mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			2847 lines
		
	
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2847 lines
		
	
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|   rational.c: Coded by Tadayoshi Funaba 2008-2012
 | |
| 
 | |
|   This implementation is based on Keiju Ishitsuka's Rational library
 | |
|   which is written in ruby.
 | |
| */
 | |
| 
 | |
| #include "ruby/internal/config.h"
 | |
| 
 | |
| #include <ctype.h>
 | |
| #include <float.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #ifdef HAVE_IEEEFP_H
 | |
| #include <ieeefp.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(HAVE_LIBGMP) && defined(HAVE_GMP_H)
 | |
| #define USE_GMP
 | |
| #include <gmp.h>
 | |
| #endif
 | |
| 
 | |
| #include "id.h"
 | |
| #include "internal.h"
 | |
| #include "internal/array.h"
 | |
| #include "internal/complex.h"
 | |
| #include "internal/gc.h"
 | |
| #include "internal/numeric.h"
 | |
| #include "internal/object.h"
 | |
| #include "internal/rational.h"
 | |
| #include "ruby_assert.h"
 | |
| 
 | |
| #define ZERO INT2FIX(0)
 | |
| #define ONE INT2FIX(1)
 | |
| #define TWO INT2FIX(2)
 | |
| 
 | |
| #define GMP_GCD_DIGITS 1
 | |
| 
 | |
| #define INT_ZERO_P(x) (FIXNUM_P(x) ? FIXNUM_ZERO_P(x) : rb_bigzero_p(x))
 | |
| 
 | |
| VALUE rb_cRational;
 | |
| 
 | |
| static ID id_abs, id_integer_p,
 | |
|     id_i_num, id_i_den;
 | |
| 
 | |
| #define id_idiv idDiv
 | |
| #define id_to_i idTo_i
 | |
| 
 | |
| #define f_inspect rb_inspect
 | |
| #define f_to_s rb_obj_as_string
 | |
| 
 | |
| static VALUE nurat_to_f(VALUE self);
 | |
| static VALUE float_to_r(VALUE self);
 | |
| 
 | |
| inline static VALUE
 | |
| f_add(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_ZERO_P(y))
 | |
| 	return x;
 | |
|     if (FIXNUM_ZERO_P(x))
 | |
| 	return y;
 | |
|     if (RB_INTEGER_TYPE_P(x))
 | |
|         return rb_int_plus(x, y);
 | |
|     return rb_funcall(x, '+', 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_div(VALUE x, VALUE y)
 | |
| {
 | |
|     if (y == ONE)
 | |
| 	return x;
 | |
|     if (RB_INTEGER_TYPE_P(x))
 | |
| 	return rb_int_div(x, y);
 | |
|     return rb_funcall(x, '/', 1, y);
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| f_lt_p(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	return (SIGNED_VALUE)x < (SIGNED_VALUE)y;
 | |
|     if (RB_INTEGER_TYPE_P(x)) {
 | |
|         VALUE r = rb_int_cmp(x, y);
 | |
|         if (!NIL_P(r)) return rb_int_negative_p(r);
 | |
|     }
 | |
|     return RTEST(rb_funcall(x, '<', 1, y));
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /* f_mod is used only in f_gcd defined when NDEBUG is not defined */
 | |
| inline static VALUE
 | |
| f_mod(VALUE x, VALUE y)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(x))
 | |
|         return rb_int_modulo(x, y);
 | |
|     return rb_funcall(x, '%', 1, y);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static VALUE
 | |
| f_mul(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_ZERO_P(y) && RB_INTEGER_TYPE_P(x))
 | |
| 	return ZERO;
 | |
|     if (y == ONE) return x;
 | |
|     if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y))
 | |
| 	return ZERO;
 | |
|     if (x == ONE) return y;
 | |
|     else if (RB_INTEGER_TYPE_P(x))
 | |
| 	return rb_int_mul(x, y);
 | |
|     return rb_funcall(x, '*', 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_sub(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y) && FIXNUM_ZERO_P(y))
 | |
| 	return x;
 | |
