARY_HEAP_LEN(ary);
|
|
long old_capa = ARY_HEAP_CAPA(ary);
|
|
const VALUE *ptr = ARY_HEAP_PTR(ary);
|
|
|
|
if (len > capacity) len = capacity;
|
|
MEMCPY((VALUE *)RARRAY(ary)->as.ary, ptr, VALUE, len);
|
|
ary_heap_free_ptr(ary, ptr, old_capa);
|
|
|
|
FL_SET_EMBED(ary);
|
|
ARY_SET_LEN(ary, len);
|
|
}
|
|
}
|
|
|
|
ary_verify(ary);
|
|
}
|
|
|
|
static inline void
|
|
ary_shrink_capa(VALUE ary)
|
|
{
|
|
long capacity = ARY_HEAP_LEN(ary);
|
|
long old_capa = ARY_HEAP_CAPA(ary);
|
|
assert(!ARY_SHARED_P(ary));
|
|
assert(old_capa >= capacity);
|
|
if (old_capa > capacity) ary_heap_realloc(ary, capacity);
|
|
|
|
ary_verify(ary);
|
|
}
|
|
|
|
static void
|
|
ary_double_capa(VALUE ary, long min)
|
|
{
|
|
long new_capa = ARY_CAPA(ary) / 2;
|
|
|
|
if (new_capa < ARY_DEFAULT_SIZE) {
|
|
new_capa = ARY_DEFAULT_SIZE;
|
|
}
|
|
if (new_capa >= ARY_MAX_SIZE - min) {
|
|
new_capa = (ARY_MAX_SIZE - min) / 2;
|
|
}
|
|
new_capa += min;
|
|
ary_resize_capa(ary, new_capa);
|
|
|
|
ary_verify(ary);
|
|
}
|
|
|
|
static void
|
|
rb_ary_decrement_share(VALUE shared_root)
|
|
{
|
|
if (shared_root) {
|
|
long num = ARY_SHARED_ROOT_REFCNT(shared_root) - 1;
|
|
if (num == 0) {
|
|
rb_ary_free(shared_root);
|
|
rb_gc_force_recycle(shared_root);
|
|
}
|
|
else if (num > 0) {
|
|
ARY_SET_SHARED_ROOT_REFCNT(shared_root, num);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
rb_ary_unshare(VALUE ary)
|
|
{
|
|
VALUE shared_root = RARRAY(ary)->as.heap.aux.shared_root;
|
|
rb_ary_decrement_share(shared_root);
|
|
FL_UNSET_SHARED(ary);
|
|
}
|
|
|
|
static inline void
|
|
rb_ary_unshare_safe(VALUE ary)
|
|
{
|
|
if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
|
|
rb_ary_unshare(ary);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_increment_share(VALUE shared_root)
|
|
{
|
|
long num = ARY_SHARED_ROOT_REFCNT(shared_root);
|
|
if (num >= 0) {
|
|
ARY_SET_SHARED_ROOT_REFCNT(shared_root, num + 1);
|
|
}
|
|
return shared_root;
|
|
}
|
|
|
|
static void
|
|
rb_ary_set_shared(VALUE ary, VALUE shared_root)
|
|
{
|
|
rb_ary_increment_share(shared_root);
|
|
FL_SET_SHARED(ary);
|
|
RB_DEBUG_COUNTER_INC(obj_ary_shared_create);
|
|
ARY_SET_SHARED(ary, shared_root);
|
|
}
|
|
|
|
static inline void
|
|
rb_ary_modify_check(VALUE ary)
|
|
{
|
|
rb_check_frozen(ary);
|
|
ary_verify(ary);
|
|
}
|
|
|
|
void
|
|
rb_ary_modify(VALUE ary)
|
|
{
|
|
rb_ary_modify_check(ary);
|
|
if (ARY_SHARED_P(ary)) {
|
|
long shared_len, len = RARRAY_LEN(ary);
|
|
VALUE shared_root = ARY_SHARED_ROOT(ary);
|
|
|
|
ary_verify(shared_root);
|
|
|
|
if (len <= RARRAY_EMBED_LEN_MAX) {
|
|
const VALUE *ptr = ARY_HEAP_PTR(ary);
|
|
FL_UNSET_SHARED(ary);
|
|
FL_SET_EMBED(ary);
|
|
MEMCPY((VALUE *)ARY_EMBED_PTR(ary), ptr, VALUE, len);
|
|
rb_ary_decrement_share(shared_root);
|
|
ARY_SET_EMBED_LEN(ary, len);
|
|
}
|
|
else if (ARY_SHARED_ROOT_OCCUPIED(shared_root) && len > ((shared_len = RARRAY_LEN(shared_root))>>1)) {
|
|
long shift = RARRAY_CONST_PTR_TRANSIENT(ary) - RARRAY_CONST_PTR_TRANSIENT(shared_root);
|
|
FL_UNSET_SHARED(ary);
|
|
ARY_SET_PTR(ary, RARRAY_CONST_PTR_TRANSIENT(shared_root));
|
|
ARY_SET_CAPA(ary, shared_len);
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
|
|
MEMMOVE(ptr, ptr+shift, VALUE, len);
|
|
});
|
|
FL_SET_EMBED(shared_root);
|
|
rb_ary_decrement_share(shared_root);
|
|
}
|
|
else {
|
|
VALUE *ptr = ary_heap_alloc(ary, len);
|
|
MEMCPY(ptr, ARY_HEAP_PTR(ary), VALUE, len);
|
|
rb_ary_unshare(ary);
|
|
ARY_SET_CAPA(ary, len);
|
|
ARY_SET_PTR(ary, ptr);
|
|
}
|
|
|
|
rb_gc_writebarrier_remember(ary);
|
|
}
|
|
ary_verify(ary);
|
|
}
|
|
|
|
static VALUE
|
|
ary_ensure_room_for_push(VALUE ary, long add_len)
|
|
{
|
|
long old_len = RARRAY_LEN(ary);
|
|
long new_len = old_len + add_len;
|
|
long capa;
|
|
|
|
if (old_len > ARY_MAX_SIZE - add_len) {
|
|
rb_raise(rb_eIndexError, "index %ld too big", new_len);
|
|
}
|
|
if (ARY_SHARED_P(ary)) {
|
|
if (new_len > RARRAY_EMBED_LEN_MAX) {
|
|
VALUE shared_root = ARY_SHARED_ROOT(ary);
|
|
if (ARY_SHARED_ROOT_OCCUPIED(shared_root)) {
|
|
if (ARY_HEAP_PTR(ary) - RARRAY_CONST_PTR_TRANSIENT(shared_root) + new_len <= RARRAY_LEN(shared_root)) {
|
|
rb_ary_modify_check(ary);
|
|
|
|
ary_verify(ary);
|
|
ary_verify(shared_root);
|
|
return shared_root;
|
|
}
|
|
else {
|
|
/* if array is shared, then it is likely it participate in push/shift pattern */
|
|
rb_ary_modify(ary);
|
|
capa = ARY_CAPA(ary);
|
|
if (new_len > capa - (capa >> 6)) {
|
|
ary_double_capa(ary, new_len);
|
|
}
|
|
ary_verify(ary);
|
|
return ary;
|
|
}
|
|
}
|
|
}
|
|
ary_verify(ary);
|
|
rb_ary_modify(ary);
|
|
}
|
|
else {
|
|
rb_ary_modify_check(ary);
|
|
}
|
|
capa = ARY_CAPA(ary);
|
|
if (new_len > capa) {
|
|
ary_double_capa(ary, new_len);
|
|
}
|
|
|
|
ary_verify(ary);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.freeze -> self
|
|
*
|
|
* Freezes +self+; returns +self+:
|
|
* a = []
|
|
* a.frozen? # => false
|
|
* a.freeze
|
|
* a.frozen? # => true
|
|
*
|
|
* An attempt to modify a frozen \Array raises FrozenError.
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_freeze(VALUE ary)
|
|
{
|
|
return rb_obj_freeze(ary);
|
|
}
|
|
|
|
/* This can be used to take a snapshot of an array (with
|
|
e.g. rb_ary_replace) and check later whether the array has been
|
|
modified from the snapshot. The snapshot is cheap, though if
|
|
something does modify the array it will pay the cost of copying
|
|
it. If Array#pop or Array#shift has been called, the array will
|
|
be still shared with the snapshot, but the array length will
|
|
differ. */
|
|
VALUE
|
|
rb_ary_shared_with_p(VALUE ary1, VALUE ary2)
|
|
{
|
|
if (!ARY_EMBED_P(ary1) && ARY_SHARED_P(ary1) &&
|
|
!ARY_EMBED_P(ary2) && ARY_SHARED_P(ary2) &&
|
|
RARRAY(ary1)->as.heap.aux.shared_root == RARRAY(ary2)->as.heap.aux.shared_root &&
|
|
RARRAY(ary1)->as.heap.len == RARRAY(ary2)->as.heap.len) {
|
|
return Qtrue;
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
static VALUE
|
|
ary_alloc(VALUE klass)
|
|
{
|
|
NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | RARRAY_EMBED_FLAG | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0));
|
|
/* Created array is:
|
|
* FL_SET_EMBED((VALUE)ary);
|
|
* ARY_SET_EMBED_LEN((VALUE)ary, 0);
|
|
*/
|
|
return (VALUE)ary;
|
|
}
|
|
|
|
static VALUE
|
|
empty_ary_alloc(VALUE klass)
|
|
{
|
|
RUBY_DTRACE_CREATE_HOOK(ARRAY, 0);
|
|
return ary_alloc(klass);
|
|
}
|
|
|
|
static VALUE
|
|
ary_new(VALUE klass, long capa)
|
|
{
|
|
VALUE ary,*ptr;
|
|
|
|
if (capa < 0) {
|
|
rb_raise(rb_eArgError, "negative array size (or size too big)");
|
|
}
|
|
if (capa > ARY_MAX_SIZE) {
|
|
rb_raise(rb_eArgError, "array size too big");
|
|
}
|
|
|
|
RUBY_DTRACE_CREATE_HOOK(ARRAY, capa);
|
|
|
|
ary = ary_alloc(klass);
|
|
if (capa > RARRAY_EMBED_LEN_MAX) {
|
|
ptr = ary_heap_alloc(ary, capa);
|
|
FL_UNSET_EMBED(ary);
|
|
ARY_SET_PTR(ary, ptr);
|
|
ARY_SET_CAPA(ary, capa);
|
|
ARY_SET_HEAP_LEN(ary, 0);
|
|
}
|
|
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_new_capa(long capa)
|
|
{
|
|
return ary_new(rb_cArray, capa);
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_new(void)
|
|
{
|
|
return rb_ary_new2(RARRAY_EMBED_LEN_MAX);
|
|
}
|
|
|
|
VALUE
|
|
(rb_ary_new_from_args)(long n, ...)
|
|
{
|
|
va_list ar;
|
|
VALUE ary;
|
|
long i;
|
|
|
|
ary = rb_ary_new2(n);
|
|
|
|
va_start(ar, n);
|
|
for (i=0; i<n; i++) {
|
|
ARY_SET(ary, i, va_arg(ar, VALUE));
|
|
}
|
|
va_end(ar);
|
|
|
|
ARY_SET_LEN(ary, n);
|
|
return ary;
|
|
}
|
|
|
|
MJIT_FUNC_EXPORTED VALUE
|
|
rb_ary_tmp_new_from_values(VALUE klass, long n, const VALUE *elts)
|
|
{
|
|
VALUE ary;
|
|
|
|
ary = ary_new(klass, n);
|
|
if (n > 0 && elts) {
|
|
ary_memcpy(ary, 0, n, elts);
|
|
ARY_SET_LEN(ary, n);
|
|
}
|
|
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_new_from_values(long n, const VALUE *elts)
|
|
{
|
|
return rb_ary_tmp_new_from_values(rb_cArray, n, elts);
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_tmp_new(long capa)
|
|
{
|
|
VALUE ary = ary_new(0, capa);
|
|
rb_ary_transient_heap_evacuate(ary, TRUE);
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_tmp_new_fill(long capa)
|
|
{
|
|
VALUE ary = ary_new(0, capa);
|
|
ary_memfill(ary, 0, capa, Qnil);
|
|
ARY_SET_LEN(ary, capa);
|
|
rb_ary_transient_heap_evacuate(ary, TRUE);
|
|
return ary;
|
|
}
|
|
|
|
void
|
|
rb_ary_free(VALUE ary)
|
|
{
|
|
if (ARY_OWNS_HEAP_P(ary)) {
|
|
if (USE_DEBUG_COUNTER &&
|
|
!ARY_SHARED_ROOT_P(ary) &&
|
|
ARY_HEAP_CAPA(ary) > RARRAY_LEN(ary)) {
|
|
RB_DEBUG_COUNTER_INC(obj_ary_extracapa);
|
|
}
|
|
|
|
if (RARRAY_TRANSIENT_P(ary)) {
|
|
RB_DEBUG_COUNTER_INC(obj_ary_transient);
|
|
}
|
|
else {
|
|
RB_DEBUG_COUNTER_INC(obj_ary_ptr);
|
|
ary_heap_free(ary);
|
|
}
|
|
}
|
|
else {
|
|
RB_DEBUG_COUNTER_INC(obj_ary_embed);
|
|
}
|
|
|
|
if (ARY_SHARED_P(ary)) {
|
|
RB_DEBUG_COUNTER_INC(obj_ary_shared);
|
|
}
|
|
if (ARY_SHARED_ROOT_P(ary) && ARY_SHARED_ROOT_OCCUPIED(ary)) {
|
|
RB_DEBUG_COUNTER_INC(obj_ary_shared_root_occupied);
|
|
}
|
|
}
|
|
|
|
RUBY_FUNC_EXPORTED size_t
|
|
rb_ary_memsize(VALUE ary)
|
|
{
|
|
if (ARY_OWNS_HEAP_P(ary)) {
|
|
return ARY_CAPA(ary) * sizeof(VALUE);
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
ary_discard(VALUE ary)
|
|
{
|
|
rb_ary_free(ary);
|
|
RBASIC(ary)->flags |= RARRAY_EMBED_FLAG;
|
|
RBASIC(ary)->flags &= ~(RARRAY_EMBED_LEN_MASK | RARRAY_TRANSIENT_FLAG);
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_shared(VALUE ary)
|
|
{
|
|
assert(!ARY_EMBED_P(ary));
|
|
ary_verify(ary);
|
|
|
|
if (ARY_SHARED_P(ary)) {
|
|
return ARY_SHARED_ROOT(ary);
|
|
}
|
|
else if (ARY_SHARED_ROOT_P(ary)) {
|
|
return ary;
|
|
}
|
|
else if (OBJ_FROZEN(ary)) {
|
|
rb_ary_transient_heap_evacuate(ary, TRUE);
|
|
ary_shrink_capa(ary);
|
|
FL_SET_SHARED_ROOT(ary);
|
|
ARY_SET_SHARED_ROOT_REFCNT(ary, 1);
|
|
return ary;
|
|
}
|
|
else {
|
|
long capa = ARY_CAPA(ary), len = RARRAY_LEN(ary);
|
|
const VALUE *ptr;
|
|
NEWOBJ_OF(shared, struct RArray, 0, T_ARRAY | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0));
|
|
VALUE vshared = (VALUE)shared;
|
|
|
|
rb_ary_transient_heap_evacuate(ary, TRUE);
|
|
ptr = ARY_HEAP_PTR(ary);
|
|
|
|
FL_UNSET_EMBED(vshared);
|
|
ARY_SET_LEN(vshared, capa);
|
|
ARY_SET_PTR(vshared, ptr);
|
|
ary_mem_clear(vshared, len, capa - len);
|
|
FL_SET_SHARED_ROOT(vshared);
|
|
ARY_SET_SHARED_ROOT_REFCNT(vshared, 1);
|
|
FL_SET_SHARED(ary);
|
|
RB_DEBUG_COUNTER_INC(obj_ary_shared_create);
|
|
ARY_SET_SHARED(ary, vshared);
|
|
OBJ_FREEZE(vshared);
|
|
|
|
ary_verify(vshared);
|
|
ary_verify(ary);
|
|
|
|
return vshared;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_substitution(VALUE ary)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
|
|
if (len <= RARRAY_EMBED_LEN_MAX) {
|
|
VALUE subst = rb_ary_new2(len);
|
|
ary_memcpy(subst, 0, len, RARRAY_CONST_PTR_TRANSIENT(ary));
|
|
ARY_SET_EMBED_LEN(subst, len);
|
|
return subst;
|
|
}
|
|
else {
|
|
return rb_ary_increment_share(ary_make_shared(ary));
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_assoc_new(VALUE car, VALUE cdr)
|
|
{
|
|
return rb_ary_new3(2, car, cdr);
|
|
}
|
|
|
|
VALUE
|
|
rb_to_array_type(VALUE ary)
|
|
{
|
|
return rb_convert_type_with_id(ary, T_ARRAY, "Array", idTo_ary);
|
|
}
|
|
#define to_ary rb_to_array_type
|
|
|
|
VALUE
|
|
rb_check_array_type(VALUE ary)
|
|
{
|
|
return rb_check_convert_type_with_id(ary, T_ARRAY, "Array", idTo_ary);
|
|
}
|
|
|
|
MJIT_FUNC_EXPORTED VALUE
|
|
rb_check_to_array(VALUE ary)
|
|
{
|
|
return rb_check_convert_type_with_id(ary, T_ARRAY, "Array", idTo_a);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Array.try_convert(object) -> object, new_array, or nil
|
|
*
|
|
* If +object+ is an \Array object, returns +object+.
|
|
*
|
|
* Otherwise if +object+ responds to <tt>:to_ary</tt>,
|
|
* calls <tt>object.to_ary</tt> and returns the result.
|
|
*
|
|
* Returns +nil+ if +object+ does not respond to <tt>:to_ary</tt>
|
|
*
|
|
* Raises an exception unless <tt>object.to_ary</tt> returns an \Array object.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_s_try_convert(VALUE dummy, VALUE ary)
|
|
{
|
|
return rb_check_array_type(ary);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Array.new -> new_empty_array
|
|
* Array.new(array) -> new_array
|
|
* Array.new(size) -> new_array
|
|
* Array.new(size, default_value) -> new_array
|
|
* Array.new(size) {|index| ... } -> new_array
|
|
*
|
|
* Returns a new \Array.
|
|
*
|
|
* With no block and no arguments, returns a new empty \Array object.
|
|
*
|
|
* With no block and a single \Array argument +array+,
|
|
* returns a new \Array formed from +array+:
|
|
* a = Array.new([:foo, 'bar', 2])
|
|
* a.class # => Array
|
|
* a # => [:foo, "bar", 2]
|
|
*
|
|
* With no block and a single \Integer argument +size+,
|
|
* returns a new \Array of the given size
|
|
* whose elements are all +nil+:
|
|
* a = Array.new(3)
|
|
* a # => [nil, nil, nil]
|
|
*
|
|
* With no block and arguments +size+ and +default_value+,
|
|
* returns an \Array of the given size;
|
|
* each element is that same +default_value+:
|
|
* a = Array.new(3, 'x')
|
|
* a # => ['x', 'x', 'x']
|
|
*
|
|
* With a block and argument +size+,
|
|
* returns an \Array of the given size;
|
|
* the block is called with each successive integer +index+;
|
|
* the element for that +index+ is the return value from the block:
|
|
* a = Array.new(3) {|index| "Element #{index}" }
|
|
* a # => ["Element 0", "Element 1", "Element 2"]
|
|
*
|
|
* Raises ArgumentError if +size+ is negative.
|
|
*
|
|
* With a block and no argument,
|
|
* or a single argument +0+,
|
|
* ignores the block and returns a new empty \Array.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long len;
|
|
VALUE size, val;
|
|
|
|
rb_ary_modify(ary);
|
|
if (argc == 0) {
|
|
if (ARY_OWNS_HEAP_P(ary) && ARY_HEAP_PTR(ary) != NULL) {
|
|
ary_heap_free(ary);
|
|
}
|
|
rb_ary_unshare_safe(ary);
|
|
FL_SET_EMBED(ary);
|
|
ARY_SET_EMBED_LEN(ary, 0);
|
|
if (rb_block_given_p()) {
|
|
rb_warning("given block not used");
|
|
}
|
|
return ary;
|
|
}
|
|
rb_scan_args(argc, argv, "02", &size, &val);
|
|
if (argc == 1 && !FIXNUM_P(size)) {
|
|
val = rb_check_array_type(size);
|
|
if (!NIL_P(val)) {
|
|
rb_ary_replace(ary, val);
|
|
return ary;
|
|
}
|
|
}
|
|
|
|
len = NUM2LONG(size);
|
|
/* NUM2LONG() may call size.to_int, ary can be frozen, modified, etc */
|
|
if (len < 0) {
|
|
rb_raise(rb_eArgError, "negative array size");
|
|
}
|
|
if (len > ARY_MAX_SIZE) {
|
|
rb_raise(rb_eArgError, "array size too big");
|
|
}
|
|
/* recheck after argument conversion */
|
|
rb_ary_modify(ary);
|
|
ary_resize_capa(ary, len);
|
|
if (rb_block_given_p()) {
|
|
long i;
|
|
|
|
if (argc == 2) {
|
|
rb_warn("block supersedes default value argument");
|
|
}
|
|
for (i=0; i<len; i++) {
|
|
rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
|
|
ARY_SET_LEN(ary, i + 1);
|
|
}
|
|
}
|
|
else {
|
|
ary_memfill(ary, 0, len, val);
|
|
ARY_SET_LEN(ary, len);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* Returns a new array populated with the given objects.
|
|
*
|
|
* Array.[]( 1, 'a', /^A/) # => [1, "a", /^A/]
|
|
* Array[ 1, 'a', /^A/ ] # => [1, "a", /^A/]
|
|
* [ 1, 'a', /^A/ ] # => [1, "a", /^A/]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE ary = ary_new(klass, argc);
|
|
if (argc > 0 && argv) {
|
|
ary_memcpy(ary, 0, argc, argv);
|
|
ARY_SET_LEN(ary, argc);
|
|
}
|
|
|
|
return ary;
|
|
}
|
|
|
|
void
|
|
rb_ary_store(VALUE ary, long idx, VALUE val)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
|
|
if (idx < 0) {
|
|
idx += len;
|
|
if (idx < 0) {
|
|
rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
|
|
idx - len, -len);
|
|
}
|
|
}
|
|
else if (idx >= ARY_MAX_SIZE) {
|
|
rb_raise(rb_eIndexError, "index %ld too big", idx);
|
|
}
|
|
|
|
rb_ary_modify(ary);
|
|
if (idx >= ARY_CAPA(ary)) {
|
|
ary_double_capa(ary, idx);
|
|
}
|
|
if (idx > len) {
|
|
ary_mem_clear(ary, len, idx - len + 1);
|
|
}
|
|
|
|
if (idx >= len) {
|
|
ARY_SET_LEN(ary, idx + 1);
|
|
}
|
|
ARY_SET(ary, idx, val);
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_partial(VALUE ary, VALUE klass, long offset, long len)
|
|
{
|
|
assert(offset >= 0);
|
|
assert(len >= 0);
|
|
assert(offset+len <= RARRAY_LEN(ary));
|
|
|
|
if (len <= RARRAY_EMBED_LEN_MAX) {
|
|
VALUE result = ary_alloc(klass);
|
|
ary_memcpy(result, 0, len, RARRAY_CONST_PTR_TRANSIENT(ary) + offset);
|
|
ARY_SET_EMBED_LEN(result, len);
|
|
return result;
|
|
}
|
|
else {
|
|
VALUE shared, result = ary_alloc(klass);
|
|
FL_UNSET_EMBED(result);
|
|
|
|
shared = ary_make_shared(ary);
|
|
ARY_SET_PTR(result, RARRAY_CONST_PTR_TRANSIENT(ary));
|
|
ARY_SET_LEN(result, RARRAY_LEN(ary));
|
|
rb_ary_set_shared(result, shared);
|
|
|
|
ARY_INCREASE_PTR(result, offset);
|
|
ARY_SET_LEN(result, len);
|
|
|
|
ary_verify(shared);
|
|
ary_verify(result);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_partial_step(VALUE ary, VALUE klass, long offset, long len, long step)
|
|
{
|
|
assert(offset >= 0);
|
|
assert(len >= 0);
|
|
assert(offset+len <= RARRAY_LEN(ary));
|
|
assert(step != 0);
|
|
|
|
const VALUE *values = RARRAY_CONST_PTR_TRANSIENT(ary);
|
|
const long orig_len = len;
|
|
|
|
if ((step > 0 && step >= len) || (step < 0 && (step < -len))) {
|
|
VALUE result = ary_new(klass, 1);
|
|
VALUE *ptr = (VALUE *)ARY_EMBED_PTR(result);
|
|
RB_OBJ_WRITE(result, ptr, values[offset]);
|
|
ARY_SET_EMBED_LEN(result, 1);
|
|
return result;
|
|
}
|
|
|
|
long ustep = (step < 0) ? -step : step;
|
|
len = (len + ustep - 1) / ustep;
|
|
|
|
long i;
|
|
long j = offset + ((step > 0) ? 0 : (orig_len - 1));
|
|
VALUE result = ary_new(klass, len);
|
|
if (len <= RARRAY_EMBED_LEN_MAX) {
|
|
VALUE *ptr = (VALUE *)ARY_EMBED_PTR(result);
|
|
for (i = 0; i < len; ++i) {
|
|
RB_OBJ_WRITE(result, ptr+i, values[j]);
|
|
j += step;
|
|
}
|
|
ARY_SET_EMBED_LEN(result, len);
|
|
}
|
|
else {
|
|
RARRAY_PTR_USE_TRANSIENT(result, ptr, {
|
|
for (i = 0; i < len; ++i) {
|
|
RB_OBJ_WRITE(result, ptr+i, values[j]);
|
|
j += step;
|
|
}
|
|
});
|
|
ARY_SET_LEN(result, len);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_shared_copy(VALUE ary)
|
|
{
|
|
return ary_make_partial(ary, rb_obj_class(ary), 0, RARRAY_LEN(ary));
|
|
}
|
|
|
|
enum ary_take_pos_flags
|
|
{
|
|
ARY_TAKE_FIRST = 0,
|
|
ARY_TAKE_LAST = 1
|
|
};
|
|
|
|
static VALUE
|
|
ary_take_first_or_last(int argc, const VALUE *argv, VALUE ary, enum ary_take_pos_flags last)
|
|
{
|
|
long n;
|
|
long len;
|
|
long offset = 0;
|
|
|
|
argc = rb_check_arity(argc, 0, 1);
|
|
/* the case optional argument is omitted should be handled in
|
|
* callers of this function. if another arity case is added,
|
|
* this arity check needs to rewrite. */
|
|
RUBY_ASSERT_ALWAYS(argc == 1);
|
|
|
|
n = NUM2LONG(argv[0]);
|
|
len = RARRAY_LEN(ary);
|
|
if (n > len) {
|
|
n = len;
|
|
}
|
|
else if (n < 0) {
|
|
rb_raise(rb_eArgError, "negative array size");
|
|
}
|
|
if (last) {
|
|
offset = len - n;
|
|
}
|
|
return ary_make_partial(ary, rb_cArray, offset, n);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array << object -> self
|
|
*
|
|
* Appends +object+ to +self+; returns +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a << :baz # => [:foo, "bar", 2, :baz]
|
|
*
|
|
* Appends +object+ as one element, even if it is another \Array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a1 = a << [3, 4]
|
|
* a1 # => [:foo, "bar", 2, [3, 4]]
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_push(VALUE ary, VALUE item)
|
|
{
|
|
long idx = RARRAY_LEN((ary_verify(ary), ary));
|
|
VALUE target_ary = ary_ensure_room_for_push(ary, 1);
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
|
|
RB_OBJ_WRITE(target_ary, &ptr[idx], item);
|
|
});
|
|
ARY_SET_LEN(ary, idx + 1);
|
|
ary_verify(ary);
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_cat(VALUE ary, const VALUE *argv, long len)
|
|
{
|
|
long oldlen = RARRAY_LEN(ary);
|
|
VALUE target_ary = ary_ensure_room_for_push(ary, len);
|
|
ary_memcpy0(ary, oldlen, len, argv, target_ary);
|
|
ARY_SET_LEN(ary, oldlen + len);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.push(*objects) -> self
|
|
*
|
|
* Appends trailing elements.
|
|
*
|
|
* Appends each argument in +objects+ to +self+; returns +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.push(:baz, :bat) # => [:foo, "bar", 2, :baz, :bat]
|
|
*
|
|
* Appends each argument as one element, even if it is another \Array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a1 = a.push([:baz, :bat], [:bam, :bad])
|
|
* a1 # => [:foo, "bar", 2, [:baz, :bat], [:bam, :bad]]
|
|
*
|
|
* Array#append is an alias for \Array#push.
|
|
*
|
|
* Related: #pop, #shift, #unshift.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
return rb_ary_cat(ary, argv, argc);
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_pop(VALUE ary)
|
|
{
|
|
long n;
|
|
rb_ary_modify_check(ary);
|
|
n = RARRAY_LEN(ary);
|
|
if (n == 0) return Qnil;
|
|
if (ARY_OWNS_HEAP_P(ary) &&
|
|
n * 3 < ARY_CAPA(ary) &&
|
|
ARY_CAPA(ary) > ARY_DEFAULT_SIZE)
|
|
{
|
|
ary_resize_capa(ary, n * 2);
|
|
}
|
|
--n;
|
|
ARY_SET_LEN(ary, n);
|
|
ary_verify(ary);
|
|
return RARRAY_AREF(ary, n);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.pop -> object or nil
|
|
* array.pop(n) -> new_array
|
|
*
|
|
* Removes and returns trailing elements.
|
|
*
|
|
* When no argument is given and +self+ is not empty,
|
|
* removes and returns the last element:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.pop # => 2
|
|
* a # => [:foo, "bar"]
|
|
*
|
|
* Returns +nil+ if the array is empty.
|
|
*
|
|
* When a non-negative \Integer argument +n+ is given and is in range,
|
|
* removes and returns the last +n+ elements in a new \Array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.pop(2) # => ["bar", 2]
|
|
*
|
|
* If +n+ is positive and out of range,
|
|
* removes and returns all elements:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.pop(50) # => [:foo, "bar", 2]
|
|
*
|
|
* Related: #push, #shift, #unshift.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE result;
|
|
|
|
if (argc == 0) {
|
|
return rb_ary_pop(ary);
|
|
}
|
|
|
|
rb_ary_modify_check(ary);
|
|
result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
|
|
ARY_INCREASE_LEN(ary, -RARRAY_LEN(result));
|
|
ary_verify(ary);
|
|
return result;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_shift(VALUE ary)
|
|
{
|
|
VALUE top;
|
|
long len = RARRAY_LEN(ary);
|
|
|
|
rb_ary_modify_check(ary);
|
|
if (len == 0) return Qnil;
|
|
top = RARRAY_AREF(ary, 0);
|
|
if (!ARY_SHARED_P(ary)) {
|
|
if (len < ARY_DEFAULT_SIZE) {
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
|
|
MEMMOVE(ptr, ptr+1, VALUE, len-1);
|
|
}); /* WB: no new reference */
|
|
ARY_INCREASE_LEN(ary, -1);
|
|
ary_verify(ary);
|
|
return top;
|
|
}
|
|
assert(!ARY_EMBED_P(ary)); /* ARY_EMBED_LEN_MAX < ARY_DEFAULT_SIZE */
|
|
|
|
ARY_SET(ary, 0, Qnil);
|
|
ary_make_shared(ary);
|
|
}
|
|
else if (ARY_SHARED_ROOT_OCCUPIED(ARY_SHARED_ROOT(ary))) {
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, ptr[0] = Qnil);
|
|
}
|
|
ARY_INCREASE_PTR(ary, 1); /* shift ptr */
|
|
ARY_INCREASE_LEN(ary, -1);
|
|
|
|
ary_verify(ary);
|
|
|
|
return top;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.shift -> object or nil
|
|
* array.shift(n) -> new_array
|
|
*
|
|
* Removes and returns leading elements.
|
|
*
|
|
* When no argument is given, removes and returns the first element:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.shift # => :foo
|
|
* a # => ['bar', 2]
|
|
*
|
|
* Returns +nil+ if +self+ is empty.
|
|
*
|
|
* When positive \Integer argument +n+ is given, removes the first +n+ elements;
|
|
* returns those elements in a new \Array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.shift(2) # => [:foo, 'bar']
|
|
* a # => [2]
|
|
*
|
|
* If +n+ is as large as or larger than <tt>self.length</tt>,
|
|
* removes all elements; returns those elements in a new \Array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.shift(3) # => [:foo, 'bar', 2]
|
|
*
|
|
* If +n+ is zero, returns a new empty \Array; +self+ is unmodified.