|     return rb_funcall(x, '-', 1, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_abs(VALUE x)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(x))
 | |
| 	return rb_int_abs(x);
 | |
|     return rb_funcall(x, id_abs, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| inline static int
 | |
| f_integer_p(VALUE x)
 | |
| {
 | |
|     return RB_INTEGER_TYPE_P(x);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_to_i(VALUE x)
 | |
| {
 | |
|     if (RB_TYPE_P(x, T_STRING))
 | |
| 	return rb_str_to_inum(x, 10, 0);
 | |
|     return rb_funcall(x, id_to_i, 0);
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| f_eqeq_p(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	return x == y;
 | |
|     if (RB_INTEGER_TYPE_P(x))
 | |
|         return RTEST(rb_int_equal(x, y));
 | |
|     return (int)rb_equal(x, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_idiv(VALUE x, VALUE y)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(x))
 | |
| 	return rb_int_idiv(x, y);
 | |
|     return rb_funcall(x, id_idiv, 1, y);
 | |
| }
 | |
| 
 | |
| #define f_expt10(x) rb_int_pow(INT2FIX(10), x)
 | |
| 
 | |
| inline static int
 | |
| f_zero_p(VALUE x)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(x)) {
 | |
| 	return FIXNUM_ZERO_P(x);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_RATIONAL)) {
 | |
| 	VALUE num = RRATIONAL(x)->num;
 | |
| 
 | |
| 	return FIXNUM_ZERO_P(num);
 | |
|     }
 | |
|     return (int)rb_equal(x, ZERO);
 | |
| }
 | |
| 
 | |
| #define f_nonzero_p(x) (!f_zero_p(x))
 | |
| 
 | |
| inline static int
 | |
| f_one_p(VALUE x)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(x)) {
 | |
| 	return x == LONG2FIX(1);
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_RATIONAL)) {
 | |
| 	VALUE num = RRATIONAL(x)->num;
 | |
| 	VALUE den = RRATIONAL(x)->den;
 | |
| 
 | |
| 	return num == LONG2FIX(1) && den == LONG2FIX(1);
 | |
|     }
 | |
|     return (int)rb_equal(x, ONE);
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| f_minus_one_p(VALUE x)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(x)) {
 | |
| 	return x == LONG2FIX(-1);
 | |
|     }
 | |
|     else if (RB_BIGNUM_TYPE_P(x)) {
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     else if (RB_TYPE_P(x, T_RATIONAL)) {
 | |
| 	VALUE num = RRATIONAL(x)->num;
 | |
| 	VALUE den = RRATIONAL(x)->den;
 | |
| 
 | |
| 	return num == LONG2FIX(-1) && den == LONG2FIX(1);
 | |
|     }
 | |
|     return (int)rb_equal(x, INT2FIX(-1));
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| f_kind_of_p(VALUE x, VALUE c)
 | |
| {
 | |
|     return (int)rb_obj_is_kind_of(x, c);
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| k_numeric_p(VALUE x)
 | |
| {
 | |
|     return f_kind_of_p(x, rb_cNumeric);
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| k_integer_p(VALUE x)
 | |
| {
 | |
|     return RB_INTEGER_TYPE_P(x);
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| k_float_p(VALUE x)
 | |
| {
 | |
|     return RB_FLOAT_TYPE_P(x);
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| k_rational_p(VALUE x)
 | |
| {
 | |
|     return RB_TYPE_P(x, T_RATIONAL);
 | |
| }
 | |
| 
 | |
| #define k_exact_p(x) (!k_float_p(x))
 | |
| #define k_inexact_p(x) k_float_p(x)
 | |
| 
 | |
| #define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
 | |
| #define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x))
 | |
| 
 | |
| #ifdef USE_GMP
 | |
| VALUE
 | |
| rb_gcd_gmp(VALUE x, VALUE y)
 | |
| {
 | |
|     const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