|
|
*
|
|
* Related: #push, #pop, #unshift.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE result;
|
|
long n;
|
|
|
|
if (argc == 0) {
|
|
return rb_ary_shift(ary);
|
|
}
|
|
|
|
rb_ary_modify_check(ary);
|
|
result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
|
|
n = RARRAY_LEN(result);
|
|
rb_ary_behead(ary,n);
|
|
|
|
return result;
|
|
}
|
|
|
|
static VALUE
|
|
behead_shared(VALUE ary, long n)
|
|
{
|
|
assert(ARY_SHARED_P(ary));
|
|
rb_ary_modify_check(ary);
|
|
if (ARY_SHARED_ROOT_OCCUPIED(ARY_SHARED_ROOT(ary))) {
|
|
ary_mem_clear(ary, 0, n);
|
|
}
|
|
ARY_INCREASE_PTR(ary, n);
|
|
ARY_INCREASE_LEN(ary, -n);
|
|
ary_verify(ary);
|
|
return ary;
|
|
}
|
|
|
|
static VALUE
|
|
behead_transient(VALUE ary, long n)
|
|
{
|
|
rb_ary_modify_check(ary);
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
|
|
MEMMOVE(ptr, ptr+n, VALUE, RARRAY_LEN(ary)-n);
|
|
}); /* WB: no new reference */
|
|
ARY_INCREASE_LEN(ary, -n);
|
|
ary_verify(ary);
|
|
return ary;
|
|
}
|
|
|
|
MJIT_FUNC_EXPORTED VALUE
|
|
rb_ary_behead(VALUE ary, long n)
|
|
{
|
|
if (n <= 0) {
|
|
return ary;
|
|
}
|
|
else if (ARY_SHARED_P(ary)) {
|
|
return behead_shared(ary, n);
|
|
}
|
|
else if (RARRAY_LEN(ary) >= ARY_DEFAULT_SIZE) {
|
|
ary_make_shared(ary);
|
|
return behead_shared(ary, n);
|
|
}
|
|
else {
|
|
return behead_transient(ary, n);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
make_room_for_unshift(VALUE ary, const VALUE *head, VALUE *sharedp, int argc, long capa, long len)
|
|
{
|
|
if (head - sharedp < argc) {
|
|
long room = capa - len - argc;
|
|
|
|
room -= room >> 4;
|
|
MEMMOVE((VALUE *)sharedp + argc + room, head, VALUE, len);
|
|
head = sharedp + argc + room;
|
|
}
|
|
ARY_SET_PTR(ary, head - argc);
|
|
assert(ARY_SHARED_ROOT_OCCUPIED(ARY_SHARED_ROOT(ary)));
|
|
|
|
ary_verify(ary);
|
|
return ARY_SHARED_ROOT(ary);
|
|
}
|
|
|
|
static VALUE
|
|
ary_modify_for_unshift(VALUE ary, int argc)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
long new_len = len + argc;
|
|
long capa;
|
|
const VALUE *head, *sharedp;
|
|
|
|
rb_ary_modify(ary);
|
|
capa = ARY_CAPA(ary);
|
|
if (capa - (capa >> 6) <= new_len) {
|
|
ary_double_capa(ary, new_len);
|
|
}
|
|
|
|
/* use shared array for big "queues" */
|
|
if (new_len > ARY_DEFAULT_SIZE * 4) {
|
|
ary_verify(ary);
|
|
|
|
/* make a room for unshifted items */
|
|
capa = ARY_CAPA(ary);
|
|
ary_make_shared(ary);
|
|
|
|
head = sharedp = RARRAY_CONST_PTR_TRANSIENT(ary);
|
|
return make_room_for_unshift(ary, head, (void *)sharedp, argc, capa, len);
|
|
}
|
|
else {
|
|
/* sliding items */
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
|
|
MEMMOVE(ptr + argc, ptr, VALUE, len);
|
|
});
|
|
|
|
ary_verify(ary);
|
|
return ary;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
ary_ensure_room_for_unshift(VALUE ary, int argc)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
long new_len = len + argc;
|
|
|
|
if (len > ARY_MAX_SIZE - argc) {
|
|
rb_raise(rb_eIndexError, "index %ld too big", new_len);
|
|
}
|
|
else if (! ARY_SHARED_P(ary)) {
|
|
return ary_modify_for_unshift(ary, argc);
|
|
}
|
|
else {
|
|
VALUE shared_root = ARY_SHARED_ROOT(ary);
|
|
long capa = RARRAY_LEN(shared_root);
|
|
|
|
if (! ARY_SHARED_ROOT_OCCUPIED(shared_root)) {
|
|
return ary_modify_for_unshift(ary, argc);
|
|
}
|
|
else if (new_len > capa) {
|
|
return ary_modify_for_unshift(ary, argc);
|
|
}
|
|
else {
|
|
const VALUE * head = RARRAY_CONST_PTR_TRANSIENT(ary);
|
|
void *sharedp = (void *)RARRAY_CONST_PTR_TRANSIENT(shared_root);
|
|
|
|
rb_ary_modify_check(ary);
|
|
return make_room_for_unshift(ary, head, sharedp, argc, capa, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.unshift(*objects) -> self
|
|
*
|
|
* Prepends the given +objects+ to +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.unshift(:bam, :bat) # => [:bam, :bat, :foo, "bar", 2]
|
|
*
|
|
* Array#prepend is an alias for Array#unshift.
|
|
*
|
|
* Related: #push, #pop, #shift.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
VALUE target_ary;
|
|
|
|
if (argc == 0) {
|
|
rb_ary_modify_check(ary);
|
|
return ary;
|
|
}
|
|
|
|
target_ary = ary_ensure_room_for_unshift(ary, argc);
|
|
ary_memcpy0(ary, 0, argc, argv, target_ary);
|
|
ARY_SET_LEN(ary, len + argc);
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_unshift(VALUE ary, VALUE item)
|
|
{
|
|
return rb_ary_unshift_m(1,&item,ary);
|
|
}
|
|
|
|
/* faster version - use this if you don't need to treat negative offset */
|
|
static inline VALUE
|
|
rb_ary_elt(VALUE ary, long offset)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
if (len == 0) return Qnil;
|
|
if (offset < 0 || len <= offset) {
|
|
return Qnil;
|
|
}
|
|
return RARRAY_AREF(ary, offset);
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_entry(VALUE ary, long offset)
|
|
{
|
|
return rb_ary_entry_internal(ary, offset);
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_subseq_step(VALUE ary, long beg, long len, long step)
|
|
{
|
|
VALUE klass;
|
|
long alen = RARRAY_LEN(ary);
|
|
|
|
if (beg > alen) return Qnil;
|
|
if (beg < 0 || len < 0) return Qnil;
|
|
|
|
if (alen < len || alen < beg + len) {
|
|
len = alen - beg;
|
|
}
|
|
klass = rb_obj_class(ary);
|
|
if (len == 0) return ary_new(klass, 0);
|
|
if (step == 0)
|
|
rb_raise(rb_eArgError, "slice step cannot be zero");
|
|
if (step == 1)
|
|
return ary_make_partial(ary, klass, beg, len);
|
|
else
|
|
return ary_make_partial_step(ary, klass, beg, len, step);
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_subseq(VALUE ary, long beg, long len)
|
|
{
|
|
return rb_ary_subseq_step(ary, beg, len, 1);
|
|
}
|
|
|
|
static VALUE rb_ary_aref2(VALUE ary, VALUE b, VALUE e);
|
|
|
|
/*
|
|
* call-seq:
|
|
* array[index] -> object or nil
|
|
* array[start, length] -> object or nil
|
|
* array[range] -> object or nil
|
|
* array[aseq] -> object or nil
|
|
* array.slice(index) -> object or nil
|
|
* array.slice(start, length) -> object or nil
|
|
* array.slice(range) -> object or nil
|
|
* array.slice(aseq) -> object or nil
|
|
*
|
|
* Returns elements from +self+; does not modify +self+.
|
|
*
|
|
* When a single \Integer argument +index+ is given, returns the element at offset +index+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[0] # => :foo
|
|
* a[2] # => 2
|
|
* a # => [:foo, "bar", 2]
|
|
*
|
|
* If +index+ is negative, counts relative to the end of +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[-1] # => 2
|
|
* a[-2] # => "bar"
|
|
*
|
|
* If +index+ is out of range, returns +nil+.
|
|
*
|
|
* When two \Integer arguments +start+ and +length+ are given,
|
|
* returns a new \Array of size +length+ containing successive elements beginning at offset +start+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[0, 2] # => [:foo, "bar"]
|
|
* a[1, 2] # => ["bar", 2]
|
|
*
|
|
* If <tt>start + length</tt> is greater than <tt>self.length</tt>,
|
|
* returns all elements from offset +start+ to the end:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[0, 4] # => [:foo, "bar", 2]
|
|
* a[1, 3] # => ["bar", 2]
|
|
* a[2, 2] # => [2]
|
|
*
|
|
* If <tt>start == self.size</tt> and <tt>length >= 0</tt>,
|
|
* returns a new empty \Array.
|
|
*
|
|
* If +length+ is negative, returns +nil+.
|
|
*
|
|
* When a single \Range argument +range+ is given,
|
|
* treats <tt>range.min</tt> as +start+ above
|
|
* and <tt>range.size</tt> as +length+ above:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[0..1] # => [:foo, "bar"]
|
|
* a[1..2] # => ["bar", 2]
|
|
*
|
|
* Special case: If <tt>range.start == a.size</tt>, returns a new empty \Array.
|
|
*
|
|
* If <tt>range.end</tt> is negative, calculates the end index from the end:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[0..-1] # => [:foo, "bar", 2]
|
|
* a[0..-2] # => [:foo, "bar"]
|
|
* a[0..-3] # => [:foo]
|
|
*
|
|
* If <tt>range.start</tt> is negative, calculates the start index from the end:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[-1..2] # => [2]
|
|
* a[-2..2] # => ["bar", 2]
|
|
* a[-3..2] # => [:foo, "bar", 2]
|
|
*
|
|
* If <tt>range.start</tt> is larger than the array size, returns +nil+.
|
|
* a = [:foo, 'bar', 2]
|
|
* a[4..1] # => nil
|
|
* a[4..0] # => nil
|
|
* a[4..-1] # => nil
|
|
*
|
|
* When a single argument +aseq+ is given,
|
|
* ...(to be described)
|
|
*
|
|
* Raises an exception if given a single argument
|
|
* that is not an \Integer-convertible object or a \Range object:
|
|
* a = [:foo, 'bar', 2]
|
|
* # Raises TypeError (no implicit conversion of Symbol into Integer):
|
|
* a[:foo]
|
|
*
|
|
* Array#slice is an alias for Array#[].
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_aref(int argc, const VALUE *argv, VALUE ary)
|
|
{
|
|
rb_check_arity(argc, 1, 2);
|
|
if (argc == 2) {
|
|
return rb_ary_aref2(ary, argv[0], argv[1]);
|
|
}
|
|
return rb_ary_aref1(ary, argv[0]);
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_aref2(VALUE ary, VALUE b, VALUE e)
|
|
{
|
|
long beg = NUM2LONG(b);
|
|
long len = NUM2LONG(e);
|
|
if (beg < 0) {
|
|
beg += RARRAY_LEN(ary);
|
|
}
|
|
return rb_ary_subseq(ary, beg, len);
|
|
}
|
|
|
|
MJIT_FUNC_EXPORTED VALUE
|
|
rb_ary_aref1(VALUE ary, VALUE arg)
|
|
{
|
|
long beg, len, step;
|
|
|
|
/* special case - speeding up */
|
|
if (FIXNUM_P(arg)) {
|
|
return rb_ary_entry(ary, FIX2LONG(arg));
|
|
}
|
|
/* check if idx is Range or ArithmeticSequence */
|
|
switch (rb_arithmetic_sequence_beg_len_step(arg, &beg, &len, &step, RARRAY_LEN(ary), 0)) {
|
|
case Qfalse:
|
|
break;
|
|
case Qnil:
|
|
return Qnil;
|
|
default:
|
|
return rb_ary_subseq_step(ary, beg, len, step);
|
|
}
|
|
|
|
return rb_ary_entry(ary, NUM2LONG(arg));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.at(index) -> object
|
|
*
|
|
* Returns the element at \Integer offset +index+; does not modify +self+.
|
|
* a = [:foo, 'bar', 2]
|
|
* a.at(0) # => :foo
|
|
* a.at(2) # => 2
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_at(VALUE ary, VALUE pos)
|
|
{
|
|
return rb_ary_entry(ary, NUM2LONG(pos));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.first -> object or nil
|
|
* array.first(n) -> new_array
|
|
*
|
|
* Returns elements from +self+; does not modify +self+.
|
|
*
|
|
* When no argument is given, returns the first element:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.first # => :foo
|
|
* a # => [:foo, "bar", 2]
|
|
*
|
|
* If +self+ is empty, returns +nil+.
|
|
*
|
|
* When non-negative \Integer argument +n+ is given,
|
|
* returns the first +n+ elements in a new \Array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.first(2) # => [:foo, "bar"]
|
|
*
|
|
* If <tt>n >= array.size</tt>, returns all elements:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.first(50) # => [:foo, "bar", 2]
|
|
*
|
|
* If <tt>n == 0</tt> returns an new empty \Array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.first(0) # []
|
|
*
|
|
* Related: #last.
|
|
*/
|
|
static VALUE
|
|
rb_ary_first(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
if (argc == 0) {
|
|
if (RARRAY_LEN(ary) == 0) return Qnil;
|
|
return RARRAY_AREF(ary, 0);
|
|
}
|
|
else {
|
|
return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.last -> object or nil
|
|
* array.last(n) -> new_array
|
|
*
|
|
* Returns elements from +self+; +self+ is not modified.
|
|
*
|
|
* When no argument is given, returns the last element:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.last # => 2
|
|
* a # => [:foo, "bar", 2]
|
|
*
|
|
* If +self+ is empty, returns +nil+.
|
|
*
|
|
* When non-negative \Innteger argument +n+ is given,
|
|
* returns the last +n+ elements in a new \Array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.last(2) # => ["bar", 2]
|
|
*
|
|
* If <tt>n >= array.size</tt>, returns all elements:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.last(50) # => [:foo, "bar", 2]
|
|
*
|
|
* If <tt>n == 0</tt>, returns an new empty \Array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.last(0) # []
|
|
*
|
|
* Related: #first.
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_last(int argc, const VALUE *argv, VALUE ary)
|
|
{
|
|
if (argc == 0) {
|
|
long len = RARRAY_LEN(ary);
|
|
if (len == 0) return Qnil;
|
|
return RARRAY_AREF(ary, len-1);
|
|
}
|
|
else {
|
|
return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.fetch(index) -> element
|
|
* array.fetch(index, default_value) -> element
|
|
* array.fetch(index) {|index| ... } -> element
|
|
*
|
|
* Returns the element at offset +index+.
|
|
*
|
|
* With the single \Integer argument +index+,
|
|
* returns the element at offset +index+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.fetch(1) # => "bar"
|
|
*
|
|
* If +index+ is negative, counts from the end of the array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.fetch(-1) # => 2
|
|
* a.fetch(-2) # => "bar"
|
|
*
|
|
* With arguments +index+ and +default_value+,
|
|
* returns the element at offset +index+ if index is in range,
|
|
* otherwise returns +default_value+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.fetch(1, nil) # => "bar"
|
|
*
|
|
* With argument +index+ and a block,
|
|
* returns the element at offset +index+ if index is in range
|
|
* (and the block is not called); otherwise calls the block with index and returns its return value:
|
|
*
|
|
* a = [:foo, 'bar', 2]
|
|
* a.fetch(1) {|index| raise 'Cannot happen' } # => "bar"
|
|
* a.fetch(50) {|index| "Value for #{index}" } # => "Value for 50"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE pos, ifnone;
|
|
long block_given;
|
|
long idx;
|
|
|
|
rb_scan_args(argc, argv, "11", &pos, &ifnone);
|
|
block_given = rb_block_given_p();
|
|
if (block_given && argc == 2) {
|
|
rb_warn("block supersedes default value argument");
|
|
}
|
|
idx = NUM2LONG(pos);
|
|
|
|
if (idx < 0) {
|
|
idx += RARRAY_LEN(ary);
|
|
}
|
|
if (idx < 0 || RARRAY_LEN(ary) <= idx) {
|
|
if (block_given) return rb_yield(pos);
|
|
if (argc == 1) {
|
|
rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld",
|
|
idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary));
|
|
}
|
|
return ifnone;
|
|
}
|
|
return RARRAY_AREF(ary, idx);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.index(object) -> integer or nil
|
|
* array.index {|element| ... } -> integer or nil
|
|
* array.index -> new_enumerator
|
|
*
|
|
* Returns the index of a specified element.
|
|
*
|
|
* When argument +object+ is given but no block,
|
|
* returns the index of the first element +element+
|
|
* for which <tt>object == element</tt>:
|
|
* a = [:foo, 'bar', 2, 'bar']
|
|
* a.index('bar') # => 1
|
|
*
|
|
* Returns +nil+ if no such element found.
|
|
*
|
|
* When both argument +object+ and a block are given,
|
|
* calls the block with each successive element;
|
|
* returns the index of the first element for which the block returns a truthy value:
|
|
* a = [:foo, 'bar', 2, 'bar']
|
|
* a.index {|element| element == 'bar' } # => 1
|
|
*
|
|
* Returns +nil+ if the block never returns a truthy value.
|
|
*
|
|
* When neither an argument nor a block is given, returns a new Enumerator:
|
|
* a = [:foo, 'bar', 2]
|
|
* e = a.index
|
|
* e # => #<Enumerator: [:foo, "bar", 2]:index>
|
|
* e.each {|element| element == 'bar' } # => 1
|
|
*
|
|
* Array#find_index is an alias for Array#index.
|
|
*
|
|
* Related: #rindex.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_index(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE val;
|
|
long i;
|
|
|
|
if (argc == 0) {
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
|
|
return LONG2NUM(i);
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
rb_check_arity(argc, 0, 1);
|
|
val = argv[0];
|
|
if (rb_block_given_p())
|
|
rb_warn("given block not used");
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
VALUE e = RARRAY_AREF(ary, i);
|
|
if (rb_equal(e, val)) {
|
|
return LONG2NUM(i);
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.rindex(object) -> integer or nil
|
|
* array.rindex {|element| ... } -> integer or nil
|
|
* array.rindex -> new_enumerator
|
|
*
|
|
* Returns the index of the last element for which <tt>object == element</tt>.
|
|
*
|
|
* When argument +object+ is given but no block, returns the index of the last such element found:
|
|
* a = [:foo, 'bar', 2, 'bar']
|
|
* a.rindex('bar') # => 3
|
|
*
|
|
* Returns +nil+ if no such object found.
|
|
*
|
|
* When a block is given but no argument, calls the block with each successive element;
|
|
* returns the index of the last element for which the block returns a truthy value:
|
|
* a = [:foo, 'bar', 2, 'bar']
|
|
* a.rindex {|element| element == 'bar' } # => 3
|
|
*
|
|
* Returns +nil+ if the block never returns a truthy value.
|
|
*
|
|
* When neither an argument nor a block is given, returns a new \Enumerator:
|
|
*
|
|
* a = [:foo, 'bar', 2, 'bar']
|
|
* e = a.rindex
|
|
* e # => #<Enumerator: [:foo, "bar", 2, "bar"]:rindex>
|
|
* e.each {|element| element == 'bar' } # => 3
|
|
*
|
|
* Related: #index.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE val;
|
|
long i = RARRAY_LEN(ary), len;
|
|
|
|
if (argc == 0) {
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
while (i--) {
|
|
if (RTEST(rb_yield(RARRAY_AREF(ary, i))))
|
|
return LONG2NUM(i);
|
|
if (i > (len = RARRAY_LEN(ary))) {
|
|
i = len;
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
rb_check_arity(argc, 0, 1);
|
|
val = argv[0];
|
|
if (rb_block_given_p())
|
|
rb_warn("given block not used");
|
|
while (i--) {
|
|
VALUE e = RARRAY_AREF(ary, i);
|
|
if (rb_equal(e, val)) {
|
|
return LONG2NUM(i);
|
|
}
|
|
if (i > RARRAY_LEN(ary)) {
|
|
break;
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_to_ary(VALUE obj)
|
|
{
|
|
VALUE tmp = rb_check_array_type(obj);
|
|
|
|
if (!NIL_P(tmp)) return tmp;
|
|
return rb_ary_new3(1, obj);
|
|
}
|
|
|
|
static void
|
|
rb_ary_splice(VALUE ary, long beg, long len, const VALUE *rptr, long rlen)
|
|
{
|
|
long olen;
|
|
long rofs;
|
|
|
|
if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
|
|
olen = RARRAY_LEN(ary);
|
|
if (beg < 0) {
|
|
beg += olen;
|
|
if (beg < 0) {
|
|
rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
|
|
beg - olen, -olen);
|
|
}
|
|
}
|
|
if (olen < len || olen < beg + len) {
|
|
len = olen - beg;
|
|
}
|
|
|
|
{
|
|
const VALUE *optr = RARRAY_CONST_PTR_TRANSIENT(ary);
|
|
rofs = (rptr >= optr && rptr < optr + olen) ? rptr - optr : -1;
|
|
}
|
|
|
|
if (beg >= olen) {
|
|
VALUE target_ary;
|
|
if (beg > ARY_MAX_SIZE - rlen) {
|
|
rb_raise(rb_eIndexError, "index %ld too big", beg);
|
|
}
|
|
target_ary = ary_ensure_room_for_push(ary, rlen-len); /* len is 0 or negative */
|
|
len = beg + rlen;
|
|
ary_mem_clear(ary, olen, beg - olen);
|
|
if (rlen > 0) {
|
|
if (rofs != -1) rptr = RARRAY_CONST_PTR_TRANSIENT(ary) + rofs;
|
|
ary_memcpy0(ary, beg, rlen, rptr, target_ary);
|
|
}
|
|
ARY_SET_LEN(ary, len);
|
|
}
|
|
else {
|
|
long alen;
|
|
|
|
if (olen - len > ARY_MAX_SIZE - rlen) {
|
|
rb_raise(rb_eIndexError, "index %ld too big", olen + rlen - len);
|
|
}
|
|
rb_ary_modify(ary);
|
|
alen = olen + rlen - len;
|
|
if (alen >= ARY_CAPA(ary)) {
|
|
ary_double_capa(ary, alen);
|
|
}
|
|
|
|
if (len != rlen) {
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr,
|
|
MEMMOVE(ptr + beg + rlen, ptr + beg + len,
|
|
VALUE, olen - (beg + len)));
|
|
ARY_SET_LEN(ary, alen);
|
|
}
|
|
if (rlen > 0) {
|
|
if (rofs != -1) rptr = RARRAY_CONST_PTR_TRANSIENT(ary) + rofs;
|
|
/* give up wb-protected ary */
|
|
RB_OBJ_WB_UNPROTECT_FOR(ARRAY, ary);
|
|
|
|
/* do not use RARRAY_PTR() because it can causes GC.
|
|
* ary can contain T_NONE object because it is not cleared.
|
|
*/
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr,
|
|
MEMMOVE(ptr + beg, rptr, VALUE, rlen));
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_ary_set_len(VALUE ary, long len)
|
|
{
|
|
long capa;
|
|
|
|
rb_ary_modify_check(ary);
|
|
if (ARY_SHARED_P(ary)) {
|
|
rb_raise(rb_eRuntimeError, "can't set length of shared ");
|
|
}
|
|
if (len > (capa = (long)ARY_CAPA(ary))) {
|
|
rb_bug("probable buffer overflow: %ld for %ld", len, capa);
|
|
}
|
|
ARY_SET_LEN(ary, len);
|
|
}
|
|
|
|
/*!
|
|
* expands or shrinks \a ary to \a len elements.
|
|
* expanded region will be filled with Qnil.
|
|
* \param ary an array
|
|
* \param len new size
|
|
* \return \a ary
|
|
* \post the size of \a ary is \a len.
|
|
*/
|
|
VALUE
|
|
rb_ary_resize(VALUE ary, long len)
|
|
{
|
|
long olen;
|
|
|
|
rb_ary_modify(ary);
|
|
olen = RARRAY_LEN(ary);
|
|
if (len == olen) return ary;
|
|
if (len > ARY_MAX_SIZE) {
|
|
rb_raise(rb_eIndexError, "index %ld too big", len);
|
|
}
|
|
if (len > olen) {
|
|
if (len >= ARY_CAPA(ary)) {
|
|
ary_double_capa(ary, len);
|
|
}
|
|
ary_mem_clear(ary, olen, len - olen);
|
|
ARY_SET_LEN(ary, len);
|
|
}
|
|
else if (ARY_EMBED_P(ary)) {
|
|
ARY_SET_EMBED_LEN(ary, len);
|
|
}
|
|
else if (len <= RARRAY_EMBED_LEN_MAX) {
|
|
VALUE tmp[RARRAY_EMBED_LEN_MAX];
|
|
MEMCPY(tmp, ARY_HEAP_PTR(ary), VALUE, len);
|
|
ary_discard(ary);
|
|
MEMCPY((VALUE *)ARY_EMBED_PTR(ary), tmp, VALUE, len); /* WB: no new reference */
|
|
ARY_SET_EMBED_LEN(ary, len);
|
|
}
|
|
else {
|
|
if (olen > len + ARY_DEFAULT_SIZE) {
|
|
ary_heap_realloc(ary, len);
|
|
ARY_SET_CAPA(ary, len);
|
|
}
|
|
ARY_SET_HEAP_LEN(ary, len);
|
|
}
|
|
ary_verify(ary);
|
|
return ary;
|
|
}
|
|
|
|
static VALUE
|
|
ary_aset_by_rb_ary_store(VALUE ary, long key, VALUE val)
|
|
{
|
|
rb_ary_store(ary, key, val);
|
|
return val;
|
|
}
|
|
|
|
static VALUE
|
|
ary_aset_by_rb_ary_splice(VALUE ary, long beg, long len, VALUE val)
|
|
{
|
|
VALUE rpl = rb_ary_to_ary(val);
|
|
rb_ary_splice(ary, beg, len, RARRAY_CONST_PTR_TRANSIENT(rpl), RARRAY_LEN(rpl));
|
|
RB_GC_GUARD(rpl);
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array[index] = object -> object
|
|
* array[start, length] = object -> object
|
|
* array[range] = object -> object
|
|
*
|
|
* Assigns elements in +self+; returns the given +object+.
|
|
*
|
|
* When \Integer argument +index+ is given, assigns +object+ to an element in +self+.
|
|
*
|
|
* If +index+ is non-negative, assigns +object+ the element at offset +index+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[0] = 'foo' # => "foo"
|
|
* a # => ["foo", "bar", 2]
|
|
*
|
|
* If +index+ is greater than <tt>self.length</tt>, extends the array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[7] = 'foo' # => "foo"
|
|
* a # => [:foo, "bar", 2, nil, nil, nil, nil, "foo"]
|
|
*
|
|
* If +index+ is negative, counts backwards from the end of the array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[-1] = 'two' # => "two"
|
|
* a # => [:foo, "bar", "two"]
|
|
*
|
|
* When \Integer arguments +start+ and +length+ are given and +object+ is not an \Array,
|
|
* removes <tt>length - 1</tt> elements beginning at offset +start+,
|
|
* and assigns +object+ at offset +start+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[0, 2] = 'foo' # => "foo"
|
|
* a # => ["foo", 2]
|
|
*
|
|
* If +start+ is negative, counts backwards from the end of the array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[-2, 2] = 'foo' # => "foo"
|
|
* a # => [:foo, "foo"]
|
|
*
|
|
* If +start+ is non-negative and outside the array (<tt> >= self.size</tt>),
|
|
* extends the array with +nil+, assigns +object+ at offset +start+,
|
|
* and ignores +length+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[6, 50] = 'foo' # => "foo"
|
|
* a # => [:foo, "bar", 2, nil, nil, nil, "foo"]
|
|
*
|
|
* If +length+ is zero, shifts elements at and following offset +start+
|
|
* and assigns +object+ at offset +start+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[1, 0] = 'foo' # => "foo"
|
|
* a # => [:foo, "foo", "bar", 2]
|
|
*
|
|
* If +length+ is too large for the existing array, does not extend the array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[1, 5] = 'foo' # => "foo"
|
|
* a # => [:foo, "foo"]
|
|
*
|
|
* When \Range argument +range+ is given and +object+ is an \Array,
|
|
* removes <tt>length - 1</tt> elements beginning at offset +start+,
|
|
* and assigns +object+ at offset +start+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[0..1] = 'foo' # => "foo"
|
|
* a # => ["foo", 2]
|
|
*
|
|
* if <tt>range.begin</tt> is negative, counts backwards from the end of the array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[-2..2] = 'foo' # => "foo"
|
|
* a # => [:foo, "foo"]
|
|
*
|
|
* If the array length is less than <tt>range.begin</tt>,
|
|
* assigns +object+ at offset <tt>range.begin</tt>, and ignores +length+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[6..50] = 'foo' # => "foo"
|
|
* a # => [:foo, "bar", 2, nil, nil, nil, "foo"]
|
|
*
|
|
* If <tt>range.end</tt> is zero, shifts elements at and following offset +start+
|
|
* and assigns +object+ at offset +start+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[1..0] = 'foo' # => "foo"
|
|
* a # => [:foo, "foo", "bar", 2]
|
|
*
|
|
* If <tt>range.end</tt> is negative, assigns +object+ at offset +start+,
|
|
* retains <tt>range.end.abs -1</tt> elements past that, and removes those beyond:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[1..-1] = 'foo' # => "foo"
|
|
* a # => [:foo, "foo"]
|
|
* a = [:foo, 'bar', 2]
|
|
* a[1..-2] = 'foo' # => "foo"
|
|
* a # => [:foo, "foo", 2]
|
|
* a = [:foo, 'bar', 2]
|
|
* a[1..-3] = 'foo' # => "foo"
|
|
* a # => [:foo, "foo", "bar", 2]
|
|
* a = [:foo, 'bar', 2]
|
|
*
|
|
* If <tt>range.end</tt> is too large for the existing array,
|
|
* replaces array elements, but does not extend the array with +nil+ values:
|
|
* a = [:foo, 'bar', 2]
|
|
* a[1..5] = 'foo' # => "foo"
|
|
* a # => [:foo, "foo"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_aset(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long offset, beg, len;
|
|
|
|
rb_check_arity(argc, 2, 3);
|
|
rb_ary_modify_check(ary);
|
|
if (argc == 3) {
|
|
beg = NUM2LONG(argv[0]);
|
|
len = NUM2LONG(argv[1]);
|
|
return ary_aset_by_rb_ary_splice(ary, beg, len, argv[2]);
|
|
}
|
|
if (FIXNUM_P(argv[0])) {
|
|
offset = FIX2LONG(argv[0]);
|
|
return ary_aset_by_rb_ary_store(ary, offset, argv[1]);
|
|
}
|
|
if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
|
|
/* check if idx is Range */
|
|
return ary_aset_by_rb_ary_splice(ary, beg, len, argv[1]);
|
|
}
|
|
|
|
offset = NUM2LONG(argv[0]);
|
|
return ary_aset_by_rb_ary_store(ary, offset, argv[1]);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.insert(index, *objects) -> self
|
|
*
|
|
* Inserts given +objects+ before or after the element at \Integer index +offset+;
|
|
* returns +self+.
|
|
*
|
|
* When +index+ is non-negative, inserts all given +objects+
|
|
* before the element at offset +index+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.insert(1, :bat, :bam) # => [:foo, :bat, :bam, "bar", 2]
|
|
*
|
|
* Extends the array if +index+ is beyond the array (<tt>index >= self.size</tt>):
|
|
* a = [:foo, 'bar', 2]
|
|
* a.insert(5, :bat, :bam)
|
|
* a # => [:foo, "bar", 2, nil, nil, :bat, :bam]
|
|
*
|
|
* Does nothing if no objects given:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.insert(1)
|
|
* a.insert(50)
|
|
* a.insert(-50)
|
|
* a # => [:foo, "bar", 2]
|
|
*
|
|
* When +index+ is negative, inserts all given +objects+
|
|
* _after_ the element at offset <tt>index+self.size</tt>:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.insert(-2, :bat, :bam)
|
|
* a # => [:foo, "bar", :bat, :bam, 2]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_insert(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long pos;
|
|
|
|
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
|
|
rb_ary_modify_check(ary);
|
|
pos = NUM2LONG(argv[0]);
|
|
if (argc == 1) return ary;
|
|
if (pos == -1) {
|
|
pos = RARRAY_LEN(ary);
|
|
}
|
|
else if (pos < 0) {
|
|
long minpos = -RARRAY_LEN(ary) - 1;
|
|
if (pos < minpos) {
|
|
rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
|
|
pos, minpos);
|
|
}
|
|
pos++;
|
|
}
|
|
rb_ary_splice(ary, pos, 0, argv + 1, argc - 1);
|
|
return ary;
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_length(VALUE ary);
|
|
|
|
static VALUE
|
|
ary_enum_length(VALUE ary, VALUE args, VALUE eobj)
|
|
{
|
|
return rb_ary_length(ary);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.each {|element| ... } -> self
|
|
* array.each -> Enumerator
|
|
*
|
|
* Iterates over array elements.
|
|
*
|
|
* When a block given, passes each successive array element to the block;
|
|
* returns +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.each {|element| puts "#{element.class} #{element}" }
|
|
*
|
|
* Output:
|
|
* Symbol foo
|
|
* String bar
|
|
* Integer 2
|
|
*
|
|
* Allows the array to be modified during iteration:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.each {|element| puts element; a.clear if element.to_s.start_with?('b') }
|
|
*
|
|
* Output:
|
|
* foo
|
|
* bar
|
|
*
|
|
* When no block given, returns a new \Enumerator:
|
|
* a = [:foo, 'bar', 2]
|
|
* e = a.each
|
|
* e # => #<Enumerator: [:foo, "bar", 2]:each>
|
|
* a1 = e.each {|element| puts "#{element.class} #{element}" }
|
|
*
|
|
* Output:
|
|
* Symbol foo
|
|
* String bar
|
|
* Integer 2
|
|
*
|
|
* Related: #each_index, #reverse_each.
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_each(VALUE ary)
|
|
{
|
|
long i;
|
|
ary_verify(ary);
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
rb_yield(RARRAY_AREF(ary, i));
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.each_index {|index| ... } -> self
|
|
* array.each_index -> Enumerator
|
|
*
|
|
* Iterates over array indexes.
|
|
*
|
|
* When a block given, passes each successive array index to the block;
|
|
* returns +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.each_index {|index| puts "#{index} #{a[index]}" }
|
|
*
|
|
* Output:
|
|
* 0 foo
|
|
* 1 bar
|
|
* 2 2
|
|
*
|
|
* Allows the array to be modified during iteration:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.each_index {|index| puts index; a.clear if index > 0 }
|
|
*
|
|
* Output:
|
|
* 0
|
|
* 1
|
|
*
|
|
* When no block given, returns a new \Enumerator:
|
|
* a = [:foo, 'bar', 2]
|
|
* e = a.each_index
|
|
* e # => #<Enumerator: [:foo, "bar", 2]:each_index>
|
|
* a1 = e.each {|index| puts "#{index} #{a[index]}"}
|
|
*
|
|
* Output:
|
|
* 0 foo
|
|
* 1 bar
|
|
* 2 2
|
|
*
|
|
* Related: #each, #reverse_each.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_each_index(VALUE ary)
|
|
{
|
|
long i;
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
rb_yield(LONG2NUM(i));
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.reverse_each {|element| ... } -> self
|
|
* array.reverse_each -> Enumerator
|
|
*
|
|
* Iterates backwards over array elements.
|
|
*
|
|
* When a block given, passes, in reverse order, each element to the block;
|
|
* returns +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.reverse_each {|element| puts "#{element.class} #{element}" }
|
|
*
|
|
* Output:
|
|
* Integer 2
|
|
* String bar
|
|
* Symbol foo
|
|
*
|
|
* Allows the array to be modified during iteration:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.reverse_each {|element| puts element; a.clear if element.to_s.start_with?('b') }
|
|
*
|
|
* Output:
|
|
* 2
|
|
* bar
|
|
*
|
|
* When no block given, returns a new \Enumerator:
|
|
* a = [:foo, 'bar', 2]
|
|
* e = a.reverse_each
|
|
* e # => #<Enumerator: [:foo, "bar", 2]:reverse_each>
|
|
* a1 = e.each {|element| puts "#{element.class} #{element}" }
|
|
* Output:
|
|
* Integer 2
|
|
* String bar
|
|
* Symbol foo
|
|
*
|
|
* Related: #each, #each_index.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_reverse_each(VALUE ary)
|
|
{
|
|
long len;
|
|
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
len = RARRAY_LEN(ary);
|
|
while (len--) {
|
|
long nlen;
|
|
rb_yield(RARRAY_AREF(ary, len));
|
|
nlen = RARRAY_LEN(ary);
|
|
if (nlen < len) {
|
|
len = nlen;
|
|
}
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.length -> an_integer
|
|
*
|
|
* Returns the count of elements in +self+.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_length(VALUE ary)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
return LONG2NUM(len);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.empty? -> true or false
|
|
*
|
|
* Returns +true+ if the count of elements in +self+ is zero,
|
|
* +false+ otherwise.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_empty_p(VALUE ary)
|
|
{
|
|
if (RARRAY_LEN(ary) == 0)
|
|
return Qtrue;
|
|
return Qfalse;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_dup(VALUE ary)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
VALUE dup = rb_ary_new2(len);
|
|
ary_memcpy(dup, 0, len, RARRAY_CONST_PTR_TRANSIENT(ary));
|
|
ARY_SET_LEN(dup, len);
|
|
|
|
ary_verify(ary);
|
|
ary_verify(dup);
|
|
return dup;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_resurrect(VALUE ary)
|
|
{
|
|
return ary_make_partial(ary, rb_cArray, 0, RARRAY_LEN(ary));
|
|
}
|
|
|
|
extern VALUE rb_output_fs;
|
|
|
|
static void ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first);
|
|
|
|
static VALUE
|
|
recursive_join(VALUE obj, VALUE argp, int recur)
|
|
{
|
|
VALUE *arg = (VALUE *)argp;
|
|
VALUE ary = arg[0];
|
|
VALUE sep = arg[1];
|
|
VALUE result = arg[2];
|
|
int *first = (int *)arg[3];
|
|
|
|
if (recur) {
|
|
rb_raise(rb_eArgError, "recursive array join");
|
|
}
|
|
else {
|
|
ary_join_1(obj, ary, sep, 0, result, first);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static long
|
|
ary_join_0(VALUE ary, VALUE sep, long max, VALUE result)
|
|
{
|
|
long i;
|
|
VALUE val;
|
|
|
|
if (max > 0) rb_enc_copy(result, RARRAY_AREF(ary, 0));
|
|
for (i=0; i<max; i++) {
|
|
val = RARRAY_AREF(ary, i);
|
|
if (!RB_TYPE_P(val, T_STRING)) break;
|
|
if (i > 0 && !NIL_P(sep))
|
|
rb_str_buf_append(result, sep);
|
|
rb_str_buf_append(result, val);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static void
|
|
ary_join_1_str(VALUE dst, VALUE src, int *first)
|
|
{
|
|
rb_str_buf_append(dst, src);
|
|
if (*first) {
|
|
rb_enc_copy(dst, src);
|
|
*first = FALSE;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ary_join_1_ary(VALUE obj, VALUE ary, VALUE sep, VALUE result, VALUE val, int *first)
|
|
{
|
|
if (val == ary) {
|
|
rb_raise(rb_eArgError, "recursive array join");
|
|
}
|
|
else {
|
|
VALUE args[4];
|
|
|
|
*first = FALSE;
|
|
args[0] = val;
|
|
args[1] = sep;
|
|
args[2] = result;
|
|
args[3] = (VALUE)first;
|
|
rb_exec_recursive(recursive_join, obj, (VALUE)args);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first)
|
|
{
|
|
VALUE val, tmp;
|
|
|
|
for (; i<RARRAY_LEN(ary); i++) {
|
|
if (i > 0 && !NIL_P(sep))
|
|
rb_str_buf_append(result, sep);
|
|
|
|
val = RARRAY_AREF(ary, i);
|
|
if (RB_TYPE_P(val, T_STRING)) {
|
|
ary_join_1_str(result, val, first);
|
|
}
|
|
else if (RB_TYPE_P(val, T_ARRAY)) {
|
|
ary_join_1_ary(val, ary, sep, result, val, first);
|
|
}
|
|
else if (!NIL_P(tmp = rb_check_string_type(val))) {
|
|
ary_join_1_str(result, tmp, first);
|
|
}
|
|
else if (!NIL_P(tmp = rb_check_array_type(val))) {
|
|
ary_join_1_ary(val, ary, sep, result, tmp, first);
|
|
}
|
|
else {
|
|
ary_join_1_str(result, rb_obj_as_string(val), first);
|
|
}
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_join(VALUE ary, VALUE sep)
|
|
{
|
|
long len = 1, i;
|
|
VALUE val, tmp, result;
|
|
|
|
if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new(0, 0);
|
|
|
|
if (!NIL_P(sep)) {
|
|
StringValue(sep);
|
|
len += RSTRING_LEN(sep) * (RARRAY_LEN(ary) - 1);
|
|
}
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
val = RARRAY_AREF(ary, i);
|
|
tmp = rb_check_string_type(val);
|
|
|
|
if (NIL_P(tmp) || tmp != val) {
|
|
int first;
|
|
long n = RARRAY_LEN(ary);
|
|
if (i > n) i = n;
|
|
result = rb_str_buf_new(len + (n-i)*10);
|
|
rb_enc_associate(result, rb_usascii_encoding());
|
|
i = ary_join_0(ary, sep, i, result);
|
|
first = i == 0;
|
|
ary_join_1(ary, ary, sep, i, result, &first);
|
|
return result;
|
|
}
|
|
|
|
len += RSTRING_LEN(tmp);
|
|
}
|
|
|
|
result = rb_str_new(0, len);
|
|
rb_str_set_len(result, 0);
|
|
|
|
ary_join_0(ary, sep, RARRAY_LEN(ary), result);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.join ->new_string
|
|
* array.join(separator = $,) -> new_string
|
|
*
|
|
* Returns the new \String formed by joining the array elements after conversion.
|
|
* For each element +element+
|
|
* - Uses <tt>element.to_s</tt> if +element+ is not a <tt>kind_of?(Array)</tt>.
|
|
* - Uses recursive <tt>element.join(separator)</tt> if +element+ is a <tt>kind_of?(Array)</tt>.
|
|
*
|
|
* With no argument, joins using the output field separator, <tt>$,</tt>:
|
|
* a = [:foo, 'bar', 2]
|
|
* $, # => nil
|
|
* a.join # => "foobar2"
|
|
*
|
|
* With \string argument +separator+, joins using that separator:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.join("\n") # => "foo\nbar\n2"
|
|
*
|
|
* Joins recursively for nested Arrays:
|
|
* a = [:foo, [:bar, [:baz, :bat]]]
|
|
* a.join # => "foobarbazbat"
|
|
*/
|
|
static VALUE
|
|
rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE sep;
|
|
|
|
if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(sep = argv[0])) {
|
|
sep = rb_output_fs;
|
|
if (!NIL_P(sep)) {
|
|
rb_warn("$, is set to non-nil value");
|
|
}
|
|
}
|
|
|
|
return rb_ary_join(ary, sep);
|
|
}
|
|
|
|
static VALUE
|
|
inspect_ary(VALUE ary, VALUE dummy, int recur)
|
|
{
|
|
long i;
|
|
VALUE s, str;
|
|
|
|
if (recur) return rb_usascii_str_new_cstr("[...]");
|
|
str = rb_str_buf_new2("[");
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
s = rb_inspect(RARRAY_AREF(ary, i));
|
|
if (i > 0) rb_str_buf_cat2(str, ", ");
|
|
else rb_enc_copy(str, s);
|
|
rb_str_buf_append(str, s);
|
|
}
|
|
rb_str_buf_cat2(str, "]");
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.inspect -> new_string
|
|
*
|
|
* Returns the new \String formed by calling method <tt>#inspect</tt>
|
|
* on each array element:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.inspect # => "[:foo, \"bar\", 2]"
|
|
*
|
|
* Array#to_s is an alias for Array#inspect.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_inspect(VALUE ary)
|
|
{
|
|
if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
|
|
return rb_exec_recursive(inspect_ary, ary, 0);
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_to_s(VALUE ary)
|
|
{
|
|
return rb_ary_inspect(ary);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* to_a -> self or new_array
|
|
*
|
|
* When +self+ is an instance of \Array, returns +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.to_a # => [:foo, "bar", 2]
|
|
*
|
|
* Otherwise, returns a new \Array containing the elements of +self+:
|
|
* class MyArray < Array; end
|
|
* a = MyArray.new(['foo', 'bar', 'two'])
|
|
* a.instance_of?(Array) # => false
|
|
* a.kind_of?(Array) # => true
|
|
* a1 = a.to_a
|
|
* a1 # => ["foo", "bar", "two"]
|
|
* a1.class # => Array # Not MyArray
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_to_a(VALUE ary)
|
|
{
|
|
if (rb_obj_class(ary) != rb_cArray) {
|
|
VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
|
|
rb_ary_replace(dup, ary);
|
|
return dup;
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.to_h -> new_hash
|
|
* array.to_h {|item| ... } -> new_hash
|
|
*
|
|
* Returns a new \Hash formed from +self+.
|
|
*
|
|
* When a block is given, calls the block with each array element;
|
|
* the block must return a 2-element \Array whose two elements
|
|
* form a key-value pair in the returned \Hash:
|
|
* a = ['foo', :bar, 1, [2, 3], {baz: 4}]
|
|
* h = a.to_h {|item| [item, item] }
|
|
* h # => {"foo"=>"foo", :bar=>:bar, 1=>1, [2, 3]=>[2, 3], {:baz=>4}=>{:baz=>4}}
|
|
*
|
|
* When no block is given, +self+ must be an \Array of 2-element sub-arrays,
|
|
* each sub-array is formed into a key-value pair in the new \Hash:
|
|
* [].to_h # => {}
|
|
* a = [['foo', 'zero'], ['bar', 'one'], ['baz', 'two']]
|
|
* h = a.to_h
|
|
* h # => {"foo"=>"zero", "bar"=>"one", "baz"=>"two"}
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_to_h(VALUE ary)
|
|
{
|
|
long i;
|
|
VALUE hash = rb_hash_new_with_size(RARRAY_LEN(ary));
|
|
int block_given = rb_block_given_p();
|
|
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
const VALUE e = rb_ary_elt(ary, i);
|
|
const VALUE elt = block_given ? rb_yield_force_blockarg(e) : e;
|
|
const VALUE key_value_pair = rb_check_array_type(elt);
|
|
if (NIL_P(key_value_pair)) {
|
|
rb_raise(rb_eTypeError, "wrong element type %"PRIsVALUE" at %ld (expected array)",
|
|
rb_obj_class(elt), i);
|
|
}
|
|
if (RARRAY_LEN(key_value_pair) != 2) {
|
|
rb_raise(rb_eArgError, "wrong array length at %ld (expected 2, was %ld)",
|
|
i, RARRAY_LEN(key_value_pair));
|
|
}
|
|
rb_hash_aset(hash, RARRAY_AREF(key_value_pair, 0), RARRAY_AREF(key_value_pair, 1));
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.to_ary -> self
|
|
*
|
|
* Returns +self+.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_to_ary_m(VALUE ary)
|
|
{
|
|
return ary;
|
|
}
|
|
|
|
static void
|
|
ary_reverse(VALUE *p1, VALUE *p2)
|
|
{
|
|
while (p1 < p2) {
|
|
VALUE tmp = *p1;
|
|
*p1++ = *p2;
|
|
*p2-- = tmp;
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_reverse(VALUE ary)
|
|
{
|
|
VALUE *p2;
|
|
long len = RARRAY_LEN(ary);
|
|
|
|
rb_ary_modify(ary);
|
|
if (len > 1) {
|
|
RARRAY_PTR_USE_TRANSIENT(ary, p1, {
|
|
p2 = p1 + len - 1; /* points last item */
|
|
ary_reverse(p1, p2);
|
|
}); /* WB: no new reference */
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.reverse! -> self
|
|
*
|
|
* Reverses +self+ in place:
|
|
* a = ['foo', 'bar', 'two']
|
|
* a.reverse! # => ["two", "bar", "foo"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_reverse_bang(VALUE ary)
|
|
{
|
|
return rb_ary_reverse(ary);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.reverse -> new_array
|
|
*
|
|
* Returns a new \Array with the elements of +self+ in reverse order.
|
|
* a = ['foo', 'bar', 'two']
|
|
* a1 = a.reverse
|
|
* a1 # => ["two", "bar", "foo"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_reverse_m(VALUE ary)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
VALUE dup = rb_ary_new2(len);
|
|
|
|
if (len > 0) {
|
|
const VALUE *p1 = RARRAY_CONST_PTR_TRANSIENT(ary);
|
|
VALUE *p2 = (VALUE *)RARRAY_CONST_PTR_TRANSIENT(dup) + len - 1;
|
|
do *p2-- = *p1++; while (--len > 0);
|
|
}
|
|
ARY_SET_LEN(dup, RARRAY_LEN(ary));
|
|
return dup;
|
|
}
|
|
|
|
static inline long
|
|
rotate_count(long cnt, long len)
|
|
{
|
|
return (cnt < 0) ? (len - (~cnt % len) - 1) : (cnt % len);
|
|
}
|
|
|
|
static void
|
|
ary_rotate_ptr(VALUE *ptr, long len, long cnt)
|
|
{
|
|
if (cnt == 1) {
|
|
VALUE tmp = *ptr;
|
|
memmove(ptr, ptr + 1, sizeof(VALUE)*(len - 1));
|
|
*(ptr + len - 1) = tmp;
|
|
} else if (cnt == len - 1) {
|
|
VALUE tmp = *(ptr + len - 1);
|
|
memmove(ptr + 1, ptr, sizeof(VALUE)*(len - 1));
|
|
*ptr = tmp;
|
|
} else {
|
|
--len;
|
|
if (cnt < len) ary_reverse(ptr + cnt, ptr + len);
|
|
if (--cnt > 0) ary_reverse(ptr, ptr + cnt);
|
|
if (len > 0) ary_reverse(ptr, ptr + len);
|
|
}
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_rotate(VALUE ary, long cnt)
|
|
{
|
|
rb_ary_modify(ary);
|
|
|
|
if (cnt != 0) {
|
|
long len = RARRAY_LEN(ary);
|
|
if (len > 1 && (cnt = rotate_count(cnt, len)) > 0) {
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, ary_rotate_ptr(ptr, len, cnt));
|
|
return ary;
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.rotate! -> self
|
|
* array.rotate!(count) -> self
|
|
*
|
|
* Rotates +self+ in place by moving elements from one end to the other; returns +self+.
|
|
*
|
|
* When no argument given, rotates the first element to the last position:
|
|
* a = [:foo, 'bar', 2, 'bar']
|
|
* a.rotate! # => ["bar", 2, "bar", :foo]
|
|
*
|
|
* When given a non-negative \Integer +count+,
|
|
* rotates +count+ elements from the beginning to the end:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.rotate!(2)
|
|
* a # => [2, :foo, "bar"]
|
|
*
|
|
* If +count+ is large, uses <tt>count % array.size</tt> as the count:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.rotate!(20)
|
|
* a # => [2, :foo, "bar"]
|
|
*
|
|
* If +count+ is zero, returns +self+ unmodified:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.rotate!(0)
|
|
* a # => [:foo, "bar", 2]
|
|
*
|
|
* When given a negative Integer +count+, rotates in the opposite direction,
|
|
* from end to beginning:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.rotate!(-2)
|
|
* a # => ["bar", 2, :foo]
|
|
*
|
|
* If +count+ is small (far from zero), uses <tt>count % array.size</tt> as the count:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.rotate!(-5)
|
|
* a # => ["bar", 2, :foo]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long n = (rb_check_arity(argc, 0, 1) ? NUM2LONG(argv[0]) : 1);
|
|
rb_ary_rotate(ary, n);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.rotate -> new_array
|
|
* array.rotate(count) -> new_array
|
|
*
|
|
* Returns a new \Array formed from +self+ with elements
|
|
* rotated from one end to the other.
|
|
*
|
|
* When no argument given, returns a new \Array that is like +self+,
|
|
* except that the first element has been rotated to the last position:
|
|
* a = [:foo, 'bar', 2, 'bar']
|
|
* a1 = a.rotate
|
|
* a1 # => ["bar", 2, "bar", :foo]
|
|
*
|
|
* When given a non-negative \Integer +count+,
|
|
* returns a new \Array with +count+ elements rotated from the beginning to the end:
|
|
* a = [:foo, 'bar', 2]
|
|
* a1 = a.rotate(2)
|
|
* a1 # => [2, :foo, "bar"]
|
|
*
|
|
* If +count+ is large, uses <tt>count % array.size</tt> as the count:
|
|
* a = [:foo, 'bar', 2]
|
|
* a1 = a.rotate(20)
|
|
* a1 # => [2, :foo, "bar"]
|
|
*
|
|
* If +count+ is zero, returns a copy of +self+, unmodified:
|
|
* a = [:foo, 'bar', 2]
|
|
* a1 = a.rotate(0)
|
|
* a1 # => [:foo, "bar", 2]
|
|
*
|
|
* When given a negative \Integer +count+, rotates in the opposite direction,
|
|
* from end to beginning:
|
|
* a = [:foo, 'bar', 2]
|
|
* a1 = a.rotate(-2)
|
|
* a1 # => ["bar", 2, :foo]
|
|
*
|
|
* If +count+ is small (far from zero), uses <tt>count % array.size</tt> as the count:
|
|
* a = [:foo, 'bar', 2]
|
|
* a1 = a.rotate(-5)
|
|
* a1 # => ["bar", 2, :foo]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE rotated;
|
|
const VALUE *ptr;
|
|
long len;
|
|
long cnt = (rb_check_arity(argc, 0, 1) ? NUM2LONG(argv[0]) : 1);
|
|
|
|
len = RARRAY_LEN(ary);
|
|
rotated = rb_ary_new2(len);
|
|
if (len > 0) {
|
|
cnt = rotate_count(cnt, len);
|
|
ptr = RARRAY_CONST_PTR_TRANSIENT(ary);
|
|
len -= cnt;
|
|
ary_memcpy(rotated, 0, len, ptr + cnt);
|
|
ary_memcpy(rotated, len, cnt, ptr);
|
|
}
|
|
ARY_SET_LEN(rotated, RARRAY_LEN(ary));
|
|
return rotated;
|
|
}
|
|
|
|
struct ary_sort_data {
|
|
VALUE ary;
|
|
struct cmp_opt_data cmp_opt;
|
|
};
|
|
|
|
static VALUE
|
|
sort_reentered(VALUE ary)
|
|
{
|
|
if (RBASIC(ary)->klass) {
|
|
rb_raise(rb_eRuntimeError, "sort reentered");
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static int
|
|
sort_1(const void *ap, const void *bp, void *dummy)
|
|
{
|
|
struct ary_sort_data *data = dummy;
|
|
VALUE retval = sort_reentered(data->ary);
|
|
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
|
|
VALUE args[2];
|
|
int n;
|
|
|
|
args[0] = a;
|
|
args[1] = b;
|
|
retval = rb_yield_values2(2, args);
|
|
n = rb_cmpint(retval, a, b);
|
|
sort_reentered(data->ary);
|
|
return n;
|
|
}
|
|
|
|
static int
|
|
sort_2(const void *ap, const void *bp, void *dummy)
|
|
{
|
|
struct ary_sort_data *data = dummy;
|
|
VALUE retval = sort_reentered(data->ary);
|
|
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
|
|
int n;
|
|
|
|
if (FIXNUM_P(a) && FIXNUM_P(b) && CMP_OPTIMIZABLE(data->cmp_opt, Integer)) {
|
|
if ((long)a > (long)b) return 1;
|
|
if ((long)a < (long)b) return -1;
|
|
return 0;
|
|
}
|
|
if (STRING_P(a) && STRING_P(b) && CMP_OPTIMIZABLE(data->cmp_opt, String)) {
|
|
return rb_str_cmp(a, b);
|
|
}
|
|
if (RB_FLOAT_TYPE_P(a) && CMP_OPTIMIZABLE(data->cmp_opt, Float)) {
|
|
return rb_float_cmp(a, b);
|
|
}
|
|
|
|
retval = rb_funcallv(a, id_cmp, 1, &b);
|
|
n = rb_cmpint(retval, a, b);
|
|
sort_reentered(data->ary);
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.sort! -> self
|
|
* array.sort! {|a, b| ... } -> self
|
|
*
|
|
* Returns +self+ with its elements sorted in place.
|
|
*
|
|
* With no block, compares elements using operator <tt><=></tt>
|
|
* (see Comparable):
|
|
* a = 'abcde'.split('').shuffle
|
|
* a # => ["e", "b", "d", "a", "c"]
|
|
* a.sort!
|
|
* a # => ["a", "b", "c", "d", "e"]
|
|
*
|
|
* With a block, calls the block with each element pair;
|
|
* for each element pair +a+ and +b+, the block should return an integer:
|
|
* - Negative when +b+ is to follow +a+.
|
|
* - Zero when +a+ and +b+ are equivalent.
|
|
* - Positive when +a+ is to follow +b+.
|
|
*
|
|
* Example:
|
|
* a = 'abcde'.split('').shuffle
|
|
* a # => ["e", "b", "d", "a", "c"]
|
|
* a.sort! {|a, b| a <=> b }
|
|
* a # => ["a", "b", "c", "d", "e"]
|
|
* a.sort! {|a, b| b <=> a }
|
|
* a # => ["e", "d", "c", "b", "a"]
|
|
*
|
|
* When the block returns zero, the order for +a+ and +b+ is indeterminate,
|
|
* and may be unstable:
|
|
* a = 'abcde'.split('').shuffle
|
|
* a # => ["e", "b", "d", "a", "c"]
|
|
* a.sort! {|a, b| 0 }
|
|
* a # => ["d", "e", "c", "a", "b"]
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_sort_bang(VALUE ary)
|
|
{
|
|
rb_ary_modify(ary);
|
|
assert(!ARY_SHARED_P(ary));
|
|
if (RARRAY_LEN(ary) > 1) {
|
|
VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
|
|
struct ary_sort_data data;
|
|
long len = RARRAY_LEN(ary);
|
|
RBASIC_CLEAR_CLASS(tmp);
|
|
data.ary = tmp;
|
|
data.cmp_opt.opt_methods = 0;
|
|
data.cmp_opt.opt_inited = 0;
|
|
RARRAY_PTR_USE(tmp, ptr, {
|
|
ruby_qsort(ptr, len, sizeof(VALUE),
|
|
rb_block_given_p()?sort_1:sort_2, &data);
|
|
}); /* WB: no new reference */
|
|
rb_ary_modify(ary);
|
|
if (ARY_EMBED_P(tmp)) {
|
|
if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
|
|
rb_ary_unshare(ary);
|
|
FL_SET_EMBED(ary);
|
|
}
|
|
ary_memcpy(ary, 0, ARY_EMBED_LEN(tmp), ARY_EMBED_PTR(tmp));
|
|
ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp));
|
|
}
|
|
else {
|
|
if (!ARY_EMBED_P(ary) && ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) {
|
|
FL_UNSET_SHARED(ary);
|
|
ARY_SET_CAPA(ary, RARRAY_LEN(tmp));
|
|
}
|
|
else {
|
|
assert(!ARY_SHARED_P(tmp));
|
|
if (ARY_EMBED_P(ary)) {
|
|
FL_UNSET_EMBED(ary);
|
|
}
|
|
else if (ARY_SHARED_P(ary)) {
|
|
/* ary might be destructively operated in the given block */
|
|
rb_ary_unshare(ary);
|
|
}
|
|
else {
|
|
ary_heap_free(ary);
|
|
}
|
|
ARY_SET_PTR(ary, ARY_HEAP_PTR(tmp));
|
|
ARY_SET_HEAP_LEN(ary, len);
|
|
ARY_SET_CAPA(ary, ARY_HEAP_LEN(tmp));
|
|
}
|
|
/* tmp was lost ownership for the ptr */
|
|
FL_UNSET(tmp, FL_FREEZE);
|
|
FL_SET_EMBED(tmp);
|
|
ARY_SET_EMBED_LEN(tmp, 0);
|
|
FL_SET(tmp, FL_FREEZE);
|
|
}
|
|
/* tmp will be GC'ed. */
|
|
RBASIC_SET_CLASS_RAW(tmp, rb_cArray); /* rb_cArray must be marked */
|
|
}
|
|
ary_verify(ary);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.sort -> new_array
|
|
* array.sort {|a, b| ... } -> new_array
|
|
*
|
|
* Returns a new \Array whose elements are those from +self+, sorted.
|
|
*
|
|
* With no block, compares elements using operator <tt><=></tt>
|
|
* (see Comparable):
|
|
* a = 'abcde'.split('').shuffle
|
|
* a # => ["e", "b", "d", "a", "c"]
|
|
* a1 = a.sort
|
|
* a1 # => ["a", "b", "c", "d", "e"]
|
|
*
|
|
* With a block, calls the block with each element pair;
|
|
* for each element pair +a+ and +b+, the block should return an integer:
|
|
* - Negative when +b+ is to follow +a+.
|
|
* - Zero when +a+ and +b+ are equivalent.
|
|
* - Positive when +a+ is to follow +b+.
|
|
*
|
|
* Example:
|
|
* a = 'abcde'.split('').shuffle
|
|
* a # => ["e", "b", "d", "a", "c"]
|
|
* a1 = a.sort {|a, b| a <=> b }
|
|
* a1 # => ["a", "b", "c", "d", "e"]
|
|
* a2 = a.sort {|a, b| b <=> a }
|
|
* a2 # => ["e", "d", "c", "b", "a"]
|
|
*
|
|
* When the block returns zero, the order for +a+ and +b+ is indeterminate,
|
|
* and may be unstable:
|
|
* a = 'abcde'.split('').shuffle
|
|
* a # => ["e", "b", "d", "a", "c"]
|
|
* a1 = a.sort {|a, b| 0 }
|
|
* a1 # => ["c", "e", "b", "d", "a"]
|
|
*
|
|
* Related: Enumerable#sort_by.