 | |
|     mpz_t mx, my, mz;
 | |
|     size_t count;
 | |
|     VALUE z;
 | |
|     long zn;
 | |
| 
 | |
|     mpz_init(mx);
 | |
|     mpz_init(my);
 | |
|     mpz_init(mz);
 | |
|     mpz_import(mx, BIGNUM_LEN(x), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(x));
 | |
|     mpz_import(my, BIGNUM_LEN(y), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(y));
 | |
| 
 | |
|     mpz_gcd(mz, mx, my);
 | |
| 
 | |
|     mpz_clear(mx);
 | |
|     mpz_clear(my);
 | |
| 
 | |
|     zn = (mpz_sizeinbase(mz, 16) + SIZEOF_BDIGIT*2 - 1) / (SIZEOF_BDIGIT*2);
 | |
|     z = rb_big_new(zn, 1);
 | |
|     mpz_export(BIGNUM_DIGITS(z), &count, -1, sizeof(BDIGIT), 0, nails, mz);
 | |
| 
 | |
|     mpz_clear(mz);
 | |
| 
 | |
|     return rb_big_norm(z);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #define f_gcd f_gcd_orig
 | |
| #endif
 | |
| 
 | |
| inline static long
 | |
| i_gcd(long x, long y)
 | |
| {
 | |
|     unsigned long u, v, t;
 | |
|     int shift;
 | |
| 
 | |
|     if (x < 0)
 | |
| 	x = -x;
 | |
|     if (y < 0)
 | |
| 	y = -y;
 | |
| 
 | |
|     if (x == 0)
 | |
| 	return y;
 | |
|     if (y == 0)
 | |
| 	return x;
 | |
| 
 | |
|     u = (unsigned long)x;
 | |
|     v = (unsigned long)y;
 | |
|     for (shift = 0; ((u | v) & 1) == 0; ++shift) {
 | |
| 	u >>= 1;
 | |
| 	v >>= 1;
 | |
|     }
 | |
| 
 | |
|     while ((u & 1) == 0)
 | |
| 	u >>= 1;
 | |
| 
 | |
|     do {
 | |
| 	while ((v & 1) == 0)
 | |
| 	    v >>= 1;
 | |
| 
 | |
| 	if (u > v) {
 | |
| 	    t = v;
 | |
| 	    v = u;
 | |
| 	    u = t;
 | |
| 	}
 | |
| 	v = v - u;
 | |
|     } while (v != 0);
 | |
| 
 | |
|     return (long)(u << shift);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_gcd_normal(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
| 
 | |
|     if (FIXNUM_P(x) && FIXNUM_P(y))
 | |
| 	return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
 | |
| 
 | |
|     if (INT_NEGATIVE_P(x))
 | |
| 	x = rb_int_uminus(x);
 | |
|     if (INT_NEGATIVE_P(y))
 | |
| 	y = rb_int_uminus(y);
 | |
| 
 | |
|     if (INT_ZERO_P(x))
 | |
| 	return y;
 | |
|     if (INT_ZERO_P(y))
 | |
| 	return x;
 | |
| 
 | |
|     for (;;) {
 | |
| 	if (FIXNUM_P(x)) {
 | |
| 	    if (FIXNUM_ZERO_P(x))
 | |
| 		return y;
 | |
| 	    if (FIXNUM_P(y))
 | |
| 		return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
 | |
| 	}
 | |
| 	z = x;
 | |
| 	x = rb_int_modulo(y, x);
 | |
| 	y = z;
 | |
|     }
 | |
|     /* NOTREACHED */
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_gcd_normal(VALUE x, VALUE y)
 | |
| {
 | |
|     return f_gcd_normal(x, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_gcd(VALUE x, VALUE y)
 | |
| {
 | |
| #ifdef USE_GMP
 | |
|     if (RB_BIGNUM_TYPE_P(x) && RB_BIGNUM_TYPE_P(y)) {
 | |
|         size_t xn = BIGNUM_LEN(x);
 | |
|         size_t yn = BIGNUM_LEN(y);
 | |
|         if (GMP_GCD_DIGITS <= xn || GMP_GCD_DIGITS <= yn)
 | |
|             return rb_gcd_gmp(x, y);
 | |
|     }
 | |
| #endif
 | |
|     return f_gcd_normal(x, y);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #undef f_gcd
 | |
| 
 | |
| inline static VALUE
 | |
| f_gcd(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE r = f_gcd_orig(x, y);
 | |
|     if (f_nonzero_p(r)) {
 | |
| 	assert(f_zero_p(f_mod(x, r)));
 | |
| 	assert(f_zero_p(f_mod(y, r)));
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static VALUE
 | |
| f_lcm(VALUE x, VALUE y)
 | |
| {
 | |
|     if (INT_ZERO_P(x) || INT_ZERO_P(y))
 | |
| 	return ZERO;
 | |
|     return f_abs(f_mul(f_div(x, f_gcd(x, y)), y));
 | |
| }
 | |
| 
 | |
| #define get_dat1(x) \
 | |
|     struct RRational *dat = RRATIONAL(x)
 | |
| 
 | |
| #define get_dat2(x,y) \
 | |
|     struct RRational *adat = RRATIONAL(x), *bdat = RRATIONAL(y)
 | |
| 
 | |
| inline static VALUE
 | |
| nurat_s_new_internal(VALUE klass, VALUE num, VALUE den)
 | |
| {
 | |
|     NEWOBJ_OF(obj, struct RRational, klass, T_RATIONAL | (RGENGC_WB_PROTECTED_RATIONAL ? FL_WB_PROTECTED : 0));
 | |
| 
 | |
|     RATIONAL_SET_NUM((VALUE)obj, num);
 | |
|     RATIONAL_SET_DEN((VALUE)obj, den);
 | |
|     OBJ_FREEZE_RAW((VALUE)obj);
 | |
| 
 | |
|     return (VALUE)obj;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_s_alloc(VALUE klass)
 | |
| {
 | |
|     return nurat_s_new_internal(klass, ZERO, ONE);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_rational_new_bang1(VALUE klass, VALUE x)
 | |
| {
 | |
|     return nurat_s_new_internal(klass, x, ONE);
 | |
| }
 | |
| 
 | |
| inline static void
 | |
| nurat_int_check(VALUE num)
 | |
| {
 | |
|     if (!RB_INTEGER_TYPE_P(num)) {
 | |
| 	if (!k_numeric_p(num) || !f_integer_p(num))
 | |
| 	    rb_raise(rb_eTypeError, "not an integer");
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| nurat_int_value(VALUE num)
 | |
| {
 | |
|     nurat_int_check(num);
 | |
|     if (!k_integer_p(num))
 | |
| 	num = f_to_i(num);
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static void
 | |
| nurat_canonicalize(VALUE *num, VALUE *den)
 | |
| {
 | |
|     assert(num); assert(RB_INTEGER_TYPE_P(*num));
 | |
|     assert(den); assert(RB_INTEGER_TYPE_P(*den));
 | |
|     if (INT_NEGATIVE_P(*den)) {
 | |
|         *num = rb_int_uminus(*num);
 | |
|         *den = rb_int_uminus(*den);
 | |
|     }
 | |
|     else if (INT_ZERO_P(*den)) {
 | |
|         rb_num_zerodiv();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| nurat_reduce(VALUE *x, VALUE *y)
 | |
| {
 | |
|     VALUE gcd;
 | |
|     if (*x == ONE || *y == ONE) return;
 | |
|     gcd = f_gcd(*x, *y);
 | |
|     *x = f_idiv(*x, gcd);
 | |
|     *y = f_idiv(*y, gcd);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| nurat_s_canonicalize_internal(VALUE klass, VALUE num, VALUE den)
 | |
| {
 | |
|     nurat_canonicalize(&num, &den);
 | |
|     nurat_reduce(&num, &den);
 | |
| 
 | |
|     return nurat_s_new_internal(klass, num, den);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| nurat_s_canonicalize_internal_no_reduce(VALUE klass, VALUE num, VALUE den)
 | |
| {
 | |
|     nurat_canonicalize(&num, &den);
 | |
| 
 | |
|     return nurat_s_new_internal(klass, num, den);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_rational_new2(VALUE klass, VALUE x, VALUE y)
 | |
| {
 | |
|     assert(!k_rational_p(x));
 | |
|     assert(!k_rational_p(y));
 | |
|     return nurat_s_canonicalize_internal(klass, x, y);
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y)
 | |
| {
 | |
|     assert(!k_rational_p(x));
 | |
|     assert(!k_rational_p(y));
 | |
|     return nurat_s_canonicalize_internal_no_reduce(klass, x, y);
 | |
| }
 | |
| 
 | |
| static VALUE nurat_convert(VALUE klass, VALUE numv, VALUE denv, int raise);
 | |
| static VALUE nurat_s_convert(int argc, VALUE *argv, VALUE klass);
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    Rational(x, y, exception: true)  ->  rational or nil
 | |
|  *    Rational(arg, exception: true)   ->  rational or nil
 | |
|  *
 | |
|  * Returns +x/y+ or +arg+ as a Rational.