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_sort(VALUE ary)
|
|
{
|
|
ary = rb_ary_dup(ary);
|
|
rb_ary_sort_bang(ary);
|
|
return ary;
|
|
}
|
|
|
|
static VALUE rb_ary_bsearch_index(VALUE ary);
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.bsearch {|element| ... } -> object
|
|
* array.bsearch -> new_enumerator
|
|
*
|
|
* Returns an element from +self+ selected by a binary search.
|
|
* +self+ should be sorted, but this is not checked.
|
|
*
|
|
* By using binary search, finds a value from this array which meets
|
|
* the given condition in <tt>O(log n)</tt> where +n+ is the size of the array.
|
|
*
|
|
* There are two search modes:
|
|
* - <b>Find-minimum mode</b>: the block should return +true+ or +false+.
|
|
* - <b>Find-any mode</b>: the block should return a numeric value.
|
|
*
|
|
* The block should not mix the modes by and sometimes returning +true+ or +false+
|
|
* and sometimes returning a numeric value, but this is not checked.
|
|
*
|
|
* <b>Find-Minimum Mode</b>
|
|
*
|
|
* In find-minimum mode, the block always returns +true+ or +false+.
|
|
* The further requirement (though not checked) is that
|
|
* there are no indexes +i+ and +j+ such that:
|
|
* - <tt>0 <= i < j <= self.size</tt>.
|
|
* - The block returns +true+ for <tt>self[i]</tt> and +false+ for <tt>self[j]</tt>.
|
|
*
|
|
* In find-minimum mode, method bsearch returns the first element for which the block returns true.
|
|
*
|
|
* Examples:
|
|
* a = [0, 4, 7, 10, 12]
|
|
* a.bsearch {|x| x >= 4 } # => 4
|
|
* a.bsearch {|x| x >= 6 } # => 7
|
|
* a.bsearch {|x| x >= -1 } # => 0
|
|
* a.bsearch {|x| x >= 100 } # => nil
|
|
*
|
|
* Less formally: the block is such that all +false+-evaluating elements
|
|
* precede all +true+-evaluating elements.
|
|
*
|
|
* These make sense as blocks in find-minimum mode:
|
|
* a = [0, 4, 7, 10, 12]
|
|
* a.map {|x| x >= 4 } # => [false, true, true, true, true]
|
|
* a.map {|x| x >= 6 } # => [false, false, true, true, true]
|
|
* a.map {|x| x >= -1 } # => [true, true, true, true, true]
|
|
* a.map {|x| x >= 100 } # => [false, false, false, false, false]
|
|
*
|
|
* This would not make sense:
|
|
* a = [0, 4, 7, 10, 12]
|
|
* a.map {|x| x == 7 } # => [false, false, true, false, false]
|
|
*
|
|
* <b>Find-Any Mode</b>
|
|
*
|
|
* In find-any mode, the block always returns a numeric value.
|
|
* The further requirement (though not checked) is that
|
|
* there are no indexes +i+ and +j+ such that:
|
|
* - <tt>0 <= i < j <= self.size</tt>.
|
|
* - The block returns a negative value for <tt>self[i]</tt>
|
|
* and a positive value for <tt>self[j]</tt>.
|
|
* - The block returns a negative value for <tt>self[i]</tt> and zero <tt>self[j]</tt>.
|
|
* - The block returns zero for <tt>self[i]</tt> and a positive value for <tt>self[j]</tt>.
|
|
*
|
|
* In find-any mode, method bsearch returns some element
|
|
* for which the block returns zero, or +nil+ if no such element is found.
|
|
*
|
|
* Examples:
|
|
* a = [0, 4, 7, 10, 12]
|
|
* a.bsearch {|element| 7 <=> element } # => 7
|
|
* a.bsearch {|element| -1 <=> element } # => nil
|
|
* a.bsearch {|element| 5 <=> element } # => nil
|
|
* a.bsearch {|element| 15 <=> element } # => nil
|
|
*
|
|
* Less formally: the block is such that:
|
|
* - All positive-evaluating elements precede all zero-evaluating elements.
|
|
* - All positive-evaluating elements precede all negative-evaluating elements.
|
|
* - All zero-evaluating elements precede all negative-evaluating elements.
|
|
*
|
|
* These make sense as blocks in find-any mode:
|
|
* a = [0, 4, 7, 10, 12]
|
|
* a.map {|element| 7 <=> element } # => [1, 1, 0, -1, -1]
|
|
* a.map {|element| -1 <=> element } # => [-1, -1, -1, -1, -1]
|
|
* a.map {|element| 5 <=> element } # => [1, 1, -1, -1, -1]
|
|
* a.map {|element| 15 <=> element } # => [1, 1, 1, 1, 1]
|
|
*
|
|
* This would not make sense:
|
|
* a = [0, 4, 7, 10, 12]
|
|
* a.map {|element| element <=> 7 } # => [-1, -1, 0, 1, 1]
|
|
*
|
|
* Returns an enumerator if no block given:
|
|
* a = [0, 4, 7, 10, 12]
|
|
* a.bsearch # => #<Enumerator: [0, 4, 7, 10, 12]:bsearch>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_bsearch(VALUE ary)
|
|
{
|
|
VALUE index_result = rb_ary_bsearch_index(ary);
|
|
|
|
if (FIXNUM_P(index_result)) {
|
|
return rb_ary_entry(ary, FIX2LONG(index_result));
|
|
}
|
|
return index_result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.bsearch_index {|element| ... } -> integer or nil
|
|
* array.bsearch_index -> new_enumerator
|
|
*
|
|
* Searches +self+ as described at method #bsearch,
|
|
* but returns the _index_ of the found element instead of the element itself.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_bsearch_index(VALUE ary)
|
|
{
|
|
long low = 0, high = RARRAY_LEN(ary), mid;
|
|
int smaller = 0, satisfied = 0;
|
|
VALUE v, val;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
while (low < high) {
|
|
mid = low + ((high - low) / 2);
|
|
val = rb_ary_entry(ary, mid);
|
|
v = rb_yield(val);
|
|
if (FIXNUM_P(v)) {
|
|
if (v == INT2FIX(0)) return INT2FIX(mid);
|
|
smaller = (SIGNED_VALUE)v < 0; /* Fixnum preserves its sign-bit */
|
|
}
|
|
else if (v == Qtrue) {
|
|
satisfied = 1;
|
|
smaller = 1;
|
|
}
|
|
else if (v == Qfalse || v == Qnil) {
|
|
smaller = 0;
|
|
}
|
|
else if (rb_obj_is_kind_of(v, rb_cNumeric)) {
|
|
const VALUE zero = INT2FIX(0);
|
|
switch (rb_cmpint(rb_funcallv(v, id_cmp, 1, &zero), v, zero)) {
|
|
case 0: return INT2FIX(mid);
|
|
case 1: smaller = 1; break;
|
|
case -1: smaller = 0;
|
|
}
|
|
}
|
|
else {
|
|
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE
|
|
" (must be numeric, true, false or nil)",
|
|
rb_obj_class(v));
|
|
}
|
|
if (smaller) {
|
|
high = mid;
|
|
}
|
|
else {
|
|
low = mid + 1;
|
|
}
|
|
}
|
|
if (!satisfied) return Qnil;
|
|
return INT2FIX(low);
|
|
}
|
|
|
|
|
|
static VALUE
|
|
sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, dummy))
|
|
{
|
|
return rb_yield(i);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.sort_by! {|element| ... } -> self
|
|
* array.sort_by! -> new_enumerator
|
|
*
|
|
* Sorts the elements of +self+ in place,
|
|
* using an ordering determined by the block; returns self.
|
|
*
|
|
* Calls the block with each successive element;
|
|
* sorts elements based on the values returned from the block.
|
|
*
|
|
* For duplicates returned by the block, the ordering is indeterminate, and may be unstable.
|
|
*
|
|
* This example sorts strings based on their sizes:
|
|
* a = ['aaaa', 'bbb', 'cc', 'd']
|
|
* a.sort_by! {|element| element.size }
|
|
* a # => ["d", "cc", "bbb", "aaaa"]
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
*
|
|
* a = ['aaaa', 'bbb', 'cc', 'd']
|
|
* a.sort_by! # => #<Enumerator: ["aaaa", "bbb", "cc", "d"]:sort_by!>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_sort_by_bang(VALUE ary)
|
|
{
|
|
VALUE sorted;
|
|
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
rb_ary_modify(ary);
|
|
sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
|
|
rb_ary_replace(ary, sorted);
|
|
return ary;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.map {|element| ... } -> new_array
|
|
* array.map -> new_enumerator
|
|
*
|
|
* Calls the block, if given, with each element of +self+;
|
|
* returns a new \Array whose elements are the return values from the block:
|
|
* a = [:foo, 'bar', 2]
|
|
* a1 = a.map {|element| element.class }
|
|
* a1 # => [Symbol, String, Integer]
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [:foo, 'bar', 2]
|
|
* a1 = a.map
|
|
* a1 # => #<Enumerator: [:foo, "bar", 2]:map>
|
|
*
|
|
* Array#collect is an alias for Array#map.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_collect(VALUE ary)
|
|
{
|
|
long i;
|
|
VALUE collect;
|
|
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
collect = rb_ary_new2(RARRAY_LEN(ary));
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
rb_ary_push(collect, rb_yield(RARRAY_AREF(ary, i)));
|
|
}
|
|
return collect;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.map! {|element| ... } -> self
|
|
* array.map! -> new_enumerator
|
|
*
|
|
* Calls the block, if given, with each element;
|
|
* replaces the element with the block's return value:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.map! { |element| element.class } # => [Symbol, String, Integer]
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [:foo, 'bar', 2]
|
|
* a1 = a.map!
|
|
* a1 # => #<Enumerator: [:foo, "bar", 2]:map!>
|
|
*
|
|
* Array#collect! is an alias for Array#map!.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_collect_bang(VALUE ary)
|
|
{
|
|
long i;
|
|
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
rb_ary_modify(ary);
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
rb_ary_store(ary, i, rb_yield(RARRAY_AREF(ary, i)));
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_get_values_at(VALUE obj, long olen, int argc, const VALUE *argv, VALUE (*func) (VALUE, long))
|
|
{
|
|
VALUE result = rb_ary_new2(argc);
|
|
long beg, len, i, j;
|
|
|
|
for (i=0; i<argc; i++) {
|
|
if (FIXNUM_P(argv[i])) {
|
|
rb_ary_push(result, (*func)(obj, FIX2LONG(argv[i])));
|
|
continue;
|
|
}
|
|
/* check if idx is Range */
|
|
if (rb_range_beg_len(argv[i], &beg, &len, olen, 1)) {
|
|
long end = olen < beg+len ? olen : beg+len;
|
|
for (j = beg; j < end; j++) {
|
|
rb_ary_push(result, (*func)(obj, j));
|
|
}
|
|
if (beg + len > j)
|
|
rb_ary_resize(result, RARRAY_LEN(result) + (beg + len) - j);
|
|
continue;
|
|
}
|
|
rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i])));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static VALUE
|
|
append_values_at_single(VALUE result, VALUE ary, long olen, VALUE idx)
|
|
{
|
|
long beg, len;
|
|
if (FIXNUM_P(idx)) {
|
|
beg = FIX2LONG(idx);
|
|
}
|
|
/* check if idx is Range */
|
|
else if (rb_range_beg_len(idx, &beg, &len, olen, 1)) {
|
|
if (len > 0) {
|
|
const VALUE *const src = RARRAY_CONST_PTR_TRANSIENT(ary);
|
|
const long end = beg + len;
|
|
const long prevlen = RARRAY_LEN(result);
|
|
if (beg < olen) {
|
|
rb_ary_cat(result, src + beg, end > olen ? olen-beg : len);
|
|
}
|
|
if (end > olen) {
|
|
rb_ary_store(result, prevlen + len - 1, Qnil);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
else {
|
|
beg = NUM2LONG(idx);
|
|
}
|
|
return rb_ary_push(result, rb_ary_entry(ary, beg));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.values_at(*indexes) -> new_array
|
|
*
|
|
* Returns a new \Array whose elements are the elements
|
|
* of +self+ at the given \Integer +indexes+.
|
|
*
|
|
* For each positive +index+, returns the element at offset +index+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.values_at(0, 2) # => [:foo, 2]
|
|
*
|
|
* The given +indexes+ may be in any order, and may repeat:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.values_at(2, 0, 1, 0, 2) # => [2, :foo, "bar", :foo, 2]
|
|
*
|
|
* Assigns +nil+ for an +index+ that is too large:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.values_at(0, 3, 1, 3) # => [:foo, nil, "bar", nil]
|
|
*
|
|
* Returns a new empty \Array if no arguments given.
|
|
*
|
|
* For each negative +index+, counts backward from the end of the array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.values_at(-1, -3) # => [2, :foo]
|
|
*
|
|
* Assigns +nil+ for an +index+ that is too small:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.values_at(0, -5, 1, -6, 2) # => [:foo, nil, "bar", nil, 2]
|
|
*
|
|
* The given +indexes+ may have a mixture of signs:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.values_at(0, -2, 1, -1) # => [:foo, "bar", "bar", 2]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long i, olen = RARRAY_LEN(ary);
|
|
VALUE result = rb_ary_new_capa(argc);
|
|
for (i = 0; i < argc; ++i) {
|
|
append_values_at_single(result, ary, olen, argv[i]);
|
|
}
|
|
RB_GC_GUARD(ary);
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.select {|element| ... } -> new_array
|
|
* array.select -> new_enumerator
|
|
*
|
|
* Calls the block, if given, with each element of +self+;
|
|
* returns a new \Array containing those elements of +self+
|
|
* for which the block returns a truthy value:
|
|
* a = [:foo, 'bar', 2, :bam]
|
|
* a1 = a.select {|element| element.to_s.start_with?('b') }
|
|
* a1 # => ["bar", :bam]
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [:foo, 'bar', 2, :bam]
|
|
* a.select # => #<Enumerator: [:foo, "bar", 2, :bam]:select>
|
|
*
|
|
* Array#filter is an alias for Array#select.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_select(VALUE ary)
|
|
{
|
|
VALUE result;
|
|
long i;
|
|
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
result = rb_ary_new2(RARRAY_LEN(ary));
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
|
|
rb_ary_push(result, rb_ary_elt(ary, i));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
struct select_bang_arg {
|
|
VALUE ary;
|
|
long len[2];
|
|
};
|
|
|
|
static VALUE
|
|
select_bang_i(VALUE a)
|
|
{
|
|
volatile struct select_bang_arg *arg = (void *)a;
|
|
VALUE ary = arg->ary;
|
|
long i1, i2;
|
|
|
|
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); arg->len[0] = ++i1) {
|
|
VALUE v = RARRAY_AREF(ary, i1);
|
|
if (!RTEST(rb_yield(v))) continue;
|
|
if (i1 != i2) {
|
|
rb_ary_store(ary, i2, v);
|
|
}
|
|
arg->len[1] = ++i2;
|
|
}
|
|
return (i1 == i2) ? Qnil : ary;
|
|
}
|
|
|
|
static VALUE
|
|
select_bang_ensure(VALUE a)
|
|
{
|
|
volatile struct select_bang_arg *arg = (void *)a;
|
|
VALUE ary = arg->ary;
|
|
long len = RARRAY_LEN(ary);
|
|
long i1 = arg->len[0], i2 = arg->len[1];
|
|
|
|
if (i2 < len && i2 < i1) {
|
|
long tail = 0;
|
|
if (i1 < len) {
|
|
tail = len - i1;
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
|
|
MEMMOVE(ptr + i2, ptr + i1, VALUE, tail);
|
|
});
|
|
}
|
|
ARY_SET_LEN(ary, i2 + tail);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.select! {|element| ... } -> self or nil
|
|
* array.select! -> new_enumerator
|
|
*
|
|
* Calls the block, if given with each element of +self+;
|
|
* removes from +self+ those elements for which the block returns +false+ or +nil+.
|
|
*
|
|
* Returns +self+ if any elements were removed:
|
|
* a = [:foo, 'bar', 2, :bam]
|
|
* a.select! {|element| element.to_s.start_with?('b') } # => ["bar", :bam]
|
|
*
|
|
* Returns +nil+ if no elements were removed.
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [:foo, 'bar', 2, :bam]
|
|
* a.select! # => #<Enumerator: [:foo, "bar", 2, :bam]:select!>
|
|
*
|
|
* Array#filter! is an alias for Array#select!.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_select_bang(VALUE ary)
|
|
{
|
|
struct select_bang_arg args;
|
|
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
rb_ary_modify(ary);
|
|
|
|
args.ary = ary;
|
|
args.len[0] = args.len[1] = 0;
|
|
return rb_ensure(select_bang_i, (VALUE)&args, select_bang_ensure, (VALUE)&args);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.keep_if {|element| ... } -> self
|
|
* array.keep_if -> new_enumeration
|
|
*
|
|
* Retains those elements for which the block returns a truthy value;
|
|
* deletes all other elements; returns +self+:
|
|
* a = [:foo, 'bar', 2, :bam]
|
|
* a.keep_if {|element| element.to_s.start_with?('b') } # => ["bar", :bam]
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [:foo, 'bar', 2, :bam]
|
|
* a.keep_if # => #<Enumerator: [:foo, "bar", 2, :bam]:keep_if>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_keep_if(VALUE ary)
|
|
{
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
rb_ary_select_bang(ary);
|
|
return ary;
|
|
}
|
|
|
|
static void
|
|
ary_resize_smaller(VALUE ary, long len)
|
|
{
|
|
rb_ary_modify(ary);
|
|
if (RARRAY_LEN(ary) > len) {
|
|
ARY_SET_LEN(ary, len);
|
|
if (len * 2 < ARY_CAPA(ary) &&
|
|
ARY_CAPA(ary) > ARY_DEFAULT_SIZE) {
|
|
ary_resize_capa(ary, len * 2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.delete(obj) -> deleted_object
|
|
* array.delete(obj) {|nosuch| ... } -> deleted_object or block_return
|
|
*
|
|
* Removes zero or more elements from +self+; returns +self+.
|
|
*
|
|
* When no block is given,
|
|
* removes from +self+ each element +ele+ such that <tt>ele == obj</tt>;
|
|
* returns the last deleted element:
|
|
* s1 = 'bar'; s2 = 'bar'
|
|
* a = [:foo, s1, 2, s2]
|
|
* a.delete('bar') # => "bar"
|
|
* a # => [:foo, 2]
|
|
*
|
|
* Returns +nil+ if no elements removed.
|
|
*
|
|
* When a block is given,
|
|
* removes from +self+ each element +ele+ such that <tt>ele == obj</tt>.
|
|
*
|
|
* If any such elements are found, ignores the block
|
|
* and returns the last deleted element:
|
|
* s1 = 'bar'; s2 = 'bar'
|
|
* a = [:foo, s1, 2, s2]
|
|
* deleted_obj = a.delete('bar') {|obj| fail 'Cannot happen' }
|
|
* a # => [:foo, 2]
|
|
*
|
|
* If no such elements are found, returns the block's return value:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.delete(:nosuch) {|obj| "#{obj} not found" } # => "nosuch not found"
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_delete(VALUE ary, VALUE item)
|
|
{
|
|
VALUE v = item;
|
|
long i1, i2;
|
|
|
|
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
|
|
VALUE e = RARRAY_AREF(ary, i1);
|
|
|
|
if (rb_equal(e, item)) {
|
|
v = e;
|
|
continue;
|
|
}
|
|
if (i1 != i2) {
|
|
rb_ary_store(ary, i2, e);
|
|
}
|
|
i2++;
|
|
}
|
|
if (RARRAY_LEN(ary) == i2) {
|
|
if (rb_block_given_p()) {
|
|
return rb_yield(item);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
ary_resize_smaller(ary, i2);
|
|
|
|
ary_verify(ary);
|
|
return v;
|
|
}
|
|
|
|
void
|
|
rb_ary_delete_same(VALUE ary, VALUE item)
|
|
{
|
|
long i1, i2;
|
|
|
|
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
|
|
VALUE e = RARRAY_AREF(ary, i1);
|
|
|
|
if (e == item) {
|
|
continue;
|
|
}
|
|
if (i1 != i2) {
|
|
rb_ary_store(ary, i2, e);
|
|
}
|
|
i2++;
|
|
}
|
|
if (RARRAY_LEN(ary) == i2) {
|
|
return;
|
|
}
|
|
|
|
ary_resize_smaller(ary, i2);
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_delete_at(VALUE ary, long pos)
|
|
{
|
|
long len = RARRAY_LEN(ary);
|
|
VALUE del;
|
|
|
|
if (pos >= len) return Qnil;
|
|
if (pos < 0) {
|
|
pos += len;
|
|
if (pos < 0) return Qnil;
|
|
}
|
|
|
|
rb_ary_modify(ary);
|
|
del = RARRAY_AREF(ary, pos);
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr, {
|
|
MEMMOVE(ptr+pos, ptr+pos+1, VALUE, len-pos-1);
|
|
});
|
|
ARY_INCREASE_LEN(ary, -1);
|
|
ary_verify(ary);
|
|
return del;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.delete_at(index) -> deleted_object or nil
|
|
*
|
|
* Deletes an element from +self+, per the given \Integer +index+.
|
|
*
|
|
* When +index+ is non-negative, deletes the element at offset +index+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.delete_at(1) # => "bar"
|
|
* a # => [:foo, 2]
|
|
*
|
|
* If index is too large, returns +nil+.
|
|
*
|
|
* When +index+ is negative, counts backward from the end of the array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.delete_at(-2) # => "bar"
|
|
* a # => [:foo, 2]
|
|
*
|
|
* If +index+ is too small (far from zero), returns nil.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_delete_at_m(VALUE ary, VALUE pos)
|
|
{
|
|
return rb_ary_delete_at(ary, NUM2LONG(pos));
|
|
}
|
|
|
|
static VALUE
|
|
ary_slice_bang_by_rb_ary_splice(VALUE ary, long pos, long len)
|
|
{
|
|
const long orig_len = RARRAY_LEN(ary);
|
|
|
|
if (len < 0) {
|
|
return Qnil;
|
|
}
|
|
else if (pos < -orig_len) {
|
|
return Qnil;
|
|
}
|
|
else if (pos < 0) {
|
|
pos += orig_len;
|
|
}
|
|
else if (orig_len < pos) {
|
|
return Qnil;
|
|
}
|
|
else if (orig_len < pos + len) {
|
|
len = orig_len - pos;
|
|
}
|
|
if (len == 0) {
|
|
return rb_ary_new2(0);
|
|
}
|
|
else {
|
|
VALUE arg2 = rb_ary_new4(len, RARRAY_CONST_PTR_TRANSIENT(ary)+pos);
|
|
RBASIC_SET_CLASS(arg2, rb_obj_class(ary));
|
|
rb_ary_splice(ary, pos, len, 0, 0);
|
|
return arg2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.slice!(n) -> object or nil
|
|
* array.slice!(start, length) -> new_array or nil
|
|
* array.slice!(range) -> new_array or nil
|
|
*
|
|
* Removes and returns elements from +self+.
|
|
*
|
|
* When the only argument is an \Integer +n+,
|
|
* removes and returns the _nth_ element in +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.slice!(1) # => "bar"
|
|
* a # => [:foo, 2]
|
|
*
|
|
* If +n+ is negative, counts backwards from the end of +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.slice!(-1) # => 2
|
|
* a # => [:foo, "bar"]
|
|
*
|
|
* If +n+ is out of range, returns +nil+.
|
|
*
|
|
* When the only arguments are Integers +start+ and +length+,
|
|
* removes +length+ elements from +self+ beginning at offset +start+;
|
|
* returns the deleted objects in a new Array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.slice!(0, 2) # => [:foo, "bar"]
|
|
* a # => [2]
|
|
*
|
|
* If <tt>start + length</tt> exceeds the array size,
|
|
* removes and returns all elements from offset +start+ to the end:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.slice!(1, 50) # => ["bar", 2]
|
|
* a # => [:foo]
|
|
*
|
|
* If <tt>start == a.size</tt> and +length+ is non-negative,
|
|
* returns a new empty \Array.
|
|
*
|
|
* If +length+ is negative, returns +nil+.
|
|
*
|
|
* When the only argument is a \Range object +range+,
|
|
* treats <tt>range.min</tt> as +start+ above and <tt>range.size</tt> as +length+ above:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.slice!(1..2) # => ["bar", 2]
|
|
* a # => [:foo]
|
|
*
|
|
* If <tt>range.start == a.size</tt>, returns a new empty \Array.
|
|
*
|
|
* If <tt>range.start</tt> is larger than the array size, returns +nil+.
|
|
*
|
|
* If <tt>range.end</tt> is negative, counts backwards from the end of the array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.slice!(0..-2) # => [:foo, "bar"]
|
|
* a # => [2]
|
|
*
|
|
* If <tt>range.start</tt> is negative,
|
|
* calculates the start index backwards from the end of the array:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.slice!(-2..2) # => ["bar", 2]
|
|
* a # => [:foo]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE arg1;
|
|
long pos, len;
|
|
|
|
rb_ary_modify_check(ary);
|
|
rb_check_arity(argc, 1, 2);
|
|
arg1 = argv[0];
|
|
|
|
if (argc == 2) {
|
|
pos = NUM2LONG(argv[0]);
|
|
len = NUM2LONG(argv[1]);
|
|
return ary_slice_bang_by_rb_ary_splice(ary, pos, len);
|
|
}
|
|
|
|
if (!FIXNUM_P(arg1)) {
|
|
switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
|
|
case Qtrue:
|
|
/* valid range */
|
|
return ary_slice_bang_by_rb_ary_splice(ary, pos, len);
|
|
case Qnil:
|
|
/* invalid range */
|
|
return Qnil;
|
|
default:
|
|
/* not a range */
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rb_ary_delete_at(ary, NUM2LONG(arg1));
|
|
}
|
|
|
|
static VALUE
|
|
ary_reject(VALUE orig, VALUE result)
|
|
{
|
|
long i;
|
|
|
|
for (i = 0; i < RARRAY_LEN(orig); i++) {
|
|
VALUE v = RARRAY_AREF(orig, i);
|
|
|
|
if (!RTEST(rb_yield(v))) {
|
|
rb_ary_push(result, v);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static VALUE
|
|
reject_bang_i(VALUE a)
|
|
{
|
|
volatile struct select_bang_arg *arg = (void *)a;
|
|
VALUE ary = arg->ary;
|
|
long i1, i2;
|
|
|
|
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); arg->len[0] = ++i1) {
|
|
VALUE v = RARRAY_AREF(ary, i1);
|
|
if (RTEST(rb_yield(v))) continue;
|
|
if (i1 != i2) {
|
|
rb_ary_store(ary, i2, v);
|
|
}
|
|
arg->len[1] = ++i2;
|
|
}
|
|
return (i1 == i2) ? Qnil : ary;
|
|
}
|
|
|
|
static VALUE
|
|
ary_reject_bang(VALUE ary)
|
|
{
|
|
struct select_bang_arg args;
|
|
rb_ary_modify_check(ary);
|
|
args.ary = ary;
|
|
args.len[0] = args.len[1] = 0;
|
|
return rb_ensure(reject_bang_i, (VALUE)&args, select_bang_ensure, (VALUE)&args);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.reject! {|element| ... } -> self or nil
|
|
* array.reject! -> new_enumerator
|
|
*
|
|
* Removes each element for which the block returns a truthy value.
|
|
*
|
|
* Returns +self+ if any elements removed:
|
|
* a = [:foo, 'bar', 2, 'bat']
|
|
* a.reject! {|element| element.to_s.start_with?('b') } # => [:foo, 2]
|
|
*
|
|
* Returns +nil+ if no elements removed.
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.reject! # => #<Enumerator: [:foo, "bar", 2]:reject!>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_reject_bang(VALUE ary)
|
|
{
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
rb_ary_modify(ary);
|
|
return ary_reject_bang(ary);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.reject {|element| ... } -> new_array
|
|
* array.reject -> new_enumerator
|
|
*
|
|
* Returns a new \Array whose elements are all those from +self+
|
|
* for which the block returns +false+ or +nil+:
|
|
* a = [:foo, 'bar', 2, 'bat']
|
|
* a1 = a.reject {|element| element.to_s.start_with?('b') }
|
|
* a1 # => [:foo, 2]
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.reject # => #<Enumerator: [:foo, "bar", 2]:reject>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_reject(VALUE ary)
|
|
{
|
|
VALUE rejected_ary;
|
|
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
rejected_ary = rb_ary_new();
|
|
ary_reject(ary, rejected_ary);
|
|
return rejected_ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.delete_if {|element| ... } -> self
|
|
* array.delete_if -> Enumerator
|
|
*
|
|
* Removes each element in +self+ for which the block returns a truthy value;
|
|
* returns +self+:
|
|
* a = [:foo, 'bar', 2, 'bat']
|
|
* a.delete_if {|element| element.to_s.start_with?('b') } # => [:foo, 2]
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.delete_if # => #<Enumerator: [:foo, "bar", 2]:delete_if>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_delete_if(VALUE ary)
|
|
{
|
|
ary_verify(ary);
|
|
RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
|
|
ary_reject_bang(ary);
|
|
return ary;
|
|
}
|
|
|
|
static VALUE
|
|
take_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, cbarg))
|
|
{
|
|
VALUE *args = (VALUE *)cbarg;
|
|
if (args[1] == 0) rb_iter_break();
|
|
else args[1]--;
|
|
if (argc > 1) val = rb_ary_new4(argc, argv);
|
|
rb_ary_push(args[0], val);
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
take_items(VALUE obj, long n)
|
|
{
|
|
VALUE result = rb_check_array_type(obj);
|
|
VALUE args[2];
|
|
|
|
if (!NIL_P(result)) return rb_ary_subseq(result, 0, n);
|
|
result = rb_ary_new2(n);
|
|
args[0] = result; args[1] = (VALUE)n;
|
|
if (rb_check_block_call(obj, idEach, 0, 0, take_i, (VALUE)args) == Qundef)
|
|
rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
|
|
rb_obj_class(obj));
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.zip(*other_arrays) -> new_array
|
|
* array.zip(*other_arrays) {|other_array| ... } -> nil
|
|
*
|
|
* When no block given, returns a new \Array +new_array+ of size <tt>self.size</tt>
|
|
* whose elements are Arrays.
|
|
*
|
|
* Each nested array <tt>new_array[n]</tt> is of size <tt>other_arrays.size+1</tt>,
|
|
* and contains:
|
|
* - The _nth_ element of +self+.
|
|
* - The _nth_ element of each of the +other_arrays+.
|
|
*
|
|
* If all +other_arrays+ and +self+ are the same size:
|
|
* a = [:a0, :a1, :a2, :a3]
|
|
* b = [:b0, :b1, :b2, :b3]
|
|
* c = [:c0, :c1, :c2, :c3]
|
|
* d = a.zip(b, c)
|
|
* d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
|
|
*
|
|
* If any array in +other_arrays+ is smaller than +self+,
|
|
* fills to <tt>self.size</tt> with +nil+:
|
|
* a = [:a0, :a1, :a2, :a3]
|
|
* b = [:b0, :b1, :b2]
|
|
* c = [:c0, :c1]
|
|
* d = a.zip(b, c)
|
|
* d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, nil], [:a3, nil, nil]]
|
|
*
|
|
* If any array in +other_arrays+ is larger than +self+,
|
|
* its trailing elements are ignored:
|
|
* a = [:a0, :a1, :a2, :a3]
|
|
* b = [:b0, :b1, :b2, :b3, :b4]
|
|
* c = [:c0, :c1, :c2, :c3, :c4, :c5]
|
|
* d = a.zip(b, c)
|
|
* d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
|
|
*
|
|
* When a block is given, calls the block with each of the sub-arrays (formed as above); returns nil
|
|
* a = [:a0, :a1, :a2, :a3]
|
|
* b = [:b0, :b1, :b2, :b3]
|
|
* c = [:c0, :c1, :c2, :c3]
|
|
* a.zip(b, c) {|sub_array| p sub_array} # => nil
|
|
*
|
|
* Output:
|
|
* [:a0, :b0, :c0]
|
|
* [:a1, :b1, :c1]
|
|
* [:a2, :b2, :c2]
|
|
* [:a3, :b3, :c3]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_zip(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
int i, j;
|
|
long len = RARRAY_LEN(ary);
|
|
VALUE result = Qnil;
|
|
|
|
for (i=0; i<argc; i++) {
|
|
argv[i] = take_items(argv[i], len);
|
|
}
|
|
|
|
if (rb_block_given_p()) {
|
|
int arity = rb_block_arity();
|
|
|
|
if (arity > 1) {
|
|
VALUE work, *tmp;
|
|
|
|
tmp = ALLOCV_N(VALUE, work, argc+1);
|
|
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
tmp[0] = RARRAY_AREF(ary, i);
|
|
for (j=0; j<argc; j++) {
|
|
tmp[j+1] = rb_ary_elt(argv[j], i);
|
|
}
|
|
rb_yield_values2(argc+1, tmp);
|
|
}
|
|
|
|
if (work) ALLOCV_END(work);
|
|
}
|
|
else {
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
VALUE tmp = rb_ary_new2(argc+1);
|
|
|
|
rb_ary_push(tmp, RARRAY_AREF(ary, i));
|
|
for (j=0; j<argc; j++) {
|
|
rb_ary_push(tmp, rb_ary_elt(argv[j], i));
|
|
}
|
|
rb_yield(tmp);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
result = rb_ary_new_capa(len);
|
|
|
|
for (i=0; i<len; i++) {
|
|
VALUE tmp = rb_ary_new_capa(argc+1);
|
|
|
|
rb_ary_push(tmp, RARRAY_AREF(ary, i));
|
|
for (j=0; j<argc; j++) {
|
|
rb_ary_push(tmp, rb_ary_elt(argv[j], i));
|
|
}
|
|
rb_ary_push(result, tmp);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.transpose -> new_array
|
|
*
|
|
* Transposes the rows and columns in an \Array of Arrays;
|
|
* the nested Arrays must all be the same size:
|
|
* a = [[:a0, :a1], [:b0, :b1], [:c0, :c1]]
|
|
* a.transpose # => [[:a0, :b0, :c0], [:a1, :b1, :c1]]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_transpose(VALUE ary)
|
|
{
|
|
long elen = -1, alen, i, j;
|
|
VALUE tmp, result = 0;
|
|
|
|
alen = RARRAY_LEN(ary);
|
|
if (alen == 0) return rb_ary_dup(ary);
|
|
for (i=0; i<alen; i++) {
|
|
tmp = to_ary(rb_ary_elt(ary, i));
|
|
if (elen < 0) { /* first element */
|
|
elen = RARRAY_LEN(tmp);
|
|
result = rb_ary_new2(elen);
|
|
for (j=0; j<elen; j++) {
|
|
rb_ary_store(result, j, rb_ary_new2(alen));
|
|
}
|
|
}
|
|
else if (elen != RARRAY_LEN(tmp)) {
|
|
rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
|
|
RARRAY_LEN(tmp), elen);
|
|
}
|
|
for (j=0; j<elen; j++) {
|
|
rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.replace(other_array) -> self
|
|
*
|
|
* Replaces the content of +self+ with the content of +other_array+; returns +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.replace(['foo', :bar, 3]) # => ["foo", :bar, 3]
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_replace(VALUE copy, VALUE orig)
|
|
{
|
|
rb_ary_modify_check(copy);
|
|
orig = to_ary(orig);
|
|
if (copy == orig) return copy;
|
|
|
|
if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
|
|
VALUE shared_root = 0;
|
|
|
|
if (ARY_OWNS_HEAP_P(copy)) {
|
|
ary_heap_free(copy);
|
|
}
|
|
else if (ARY_SHARED_P(copy)) {
|
|
shared_root = ARY_SHARED_ROOT(copy);
|
|
FL_UNSET_SHARED(copy);
|
|
}
|
|
FL_SET_EMBED(copy);
|
|
ary_memcpy(copy, 0, RARRAY_LEN(orig), RARRAY_CONST_PTR_TRANSIENT(orig));
|
|
if (shared_root) {
|
|
rb_ary_decrement_share(shared_root);
|
|
}
|
|
ARY_SET_LEN(copy, RARRAY_LEN(orig));
|
|
}
|
|
else {
|
|
VALUE shared_root = ary_make_shared(orig);
|
|
if (ARY_OWNS_HEAP_P(copy)) {
|
|
ary_heap_free(copy);
|
|
}
|
|
else {
|
|
rb_ary_unshare_safe(copy);
|
|
}
|
|
FL_UNSET_EMBED(copy);
|
|
ARY_SET_PTR(copy, ARY_HEAP_PTR(orig));
|
|
ARY_SET_LEN(copy, ARY_HEAP_LEN(orig));
|
|
rb_ary_set_shared(copy, shared_root);
|
|
}
|
|
ary_verify(copy);
|
|
return copy;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.clear -> self
|
|
*
|
|
* Removes all elements from +self+:
|
|
* a = [:foo, 'bar', 2]
|
|
* a.clear # => []
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_clear(VALUE ary)
|
|
{
|
|
rb_ary_modify_check(ary);
|
|
if (ARY_SHARED_P(ary)) {
|
|
if (!ARY_EMBED_P(ary)) {
|
|
rb_ary_unshare(ary);
|
|
FL_SET_EMBED(ary);
|
|
ARY_SET_EMBED_LEN(ary, 0);
|
|
}
|
|
}
|
|
else {
|
|
ARY_SET_LEN(ary, 0);
|
|
if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
|
|
ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2);
|
|
}
|
|
}
|
|
ary_verify(ary);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.fill(obj) -> self
|
|
* array.fill(obj, start) -> self
|
|
* array.fill(obj, start, length) -> self
|
|
* array.fill(obj, range) -> self
|
|
* array.fill {|index| ... } -> self
|
|
* array.fill(start) {|index| ... } -> self
|
|
* array.fill(start, length) {|index| ... } -> self
|
|
* array.fill(range) {|index| ... } -> self
|
|
*
|
|
* Replaces specified elements in +self+ with specified objects; returns +self+.
|
|
*
|
|
* With argument +obj+ and no block given, replaces all elements with that one object:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a # => ["a", "b", "c", "d"]
|
|
* a.fill(:X) # => [:X, :X, :X, :X]
|
|
*
|
|
* With arguments +obj+ and \Integer +start+, and no block given,
|
|
* replaces elements based on the given start.
|
|
*
|
|
* If +start+ is in range (<tt>0 <= start < array.size</tt>),
|
|
* replaces all elements from offset +start+ through the end:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, 2) # => ["a", "b", :X, :X]
|
|
*
|
|
* If +start+ is too large (<tt>start >= array.size</tt>), does nothing:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, 4) # => ["a", "b", "c", "d"]
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, 5) # => ["a", "b", "c", "d"]
|
|
*
|
|
* If +start+ is negative, counts from the end (starting index is <tt>start + array.size</tt>):
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, -2) # => ["a", "b", :X, :X]
|
|
*
|
|
* If +start+ is too small (less than and far from zero), replaces all elements:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, -6) # => [:X, :X, :X, :X]
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, -50) # => [:X, :X, :X, :X]
|
|
*
|
|
* With arguments +obj+, \Integer +start+, and \Integer +length+, and no block given,
|
|
* replaces elements based on the given +start+ and +length+.
|
|
*
|
|
* If +start+ is in range, replaces +length+ elements beginning at offset +start+:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, 1, 1) # => ["a", :X, "c", "d"]
|
|
*
|
|
* If +start+ is negative, counts from the end:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, -2, 1) # => ["a", "b", :X, "d"]
|
|
*
|
|
* If +start+ is large (<tt>start >= array.size</tt>), extends +self+ with +nil+:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, 5, 0) # => ["a", "b", "c", "d", nil]
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, 5, 2) # => ["a", "b", "c", "d", nil, :X, :X]
|
|
*
|
|
* If +length+ is zero or negative, replaces no elements:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, 1, 0) # => ["a", "b", "c", "d"]
|
|
* a.fill(:X, 1, -1) # => ["a", "b", "c", "d"]
|
|
*
|
|
* With arguments +obj+ and \Range +range+, and no block given,
|
|
* replaces elements based on the given range.
|
|
*
|
|
* If the range is positive and ascending (<tt>0 < range.begin <= range.end</tt>),
|
|
* replaces elements from <tt>range.begin</tt> to <tt>range.end</tt>:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, (1..1)) # => ["a", :X, "c", "d"]
|
|
*
|
|
* If <tt>range.first</tt> is negative, replaces no elements:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, (-1..1)) # => ["a", "b", "c", "d"]
|
|
*
|
|
* If <tt>range.last</tt> is negative, counts from the end:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, (0..-2)) # => [:X, :X, :X, "d"]
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, (1..-2)) # => ["a", :X, :X, "d"]
|
|
*
|
|
* If <tt>range.last</tt> and <tt>range.last</tt> are both negative,
|
|
* both count from the end of the array:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, (-1..-1)) # => ["a", "b", "c", :X]
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(:X, (-2..-2)) # => ["a", "b", :X, "d"]
|
|
*
|
|
* With no arguments and a block given, calls the block with each index;
|
|
* replaces the corresponding element with the block's return value:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"]
|
|
*
|
|
* With argument +start+ and a block given, calls the block with each index
|
|
* from offset +start+ to the end; replaces the corresponding element
|
|
* with the block's return value:
|
|
*
|
|
* If start is in range (<tt>0 <= start < array.size</tt>),
|
|
* replaces from offset +start+ to the end:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(1) { |index| "new_#{index}" } # => ["a", "new_1", "new_2", "new_3"]
|
|
*
|
|
* If +start+ is too large(<tt>start >= array.size</tt>), does nothing:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(4) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"]
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(4) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"]
|
|
*
|
|
* If +start+ is negative, counts from the end:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(-2) { |index| "new_#{index}" } # => ["a", "b", "new_2", "new_3"]
|
|
*
|
|
* If start is too small (<tt>start <= -array.size</tt>, replaces all elements:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(-6) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"]
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(-50) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "new_3"]
|
|
*
|
|
* With arguments +start+ and +length+, and a block given,
|
|
* calls the block for each index specified by start length;
|
|
* replaces the corresponding element with the block's return value.
|
|
*
|
|
* If +start+ is in range, replaces +length+ elements beginning at offset +start+:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(1, 1) { |index| "new_#{index}" } # => ["a", "new_1", "c", "d"]
|
|
*
|
|
* If start is negative, counts from the end:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(-2, 1) { |index| "new_#{index}" } # => ["a", "b", "new_2", "d"]
|
|
*
|
|
* If +start+ is large (<tt>start >= array.size</tt>), extends +self+ with +nil+:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(5, 0) { |index| "new_#{index}" } # => ["a", "b", "c", "d", nil]
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(5, 2) { |index| "new_#{index}" } # => ["a", "b", "c", "d", nil, "new_5", "new_6"]
|
|
*
|
|
* If +length+ is zero or less, replaces no elements:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(1, 0) { |index| "new_#{index}" } # => ["a", "b", "c", "d"]
|
|
* a.fill(1, -1) { |index| "new_#{index}" } # => ["a", "b", "c", "d"]
|
|
*
|
|
* With arguments +obj+ and +range+, and a block given,
|
|
* calls the block with each index in the given range;
|
|
* replaces the corresponding element with the block's return value.
|
|
*
|
|
* If the range is positive and ascending (<tt>range 0 < range.begin <= range.end</tt>,
|
|
* replaces elements from <tt>range.begin</tt> to <tt>range.end</tt>:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(1..1) { |index| "new_#{index}" } # => ["a", "new_1", "c", "d"]
|
|
*
|
|
* If +range.first+ is negative, does nothing:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(-1..1) { |index| fail 'Cannot happen' } # => ["a", "b", "c", "d"]
|
|
*
|
|
* If <tt>range.last</tt> is negative, counts from the end:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(0..-2) { |index| "new_#{index}" } # => ["new_0", "new_1", "new_2", "d"]
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(1..-2) { |index| "new_#{index}" } # => ["a", "new_1", "new_2", "d"]
|
|
*
|
|
* If <tt>range.first</tt> and <tt>range.last</tt> are both negative,
|
|
* both count from the end:
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(-1..-1) { |index| "new_#{index}" } # => ["a", "b", "c", "new_3"]
|
|
* a = ['a', 'b', 'c', 'd']
|
|
* a.fill(-2..-2) { |index| "new_#{index}" } # => ["a", "b", "new_2", "d"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_fill(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE item = Qundef, arg1, arg2;
|
|
long beg = 0, end = 0, len = 0;
|
|
|
|
if (rb_block_given_p()) {
|
|
rb_scan_args(argc, argv, "02", &arg1, &arg2);
|
|
argc += 1; /* hackish */
|
|
}
|
|
else {
|
|
rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
|
|
}
|
|
switch (argc) {
|
|
case 1:
|
|
beg = 0;
|
|
len = RARRAY_LEN(ary);
|
|
break;
|
|
case 2:
|
|
if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 3:
|
|
beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
|
|
if (beg < 0) {
|
|
beg = RARRAY_LEN(ary) + beg;
|
|
if (beg < 0) beg = 0;
|
|
}
|
|
len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
|
|
break;
|
|
}
|
|
rb_ary_modify(ary);
|
|
if (len < 0) {
|
|
return ary;
|
|
}
|
|
if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
|
|
rb_raise(rb_eArgError, "argument too big");
|
|
}
|
|
end = beg + len;
|
|
if (RARRAY_LEN(ary) < end) {
|
|
if (end >= ARY_CAPA(ary)) {
|
|
ary_resize_capa(ary, end);
|
|
}
|
|
ary_mem_clear(ary, RARRAY_LEN(ary), end - RARRAY_LEN(ary));
|
|
ARY_SET_LEN(ary, end);
|
|
}
|
|
|
|
if (item == Qundef) {
|
|
VALUE v;
|
|
long i;
|
|
|
|
for (i=beg; i<end; i++) {
|
|
v = rb_yield(LONG2NUM(i));
|
|
if (i>=RARRAY_LEN(ary)) break;
|
|
ARY_SET(ary, i, v);
|
|
}
|
|
}
|
|
else {
|
|
ary_memfill(ary, beg, len, item);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array + other_array -> new_array
|
|
*
|
|
* Returns a new \Array containing all elements of +array+
|
|
* followed by all elements of +other_array+:
|
|
* a = [0, 1] + [2, 3]
|
|
* a # => [0, 1, 2, 3]
|
|
*
|
|
* Related: #concat.
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_plus(VALUE x, VALUE y)
|
|
{
|
|
VALUE z;
|
|
long len, xlen, ylen;
|
|
|
|
y = to_ary(y);
|
|
xlen = RARRAY_LEN(x);
|
|
ylen = RARRAY_LEN(y);
|
|
len = xlen + ylen;
|
|
z = rb_ary_new2(len);
|
|
|
|
ary_memcpy(z, 0, xlen, RARRAY_CONST_PTR_TRANSIENT(x));
|
|
ary_memcpy(z, xlen, ylen, RARRAY_CONST_PTR_TRANSIENT(y));
|
|
ARY_SET_LEN(z, len);
|
|
return z;
|
|
}
|
|
|
|
static VALUE
|
|
ary_append(VALUE x, VALUE y)
|
|
{
|
|
long n = RARRAY_LEN(y);
|
|
if (n > 0) {
|
|
rb_ary_splice(x, RARRAY_LEN(x), 0, RARRAY_CONST_PTR_TRANSIENT(y), n);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.concat(*other_arrays) -> self
|
|
*
|
|
* Adds to +array+ all elements from each \Array in +other_arrays+; returns +self+:
|
|
* a = [0, 1]
|
|
* a.concat([2, 3], [4, 5]) # => [0, 1, 2, 3, 4, 5]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_concat_multi(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
rb_ary_modify_check(ary);
|
|
|
|
if (argc == 1) {
|
|
rb_ary_concat(ary, argv[0]);
|
|
}
|
|
else if (argc > 1) {
|
|
int i;
|
|
VALUE args = rb_ary_tmp_new(argc);
|
|
for (i = 0; i < argc; i++) {
|
|
rb_ary_concat(args, argv[i]);
|
|
}
|
|
ary_append(ary, args);
|
|
}
|
|
|
|
ary_verify(ary);
|
|
return ary;
|
|
}
|
|
|
|
VALUE
|
|
rb_ary_concat(VALUE x, VALUE y)
|
|
{
|
|
return ary_append(x, to_ary(y));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array * n -> new_array
|
|
* array * string_separator -> new_string
|
|
*
|
|
* When non-negative argument \Integer +n+ is given,
|
|
* returns a new \Array built by concatenating the +n+ copies of +self+:
|
|
* a = ['x', 'y']
|
|
* a * 3 # => ["x", "y", "x", "y", "x", "y"]
|
|
*
|
|
* When \String argument +string_separator+ is given,
|
|
* equivalent to <tt>array.join(string_separator)</tt>:
|
|
* [0, [0, 1], {foo: 0}] * ', ' # => "0, 0, 1, {:foo=>0}"
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_times(VALUE ary, VALUE times)
|
|
{
|
|
VALUE ary2, tmp;
|
|
const VALUE *ptr;
|
|
long t, len;
|
|
|
|
tmp = rb_check_string_type(times);
|
|
if (!NIL_P(tmp)) {
|
|
return rb_ary_join(ary, tmp);
|
|
}
|
|
|
|
len = NUM2LONG(times);
|
|
if (len == 0) {
|
|
ary2 = ary_new(rb_obj_class(ary), 0);
|
|
goto out;
|
|
}
|
|
if (len < 0) {
|
|
rb_raise(rb_eArgError, "negative argument");
|
|
}
|
|
if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
|
|
rb_raise(rb_eArgError, "argument too big");
|
|
}
|
|
len *= RARRAY_LEN(ary);
|
|
|
|
ary2 = ary_new(rb_obj_class(ary), len);
|
|
ARY_SET_LEN(ary2, len);
|
|
|
|
ptr = RARRAY_CONST_PTR_TRANSIENT(ary);
|
|
t = RARRAY_LEN(ary);
|
|
if (0 < t) {
|
|
ary_memcpy(ary2, 0, t, ptr);
|
|
while (t <= len/2) {
|
|
ary_memcpy(ary2, t, t, RARRAY_CONST_PTR_TRANSIENT(ary2));
|
|
t *= 2;
|
|
}
|
|
if (t < len) {
|
|
ary_memcpy(ary2, t, len-t, RARRAY_CONST_PTR_TRANSIENT(ary2));
|
|
}
|
|
}
|
|
out:
|
|
return ary2;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.assoc(obj) -> found_array or nil
|
|
*
|
|
* Returns the first element in +self+ that is an \Array
|
|
* whose first element <tt>==</tt> +obj+:
|
|
* a = [{foo: 0}, [2, 4], [4, 5, 6], [4, 5]]
|
|
* a.assoc(4) # => [4, 5, 6]
|
|
*
|
|
* Returns +nil+ if no such element is found.
|
|
*
|
|
* Related: #rassoc.
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_assoc(VALUE ary, VALUE key)
|
|
{
|
|
long i;
|
|
VALUE v;
|
|
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
v = rb_check_array_type(RARRAY_AREF(ary, i));
|
|
if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
|
|
rb_equal(RARRAY_AREF(v, 0), key))
|
|
return v;
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.rassoc(obj) -> found_array or nil
|
|
*
|
|
* Returns the first element in +self+ that is an \Array
|
|
* whose second element <tt>==</tt> +obj+:
|
|
* a = [{foo: 0}, [2, 4], [4, 5, 6], [4, 5]]
|
|
* a.rassoc(4) # => [2, 4]
|
|
*
|
|
* Returns +nil+ if no such element is found.
|
|
*
|
|
* Related: #assoc.
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_rassoc(VALUE ary, VALUE value)
|
|
{
|
|
long i;
|
|
VALUE v;
|
|
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
v = RARRAY_AREF(ary, i);
|
|
if (RB_TYPE_P(v, T_ARRAY) &&
|
|
RARRAY_LEN(v) > 1 &&
|
|
rb_equal(RARRAY_AREF(v, 1), value))
|
|
return v;
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
recursive_equal(VALUE ary1, VALUE ary2, int recur)
|
|
{
|
|
long i, len1;
|
|
const VALUE *p1, *p2;
|
|
|
|
if (recur) return Qtrue; /* Subtle! */
|
|
|
|
/* rb_equal() can evacuate ptrs */
|
|
p1 = RARRAY_CONST_PTR(ary1);
|
|
p2 = RARRAY_CONST_PTR(ary2);
|
|
len1 = RARRAY_LEN(ary1);
|
|
|
|
for (i = 0; i < len1; i++) {
|
|
if (*p1 != *p2) {
|
|
if (rb_equal(*p1, *p2)) {
|
|
len1 = RARRAY_LEN(ary1);
|
|
if (len1 != RARRAY_LEN(ary2))
|
|
return Qfalse;
|
|
if (len1 < i)
|
|
return Qtrue;
|
|
p1 = RARRAY_CONST_PTR(ary1) + i;
|
|
p2 = RARRAY_CONST_PTR(ary2) + i;
|
|
}
|
|
else {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
p1++;
|
|
p2++;
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array == other_array -> true or false
|
|
*
|
|
* Returns +true+ if both <tt>array.size == other_array.size</tt>
|
|
* and for each index +i+ in +array+, <tt>array[i] == other_array[i]</tt>:
|
|
* a0 = [:foo, 'bar', 2]
|
|
* a1 = [:foo, 'bar', 2.0]
|
|
* a1 == a0 # => true
|
|
* [] == [] # => true
|
|
*
|
|
* Otherwise, returns +false+.
|
|
*
|
|
* This method is different from method Array#eql?,
|
|
* which compares elements using <tt>Object#eql?</tt>.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_equal(VALUE ary1, VALUE ary2)
|
|
{
|
|
if (ary1 == ary2) return Qtrue;
|
|
if (!RB_TYPE_P(ary2, T_ARRAY)) {
|
|
if (!rb_respond_to(ary2, idTo_ary)) {
|
|
return Qfalse;
|
|
}
|
|
return rb_equal(ary2, ary1);
|
|
}
|
|
if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
|
|
if (RARRAY_CONST_PTR_TRANSIENT(ary1) == RARRAY_CONST_PTR_TRANSIENT(ary2)) return Qtrue;
|
|
return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2);
|
|
}
|
|
|
|
static VALUE
|
|
recursive_eql(VALUE ary1, VALUE ary2, int recur)
|
|
{
|
|
long i;
|
|
|
|
if (recur) return Qtrue; /* Subtle! */
|
|
for (i=0; i<RARRAY_LEN(ary1); i++) {
|
|
if (!rb_eql(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
|
|
return Qfalse;
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.eql? other_array -> true or false
|
|
*
|
|
* Returns +true+ if +self+ and +other_array+ are the same size,
|
|
* and if, for each index +i+ in +self+, <tt>self[i].eql? other_array[i]</tt>:
|
|
* a0 = [:foo, 'bar', 2]
|
|
* a1 = [:foo, 'bar', 2]
|
|
* a1.eql?(a0) # => true
|
|
*
|
|
* Otherwise, returns +false+.
|
|
*
|
|
* This method is different from method {Array#==}[#method-i-3D-3D],
|
|
* which compares using method <tt>Object#==</tt>.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_eql(VALUE ary1, VALUE ary2)
|
|
{
|
|
if (ary1 == ary2) return Qtrue;
|
|
if (!RB_TYPE_P(ary2, T_ARRAY)) return Qfalse;
|
|
if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
|
|
if (RARRAY_CONST_PTR_TRANSIENT(ary1) == RARRAY_CONST_PTR_TRANSIENT(ary2)) return Qtrue;
|
|
return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.hash -> integer
|
|
*
|
|
* Returns the integer hash value for +self+.
|
|
*
|
|
* Two arrays with the same content will have the same hash code (and will compare using eql?):
|
|
* [0, 1, 2].hash == [0, 1, 2].hash # => true
|
|
* [0, 1, 2].hash == [0, 1, 3].hash # => false
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_hash(VALUE ary)
|
|
{
|
|
long i;
|
|
st_index_t h;
|
|
VALUE n;
|
|
|
|
h = rb_hash_start(RARRAY_LEN(ary));
|
|
h = rb_hash_uint(h, (st_index_t)rb_ary_hash);
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
n = rb_hash(RARRAY_AREF(ary, i));
|
|
h = rb_hash_uint(h, NUM2LONG(n));
|
|
}
|
|
h = rb_hash_end(h);
|
|
return ST2FIX(h);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.include?(obj) -> true or false
|
|
*
|
|
* Returns +true+ if for some index +i+ in +self+, <tt>obj == self[i]</tt>;
|
|
* otherwise +false+:
|
|
* [0, 1, 2].include?(2) # => true
|
|
* [0, 1, 2].include?(3) # => false
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_includes(VALUE ary, VALUE item)
|
|
{
|
|
long i;
|
|
VALUE e;
|
|
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
e = RARRAY_AREF(ary, i);
|
|
if (rb_equal(e, item)) {
|
|
return Qtrue;
|
|
}
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_includes_by_eql(VALUE ary, VALUE item)
|
|
{
|
|
long i;
|
|
VALUE e;
|
|
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
e = RARRAY_AREF(ary, i);
|
|
if (rb_eql(item, e)) {
|
|
return Qtrue;
|
|
}
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
static VALUE
|
|
recursive_cmp(VALUE ary1, VALUE ary2, int recur)
|
|
{
|
|
long i, len;
|
|
|
|
if (recur) return Qundef; /* Subtle! */
|
|
len = RARRAY_LEN(ary1);
|
|
if (len > RARRAY_LEN(ary2)) {
|
|
len = RARRAY_LEN(ary2);
|
|
}
|
|
for (i=0; i<len; i++) {
|
|
VALUE e1 = rb_ary_elt(ary1, i), e2 = rb_ary_elt(ary2, i);
|
|
VALUE v = rb_funcallv(e1, id_cmp, 1, &e2);
|
|
if (v != INT2FIX(0)) {
|
|
return v;
|
|
}
|
|
}
|
|
return Qundef;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array <=> other_array -> -1, 0, or 1
|
|
*
|
|
* Returns -1, 0, or 1 as +self+ is less than, equal to, or greater than +other_array+.
|
|
* For each index +i+ in +self+, evaluates <tt>result = self[i] <=> other_array[i]</tt>.
|
|
*
|
|
* Returns -1 if any result is -1:
|
|
* [0, 1, 2] <=> [0, 1, 3] # => -1
|
|
*
|
|
* Returns 1 if any result is 1:
|
|
* [0, 1, 2] <=> [0, 1, 1] # => 1
|
|
*
|
|
* When all results are zero:
|
|
* - Returns -1 if +array+ is smaller than +other_array+:
|
|
* [0, 1, 2] <=> [0, 1, 2, 3] # => -1
|
|
* - Returns 1 if +array+ is larger than +other_array+:
|
|
* [0, 1, 2] <=> [0, 1] # => 1
|
|
* - Returns 0 if +array+ and +other_array+ are the same size:
|
|
* [0, 1, 2] <=> [0, 1, 2] # => 0
|
|
*/
|
|
|
|
VALUE
|
|
rb_ary_cmp(VALUE ary1, VALUE ary2)
|
|
{
|
|
long len;
|
|
VALUE v;
|
|
|
|
ary2 = rb_check_array_type(ary2);
|
|
if (NIL_P(ary2)) return Qnil;
|
|
if (ary1 == ary2) return INT2FIX(0);
|
|
v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
|
|
if (v != Qundef) return v;
|
|
len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
|
|
if (len == 0) return INT2FIX(0);
|
|
if (len > 0) return INT2FIX(1);
|
|
return INT2FIX(-1);
|
|
}
|
|
|
|
static VALUE
|
|
ary_add_hash(VALUE hash, VALUE ary)
|
|
{
|
|
long i;
|
|
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
VALUE elt = RARRAY_AREF(ary, i);
|
|
rb_hash_add_new_element(hash, elt, elt);
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
static inline VALUE
|
|
ary_tmp_hash_new(VALUE ary)
|
|
{
|
|
long size = RARRAY_LEN(ary);
|
|
VALUE hash = rb_hash_new_with_size(size);
|
|
|
|
RBASIC_CLEAR_CLASS(hash);
|
|
return hash;
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_hash(VALUE ary)
|
|
{
|
|
VALUE hash = ary_tmp_hash_new(ary);
|
|
return ary_add_hash(hash, ary);
|
|
}
|
|
|
|
static VALUE
|
|
ary_add_hash_by(VALUE hash, VALUE ary)
|
|
{
|
|
long i;
|
|
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
VALUE v = rb_ary_elt(ary, i), k = rb_yield(v);
|
|
rb_hash_add_new_element(hash, k, v);
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
static VALUE
|
|
ary_make_hash_by(VALUE ary)
|
|
{
|
|
VALUE hash = ary_tmp_hash_new(ary);
|
|
return ary_add_hash_by(hash, ary);
|
|
}
|
|
|
|
static inline void
|
|
ary_recycle_hash(VALUE hash)
|
|
{
|
|
assert(RBASIC_CLASS(hash) == 0);
|
|
if (RHASH_ST_TABLE_P(hash)) {
|
|
st_table *tbl = RHASH_ST_TABLE(hash);
|
|
st_free_table(tbl);
|
|
RHASH_ST_CLEAR(hash);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array - other_array -> new_array
|
|
*
|
|
* Returns a new \Array containing only those elements from +array+
|
|
* that are not found in \Array +other_array+;
|
|
* items are compared using <tt>eql?</tt>;
|
|
* the order from +array+ is preserved:
|
|
* [0, 1, 1, 2, 1, 1, 3, 1, 1] - [1] # => [0, 2, 3]
|
|
* [0, 1, 2, 3] - [3, 0] # => [1, 2]
|
|
* [0, 1, 2] - [4] # => [0, 1, 2]
|
|
*
|
|
* Related: Array#difference.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_diff(VALUE ary1, VALUE ary2)
|
|
{
|
|
VALUE ary3;
|
|
VALUE hash;
|
|
long i;
|
|
|
|
ary2 = to_ary(ary2);
|
|
ary3 = rb_ary_new();
|
|
|
|
if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN || RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
|
|
for (i=0; i<RARRAY_LEN(ary1); i++) {
|
|
VALUE elt = rb_ary_elt(ary1, i);
|
|
if (rb_ary_includes_by_eql(ary2, elt)) continue;
|
|
rb_ary_push(ary3, elt);
|
|
}
|
|
return ary3;
|
|
}
|
|
|
|
hash = ary_make_hash(ary2);
|
|
for (i=0; i<RARRAY_LEN(ary1); i++) {
|
|
if (rb_hash_stlike_lookup(hash, RARRAY_AREF(ary1, i), NULL)) continue;
|
|
rb_ary_push(ary3, rb_ary_elt(ary1, i));
|
|
}
|
|
ary_recycle_hash(hash);
|
|
return ary3;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.difference(*other_arrays) -> new_array
|
|
*
|
|
* Returns a new \Array containing only those elements from +self+
|
|
* that are not found in any of the Arrays +other_arrays+;
|
|
* items are compared using <tt>eql?</tt>; order from +self+ is preserved:
|
|
* [0, 1, 1, 2, 1, 1, 3, 1, 1].difference([1]) # => [0, 2, 3]
|
|
* [0, 1, 2, 3].difference([3, 0], [1, 3]) # => [2]
|
|
* [0, 1, 2].difference([4]) # => [0, 1, 2]
|
|
*
|
|
* Returns a copy of +self+ if no arguments given.
|
|
*
|
|
* Related: Array#-.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_difference_multi(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE ary_diff;
|
|
long i, length;
|
|
volatile VALUE t0;
|
|
bool *is_hash = ALLOCV_N(bool, t0, argc);
|
|
ary_diff = rb_ary_new();
|
|
length = RARRAY_LEN(ary);
|
|
|
|
for (i = 0; i < argc; i++) {
|
|
argv[i] = to_ary(argv[i]);
|
|
is_hash[i] = (length > SMALL_ARRAY_LEN && RARRAY_LEN(argv[i]) > SMALL_ARRAY_LEN);
|
|
if (is_hash[i]) argv[i] = ary_make_hash(argv[i]);
|
|
}
|
|
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
int j;
|
|
VALUE elt = rb_ary_elt(ary, i);
|
|
for (j = 0; j < argc; j++) {
|
|
if (is_hash[j]) {
|
|
if (rb_hash_stlike_lookup(argv[j], RARRAY_AREF(ary, i), NULL))
|
|
break;
|
|
}
|
|
else {
|
|
if (rb_ary_includes_by_eql(argv[j], elt)) break;
|
|
}
|
|
}
|
|
if (j == argc) rb_ary_push(ary_diff, elt);
|
|
}
|
|
|
|
ALLOCV_END(t0);
|
|
|
|
return ary_diff;
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* array & other_array -> new_array
|
|
*
|
|
* Returns a new \Array containing each element found in both +array+ and \Array +other_array+;
|
|
* duplicates are omitted; items are compared using <tt>eql?</tt>:
|
|
* [0, 1, 2, 3] & [1, 2] # => [1, 2]
|
|
* [0, 1, 0, 1] & [0, 1] # => [0, 1]
|
|
*
|
|
* Preserves order from +array+:
|
|
* [0, 1, 2] & [3, 2, 1, 0] # => [0, 1, 2]
|
|
*
|
|
* Related: Array#intersection.
|
|
*/
|
|
|
|
|
|
static VALUE
|
|
rb_ary_and(VALUE ary1, VALUE ary2)
|
|
{
|
|
VALUE hash, ary3, v;
|
|
st_data_t vv;
|
|
long i;
|
|
|
|
ary2 = to_ary(ary2);
|
|
ary3 = rb_ary_new();
|
|
if (RARRAY_LEN(ary1) == 0 || RARRAY_LEN(ary2) == 0) return ary3;
|
|
|
|
if (RARRAY_LEN(ary1) <= SMALL_ARRAY_LEN && RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
|
|
for (i=0; i<RARRAY_LEN(ary1); i++) {
|
|
v = RARRAY_AREF(ary1, i);
|
|
if (!rb_ary_includes_by_eql(ary2, v)) continue;
|
|
if (rb_ary_includes_by_eql(ary3, v)) continue;
|
|
rb_ary_push(ary3, v);
|
|
}
|
|
return ary3;
|
|
}
|
|
|
|
hash = ary_make_hash(ary2);
|
|
|
|
for (i=0; i<RARRAY_LEN(ary1); i++) {
|
|
v = RARRAY_AREF(ary1, i);
|
|
vv = (st_data_t)v;
|
|
if (rb_hash_stlike_delete(hash, &vv, 0)) {
|
|
rb_ary_push(ary3, v);
|
|
}
|
|
}
|
|
ary_recycle_hash(hash);
|
|
|
|
return ary3;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.intersection(*other_arrays) -> new_array
|
|
*
|
|
* Returns a new \Array containing each element found both in +self+
|
|
* and in all of the given Arrays +other_arrays+;
|
|
* duplicates are omitted; items are compared using <tt>eql?</tt>:
|
|
* [0, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1]
|
|
* [0, 0, 1, 1, 2, 3].intersection([0, 1, 2], [0, 1, 3]) # => [0, 1]
|
|
*
|
|
* Preserves order from +self+:
|
|
* [0, 1, 2].intersection([2, 1, 0]) # => [0, 1, 2]
|
|
*
|
|
* Returns a copy of +self+ if no arguments given.
|
|
*
|
|
* Related: Array#&.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_intersection_multi(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE result = rb_ary_dup(ary);
|
|
int i;
|
|
|
|
for (i = 0; i < argc; i++) {
|
|
result = rb_ary_and(result, argv[i]);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
ary_hash_orset(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
|
|
{
|
|
if (existing) return ST_STOP;
|
|
*key = *value = (VALUE)arg;
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
rb_ary_union(VALUE ary_union, VALUE ary)
|
|
{
|
|
long i;
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
VALUE elt = rb_ary_elt(ary, i);
|
|
if (rb_ary_includes_by_eql(ary_union, elt)) continue;
|
|
rb_ary_push(ary_union, elt);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rb_ary_union_hash(VALUE hash, VALUE ary2)
|
|
{
|
|
long i;
|
|
for (i = 0; i < RARRAY_LEN(ary2); i++) {
|
|
VALUE elt = RARRAY_AREF(ary2, i);
|
|
if (!rb_hash_stlike_update(hash, (st_data_t)elt, ary_hash_orset, (st_data_t)elt)) {
|
|
RB_OBJ_WRITTEN(hash, Qundef, elt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array | other_array -> new_array
|
|
*
|
|
* Returns the union of +array+ and \Array +other_array+;
|
|
* duplicates are removed; order is preserved;
|
|
* items are compared using <tt>eql?</tt>:
|
|
* [0, 1] | [2, 3] # => [0, 1, 2, 3]
|
|
* [0, 1, 1] | [2, 2, 3] # => [0, 1, 2, 3]
|
|
* [0, 1, 2] | [3, 2, 1, 0] # => [0, 1, 2, 3]
|
|
*
|
|
* Related: Array#union.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_or(VALUE ary1, VALUE ary2)
|
|
{
|
|
VALUE hash, ary3;
|
|
|
|
ary2 = to_ary(ary2);
|
|
if (RARRAY_LEN(ary1) + RARRAY_LEN(ary2) <= SMALL_ARRAY_LEN) {
|
|
ary3 = rb_ary_new();
|
|
rb_ary_union(ary3, ary1);
|
|
rb_ary_union(ary3, ary2);
|
|
return ary3;
|
|
}
|
|
|
|
hash = ary_make_hash(ary1);
|
|
rb_ary_union_hash(hash, ary2);
|
|
|
|
ary3 = rb_hash_values(hash);
|
|
ary_recycle_hash(hash);
|
|
return ary3;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.union(*other_arrays) -> new_array
|
|
*
|
|
* Returns a new \Array that is the union of +self+ and all given Arrays +other_arrays+;
|
|
* duplicates are removed; order is preserved; items are compared using <tt>eql?</tt>:
|
|
* [0, 1, 2, 3].union([4, 5], [6, 7]) # => [0, 1, 2, 3, 4, 5, 6, 7]
|
|
* [0, 1, 1].union([2, 1], [3, 1]) # => [0, 1, 2, 3]
|
|
* [0, 1, 2, 3].union([3, 2], [1, 0]) # => [0, 1, 2, 3]
|
|
*
|
|
* Returns a copy of +self+ if no arguments given.