 | |
|  *
 | |
|  *    Rational(2, 3)   #=> (2/3)
 | |
|  *    Rational(5)      #=> (5/1)
 | |
|  *    Rational(0.5)    #=> (1/2)
 | |
|  *    Rational(0.3)    #=> (5404319552844595/18014398509481984)
 | |
|  *
 | |
|  *    Rational("2/3")  #=> (2/3)
 | |
|  *    Rational("0.3")  #=> (3/10)
 | |
|  *
 | |
|  *    Rational("10 cents")  #=> ArgumentError
 | |
|  *    Rational(nil)         #=> TypeError
 | |
|  *    Rational(1, nil)      #=> TypeError
 | |
|  *
 | |
|  *    Rational("10 cents", exception: false)  #=> nil
 | |
|  *
 | |
|  * Syntax of the string form:
 | |
|  *
 | |
|  *   string form = extra spaces , rational , extra spaces ;
 | |
|  *   rational = [ sign ] , unsigned rational ;
 | |
|  *   unsigned rational = numerator | numerator , "/" , denominator ;
 | |
|  *   numerator = integer part | fractional part | integer part , fractional part ;
 | |
|  *   denominator = digits ;
 | |
|  *   integer part = digits ;
 | |
|  *   fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
 | |
|  *   sign = "-" | "+" ;
 | |
|  *   digits = digit , { digit | "_" , digit } ;
 | |
|  *   digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
 | |
|  *   extra spaces = ? \s* ? ;
 | |
|  *
 | |
|  * See also String#to_r.
 | |
|  */
 | |
| static VALUE
 | |
| nurat_f_rational(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE a1, a2, opts = Qnil;
 | |
|     int raise = TRUE;
 | |
| 
 | |
|     if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) {
 | |
|         a2 = Qundef;
 | |
|     }
 | |
|     if (!NIL_P(opts)) {
 | |
|         raise = rb_opts_exception_p(opts, raise);
 | |
|     }
 | |
|     return nurat_convert(rb_cRational, a1, a2, raise);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.numerator  ->  integer
 | |
|  *
 | |
|  * Returns the numerator.
 | |
|  *
 | |
|  *    Rational(7).numerator        #=> 7
 | |
|  *    Rational(7, 1).numerator     #=> 7
 | |
|  *    Rational(9, -4).numerator    #=> -9
 | |
|  *    Rational(-2, -10).numerator  #=> 1
 | |
|  */
 | |
| static VALUE
 | |
| nurat_numerator(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return dat->num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.denominator  ->  integer
 | |
|  *
 | |
|  * Returns the denominator (always positive).
 | |
|  *
 | |
|  *    Rational(7).denominator             #=> 1
 | |
|  *    Rational(7, 1).denominator          #=> 1
 | |
|  *    Rational(9, -4).denominator         #=> 4
 | |
|  *    Rational(-2, -10).denominator       #=> 5
 | |
|  */
 | |
| static VALUE
 | |
| nurat_denominator(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return dat->den;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    -rat  ->  rational
 | |
|  *
 | |
|  * Negates +rat+.