|
|
*
|
|
* Related: Array#|.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_union_multi(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
int i;
|
|
long sum;
|
|
VALUE hash, ary_union;
|
|
|
|
sum = RARRAY_LEN(ary);
|
|
for (i = 0; i < argc; i++) {
|
|
argv[i] = to_ary(argv[i]);
|
|
sum += RARRAY_LEN(argv[i]);
|
|
}
|
|
|
|
if (sum <= SMALL_ARRAY_LEN) {
|
|
ary_union = rb_ary_new();
|
|
|
|
rb_ary_union(ary_union, ary);
|
|
for (i = 0; i < argc; i++) rb_ary_union(ary_union, argv[i]);
|
|
|
|
return ary_union;
|
|
}
|
|
|
|
hash = ary_make_hash(ary);
|
|
for (i = 0; i < argc; i++) rb_ary_union_hash(hash, argv[i]);
|
|
|
|
ary_union = rb_hash_values(hash);
|
|
ary_recycle_hash(hash);
|
|
return ary_union;
|
|
}
|
|
|
|
static VALUE
|
|
ary_max_generic(VALUE ary, long i, VALUE vmax)
|
|
{
|
|
RUBY_ASSERT(i > 0 && i < RARRAY_LEN(ary));
|
|
|
|
VALUE v;
|
|
for (; i < RARRAY_LEN(ary); ++i) {
|
|
v = RARRAY_AREF(ary, i);
|
|
|
|
if (rb_cmpint(rb_funcallv(vmax, id_cmp, 1, &v), vmax, v) < 0) {
|
|
vmax = v;
|
|
}
|
|
}
|
|
|
|
return vmax;
|
|
}
|
|
|
|
static VALUE
|
|
ary_max_opt_fixnum(VALUE ary, long i, VALUE vmax)
|
|
{
|
|
const long n = RARRAY_LEN(ary);
|
|
RUBY_ASSERT(i > 0 && i < n);
|
|
RUBY_ASSERT(FIXNUM_P(vmax));
|
|
|
|
VALUE v;
|
|
for (; i < n; ++i) {
|
|
v = RARRAY_AREF(ary, i);
|
|
|
|
if (FIXNUM_P(v)) {
|
|
if ((long)vmax < (long)v) {
|
|
vmax = v;
|
|
}
|
|
}
|
|
else {
|
|
return ary_max_generic(ary, i, vmax);
|
|
}
|
|
}
|
|
|
|
return vmax;
|
|
}
|
|
|
|
static VALUE
|
|
ary_max_opt_float(VALUE ary, long i, VALUE vmax)
|
|
{
|
|
const long n = RARRAY_LEN(ary);
|
|
RUBY_ASSERT(i > 0 && i < n);
|
|
RUBY_ASSERT(RB_FLOAT_TYPE_P(vmax));
|
|
|
|
VALUE v;
|
|
for (; i < n; ++i) {
|
|
v = RARRAY_AREF(ary, i);
|
|
|
|
if (RB_FLOAT_TYPE_P(v)) {
|
|
if (rb_float_cmp(vmax, v) < 0) {
|
|
vmax = v;
|
|
}
|
|
}
|
|
else {
|
|
return ary_max_generic(ary, i, vmax);
|
|
}
|
|
}
|
|
|
|
return vmax;
|
|
}
|
|
|
|
static VALUE
|
|
ary_max_opt_string(VALUE ary, long i, VALUE vmax)
|
|
{
|
|
const long n = RARRAY_LEN(ary);
|
|
RUBY_ASSERT(i > 0 && i < n);
|
|
RUBY_ASSERT(STRING_P(vmax));
|
|
|
|
VALUE v;
|
|
for (; i < n; ++i) {
|
|
v = RARRAY_AREF(ary, i);
|
|
|
|
if (STRING_P(v)) {
|
|
if (rb_str_cmp(vmax, v) < 0) {
|
|
vmax = v;
|
|
}
|
|
}
|
|
else {
|
|
return ary_max_generic(ary, i, vmax);
|
|
}
|
|
}
|
|
|
|
return vmax;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.max -> element
|
|
* array.max {|a, b| ... } -> element
|
|
* array.max(n) -> new_array
|
|
* array.max(n) {|a, b| ... } -> new_array
|
|
*
|
|
* Returns one of the following:
|
|
* - The maximum-valued element from +self+.
|
|
* - A new \Array of maximum-valued elements selected from +self+.
|
|
*
|
|
* When no block is given, each element in +self+ must respond to method <tt><=></tt>
|
|
* with an \Integer.
|
|
*
|
|
* With no argument and no block, returns the element in +self+
|
|
* having the maximum value per method <tt><=></tt>:
|
|
* [0, 1, 2].max # => 2
|
|
*
|
|
* With an argument \Integer +n+ and no block, returns a new \Array with at most +n+ elements,
|
|
* in descending order per method <tt><=></tt>:
|
|
* [0, 1, 2, 3].max(3) # => [3, 2, 1]
|
|
* [0, 1, 2, 3].max(6) # => [3, 2, 1]
|
|
*
|
|
* When a block is given, the block must return an \Integer.
|
|
*
|
|
* With a block and no argument, calls the block <tt>self.size-1</tt> times to compare elements;
|
|
* returns the element having the maximum value per the block:
|
|
* ['0', '00', '000'].max {|a, b| a.size <=> b.size } # => "000"
|
|
*
|
|
* With an argument +n+ and a block, returns a new \Array with at most +n+ elements,
|
|
* in descending order per the block:
|
|
* ['0', '00', '000'].max(2) {|a, b| a.size <=> b.size } # => ["000", "00"]
|
|
*/
|
|
static VALUE
|
|
rb_ary_max(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
struct cmp_opt_data cmp_opt = { 0, 0 };
|
|
VALUE result = Qundef, v;
|
|
VALUE num;
|
|
long i;
|
|
|
|
if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
|
|
return rb_nmin_run(ary, num, 0, 1, 1);
|
|
|
|
const long n = RARRAY_LEN(ary);
|
|
if (rb_block_given_p()) {
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
v = RARRAY_AREF(ary, i);
|
|
if (result == Qundef || rb_cmpint(rb_yield_values(2, v, result), v, result) > 0) {
|
|
result = v;
|
|
}
|
|
}
|
|
}
|
|
else if (n > 0) {
|
|
result = RARRAY_AREF(ary, 0);
|
|
if (n > 1) {
|
|
if (FIXNUM_P(result) && CMP_OPTIMIZABLE(cmp_opt, Integer)) {
|
|
return ary_max_opt_fixnum(ary, 1, result);
|
|
}
|
|
else if (STRING_P(result) && CMP_OPTIMIZABLE(cmp_opt, String)) {
|
|
return ary_max_opt_string(ary, 1, result);
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(result) && CMP_OPTIMIZABLE(cmp_opt, Float)) {
|
|
return ary_max_opt_float(ary, 1, result);
|
|
}
|
|
else {
|
|
return ary_max_generic(ary, 1, result);
|
|
}
|
|
}
|
|
}
|
|
if (result == Qundef) return Qnil;
|
|
return result;
|
|
}
|
|
|
|
static VALUE
|
|
ary_min_generic(VALUE ary, long i, VALUE vmin)
|
|
{
|
|
RUBY_ASSERT(i > 0 && i < RARRAY_LEN(ary));
|
|
|
|
VALUE v;
|
|
for (; i < RARRAY_LEN(ary); ++i) {
|
|
v = RARRAY_AREF(ary, i);
|
|
|
|
if (rb_cmpint(rb_funcallv(vmin, id_cmp, 1, &v), vmin, v) > 0) {
|
|
vmin = v;
|
|
}
|
|
}
|
|
|
|
return vmin;
|
|
}
|
|
|
|
static VALUE
|
|
ary_min_opt_fixnum(VALUE ary, long i, VALUE vmin)
|
|
{
|
|
const long n = RARRAY_LEN(ary);
|
|
RUBY_ASSERT(i > 0 && i < n);
|
|
RUBY_ASSERT(FIXNUM_P(vmin));
|
|
|
|
VALUE a;
|
|
for (; i < n; ++i) {
|
|
a = RARRAY_AREF(ary, i);
|
|
|
|
if (FIXNUM_P(a)) {
|
|
if ((long)vmin > (long)a) {
|
|
vmin = a;
|
|
}
|
|
}
|
|
else {
|
|
return ary_min_generic(ary, i, vmin);
|
|
}
|
|
}
|
|
|
|
return vmin;
|
|
}
|
|
|
|
static VALUE
|
|
ary_min_opt_float(VALUE ary, long i, VALUE vmin)
|
|
{
|
|
const long n = RARRAY_LEN(ary);
|
|
RUBY_ASSERT(i > 0 && i < n);
|
|
RUBY_ASSERT(RB_FLOAT_TYPE_P(vmin));
|
|
|
|
VALUE a;
|
|
for (; i < n; ++i) {
|
|
a = RARRAY_AREF(ary, i);
|
|
|
|
if (RB_FLOAT_TYPE_P(a)) {
|
|
if (rb_float_cmp(vmin, a) > 0) {
|
|
vmin = a;
|
|
}
|
|
}
|
|
else {
|
|
return ary_min_generic(ary, i, vmin);
|
|
}
|
|
}
|
|
|
|
return vmin;
|
|
}
|
|
|
|
static VALUE
|
|
ary_min_opt_string(VALUE ary, long i, VALUE vmin)
|
|
{
|
|
const long n = RARRAY_LEN(ary);
|
|
RUBY_ASSERT(i > 0 && i < n);
|
|
RUBY_ASSERT(STRING_P(vmin));
|
|
|
|
VALUE a;
|
|
for (; i < n; ++i) {
|
|
a = RARRAY_AREF(ary, i);
|
|
|
|
if (STRING_P(a)) {
|
|
if (rb_str_cmp(vmin, a) > 0) {
|
|
vmin = a;
|
|
}
|
|
}
|
|
else {
|
|
return ary_min_generic(ary, i, vmin);
|
|
}
|
|
}
|
|
|
|
return vmin;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.min -> element
|
|
* array.min { |a, b| ... } -> element
|
|
* array.min(n) -> new_array
|
|
* array.min(n) { |a, b| ... } -> new_array
|
|
*
|
|
* Returns one of the following:
|
|
* - The minimum-valued element from +self+.
|
|
* - A new \Array of minimum-valued elements selected from +self+.
|
|
*
|
|
* When no block is given, each element in +self+ must respond to method <tt><=></tt>
|
|
* with an \Integer.
|
|
*
|
|
* With no argument and no block, returns the element in +self+
|
|
* having the minimum value per method <tt><=></tt>:
|
|
* [0, 1, 2].min # => 0
|
|
*
|
|
* With \Integer argument +n+ and no block, returns a new \Array with at most +n+ elements,
|
|
* in ascending order per method <tt><=></tt>:
|
|
* [0, 1, 2, 3].min(3) # => [0, 1, 2]
|
|
* [0, 1, 2, 3].min(6) # => [0, 1, 2, 3]
|
|
*
|
|
* When a block is given, the block must return an Integer.
|
|
*
|
|
* With a block and no argument, calls the block <tt>self.size-1</tt> times to compare elements;
|
|
* returns the element having the minimum value per the block:
|
|
* ['0', '00', '000'].min { |a, b| a.size <=> b.size } # => "0"
|
|
*
|
|
* With an argument +n+ and a block, returns a new \Array with at most +n+ elements,
|
|
* in ascending order per the block:
|
|
* [0, 1, 2, 3].min(3) # => [0, 1, 2]
|
|
* [0, 1, 2, 3].min(6) # => [0, 1, 2, 3]
|
|
*/
|
|
static VALUE
|
|
rb_ary_min(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
struct cmp_opt_data cmp_opt = { 0, 0 };
|
|
VALUE result = Qundef, v;
|
|
VALUE num;
|
|
long i;
|
|
|
|
if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
|
|
return rb_nmin_run(ary, num, 0, 0, 1);
|
|
|
|
const long n = RARRAY_LEN(ary);
|
|
if (rb_block_given_p()) {
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
v = RARRAY_AREF(ary, i);
|
|
if (result == Qundef || rb_cmpint(rb_yield_values(2, v, result), v, result) < 0) {
|
|
result = v;
|
|
}
|
|
}
|
|
}
|
|
else if (n > 0) {
|
|
result = RARRAY_AREF(ary, 0);
|
|
if (n > 1) {
|
|
if (FIXNUM_P(result) && CMP_OPTIMIZABLE(cmp_opt, Integer)) {
|
|
return ary_min_opt_fixnum(ary, 1, result);
|
|
}
|
|
else if (STRING_P(result) && CMP_OPTIMIZABLE(cmp_opt, String)) {
|
|
return ary_min_opt_string(ary, 1, result);
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(result) && CMP_OPTIMIZABLE(cmp_opt, Float)) {
|
|
return ary_min_opt_float(ary, 1, result);
|
|
}
|
|
else {
|
|
return ary_min_generic(ary, 1, result);
|
|
}
|
|
}
|
|
}
|
|
if (result == Qundef) return Qnil;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.minmax -> [min_val, max_val]
|
|
* array.minmax {|a, b| ... } -> [min_val, max_val]
|
|
*
|
|
* Returns a new 2-element \Array containing the minimum and maximum values
|
|
* from +self+, either per method <tt><=></tt> or per a given block:.
|
|
*
|
|
* When no block is given, each element in +self+ must respond to method <tt><=></tt>
|
|
* with an \Integer;
|
|
* returns a new 2-element \Array containing the minimum and maximum values
|
|
* from +self+, per method <tt><=></tt>:
|
|
* [0, 1, 2].minmax # => [0, 2]
|
|
*
|
|
* When a block is given, the block must return an \Integer;
|
|
* the block is called <tt>self.size-1</tt> times to compare elements;
|
|
* returns a new 2-element \Array containing the minimum and maximum values
|
|
* from +self+, per the block:
|
|
* ['0', '00', '000'].minmax {|a, b| a.size <=> b.size } # => ["0", "000"]
|
|
*/
|
|
static VALUE
|
|
rb_ary_minmax(VALUE ary)
|
|
{
|
|
if (rb_block_given_p()) {
|
|
return rb_call_super(0, NULL);
|
|
}
|
|
return rb_assoc_new(rb_ary_min(0, 0, ary), rb_ary_max(0, 0, ary));
|
|
}
|
|
|
|
static int
|
|
push_value(st_data_t key, st_data_t val, st_data_t ary)
|
|
{
|
|
rb_ary_push((VALUE)ary, (VALUE)val);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.uniq! -> self or nil
|
|
* array.uniq! {|element| ... } -> self or nil
|
|
*
|
|
* Removes duplicate elements from +self+, the first occurrence always being retained;
|
|
* returns +self+ if any elements removed, +nil+ otherwise.
|
|
*
|
|
* With no block given, identifies and removes elements using method <tt>eql?</tt>
|
|
* to compare.
|
|
*
|
|
* Returns +self+ if any elements removed:
|
|
* a = [0, 0, 1, 1, 2, 2]
|
|
* a.uniq! # => [0, 1, 2]
|
|
*
|
|
* Returns +nil+ if no elements removed.
|
|
*
|
|
* With a block given, calls the block for each element;
|
|
* identifies (using method <tt>eql?</tt>) and removes
|
|
* elements for which the block returns duplicate values.
|
|
*
|
|
* Returns +self+ if any elements removed:
|
|
* a = ['a', 'aa', 'aaa', 'b', 'bb', 'bbb']
|
|
* a.uniq! {|element| element.size } # => ['a', 'aa', 'aaa']
|
|
*
|
|
* Returns +nil+ if no elements removed.
|
|
*/
|
|
static VALUE
|
|
rb_ary_uniq_bang(VALUE ary)
|
|
{
|
|
VALUE hash;
|
|
long hash_size;
|
|
|
|
rb_ary_modify_check(ary);
|
|
if (RARRAY_LEN(ary) <= 1)
|
|
return Qnil;
|
|
if (rb_block_given_p())
|
|
hash = ary_make_hash_by(ary);
|
|
else
|
|
hash = ary_make_hash(ary);
|
|
|
|
hash_size = RHASH_SIZE(hash);
|
|
if (RARRAY_LEN(ary) == hash_size) {
|
|
return Qnil;
|
|
}
|
|
rb_ary_modify_check(ary);
|
|
ARY_SET_LEN(ary, 0);
|
|
if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
|
|
rb_ary_unshare(ary);
|
|
FL_SET_EMBED(ary);
|
|
}
|
|
ary_resize_capa(ary, hash_size);
|
|
rb_hash_foreach(hash, push_value, ary);
|
|
ary_recycle_hash(hash);
|
|
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.uniq -> new_array
|
|
* array.uniq {|element| ... } -> new_array
|
|
*
|
|
* Returns a new \Array containing those elements from +self+ that are not duplicates,
|
|
* the first occurrence always being retained.
|
|
*
|
|
* With no block given, identifies and omits duplicates using method <tt>eql?</tt>
|
|
* to compare.
|
|
* a = [0, 0, 1, 1, 2, 2]
|
|
* a.uniq # => [0, 1, 2]
|
|
*
|
|
* With a block given, calls the block for each element;
|
|
* identifies (using method <tt>eql?</tt>) and omits duplicate values,
|
|
* that is, those elements for which the block returns the same value:
|
|
* a = ['a', 'aa', 'aaa', 'b', 'bb', 'bbb']
|
|
* a.uniq {|element| element.size } # => ["a", "aa", "aaa"]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_uniq(VALUE ary)
|
|
{
|
|
VALUE hash, uniq;
|
|
|
|
if (RARRAY_LEN(ary) <= 1) {
|
|
hash = 0;
|
|
uniq = rb_ary_dup(ary);
|
|
}
|
|
else if (rb_block_given_p()) {
|
|
hash = ary_make_hash_by(ary);
|
|
uniq = rb_hash_values(hash);
|
|
}
|
|
else {
|
|
hash = ary_make_hash(ary);
|
|
uniq = rb_hash_values(hash);
|
|
}
|
|
RBASIC_SET_CLASS(uniq, rb_obj_class(ary));
|
|
if (hash) {
|
|
ary_recycle_hash(hash);
|
|
}
|
|
|
|
return uniq;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.compact! -> self or nil
|
|
*
|
|
* Removes all +nil+ elements from +self+.
|
|
*
|
|
* Returns +self+ if any elements removed, otherwise +nil+.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_compact_bang(VALUE ary)
|
|
{
|
|
VALUE *p, *t, *end;
|
|
long n;
|
|
|
|
rb_ary_modify(ary);
|
|
p = t = (VALUE *)RARRAY_CONST_PTR_TRANSIENT(ary); /* WB: no new reference */
|
|
end = p + RARRAY_LEN(ary);
|
|
|
|
while (t < end) {
|
|
if (NIL_P(*t)) t++;
|
|
else *p++ = *t++;
|
|
}
|
|
n = p - RARRAY_CONST_PTR_TRANSIENT(ary);
|
|
if (RARRAY_LEN(ary) == n) {
|
|
return Qnil;
|
|
}
|
|
ary_resize_smaller(ary, n);
|
|
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.compact -> new_array
|
|
*
|
|
* Returns a new \Array containing all non-+nil+ elements from +self+:
|
|
* a = [nil, 0, nil, 1, nil, 2, nil]
|
|
* a.compact # => [0, 1, 2]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_compact(VALUE ary)
|
|
{
|
|
ary = rb_ary_dup(ary);
|
|
rb_ary_compact_bang(ary);
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.count -> an_integer
|
|
* array.count(obj) -> an_integer
|
|
* array.count {|element| ... } -> an_integer
|
|
*
|
|
* Returns a count of specified elements.
|
|
*
|
|
* With no argument and no block, returns the count of all elements:
|
|
* [0, 1, 2].count # => 3
|
|
* [].count # => 0
|
|
*
|
|
* With argument +obj+, returns the count of elements <tt>eql?</tt> to +obj+:
|
|
* [0, 1, 2, 0].count(0) # => 2
|
|
* [0, 1, 2].count(3) # => 0
|
|
*
|
|
* With no argument and a block given, calls the block with each element;
|
|
* returns the count of elements for which the block returns a truthy value:
|
|
* [0, 1, 2, 3].count {|element| element > 1} # => 2
|
|
*
|
|
* With argument +obj+ and a block given, issues a warning, ignores the block,
|
|
* and returns the count of elements <tt>eql?</tt> to +obj+:
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_count(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long i, n = 0;
|
|
|
|
if (rb_check_arity(argc, 0, 1) == 0) {
|
|
VALUE v;
|
|
|
|
if (!rb_block_given_p())
|
|
return LONG2NUM(RARRAY_LEN(ary));
|
|
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
v = RARRAY_AREF(ary, i);
|
|
if (RTEST(rb_yield(v))) n++;
|
|
}
|
|
}
|
|
else {
|
|
VALUE obj = argv[0];
|
|
|
|
if (rb_block_given_p()) {
|
|
rb_warn("given block not used");
|
|
}
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
if (rb_equal(RARRAY_AREF(ary, i), obj)) n++;
|
|
}
|
|
}
|
|
|
|
return LONG2NUM(n);
|
|
}
|
|
|
|
static VALUE
|
|
flatten(VALUE ary, int level)
|
|
{
|
|
long i;
|
|
VALUE stack, result, tmp = 0, elt, vmemo;
|
|
st_table *memo = 0;
|
|
st_data_t id;
|
|
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
elt = RARRAY_AREF(ary, i);
|
|
tmp = rb_check_array_type(elt);
|
|
if (!NIL_P(tmp)) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == RARRAY_LEN(ary)) {
|
|
return ary;
|
|
}
|
|
|
|
result = ary_new(0, RARRAY_LEN(ary));
|
|
ary_memcpy(result, 0, i, RARRAY_CONST_PTR_TRANSIENT(ary));
|
|
ARY_SET_LEN(result, i);
|
|
|
|
stack = ary_new(0, ARY_DEFAULT_SIZE);
|
|
rb_ary_push(stack, ary);
|
|
rb_ary_push(stack, LONG2NUM(i + 1));
|
|
|
|
if (level < 0) {
|
|
vmemo = rb_hash_new();
|
|
RBASIC_CLEAR_CLASS(vmemo);
|
|
memo = st_init_numtable();
|
|
rb_hash_st_table_set(vmemo, memo);
|
|
st_insert(memo, (st_data_t)ary, (st_data_t)Qtrue);
|
|
st_insert(memo, (st_data_t)tmp, (st_data_t)Qtrue);
|
|
}
|
|
|
|
ary = tmp;
|
|
i = 0;
|
|
|
|
while (1) {
|
|
while (i < RARRAY_LEN(ary)) {
|
|
elt = RARRAY_AREF(ary, i++);
|
|
if (level >= 0 && RARRAY_LEN(stack) / 2 >= level) {
|
|
rb_ary_push(result, elt);
|
|
continue;
|
|
}
|
|
tmp = rb_check_array_type(elt);
|
|
if (RBASIC(result)->klass) {
|
|
if (memo) {
|
|
RB_GC_GUARD(vmemo);
|
|
st_clear(memo);
|
|
}
|
|
rb_raise(rb_eRuntimeError, "flatten reentered");
|
|
}
|
|
if (NIL_P(tmp)) {
|
|
rb_ary_push(result, elt);
|
|
}
|
|
else {
|
|
if (memo) {
|
|
id = (st_data_t)tmp;
|
|
if (st_is_member(memo, id)) {
|
|
st_clear(memo);
|
|
rb_raise(rb_eArgError, "tried to flatten recursive array");
|
|
}
|
|
st_insert(memo, id, (st_data_t)Qtrue);
|
|
}
|
|
rb_ary_push(stack, ary);
|
|
rb_ary_push(stack, LONG2NUM(i));
|
|
ary = tmp;
|
|
i = 0;
|
|
}
|
|
}
|
|
if (RARRAY_LEN(stack) == 0) {
|
|
break;
|
|
}
|
|
if (memo) {
|
|
id = (st_data_t)ary;
|
|
st_delete(memo, &id, 0);
|
|
}
|
|
tmp = rb_ary_pop(stack);
|
|
i = NUM2LONG(tmp);
|
|
ary = rb_ary_pop(stack);
|
|
}
|
|
|
|
if (memo) {
|
|
st_clear(memo);
|
|
}
|
|
|
|
RBASIC_SET_CLASS(result, rb_obj_class(ary));
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.flatten! -> self or nil
|
|
* array.flatten!(level) -> self or nil
|
|
*
|
|
* Replaces each nested \Array in +self+ with the elements from that \Array;
|
|
* returns +self+ if any changes, +nil+ otherwise.
|
|
*
|
|
* With non-negative \Integer argument +level+, flattens recursively through +level+ levels:
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten!(1) # => [0, 1, [2, 3], 4, 5]
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten!(2) # => [0, 1, 2, 3, 4, 5]
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten!(3) # => [0, 1, 2, 3, 4, 5]
|
|
* [0, 1, 2].flatten!(1) # => nil
|
|
*
|
|
* With no argument, a +nil+ argument, or with negative argument +level+, flattens all levels:
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten! # => [0, 1, 2, 3, 4, 5]
|
|
* [0, 1, 2].flatten! # => nil
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten!(-1) # => [0, 1, 2, 3, 4, 5]
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten!(-2) # => [0, 1, 2, 3, 4, 5]
|
|
* [0, 1, 2].flatten!(-1) # => nil
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
int mod = 0, level = -1;
|
|
VALUE result, lv;
|
|
|
|
lv = (rb_check_arity(argc, 0, 1) ? argv[0] : Qnil);
|
|
rb_ary_modify_check(ary);
|
|
if (!NIL_P(lv)) level = NUM2INT(lv);
|
|
if (level == 0) return Qnil;
|
|
|
|
result = flatten(ary, level);
|
|
if (result == ary) {
|
|
return Qnil;
|
|
}
|
|
if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result);
|
|
rb_ary_replace(ary, result);
|
|
if (mod) ARY_SET_EMBED_LEN(result, 0);
|
|
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.flatten -> new_array
|
|
* array.flatten(level) -> new_array
|
|
*
|
|
* Returns a new \Array that is a recursive flattening of +self+:
|
|
* - Each non-Array element is unchanged.
|
|
* - Each \Array is replaced by its individual elements.
|
|
*
|
|
* With non-negative \Integer argument +level+, flattens recursively through +level+ levels:
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten(0) # => [0, [1, [2, 3], 4], 5]
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten(1) # => [0, 1, [2, 3], 4, 5]
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten(2) # => [0, 1, 2, 3, 4, 5]
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten(3) # => [0, 1, 2, 3, 4, 5]
|
|
*
|
|
* With no argument, a +nil+ argument, or with negative argument +level+, flattens all levels:
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten # => [0, 1, 2, 3, 4, 5]
|
|
* [0, 1, 2].flatten # => [0, 1, 2]
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten(-1) # => [0, 1, 2, 3, 4, 5]
|
|
* a = [ 0, [ 1, [2, 3], 4 ], 5 ]
|
|
* a.flatten(-2) # => [0, 1, 2, 3, 4, 5]
|
|
* [0, 1, 2].flatten(-1) # => [0, 1, 2]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
int level = -1;
|
|
VALUE result;
|
|
|
|
if (rb_check_arity(argc, 0, 1) && !NIL_P(argv[0])) {
|
|
level = NUM2INT(argv[0]);
|
|
if (level == 0) return ary_make_shared_copy(ary);
|
|
}
|
|
|
|
result = flatten(ary, level);
|
|
if (result == ary) {
|
|
result = ary_make_shared_copy(ary);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#define RAND_UPTO(max) (long)rb_random_ulong_limited((randgen), (max)-1)
|
|
|
|
static VALUE
|
|
rb_ary_shuffle_bang(rb_execution_context_t *ec, VALUE ary, VALUE randgen)
|
|
{
|
|
long i, len;
|
|
|
|
rb_ary_modify(ary);
|
|
i = len = RARRAY_LEN(ary);
|
|
RARRAY_PTR_USE(ary, ptr, {
|
|
while (i) {
|
|
long j = RAND_UPTO(i);
|
|
VALUE tmp;
|
|
if (len != RARRAY_LEN(ary) || ptr != RARRAY_CONST_PTR_TRANSIENT(ary)) {
|
|
rb_raise(rb_eRuntimeError, "modified during shuffle");
|
|
}
|
|
tmp = ptr[--i];
|
|
ptr[i] = ptr[j];
|
|
ptr[j] = tmp;
|
|
}
|
|
}); /* WB: no new reference */
|
|
return ary;
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_shuffle(rb_execution_context_t *ec, VALUE ary, VALUE randgen)
|
|
{
|
|
ary = rb_ary_dup(ary);
|
|
rb_ary_shuffle_bang(ec, ary, randgen);
|
|
return ary;
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_sample(rb_execution_context_t *ec, VALUE ary, VALUE randgen, VALUE nv, VALUE to_array)
|
|
{
|
|
VALUE result;
|
|
long n, len, i, j, k, idx[10];
|
|
long rnds[numberof(idx)];
|
|
long memo_threshold;
|
|
|
|
len = RARRAY_LEN(ary);
|
|
if (!to_array) {
|
|
if (len < 2)
|
|
i = 0;
|
|
else
|
|
i = RAND_UPTO(len);
|
|
|
|
return rb_ary_elt(ary, i);
|
|
}
|
|
n = NUM2LONG(nv);
|
|
if (n < 0) rb_raise(rb_eArgError, "negative sample number");
|
|
if (n > len) n = len;
|
|
if (n <= numberof(idx)) {
|
|
for (i = 0; i < n; ++i) {
|
|
rnds[i] = RAND_UPTO(len - i);
|
|
}
|
|
}
|
|
k = len;
|
|
len = RARRAY_LEN(ary);
|
|
if (len < k && n <= numberof(idx)) {
|
|
for (i = 0; i < n; ++i) {
|
|
if (rnds[i] >= len) return rb_ary_new_capa(0);
|
|
}
|
|
}
|
|
if (n > len) n = len;
|
|
switch (n) {
|
|
case 0:
|
|
return rb_ary_new_capa(0);
|
|
case 1:
|
|
i = rnds[0];
|
|
return rb_ary_new_from_args(1, RARRAY_AREF(ary, i));
|
|
case 2:
|
|
i = rnds[0];
|
|
j = rnds[1];
|
|
if (j >= i) j++;
|
|
return rb_ary_new_from_args(2, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j));
|
|
case 3:
|
|
i = rnds[0];
|
|
j = rnds[1];
|
|
k = rnds[2];
|
|
{
|
|
long l = j, g = i;
|
|
if (j >= i) l = i, g = ++j;
|
|
if (k >= l && (++k >= g)) ++k;
|
|
}
|
|
return rb_ary_new_from_args(3, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j), RARRAY_AREF(ary, k));
|
|
}
|
|
memo_threshold =
|
|
len < 2560 ? len / 128 :
|
|
len < 5120 ? len / 64 :
|
|
len < 10240 ? len / 32 :
|
|
len / 16;
|
|
if (n <= numberof(idx)) {
|
|
long sorted[numberof(idx)];
|
|
sorted[0] = idx[0] = rnds[0];
|
|
for (i=1; i<n; i++) {
|
|
k = rnds[i];
|
|
for (j = 0; j < i; ++j) {
|
|
if (k < sorted[j]) break;
|
|
++k;
|
|
}
|
|
memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j));
|
|
sorted[j] = idx[i] = k;
|
|
}
|
|
result = rb_ary_new_capa(n);
|
|
RARRAY_PTR_USE_TRANSIENT(result, ptr_result, {
|
|
for (i=0; i<n; i++) {
|
|
ptr_result[i] = RARRAY_AREF(ary, idx[i]);
|
|
}
|
|
});
|
|
}
|
|
else if (n <= memo_threshold / 2) {
|
|
long max_idx = 0;
|
|
#undef RUBY_UNTYPED_DATA_WARNING
|
|
#define RUBY_UNTYPED_DATA_WARNING 0
|
|
VALUE vmemo = Data_Wrap_Struct(0, 0, st_free_table, 0);
|
|
st_table *memo = st_init_numtable_with_size(n);
|
|
DATA_PTR(vmemo) = memo;
|
|
result = rb_ary_new_capa(n);
|
|
RARRAY_PTR_USE(result, ptr_result, {
|
|
for (i=0; i<n; i++) {
|
|
long r = RAND_UPTO(len-i) + i;
|
|
ptr_result[i] = r;
|
|
if (r > max_idx) max_idx = r;
|
|
}
|
|
len = RARRAY_LEN(ary);
|
|
if (len <= max_idx) n = 0;
|
|
else if (n > len) n = len;
|
|
RARRAY_PTR_USE_TRANSIENT(ary, ptr_ary, {
|
|
for (i=0; i<n; i++) {
|
|
long j2 = j = ptr_result[i];
|
|
long i2 = i;
|
|
st_data_t value;
|
|
if (st_lookup(memo, (st_data_t)i, &value)) i2 = (long)value;
|
|
if (st_lookup(memo, (st_data_t)j, &value)) j2 = (long)value;
|
|
st_insert(memo, (st_data_t)j, (st_data_t)i2);
|
|
ptr_result[i] = ptr_ary[j2];
|
|
}
|
|
});
|
|
});
|
|
DATA_PTR(vmemo) = 0;
|
|
st_free_table(memo);
|
|
}
|
|
else {
|
|
result = rb_ary_dup(ary);
|
|
RBASIC_CLEAR_CLASS(result);
|
|
RB_GC_GUARD(ary);
|
|
RARRAY_PTR_USE(result, ptr_result, {
|
|
for (i=0; i<n; i++) {
|
|
j = RAND_UPTO(len-i) + i;
|
|
nv = ptr_result[j];
|
|
ptr_result[j] = ptr_result[i];
|
|
ptr_result[i] = nv;
|
|
}
|
|
});
|
|
RBASIC_SET_CLASS_RAW(result, rb_cArray);
|
|
}
|
|
ARY_SET_LEN(result, n);
|
|
|
|
return result;
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_cycle_size(VALUE self, VALUE args, VALUE eobj)
|
|
{
|
|
long mul;
|
|
VALUE n = Qnil;
|
|
if (args && (RARRAY_LEN(args) > 0)) {
|
|
n = RARRAY_AREF(args, 0);
|
|
}
|
|
if (RARRAY_LEN(self) == 0) return INT2FIX(0);
|
|
if (n == Qnil) return DBL2NUM(HUGE_VAL);
|
|
mul = NUM2LONG(n);
|
|
if (mul <= 0) return INT2FIX(0);
|
|
n = LONG2FIX(mul);
|
|
return rb_fix_mul_fix(rb_ary_length(self), n);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.cycle {|element| ... } -> nil
|
|
* array.cycle(count) {|element| ... } -> nil
|
|
* array.cycle -> new_enumerator
|
|
* array.cycle(count) -> new_enumerator
|
|
*
|
|
* When called with positive \Integer argument +count+ and a block,
|
|
* calls the block with each element, then does so again,
|
|
* until it has done so +count+ times; returns +nil+:
|
|
* output = []
|
|
* [0, 1].cycle(2) {|element| output.push(element) } # => nil
|
|
* output # => [0, 1, 0, 1]
|
|
*
|
|
* If +count+ is zero or negative, does not call the block:
|
|
* [0, 1].cycle(0) {|element| fail 'Cannot happen' } # => nil
|
|
* [0, 1].cycle(-1) {|element| fail 'Cannot happen' } # => nil
|
|
*
|
|
* When a block is given, and argument is omitted or +nil+, cycles forever:
|
|
* # Prints 0 and 1 forever.
|
|
* [0, 1].cycle {|element| puts element }
|
|
* [0, 1].cycle(nil) {|element| puts element }
|
|
*
|
|
* When no block is given, returns a new \Enumerator:
|
|
*
|
|
* [0, 1].cycle(2) # => #<Enumerator: [0, 1]:cycle(2)>
|
|
* [0, 1].cycle # => # => #<Enumerator: [0, 1]:cycle>
|
|
* [0, 1].cycle.first(5) # => [0, 1, 0, 1, 0]
|
|
*/
|
|
static VALUE
|
|
rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long n, i;
|
|
|
|
rb_check_arity(argc, 0, 1);
|
|
|
|
RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_cycle_size);
|
|
if (argc == 0 || NIL_P(argv[0])) {
|
|
n = -1;
|
|
}
|
|
else {
|
|
n = NUM2LONG(argv[0]);
|
|
if (n <= 0) return Qnil;
|
|
}
|
|
|
|
while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
|
|
for (i=0; i<RARRAY_LEN(ary); i++) {
|
|
rb_yield(RARRAY_AREF(ary, i));
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
#define tmpary(n) rb_ary_tmp_new(n)
|
|
#define tmpary_discard(a) (ary_discard(a), RBASIC_SET_CLASS_RAW(a, rb_cArray))
|
|
|
|
/*
|
|
* Build a ruby array of the corresponding values and yield it to the
|
|
* associated block.
|
|
* Return the class of +values+ for reentry check.
|
|
*/
|
|
static int
|
|
yield_indexed_values(const VALUE values, const long r, const long *const p)
|
|
{
|
|
const VALUE result = rb_ary_new2(r);
|
|
long i;
|
|
|
|
for (i = 0; i < r; i++) ARY_SET(result, i, RARRAY_AREF(values, p[i]));
|
|
ARY_SET_LEN(result, r);
|
|
rb_yield(result);
|
|
return !RBASIC(values)->klass;
|
|
}
|
|
|
|
/*
|
|
* Compute permutations of +r+ elements of the set <code>[0..n-1]</code>.
|
|
*
|
|
* When we have a complete permutation of array indices, copy the values
|
|
* at those indices into a new array and yield that array.
|
|
*
|
|
* n: the size of the set
|
|
* r: the number of elements in each permutation
|
|
* p: the array (of size r) that we're filling in
|
|
* used: an array of booleans: whether a given index is already used
|
|
* values: the Ruby array that holds the actual values to permute
|
|
*/
|
|
static void
|
|
permute0(const long n, const long r, long *const p, char *const used, const VALUE values)
|
|
{
|
|
long i = 0, index = 0;
|
|
|
|
for (;;) {
|
|
const char *const unused = memchr(&used[i], 0, n-i);
|
|
if (!unused) {
|
|
if (!index) break;
|
|
i = p[--index]; /* pop index */
|
|
used[i++] = 0; /* index unused */
|
|
}
|
|
else {
|
|
i = unused - used;
|
|
p[index] = i;
|
|
used[i] = 1; /* mark index used */
|
|
++index;
|
|
if (index < r-1) { /* if not done yet */
|
|
p[index] = i = 0;
|
|
continue;
|
|
}
|
|
for (i = 0; i < n; ++i) {
|
|
if (used[i]) continue;
|
|
p[index] = i;
|
|
if (!yield_indexed_values(values, r, p)) {
|
|
rb_raise(rb_eRuntimeError, "permute reentered");
|
|
}
|
|
}
|
|
i = p[--index]; /* pop index */
|
|
used[i] = 0; /* index unused */
|
|
p[index] = ++i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the product of from, from-1, ..., from - how_many + 1.
|
|
* https://en.wikipedia.org/wiki/Pochhammer_symbol
|
|
*/
|
|
static VALUE
|
|
descending_factorial(long from, long how_many)
|
|
{
|
|
VALUE cnt;
|
|
if (how_many > 0) {
|
|
cnt = LONG2FIX(from);
|
|
while (--how_many > 0) {
|
|
long v = --from;
|
|
cnt = rb_int_mul(cnt, LONG2FIX(v));
|
|
}
|
|
}
|
|
else {
|
|
cnt = LONG2FIX(how_many == 0);
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
static VALUE
|
|
binomial_coefficient(long comb, long size)
|
|
{
|
|
VALUE r;
|
|
long i;
|
|
if (comb > size-comb) {
|
|
comb = size-comb;
|
|
}
|
|
if (comb < 0) {
|
|
return LONG2FIX(0);
|
|
}
|
|
else if (comb == 0) {
|
|
return LONG2FIX(1);
|
|
}
|
|
r = LONG2FIX(size);
|
|
for (i = 1; i < comb; ++i) {
|
|
r = rb_int_mul(r, LONG2FIX(size - i));
|
|
r = rb_int_idiv(r, LONG2FIX(i + 1));
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_permutation_size(VALUE ary, VALUE args, VALUE eobj)
|
|
{
|
|
long n = RARRAY_LEN(ary);
|
|
long k = (args && (RARRAY_LEN(args) > 0)) ? NUM2LONG(RARRAY_AREF(args, 0)) : n;
|
|
|
|
return descending_factorial(n, k);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.permutation {|element| ... } -> self
|
|
* array.permutation(n) {|element| ... } -> self
|
|
* array.permutation -> new_enumerator
|
|
* array.permutation(n) -> new_enumerator
|
|
*
|
|
* When invoked with a block, yield all permutations of elements of +self+; returns +self+.
|
|
* The order of permutations is indeterminate.
|
|
*
|
|
* When a block and an in-range positive \Integer argument +n+ (<tt>0 < n <= self.size</tt>)
|
|
* are given, calls the block with all +n+-tuple permutations of +self+.
|
|
*
|
|
* Example:
|
|
* a = [0, 1, 2]
|
|
* a.permutation(2) {|permutation| p permutation }
|
|
* Output:
|
|
* [0, 1]
|
|
* [0, 2]
|
|
* [1, 0]
|
|
* [1, 2]
|
|
* [2, 0]
|
|
* [2, 1]
|
|
* Another example:
|
|
* a = [0, 1, 2]
|
|
* a.permutation(3) {|permutation| p permutation }
|
|
* Output:
|
|
* [0, 1, 2]
|
|
* [0, 2, 1]
|
|
* [1, 0, 2]
|
|
* [1, 2, 0]
|
|
* [2, 0, 1]
|
|
* [2, 1, 0]
|
|
*
|
|
* When +n+ is zero, calls the block once with a new empty \Array:
|
|
* a = [0, 1, 2]
|
|
* a.permutation(0) {|permutation| p permutation }
|
|
* Output:
|
|
* []
|
|
*
|
|
* When +n+ is out of range (negative or larger than <tt>self.size</tt>),
|
|
* does not call the block:
|
|
* a = [0, 1, 2]
|
|
* a.permutation(-1) {|permutation| fail 'Cannot happen' }
|
|
* a.permutation(4) {|permutation| fail 'Cannot happen' }
|
|
*
|
|
* When a block given but no argument,
|
|
* behaves the same as <tt>a.permutation(a.size)</tt>:
|
|
* a = [0, 1, 2]
|
|
* a.permutation {|permutation| p permutation }
|
|
* Output:
|
|
* [0, 1, 2]
|
|
* [0, 2, 1]
|
|
* [1, 0, 2]
|
|
* [1, 2, 0]
|
|
* [2, 0, 1]
|
|
* [2, 1, 0]
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [0, 1, 2]
|
|
* a.permutation # => #<Enumerator: [0, 1, 2]:permutation>
|
|
* a.permutation(2) # => #<Enumerator: [0, 1, 2]:permutation(2)>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long r, n, i;
|
|
|
|
n = RARRAY_LEN(ary); /* Array length */
|
|
RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_permutation_size); /* Return enumerator if no block */
|
|
r = n;
|
|
if (rb_check_arity(argc, 0, 1) && !NIL_P(argv[0]))
|
|
r = NUM2LONG(argv[0]); /* Permutation size from argument */
|
|
|
|
if (r < 0 || n < r) {
|
|
/* no permutations: yield nothing */
|
|
}
|
|
else if (r == 0) { /* exactly one permutation: the zero-length array */
|
|
rb_yield(rb_ary_new2(0));
|
|
}
|
|
else if (r == 1) { /* this is a special, easy case */
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
|
|
}
|
|
}
|
|
else { /* this is the general case */
|
|
volatile VALUE t0;
|
|
long *p = ALLOCV_N(long, t0, r+roomof(n, sizeof(long)));
|
|
char *used = (char*)(p + r);
|
|
VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
|
|
RBASIC_CLEAR_CLASS(ary0);
|
|
|
|
MEMZERO(used, char, n); /* initialize array */
|
|
|
|
permute0(n, r, p, used, ary0); /* compute and yield permutations */
|
|
ALLOCV_END(t0);
|
|
RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
static void
|
|
combinate0(const long len, const long n, long *const stack, const VALUE values)
|
|
{
|
|
long lev = 0;
|
|
|
|
MEMZERO(stack+1, long, n);
|
|
stack[0] = -1;
|
|
for (;;) {
|
|
for (lev++; lev < n; lev++) {
|
|
stack[lev+1] = stack[lev]+1;
|
|
}
|
|
if (!yield_indexed_values(values, n, stack+1)) {
|
|
rb_raise(rb_eRuntimeError, "combination reentered");
|
|
}
|
|
do {
|
|
if (lev == 0) return;
|
|
stack[lev--]++;
|
|
} while (stack[lev+1]+n == len+lev+1);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_combination_size(VALUE ary, VALUE args, VALUE eobj)
|
|
{
|
|
long n = RARRAY_LEN(ary);
|
|
long k = NUM2LONG(RARRAY_AREF(args, 0));
|
|
|
|
return binomial_coefficient(k, n);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.combination(n) {|element| ... } -> self
|
|
* array.combination(n) -> new_enumerator
|
|
*
|
|
* Calls the block, if given, with combinations of elements of +self+;
|
|
* returns +self+. The order of combinations is indeterminate.
|
|
*
|
|
* When a block and an in-range positive \Integer argument +n+ (<tt>0 < n <= self.size</tt>)
|
|
* are given, calls the block with all +n+-tuple combinations of +self+.
|
|
*
|
|
* Example:
|
|
* a = [0, 1, 2]
|
|
* a.combination(2) {|combination| p combination }
|
|
* Output:
|
|
* [0, 1]
|
|
* [0, 2]
|
|
* [1, 2]
|
|
*
|
|
* Another example:
|
|
* a = [0, 1, 2]
|
|
* a.combination(3) {|combination| p combination }
|
|
* Output:
|
|
* [0, 1, 2]
|
|
*
|
|
* When +n+ is zero, calls the block once with a new empty \Array:
|
|
* a = [0, 1, 2]
|
|
* a1 = a.combination(0) {|combination| p combination }
|
|
* Output:
|
|
* []
|
|
*
|
|
* When +n+ is out of range (negative or larger than <tt>self.size</tt>),
|
|
* does not call the block:
|
|
* a = [0, 1, 2]
|
|
* a.combination(-1) {|combination| fail 'Cannot happen' }
|
|
* a.combination(4) {|combination| fail 'Cannot happen' }
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [0, 1, 2]
|
|
* a.combination(2) # => #<Enumerator: [0, 1, 2]:combination(2)>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_combination(VALUE ary, VALUE num)
|
|
{
|
|
long i, n, len;
|
|
|
|
n = NUM2LONG(num);
|
|
RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_combination_size);
|
|
len = RARRAY_LEN(ary);
|
|
if (n < 0 || len < n) {
|
|
/* yield nothing */
|
|
}
|
|
else if (n == 0) {
|
|
rb_yield(rb_ary_new2(0));
|
|
}
|
|
else if (n == 1) {
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
|
|
}
|
|
}
|
|
else {
|
|
VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
|
|
volatile VALUE t0;
|
|
long *stack = ALLOCV_N(long, t0, n+1);
|
|
|
|
RBASIC_CLEAR_CLASS(ary0);
|
|
combinate0(len, n, stack, ary0);
|
|
ALLOCV_END(t0);
|
|
RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* Compute repeated permutations of +r+ elements of the set
|
|
* <code>[0..n-1]</code>.
|
|
*
|
|
* When we have a complete repeated permutation of array indices, copy the
|
|
* values at those indices into a new array and yield that array.
|
|
*
|
|
* n: the size of the set
|
|
* r: the number of elements in each permutation
|
|
* p: the array (of size r) that we're filling in
|
|
* values: the Ruby array that holds the actual values to permute
|
|
*/
|
|
static void
|
|
rpermute0(const long n, const long r, long *const p, const VALUE values)
|
|
{
|
|
long i = 0, index = 0;
|
|
|
|
p[index] = i;
|
|
for (;;) {
|
|
if (++index < r-1) {
|
|
p[index] = i = 0;
|
|
continue;
|
|
}
|
|
for (i = 0; i < n; ++i) {
|
|
p[index] = i;
|
|
if (!yield_indexed_values(values, r, p)) {
|
|
rb_raise(rb_eRuntimeError, "repeated permute reentered");
|
|
}
|
|
}
|
|
do {
|
|
if (index <= 0) return;
|
|
} while ((i = ++p[--index]) >= n);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_repeated_permutation_size(VALUE ary, VALUE args, VALUE eobj)
|
|
{
|
|
long n = RARRAY_LEN(ary);
|
|
long k = NUM2LONG(RARRAY_AREF(args, 0));
|
|
|
|
if (k < 0) {
|
|
return LONG2FIX(0);
|
|
}
|
|
if (n <= 0) {
|
|
return LONG2FIX(!k);
|
|
}
|
|
return rb_int_positive_pow(n, (unsigned long)k);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.repeated_permutation(n) {|permutation| ... } -> self
|
|
* array.repeated_permutation(n) -> new_enumerator
|
|
*
|
|
* Calls the block with each repeated permutation of length +n+ of the elements of +self+;
|
|
* each permutation is an \Array;
|
|
* returns +self+. The order of the permutations is indeterminate.
|
|
*
|
|
* When a block and a positive \Integer argument +n+ are given, calls the block with each
|
|
* +n+-tuple repeated permutation of the elements of +self+.
|
|
* The number of permutations is <tt>self.size**n</tt>.
|
|
*
|
|
* +n+ = 1:
|
|
* a = [0, 1, 2]
|
|
* a.repeated_permutation(1) {|permutation| p permutation }
|
|
* Output:
|
|
* [0]
|
|
* [1]
|
|
* [2]
|
|
*
|
|
* +n+ = 2:
|
|
* a.repeated_permutation(2) {|permutation| p permutation }
|
|
* Output:
|
|
* [0, 0]
|
|
* [0, 1]
|
|
* [0, 2]
|
|
* [1, 0]
|
|
* [1, 1]
|
|
* [1, 2]
|
|
* [2, 0]
|
|
* [2, 1]
|
|
* [2, 2]
|
|
*
|
|
* If +n+ is zero, calls the block once with an empty \Array.
|
|
*
|
|
* If +n+ is negative, does not call the block:
|
|
* a.repeated_permutation(-1) {|permutation| fail 'Cannot happen' }
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [0, 1, 2]
|
|
* a.repeated_permutation(2) # => #<Enumerator: [0, 1, 2]:permutation(2)>
|
|
*
|
|
* Using Enumerators, it's convenient to show the permutations and counts
|
|
* for some values of +n+:
|
|
* e = a.repeated_permutation(0)
|
|
* e.size # => 1
|
|
* e.to_a # => [[]]
|
|
* e = a.repeated_permutation(1)
|
|
* e.size # => 3
|
|
* e.to_a # => [[0], [1], [2]]
|
|
* e = a.repeated_permutation(2)
|
|
* e.size # => 9
|
|
* e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]]
|
|
*/
|
|
static VALUE
|
|
rb_ary_repeated_permutation(VALUE ary, VALUE num)
|
|
{
|
|
long r, n, i;
|
|
|
|
n = RARRAY_LEN(ary); /* Array length */
|
|
RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_permutation_size); /* Return Enumerator if no block */
|
|
r = NUM2LONG(num); /* Permutation size from argument */
|
|
|
|
if (r < 0) {
|
|
/* no permutations: yield nothing */
|
|
}
|
|
else if (r == 0) { /* exactly one permutation: the zero-length array */
|
|
rb_yield(rb_ary_new2(0));
|
|
}
|
|
else if (r == 1) { /* this is a special, easy case */
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
|
|
}
|
|
}
|
|
else { /* this is the general case */
|
|
volatile VALUE t0;
|
|
long *p = ALLOCV_N(long, t0, r);
|
|
VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
|
|
RBASIC_CLEAR_CLASS(ary0);
|
|
|
|
rpermute0(n, r, p, ary0); /* compute and yield repeated permutations */
|
|
ALLOCV_END(t0);
|
|
RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
static void
|
|
rcombinate0(const long n, const long r, long *const p, const long rest, const VALUE values)
|
|
{
|
|
long i = 0, index = 0;
|
|
|
|
p[index] = i;
|
|
for (;;) {
|
|
if (++index < r-1) {
|
|
p[index] = i;
|
|
continue;
|
|
}
|
|
for (; i < n; ++i) {
|
|
p[index] = i;
|
|
if (!yield_indexed_values(values, r, p)) {
|
|
rb_raise(rb_eRuntimeError, "repeated combination reentered");
|
|
}
|
|
}
|
|
do {
|
|
if (index <= 0) return;
|
|
} while ((i = ++p[--index]) >= n);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_repeated_combination_size(VALUE ary, VALUE args, VALUE eobj)
|
|
{
|
|
long n = RARRAY_LEN(ary);
|
|
long k = NUM2LONG(RARRAY_AREF(args, 0));
|
|
if (k == 0) {
|
|
return LONG2FIX(1);
|
|
}
|
|
return binomial_coefficient(k, n + k - 1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.repeated_combination(n) {|combination| ... } -> self
|
|
* array.repeated_combination(n) -> new_enumerator
|
|
*
|
|
* Calls the block with each repeated combination of length +n+ of the elements of +self+;
|
|
* each combination is an \Array;
|
|
* returns +self+. The order of the combinations is indeterminate.
|
|
*
|
|
* When a block and a positive \Integer argument +n+ are given, calls the block with each
|
|
* +n+-tuple repeated combination of the elements of +self+.
|
|
* The number of combinations is <tt>(n+1)(n+2)/2</tt>.
|
|
*
|
|
* +n+ = 1:
|
|
* a = [0, 1, 2]
|
|
* a.repeated_combination(1) {|combination| p combination }
|
|
* Output:
|
|
* [0]
|
|
* [1]
|
|
* [2]
|
|
*
|
|
* +n+ = 2:
|
|
* a.repeated_combination(2) {|combination| p combination }
|
|
* Output:
|
|
* [0, 0]
|
|
* [0, 1]
|
|
* [0, 2]
|
|
* [1, 1]
|
|
* [1, 2]
|
|
* [2, 2]
|
|
*
|
|
* If +n+ is zero, calls the block once with an empty \Array.
|
|
*
|
|
* If +n+ is negative, does not call the block:
|
|
* a.repeated_combination(-1) {|combination| fail 'Cannot happen' }
|
|
*
|
|
* Returns a new \Enumerator if no block given:
|
|
* a = [0, 1, 2]
|
|
* a.repeated_combination(2) # => #<Enumerator: [0, 1, 2]:combination(2)>
|
|
*
|
|
* Using Enumerators, it's convenient to show the combinations and counts
|
|
* for some values of +n+:
|
|
* e = a.repeated_combination(0)
|
|
* e.size # => 1
|
|
* e.to_a # => [[]]
|
|
* e = a.repeated_combination(1)
|
|
* e.size # => 3
|
|
* e.to_a # => [[0], [1], [2]]
|
|
* e = a.repeated_combination(2)
|
|
* e.size # => 6
|
|
* e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 2]]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_repeated_combination(VALUE ary, VALUE num)
|
|
{
|
|
long n, i, len;
|
|
|
|
n = NUM2LONG(num); /* Combination size from argument */
|
|
RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_combination_size); /* Return enumerator if no block */
|
|
len = RARRAY_LEN(ary);
|
|
if (n < 0) {
|
|
/* yield nothing */
|
|
}
|
|
else if (n == 0) {
|
|
rb_yield(rb_ary_new2(0));
|
|
}
|
|
else if (n == 1) {
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
|
|
}
|
|
}
|
|
else if (len == 0) {
|
|
/* yield nothing */
|
|
}
|
|
else {
|
|
volatile VALUE t0;
|
|
long *p = ALLOCV_N(long, t0, n);
|
|
VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
|
|
RBASIC_CLEAR_CLASS(ary0);
|
|
|
|
rcombinate0(len, n, p, n, ary0); /* compute and yield repeated combinations */
|
|
ALLOCV_END(t0);
|
|
RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
|
|
}
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.product(*other_arrays) -> new_array
|
|
* array.product(*other_arrays) {|combination| ... } -> self
|
|
*
|
|
* Computes and returns or yields all combinations of elements from all the Arrays,
|
|
* including both +self+ and +other_arrays+.
|
|
* - The number of combinations is the product of the sizes of all the arrays,
|
|
* including both +self+ and +other_arrays+.
|
|
* - The order of the returned combinations is indeterminate.
|
|
*
|
|
* When no block is given, returns the combinations as an \Array of Arrays:
|
|
* a = [0, 1, 2]
|
|
* a1 = [3, 4]
|
|
* a2 = [5, 6]
|
|
* p = a.product(a1)
|
|
* p.size # => 6 # a.size * a1.size
|
|
* p # => [[0, 3], [0, 4], [1, 3], [1, 4], [2, 3], [2, 4]]
|
|
* p = a.product(a1, a2)
|
|
* p.size # => 12 # a.size * a1.size * a2.size
|
|
* p # => [[0, 3, 5], [0, 3, 6], [0, 4, 5], [0, 4, 6], [1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6], [2, 3, 5], [2, 3, 6], [2, 4, 5], [2, 4, 6]]
|
|
*
|
|
* If any argument is an empty \Array, returns an empty \Array.
|
|
*
|
|
* If no argument is given, returns an \Array of 1-element Arrays,
|
|
* each containing an element of +self+:
|
|
* a.product # => [[0], [1], [2]]
|
|
*
|
|
* When a block is given, yields each combination as an \Array; returns +self+:
|
|
* a.product(a1) {|combination| p combination }
|
|
* Output:
|
|
* [0, 3]
|
|
* [0, 4]
|
|
* [1, 3]
|
|
* [1, 4]
|
|
* [2, 3]
|
|
* [2, 4]
|
|
*
|
|
* If any argument is an empty \Array, does not call the block:
|
|
* a.product(a1, a2, []) {|combination| fail 'Cannot happen' }
|
|
*
|
|
* If no argument is given, yields each element of +self+ as a 1-element \Array:
|
|
* a.product {|combination| p combination }
|
|
* Output:
|
|
* [0]
|
|
* [1]
|
|
* [2]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_product(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
int n = argc+1; /* How many arrays we're operating on */
|
|
volatile VALUE t0 = tmpary(n);
|
|
volatile VALUE t1 = Qundef;
|
|
VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
|
|
int *counters = ALLOCV_N(int, t1, n); /* The current position in each one */
|
|
VALUE result = Qnil; /* The array we'll be returning, when no block given */
|
|
long i,j;
|
|
long resultlen = 1;
|
|
|
|
RBASIC_CLEAR_CLASS(t0);
|
|
|
|
/* initialize the arrays of arrays */
|
|
ARY_SET_LEN(t0, n);
|
|
arrays[0] = ary;
|
|
for (i = 1; i < n; i++) arrays[i] = Qnil;
|
|
for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
|
|
|
|
/* initialize the counters for the arrays */
|
|
for (i = 0; i < n; i++) counters[i] = 0;
|
|
|
|
/* Otherwise, allocate and fill in an array of results */
|
|
if (rb_block_given_p()) {
|
|
/* Make defensive copies of arrays; exit if any is empty */
|
|
for (i = 0; i < n; i++) {
|
|
if (RARRAY_LEN(arrays[i]) == 0) goto done;
|
|
arrays[i] = ary_make_shared_copy(arrays[i]);
|
|
}
|
|
}
|
|
else {
|
|
/* Compute the length of the result array; return [] if any is empty */
|
|
for (i = 0; i < n; i++) {
|
|
long k = RARRAY_LEN(arrays[i]);
|
|
if (k == 0) {
|
|
result = rb_ary_new2(0);
|
|
goto done;
|
|
}
|
|
if (MUL_OVERFLOW_LONG_P(resultlen, k))
|
|
rb_raise(rb_eRangeError, "too big to product");
|
|
resultlen *= k;
|
|
}
|
|
result = rb_ary_new2(resultlen);
|
|
}
|
|
for (;;) {
|
|
int m;
|
|
/* fill in one subarray */
|
|
VALUE subarray = rb_ary_new2(n);
|
|
for (j = 0; j < n; j++) {
|
|
rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
|
|
}
|
|
|
|
/* put it on the result array */
|
|
if (NIL_P(result)) {
|
|
FL_SET(t0, FL_USER5);
|
|
rb_yield(subarray);
|
|
if (! FL_TEST(t0, FL_USER5)) {
|
|
rb_raise(rb_eRuntimeError, "product reentered");
|
|
}
|
|
else {
|
|
FL_UNSET(t0, FL_USER5);
|
|
}
|
|
}
|
|
else {
|
|
rb_ary_push(result, subarray);
|
|
}
|
|
|
|
/*
|
|
* Increment the last counter. If it overflows, reset to 0
|
|
* and increment the one before it.
|
|
*/
|
|
m = n-1;
|
|
counters[m]++;
|
|
while (counters[m] == RARRAY_LEN(arrays[m])) {
|
|
counters[m] = 0;
|
|
/* If the first counter overflows, we are done */
|
|
if (--m < 0) goto done;
|
|
counters[m]++;
|
|
}
|
|
}
|
|
done:
|
|
tmpary_discard(t0);
|
|
ALLOCV_END(t1);
|
|
|
|
return NIL_P(result) ? ary : result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.take(n) -> new_array
|
|
*
|
|
* Returns a new \Array containing the first +n+ element of +self+,
|
|
* where +n+ is a non-negative \Integer;
|
|
* does not modify +self+.
|
|
*
|
|
* Examples:
|
|
* a = [0, 1, 2, 3, 4, 5]
|
|
* a.take(1) # => [0]
|
|
* a.take(2) # => [0, 1]
|
|
* a.take(50) # => [0, 1, 2, 3, 4, 5]
|
|
* a # => [0, 1, 2, 3, 4, 5]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_take(VALUE obj, VALUE n)
|
|
{
|
|
long len = NUM2LONG(n);
|
|
if (len < 0) {
|
|
rb_raise(rb_eArgError, "attempt to take negative size");
|
|
}
|
|
return rb_ary_subseq(obj, 0, len);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.take_while {|element| ... } -> new_array
|
|
* array.take_while -> new_enumerator
|
|
*
|
|
* Returns a new \Array containing zero or more leading elements of +self+;
|
|
* does not modify +self+.
|
|
*
|
|
* With a block given, calls the block with each successive element of +self+;
|
|
* stops if the block returns +false+ or +nil+;
|
|
* returns a new Array containing those elements for which the block returned a truthy value:
|
|
* a = [0, 1, 2, 3, 4, 5]
|
|
* a.take_while {|element| element < 3 } # => [0, 1, 2]
|
|
* a.take_while {|element| true } # => [0, 1, 2, 3, 4, 5]
|
|
* a # => [0, 1, 2, 3, 4, 5]
|
|
*
|
|
* With no block given, returns a new \Enumerator:
|
|
* [0, 1].take_while # => #<Enumerator: [0, 1]:take_while>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_take_while(VALUE ary)
|
|
{
|
|
long i;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
|
|
}
|
|
return rb_ary_take(ary, LONG2FIX(i));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.drop(n) -> new_array
|
|
*
|
|
* Returns a new \Array containing all but the first +n+ element of +self+,
|
|
* where +n+ is a non-negative \Integer;
|
|
* does not modify +self+.
|
|
*
|
|
* Examples:
|
|
* a = [0, 1, 2, 3, 4, 5]
|
|
* a.drop(0) # => [0, 1, 2, 3, 4, 5]
|
|
* a.drop(1) # => [1, 2, 3, 4, 5]
|
|
* a.drop(2) # => [2, 3, 4, 5]
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_drop(VALUE ary, VALUE n)
|
|
{
|
|
VALUE result;
|
|
long pos = NUM2LONG(n);
|
|
if (pos < 0) {
|
|
rb_raise(rb_eArgError, "attempt to drop negative size");
|
|
}
|
|
|
|
result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
|
|
if (result == Qnil) result = rb_ary_new();
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.drop_while {|element| ... } -> new_array
|
|
* array.drop_while -> new_enumerator
|
|
|
|
* Returns a new \Array containing zero or more trailing elements of +self+;
|
|
* does not modify +self+.
|
|
*
|
|
* With a block given, calls the block with each successive element of +self+;
|
|
* stops if the block returns +false+ or +nil+;
|
|
* returns a new Array _omitting_ those elements for which the block returned a truthy value:
|
|
* a = [0, 1, 2, 3, 4, 5]
|
|
* a.drop_while {|element| element < 3 } # => [3, 4, 5]
|
|
*
|
|
* With no block given, returns a new \Enumerator:
|
|
* [0, 1].drop_while # => # => #<Enumerator: [0, 1]:drop_while>
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_drop_while(VALUE ary)
|
|
{
|
|
long i;
|
|
|
|
RETURN_ENUMERATOR(ary, 0, 0);
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
|
|
}
|
|
return rb_ary_drop(ary, LONG2FIX(i));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.any? -> true or false
|
|
* array.any? {|element| ... } -> true or false
|
|
* array.any?(obj) -> true or false
|
|
*
|
|
* Returns +true+ if any element of +self+ meets a given criterion.
|
|
*
|
|
* With no block given and no argument, returns +true+ if +self+ has any truthy element,
|
|
* +false+ otherwise:
|
|
* [nil, 0, false].any? # => true
|
|
* [nil, false].any? # => false
|
|
* [].any? # => false
|
|
*
|
|
* With a block given and no argument, calls the block with each element in +self+;
|
|
* returns +true+ if the block returns any truthy value, +false+ otherwise:
|
|
* [0, 1, 2].any? {|element| element > 1 } # => true
|
|
* [0, 1, 2].any? {|element| element > 2 } # => false
|
|
*
|
|
* If argument +obj+ is given, returns +true+ if +obj+.<tt>===</tt> any element,
|
|
* +false+ otherwise:
|
|
* ['food', 'drink'].any?(/foo/) # => true
|
|
* ['food', 'drink'].any?(/bar/) # => false
|
|
* [].any?(/foo/) # => false
|
|
* [0, 1, 2].any?(1) # => true
|
|
* [0, 1, 2].any?(3) # => false
|
|
*
|
|
* Related: Enumerable#any?
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_any_p(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long i, len = RARRAY_LEN(ary);
|
|
|
|
rb_check_arity(argc, 0, 1);
|
|
if (!len) return Qfalse;
|
|
if (argc) {
|
|
if (rb_block_given_p()) {
|
|
rb_warn("given block not used");
|
|
}
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qtrue;
|
|
}
|
|
}
|
|
else if (!rb_block_given_p()) {
|
|
for (i = 0; i < len; ++i) {
|
|
if (RTEST(RARRAY_AREF(ary, i))) return Qtrue;
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qtrue;
|
|
}
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.all? -> true or false
|
|
* array.all? {|element| ... } -> true or false
|
|
* array.all?(obj) -> true or false
|
|
*
|
|
* Returns +true+ if all elements of +self+ meet a given criterion.
|
|
*
|
|
* With no block given and no argument, returns +true+ if +self+ contains only truthy elements,
|
|
* +false+ otherwise:
|
|
* [0, 1, :foo].all? # => true
|
|
* [0, nil, 2].all? # => false
|
|
* [].all? # => true
|
|
*
|
|
* With a block given and no argument, calls the block with each element in +self+;
|
|
* returns +true+ if the block returns only truthy values, +false+ otherwise:
|
|
* [0, 1, 2].all? { |element| element < 3 } # => true
|
|
* [0, 1, 2].all? { |element| element < 2 } # => false
|
|
*
|
|
* If argument +obj+ is given, returns +true+ if <tt>obj.===</tt> every element, +false+ otherwise:
|
|
* ['food', 'fool', 'foot'].all?(/foo/) # => true
|
|
* ['food', 'drink'].all?(/bar/) # => false
|
|
* [].all?(/foo/) # => true
|
|
* [0, 0, 0].all?(0) # => true
|
|
* [0, 1, 2].all?(1) # => false
|
|
*
|
|
* Related: Enumerable#all?
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_all_p(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long i, len = RARRAY_LEN(ary);
|
|
|
|
rb_check_arity(argc, 0, 1);
|
|
if (!len) return Qtrue;
|
|
if (argc) {
|
|
if (rb_block_given_p()) {
|
|
rb_warn("given block not used");
|
|
}
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
if (!RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qfalse;
|
|
}
|
|
}
|
|
else if (!rb_block_given_p()) {
|
|
for (i = 0; i < len; ++i) {
|
|
if (!RTEST(RARRAY_AREF(ary, i))) return Qfalse;
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qfalse;
|
|
}
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.none? -> true or false
|
|
* array.none? {|element| ... } -> true or false
|
|
* array.none?(obj) -> true or false
|
|
*
|
|
* Returns +true+ if no element of +self+ meet a given criterion.
|
|
*
|
|
* With no block given and no argument, returns +true+ if +self+ has no truthy elements,
|
|
* +false+ otherwise:
|
|
* [nil, false].none? # => true
|
|
* [nil, 0, false].none? # => false
|
|
* [].none? # => true
|
|
*
|
|
* With a block given and no argument, calls the block with each element in +self+;
|
|
* returns +true+ if the block returns no truthy value, +false+ otherwise:
|
|
* [0, 1, 2].none? {|element| element > 3 } # => true
|
|
* [0, 1, 2].none? {|element| element > 1 } # => false
|
|
*
|
|
* If argument +obj+ is given, returns +true+ if <tt>obj.===</tt> no element, +false+ otherwise:
|
|
* ['food', 'drink'].none?(/bar/) # => true
|
|
* ['food', 'drink'].none?(/foo/) # => false
|
|
* [].none?(/foo/) # => true
|
|
* [0, 1, 2].none?(3) # => true
|
|
* [0, 1, 2].none?(1) # => false
|
|
*
|
|
* Related: Enumerable#none?
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_none_p(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long i, len = RARRAY_LEN(ary);
|
|
|
|
rb_check_arity(argc, 0, 1);
|
|
if (!len) return Qtrue;
|
|
if (argc) {
|
|
if (rb_block_given_p()) {
|
|
rb_warn("given block not used");
|
|
}
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) return Qfalse;
|
|
}
|
|
}
|
|
else if (!rb_block_given_p()) {
|
|
for (i = 0; i < len; ++i) {
|
|
if (RTEST(RARRAY_AREF(ary, i))) return Qfalse;
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qfalse;
|
|
}
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.one? -> true or false
|
|
* array.one? {|element| ... } -> true or false
|
|
* array.one?(obj) -> true or false
|
|
*
|
|
* Returns +true+ if exactly one element of +self+ meets a given criterion.
|
|
*
|
|
* With no block given and no argument, returns +true+ if +self+ has exactly one truthy element,
|
|
* +false+ otherwise:
|
|
* [nil, 0].one? # => true
|
|
* [0, 0].one? # => false
|
|
* [nil, nil].one? # => false
|
|
* [].one? # => false
|
|
*
|
|
* With a block given and no argument, calls the block with each element in +self+;
|
|
* returns +true+ if the block a truthy value for exactly one element, +false+ otherwise:
|
|
* [0, 1, 2].one? {|element| element > 0 } # => false
|
|
* [0, 1, 2].one? {|element| element > 1 } # => true
|
|
* [0, 1, 2].one? {|element| element > 2 } # => false
|
|
*
|
|
* If argument +obj+ is given, returns +true+ if <tt>obj.===</tt> exactly one element,
|
|
* +false+ otherwise:
|
|
* [0, 1, 2].one?(0) # => true
|
|
* [0, 0, 1].one?(0) # => false
|
|
* [1, 1, 2].one?(0) # => false
|
|
* ['food', 'drink'].one?(/bar/) # => false
|
|
* ['food', 'drink'].one?(/foo/) # => true
|
|
* [].one?(/foo/) # => false
|
|
*
|
|
* Related: Enumerable#one?
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_one_p(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
long i, len = RARRAY_LEN(ary);
|
|
VALUE result = Qfalse;
|
|
|
|
rb_check_arity(argc, 0, 1);
|
|
if (!len) return Qfalse;
|
|
if (argc) {
|
|
if (rb_block_given_p()) {
|
|
rb_warn("given block not used");
|
|
}
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
if (RTEST(rb_funcall(argv[0], idEqq, 1, RARRAY_AREF(ary, i)))) {
|
|
if (result) return Qfalse;
|
|
result = Qtrue;
|
|
}
|
|
}
|
|
}
|
|
else if (!rb_block_given_p()) {
|
|
for (i = 0; i < len; ++i) {
|
|
if (RTEST(RARRAY_AREF(ary, i))) {
|
|
if (result) return Qfalse;
|
|
result = Qtrue;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < RARRAY_LEN(ary); ++i) {
|
|
if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
|
|
if (result) return Qfalse;
|
|
result = Qtrue;
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.dig(index, *identifiers) -> object
|
|
*
|
|
* Finds and returns the object in nested objects
|
|
* that is specified by +index+ and +identifiers+.
|
|
* The nested objects may be instances of various classes.
|
|
* See {Dig Methods}[rdoc-ref:doc/dig_methods.rdoc].
|
|
*
|
|
* Examples:
|
|
* a = [:foo, [:bar, :baz, [:bat, :bam]]]
|
|
* a.dig(1) # => [:bar, :baz, [:bat, :bam]]
|
|
* a.dig(1, 2) # => [:bat, :bam]
|
|
* a.dig(1, 2, 0) # => :bat
|
|
* a.dig(1, 2, 3) # => nil
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_dig(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
|
|
self = rb_ary_at(self, *argv);
|
|
if (!--argc) return self;
|
|
++argv;
|
|
return rb_obj_dig(argc, argv, self, Qnil);
|
|
}
|
|
|
|
static inline VALUE
|
|
finish_exact_sum(long n, VALUE r, VALUE v, int z)
|
|
{
|
|
if (n != 0)
|
|
v = rb_fix_plus(LONG2FIX(n), v);
|
|
if (r != Qundef) {
|
|
/* r can be an Integer when mathn is loaded */
|
|
if (FIXNUM_P(r))
|
|
v = rb_fix_plus(r, v);
|
|
else if (RB_TYPE_P(r, T_BIGNUM))
|
|
v = rb_big_plus(r, v);
|
|
else
|
|
v = rb_rational_plus(r, v);
|
|
}
|
|
else if (!n && z) {
|
|
v = rb_fix_plus(LONG2FIX(0), v);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* array.sum(init = 0) -> object
|
|
* array.sum(init = 0) {|element| ... } -> object
|
|
*
|
|
* When no block is given, returns the object equivalent to:
|
|
* sum = init
|
|
* array.each {|element| sum += element }
|
|
* sum
|
|
* For example, <tt>[e1, e2, e3].sum</tt> returns </tt>init + e1 + e2 + e3</tt>.
|
|
*
|
|
* Examples:
|
|
* a = [0, 1, 2, 3]
|
|
* a.sum # => 6
|
|
* a.sum(100) # => 106
|
|
*
|
|
* The elements need not be numeric, but must be <tt>+</tt>-compatible
|
|
* with each other and with +init+:
|
|
* a = ['abc', 'def', 'ghi']
|
|
* a.sum('jkl') # => "jklabcdefghi"
|
|
*
|
|
* When a block is given, it is called with each element
|
|
* and the block's return value (instead of the element itself) is used as the addend:
|
|
* a = ['zero', 1, :two]
|
|
* s = a.sum('Coerced and concatenated: ') {|element| element.to_s }
|
|
* s # => "Coerced and concatenated: zero1two"
|
|
*
|
|
* Notes:
|
|
* - Array#join and Array#flatten may be faster than Array#sum
|
|
* for an \Array of Strings or an \Array of Arrays.
|
|
* - Array#sum method may not respect method redefinition of "+" methods such as Integer#+.
|
|
*/
|
|
|
|
static VALUE
|
|
rb_ary_sum(int argc, VALUE *argv, VALUE ary)
|
|
{
|
|
VALUE e, v, r;
|
|
long i, n;
|
|
int block_given;
|
|
|
|
v = (rb_check_arity(argc, 0, 1) ? argv[0] : LONG2FIX(0));
|
|
|
|
block_given = rb_block_given_p();
|
|
|
|
if (RARRAY_LEN(ary) == 0)
|
|
return v;
|
|
|
|
n = 0;
|
|
r = Qundef;
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
e = RARRAY_AREF(ary, i);
|
|
if (block_given)
|
|
e = rb_yield(e);
|
|
if (FIXNUM_P(e)) {
|
|
n += FIX2LONG(e); /* should not overflow long type */
|
|
if (!FIXABLE(n)) {
|
|
v = rb_big_plus(LONG2NUM(n), v);
|
|
n = 0;
|
|
}
|
|
}
|
|
else if (RB_TYPE_P(e, T_BIGNUM))
|
|
v = rb_big_plus(e, v);
|
|
else if (RB_TYPE_P(e, T_RATIONAL)) {
|
|
if (r == Qundef)
|
|
r = e;
|
|
else
|
|
r = rb_rational_plus(r, e);
|
|
}
|
|
else
|
|
goto not_exact;
|
|
}
|
|
v = finish_exact_sum(n, r, v, argc!=0);
|
|
return v;
|
|
|
|
not_exact:
|
|
v = finish_exact_sum(n, r, v, i!=0);
|
|
|
|
if (RB_FLOAT_TYPE_P(e)) {
|
|
/*
|
|
* Kahan-Babuska balancing compensated summation algorithm
|
|
* See http://link.springer.com/article/10.1007/s00607-005-0139-x
|
|
*/
|
|
double f, c;
|
|
double x, t;
|
|
|
|
f = NUM2DBL(v);
|
|
c = 0.0;
|
|
goto has_float_value;
|
|
for (; i < RARRAY_LEN(ary); i++) {
|
|
e = RARRAY_AREF(ary, i);
|
|
if (block_given)
|
|
e = rb_yield(e);
|
|
if (RB_FLOAT_TYPE_P(e))
|
|
has_float_value:
|
|
x = RFLOAT_VALUE(e);
|
|
else if (FIXNUM_P(e))
|
|
x = FIX2LONG(e);
|
|
else if (RB_TYPE_P(e, T_BIGNUM))
|
|
x = rb_big2dbl(e);
|
|
else if (RB_TYPE_P(e, T_RATIONAL))
|
|
x = rb_num2dbl(e);
|
|
else
|
|
goto not_float;
|
|
|
|
if (isnan(f)) continue;
|
|
if (isnan(x)) {
|
|
f = x;
|
|
continue;
|
|
}
|
|
if (isinf(x)) {
|
|
if (isinf(f) && signbit(x) != signbit(f))
|
|
f = NAN;
|
|
else
|
|
f = x;
|
|
continue;
|
|
}
|
|
if (isinf(f)) continue;
|
|
|
|
t = f + x;
|
|
if (fabs(f) >= fabs(x))
|
|
c += ((f - t) + x);
|
|
else
|
|
c += ((x - t) + f);
|
|
f = t;
|
|
}
|
|
f += c;
|
|
return DBL2NUM(f);
|
|
|
|
not_float:
|
|
v = DBL2NUM(f);
|
|
}
|
|
|
|
goto has_some_value;
|
|
for (; i < RARRAY_LEN(ary); i++) {
|
|
e = RARRAY_AREF(ary, i);
|
|
if (block_given)
|
|
e = rb_yield(e);
|
|
has_some_value:
|
|
v = rb_funcall(v, idPLUS, 1, e);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
static VALUE
|
|
rb_ary_deconstruct(VALUE ary)
|
|
{
|
|
return ary;
|
|
}
|
|
|
|
/*
|
|
* An \Array is an ordered, integer-indexed collection of objects,
|
|
* called _elements_. Any object may be an \Array element.
|
|
*
|
|
* == \Array Indexes
|
|
*
|
|
* \Array indexing starts at 0, as in C or Java.
|
|
*
|
|
* A positive index is an offset from the first element:
|
|
* - Index 0 indicates the first element.
|
|
* - Index 1 indicates the second element.
|
|
* - ...
|
|
*
|
|
* A negative index is an offset, backwards, from the end of the array:
|
|
* - Index -1 indicates the last element.
|
|
* - Index -2 indicates the next-to-last element.
|
|
* - ...
|
|
*
|
|
* A non-negative index is <i>in range</i> if it is smaller than
|
|
* the size of the array. For a 3-element array:
|
|
* - Indexes 0 through 2 are in range.
|
|
* - Index 3 is out of range.
|
|
*
|
|
* A negative index is <i>in range</i> if its absolute value is
|
|
* not larger than the size of the array. For a 3-element array:
|
|
* - Indexes -1 through -3 are in range.
|
|
* - Index -4 is out of range.
|
|
*
|
|
* == Creating Arrays
|
|
*
|
|
* A new array can be created by using the literal constructor
|
|
* <code>[]</code>. Arrays can contain different types of objects. For
|
|
* example, the array below contains an Integer, a String and a Float:
|
|
*
|
|
* ary = [1, "two", 3.0] #=> [1, "two", 3.0]
|
|
*
|
|
* An array can also be created by explicitly calling Array.new with zero, one
|
|
* (the initial size of the Array) or two arguments (the initial size and a
|
|
* default object).
|
|
*
|
|
* ary = Array.new #=> []
|
|
* Array.new(3) #=> [nil, nil, nil]
|
|
* Array.new(3, true) #=> [true, true, true]
|
|
*
|
|
* Note that the second argument populates the array with references to the
|
|
* same object. Therefore, it is only recommended in cases when you need to
|
|
* instantiate arrays with natively immutable objects such as Symbols,
|
|
* numbers, true or false.
|
|
*
|
|
* To create an array with separate objects a block can be passed instead.
|
|
* This method is safe to use with mutable objects such as hashes, strings or
|
|
* other arrays:
|
|
*
|
|
* Array.new(4) {Hash.new} #=> [{}, {}, {}, {}]
|
|
* Array.new(4) {|i| i.to_s } #=> ["0", "1", "2", "3"]
|
|
*
|
|
* This is also a quick way to build up multi-dimensional arrays:
|
|
*
|
|
* empty_table = Array.new(3) {Array.new(3)}
|
|
* #=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]
|
|
*
|
|
* An array can also be created by using the Array() method, provided by
|
|
* Kernel, which tries to call #to_ary, then #to_a on its argument.
|
|
*
|
|
* Array({:a => "a", :b => "b"}) #=> [[:a, "a"], [:b, "b"]]
|
|
*
|
|
* == Example Usage
|
|
*
|
|
* In addition to the methods it mixes in through the Enumerable module, the
|
|
* Array class has proprietary methods for accessing, searching and otherwise
|
|
* manipulating arrays.
|
|
*
|
|
* Some of the more common ones are illustrated below.
|
|
*
|
|
* == Accessing Elements
|
|
*
|
|
* Elements in an array can be retrieved using the Array#[] method. It can
|
|
* take a single integer argument (a numeric index), a pair of arguments
|
|
* (start and length) or a range. Negative indices start counting from the end,
|
|
* with -1 being the last element.
|
|
*
|
|
* arr = [1, 2, 3, 4, 5, 6]
|
|
* arr[2] #=> 3
|
|
* arr[100] #=> nil
|
|
* arr[-3] #=> 4
|
|
* arr[2, 3] #=> [3, 4, 5]
|
|
* arr[1..4] #=> [2, 3, 4, 5]
|
|
* arr[1..-3] #=> [2, 3, 4]
|
|
*
|
|
* Another way to access a particular array element is by using the #at method
|
|
*
|
|
* arr.at(0) #=> 1
|
|
*
|
|
* The #slice method works in an identical manner to Array#[].
|
|
*
|
|
* To raise an error for indices outside of the array bounds or else to
|
|
* provide a default value when that happens, you can use #fetch.
|
|
*
|
|
* arr = ['a', 'b', 'c', 'd', 'e', 'f']
|
|
* arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6
|
|
* arr.fetch(100, "oops") #=> "oops"
|
|
*
|
|
* The special methods #first and #last will return the first and last
|
|
* elements of an array, respectively.
|
|
*
|
|
* arr.first #=> 1
|
|
* arr.last #=> 6
|
|
*
|
|
* To return the first +n+ elements of an array, use #take
|
|
*
|
|
* arr.take(3) #=> [1, 2, 3]
|
|
*
|
|
* #drop does the opposite of #take, by returning the elements after +n+
|
|
* elements have been dropped:
|
|
*
|
|
* arr.drop(3) #=> [4, 5, 6]
|
|
*
|
|
* == Obtaining Information about an Array
|
|
*
|
|
* Arrays keep track of their own length at all times. To query an array
|
|
* about the number of elements it contains, use #length, #count or #size.
|
|
*
|
|
* browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE']
|
|
* browsers.length #=> 5
|
|
* browsers.count #=> 5
|
|
*
|
|
* To check whether an array contains any elements at all
|
|
*
|
|
* browsers.empty? #=> false
|
|
*
|
|
* To check whether a particular item is included in the array
|
|
*
|
|
* browsers.include?('Konqueror') #=> false
|
|
*
|
|
* == Adding Items to Arrays
|
|
*
|
|
* Items can be added to the end of an array by using either #push or #<<
|
|
*
|
|
* arr = [1, 2, 3, 4]
|
|
* arr.push(5) #=> [1, 2, 3, 4, 5]
|
|
* arr << 6 #=> [1, 2, 3, 4, 5, 6]
|
|
*
|
|
* #unshift will add a new item to the beginning of an array.
|
|
*
|
|
* arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]
|
|
*
|
|
* With #insert you can add a new element to an array at any position.
|
|
*
|
|
* arr.insert(3, 'apple') #=> [0, 1, 2, 'apple', 3, 4, 5, 6]
|
|
*
|
|
* Using the #insert method, you can also insert multiple values at once:
|
|
*
|
|
* arr.insert(3, 'orange', 'pear', 'grapefruit')
|
|
* #=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]
|
|
*
|
|
* == Removing Items from an Array
|
|
*
|
|
* The method #pop removes the last element in an array and returns it:
|
|
*
|
|
* arr = [1, 2, 3, 4, 5, 6]
|
|
* arr.pop #=> 6
|
|
* arr #=> [1, 2, 3, 4, 5]
|
|
*
|
|
* To retrieve and at the same time remove the first item, use #shift:
|
|
*
|
|
* arr.shift #=> 1
|
|
* arr #=> [2, 3, 4, 5]
|
|
*
|
|
* To delete an element at a particular index:
|
|
*
|
|
* arr.delete_at(2) #=> 4
|
|
* arr #=> [2, 3, 5]
|
|
*
|
|
* To delete a particular element anywhere in an array, use #delete:
|
|
*
|
|
* arr = [1, 2, 2, 3]
|
|
* arr.delete(2) #=> 2
|
|
* arr #=> [1,3]
|
|
*
|
|
* A useful method if you need to remove +nil+ values from an array is
|
|
* #compact:
|
|
*
|
|
* arr = ['foo', 0, nil, 'bar', 7, 'baz', nil]
|
|
* arr.compact #=> ['foo', 0, 'bar', 7, 'baz']
|
|
* arr #=> ['foo', 0, nil, 'bar', 7, 'baz', nil]
|
|
* arr.compact! #=> ['foo', 0, 'bar', 7, 'baz']
|
|
* arr #=> ['foo', 0, 'bar', 7, 'baz']
|
|
*
|
|
* Another common need is to remove duplicate elements from an array.
|
|
*
|
|
* It has the non-destructive #uniq, and destructive method #uniq!
|
|
*
|
|
* arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556]
|
|
* arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]
|
|
*
|
|
* == Iterating over Arrays
|
|
*
|
|
* Like all classes that include the Enumerable module, Array has an each
|
|
* method, which defines what elements should be iterated over and how. In
|
|
* case of Array's #each, all elements in the Array instance are yielded to
|
|
* the supplied block in sequence.
|
|
*
|
|
* Note that this operation leaves the array unchanged.
|
|
*
|
|
* arr = [1, 2, 3, 4, 5]
|
|
* arr.each {|a| print a -= 10, " "}
|
|
* # prints: -9 -8 -7 -6 -5
|
|
* #=> [1, 2, 3, 4, 5]
|
|
*
|
|
* Another sometimes useful iterator is #reverse_each which will iterate over
|
|
* the elements in the array in reverse order.
|
|
*
|
|
* words = %w[first second third fourth fifth sixth]
|
|
* str = ""
|
|
* words.reverse_each {|word| str += "#{word} "}
|
|
* p str #=> "sixth fifth fourth third second first "
|
|
*
|
|
* The #map method can be used to create a new array based on the original
|
|
* array, but with the values modified by the supplied block:
|
|
*
|
|
* arr.map {|a| 2*a} #=> [2, 4, 6, 8, 10]
|
|
* arr #=> [1, 2, 3, 4, 5]
|
|
* arr.map! {|a| a**2} #=> [1, 4, 9, 16, 25]
|
|
* arr #=> [1, 4, 9, 16, 25]
|
|
*
|
|
* == Selecting Items from an Array
|
|
*
|
|
* Elements can be selected from an array according to criteria defined in a
|
|
* block. The selection can happen in a destructive or a non-destructive
|
|
* manner. While the destructive operations will modify the array they were
|
|
* called on, the non-destructive methods usually return a new array with the
|
|
* selected elements, but leave the original array unchanged.
|
|
*
|
|
* === Non-destructive Selection
|
|
*
|
|
* arr = [1, 2, 3, 4, 5, 6]
|
|
* arr.select {|a| a > 3} #=> [4, 5, 6]
|
|
* arr.reject {|a| a < 3} #=> [3, 4, 5, 6]
|
|
* arr.drop_while {|a| a < 4} #=> [4, 5, 6]
|
|
* arr #=> [1, 2, 3, 4, 5, 6]
|
|
*
|
|
* === Destructive Selection
|
|
*
|
|
* #select! and #reject! are the corresponding destructive methods to #select
|
|
* and #reject
|
|
*
|
|
* Similar to #select vs. #reject, #delete_if and #keep_if have the exact
|
|
* opposite result when supplied with the same block:
|
|
*
|
|
* arr.delete_if {|a| a < 4} #=> [4, 5, 6]
|
|
* arr #=> [4, 5, 6]
|
|
*
|
|
* arr = [1, 2, 3, 4, 5, 6]
|
|
* arr.keep_if {|a| a < 4} #=> [1, 2, 3]
|
|
* arr #=> [1, 2, 3]
|
|
*/
|
|
|
|
void
|
|
Init_Array(void)
|
|
{
|
|
rb_cArray = rb_define_class("Array", rb_cObject);
|
|
rb_include_module(rb_cArray, rb_mEnumerable);
|
|
|
|
rb_define_alloc_func(rb_cArray, empty_ary_alloc);
|
|
rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1);
|
|
rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1);
|
|
rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1);
|
|
rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1);
|
|
|
|
rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0);
|
|
rb_define_alias(rb_cArray, "to_s", "inspect");
|
|
rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0);
|
|
rb_define_method(rb_cArray, "to_h", rb_ary_to_h, 0);
|
|
rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0);
|
|
|
|
rb_define_method(rb_cArray, "==", rb_ary_equal, 1);
|
|
rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1);
|
|
rb_define_method(rb_cArray, "hash", rb_ary_hash, 0);
|
|
|
|
rb_define_method(rb_cArray, "[]", rb_ary_aref, -1);
|
|
rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1);
|
|
rb_define_method(rb_cArray, "at", rb_ary_at, 1);
|
|
rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1);
|
|
rb_define_method(rb_cArray, "first", rb_ary_first, -1);
|
|
rb_define_method(rb_cArray, "last", rb_ary_last, -1);
|
|
rb_define_method(rb_cArray, "concat", rb_ary_concat_multi, -1);
|
|
rb_define_method(rb_cArray, "union", rb_ary_union_multi, -1);
|
|
rb_define_method(rb_cArray, "difference", rb_ary_difference_multi, -1);
|
|
rb_define_method(rb_cArray, "intersection", rb_ary_intersection_multi, -1);
|
|
rb_define_method(rb_cArray, "<<", rb_ary_push, 1);
|
|
rb_define_method(rb_cArray, "push", rb_ary_push_m, -1);
|
|
rb_define_alias(rb_cArray, "append", "push");
|
|
rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1);
|
|
rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1);
|
|
rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1);
|
|
rb_define_alias(rb_cArray, "prepend", "unshift");
|
|
rb_define_method(rb_cArray, "insert", rb_ary_insert, -1);
|
|
rb_define_method(rb_cArray, "each", rb_ary_each, 0);
|
|
rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0);
|
|
rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0);
|
|
rb_define_method(rb_cArray, "length", rb_ary_length, 0);
|
|
rb_define_alias(rb_cArray, "size", "length");
|
|
rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0);
|
|
rb_define_method(rb_cArray, "find_index", rb_ary_index, -1);
|
|
rb_define_method(rb_cArray, "index", rb_ary_index, -1);
|
|
rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1);
|
|
rb_define_method(rb_cArray, "join", rb_ary_join_m, -1);
|
|
rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0);
|
|
rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0);
|
|
rb_define_method(rb_cArray, "rotate", rb_ary_rotate_m, -1);
|
|
rb_define_method(rb_cArray, "rotate!", rb_ary_rotate_bang, -1);
|
|
rb_define_method(rb_cArray, "sort", rb_ary_sort, 0);
|
|
rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0);
|
|
rb_define_method(rb_cArray, "sort_by!", rb_ary_sort_by_bang, 0);
|
|
rb_define_method(rb_cArray, "collect", rb_ary_collect, 0);
|
|
rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0);
|
|
rb_define_method(rb_cArray, "map", rb_ary_collect, 0);
|
|
rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0);
|
|
rb_define_method(rb_cArray, "select", rb_ary_select, 0);
|
|
rb_define_method(rb_cArray, "select!", rb_ary_select_bang, 0);
|
|
rb_define_method(rb_cArray, "filter", rb_ary_select, 0);
|
|
rb_define_method(rb_cArray, "filter!", rb_ary_select_bang, 0);
|
|
rb_define_method(rb_cArray, "keep_if", rb_ary_keep_if, 0);
|
|
rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1);
|
|
rb_define_method(rb_cArray, "delete", rb_ary_delete, 1);
|
|
rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1);
|
|
rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0);
|
|
rb_define_method(rb_cArray, "reject", rb_ary_reject, 0);
|
|
rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0);
|
|
rb_define_method(rb_cArray, "zip", rb_ary_zip, -1);
|
|
rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0);
|
|
rb_define_method(rb_cArray, "replace", rb_ary_replace, 1);
|
|
rb_define_method(rb_cArray, "clear", rb_ary_clear, 0);
|
|
rb_define_method(rb_cArray, "fill", rb_ary_fill, -1);
|
|
rb_define_method(rb_cArray, "include?", rb_ary_includes, 1);
|
|
rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1);
|
|
|
|
rb_define_method(rb_cArray, "slice", rb_ary_aref, -1);
|
|
rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1);
|
|
|
|
rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1);
|
|
rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1);
|
|
|
|
rb_define_method(rb_cArray, "+", rb_ary_plus, 1);
|
|
rb_define_method(rb_cArray, "*", rb_ary_times, 1);
|
|
|
|
rb_define_method(rb_cArray, "-", rb_ary_diff, 1);
|
|
rb_define_method(rb_cArray, "&", rb_ary_and, 1);
|
|
rb_define_method(rb_cArray, "|", rb_ary_or, 1);
|
|
|
|
rb_define_method(rb_cArray, "max", rb_ary_max, -1);
|
|
rb_define_method(rb_cArray, "min", rb_ary_min, -1);
|
|
rb_define_method(rb_cArray, "minmax", rb_ary_minmax, 0);
|
|
|
|
rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0);
|
|
rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0);
|
|
rb_define_method(rb_cArray, "compact", rb_ary_compact, 0);
|
|
rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0);
|
|
rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1);
|
|
rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1);
|
|
rb_define_method(rb_cArray, "count", rb_ary_count, -1);
|
|
rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1);
|
|
rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1);
|
|
rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
|
|
rb_define_method(rb_cArray, "repeated_permutation", rb_ary_repeated_permutation, 1);
|
|
rb_define_method(rb_cArray, "repeated_combination", rb_ary_repeated_combination, 1);
|
|
rb_define_method(rb_cArray, "product", rb_ary_product, -1);
|
|
|
|
rb_define_method(rb_cArray, "take", rb_ary_take, 1);
|
|
rb_define_method(rb_cArray, "take_while", rb_ary_take_while, 0);
|
|
rb_define_method(rb_cArray, "drop", rb_ary_drop, 1);
|
|
rb_define_method(rb_cArray, "drop_while", rb_ary_drop_while, 0);
|
|
rb_define_method(rb_cArray, "bsearch", rb_ary_bsearch, 0);
|
|
rb_define_method(rb_cArray, "bsearch_index", rb_ary_bsearch_index, 0);
|
|
rb_define_method(rb_cArray, "any?", rb_ary_any_p, -1);
|
|
rb_define_method(rb_cArray, "all?", rb_ary_all_p, -1);
|
|
rb_define_method(rb_cArray, "none?", rb_ary_none_p, -1);
|
|
rb_define_method(rb_cArray, "one?", rb_ary_one_p, -1);
|
|
rb_define_method(rb_cArray, "dig", rb_ary_dig, -1);
|
|
rb_define_method(rb_cArray, "sum", rb_ary_sum, -1);
|
|
|
|
rb_define_method(rb_cArray, "deconstruct", rb_ary_deconstruct, 0);
|
|
}
|
|
|
|
#include "array.rbinc"
|