 | |
|  */
 | |
| VALUE
 | |
| rb_rational_uminus(VALUE self)
 | |
| {
 | |
|     const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0);
 | |
|     get_dat1(self);
 | |
|     (void)unused;
 | |
|     return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #define f_imul f_imul_orig
 | |
| #endif
 | |
| 
 | |
| inline static VALUE
 | |
| f_imul(long a, long b)
 | |
| {
 | |
|     VALUE r;
 | |
| 
 | |
|     if (a == 0 || b == 0)
 | |
| 	return ZERO;
 | |
|     else if (a == 1)
 | |
| 	return LONG2NUM(b);
 | |
|     else if (b == 1)
 | |
| 	return LONG2NUM(a);
 | |
| 
 | |
|     if (MUL_OVERFLOW_LONG_P(a, b))
 | |
| 	r = rb_big_mul(rb_int2big(a), rb_int2big(b));
 | |
|     else
 | |
|         r = LONG2NUM(a * b);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #undef f_imul
 | |
| 
 | |
| inline static VALUE
 | |
| f_imul(long x, long y)
 | |
| {
 | |
|     VALUE r = f_imul_orig(x, y);
 | |
|     assert(f_eqeq_p(r, f_mul(LONG2NUM(x), LONG2NUM(y))));
 | |
|     return r;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| inline static VALUE
 | |
| f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
 | |
| {
 | |
|     VALUE num, den;
 | |
| 
 | |
|     if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
 | |
| 	FIXNUM_P(bnum) && FIXNUM_P(bden)) {
 | |
| 	long an = FIX2LONG(anum);
 | |
| 	long ad = FIX2LONG(aden);
 | |
| 	long bn = FIX2LONG(bnum);
 | |
| 	long bd = FIX2LONG(bden);
 | |
| 	long ig = i_gcd(ad, bd);
 | |
| 
 | |
| 	VALUE g = LONG2NUM(ig);
 | |
| 	VALUE a = f_imul(an, bd / ig);
 | |
| 	VALUE b = f_imul(bn, ad / ig);
 | |
| 	VALUE c;
 | |
| 
 | |
| 	if (k == '+')
 | |
| 	    c = rb_int_plus(a, b);
 | |
| 	else
 | |
| 	    c = rb_int_minus(a, b);
 | |
| 
 | |
| 	b = rb_int_idiv(aden, g);
 | |
| 	g = f_gcd(c, g);
 | |
| 	num = rb_int_idiv(c, g);
 | |
| 	a = rb_int_idiv(bden, g);
 | |
| 	den = rb_int_mul(a, b);
 | |
|     }
 | |
|     else if (RB_INTEGER_TYPE_P(anum) && RB_INTEGER_TYPE_P(aden) &&
 | |
|              RB_INTEGER_TYPE_P(bnum) && RB_INTEGER_TYPE_P(bden)) {
 | |
| 	VALUE g = f_gcd(aden, bden);
 | |
| 	VALUE a = rb_int_mul(anum, rb_int_idiv(bden, g));
 | |
| 	VALUE b = rb_int_mul(bnum, rb_int_idiv(aden, g));
 | |
| 	VALUE c;
 | |
| 
 | |
| 	if (k == '+')
 | |
| 	    c = rb_int_plus(a, b);
 | |
| 	else
 | |
| 	    c = rb_int_minus(a, b);
 | |
| 
 | |
| 	b = rb_int_idiv(aden, g);
 | |
| 	g = f_gcd(c, g);
 | |
| 	num = rb_int_idiv(c, g);
 | |
| 	a = rb_int_idiv(bden, g);
 | |
| 	den = rb_int_mul(a, b);
 | |
|     }
 | |
|     else {
 | |
|         double a = NUM2DBL(anum) / NUM2DBL(aden);
 | |
|         double b = NUM2DBL(bnum) / NUM2DBL(bden);
 | |
|         double c = k == '+' ? a + b : a - b;
 | |
|         return DBL2NUM(c);
 | |
|     }
 | |
|     return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
 | |
| }
 | |
| 
 | |
| static double nurat_to_double(VALUE self);
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat + numeric  ->  numeric
 | |
|  *
 | |
|  * Performs addition.
 | |
|  *
 | |
|  *    Rational(2, 3)  + Rational(2, 3)   #=> (4/3)
 | |
|  *    Rational(900)   + Rational(1)      #=> (901/1)
 | |
|  *    Rational(-2, 9) + Rational(-9, 2)  #=> (-85/18)
 | |
|  *    Rational(9, 8)  + 4                #=> (41/8)
 | |
|  *    Rational(20, 9) + 9.8              #=> 12.022222222222222
 | |
|  */
 | |
| VALUE
 | |
| rb_rational_plus(VALUE self, VALUE other)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(other)) {
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_rational_new_no_reduce2(CLASS_OF(self),
 | |
| 					     rb_int_plus(dat->num, rb_int_mul(other, dat->den)),
 | |
| 					     dat->den);
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(other)) {
 | |
| 	return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other));
 | |
|     }
 | |
|     else if (RB_TYPE_P(other, T_RATIONAL)) {
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    return f_addsub(self,
 | |
| 			    adat->num, adat->den,
 | |
| 			    bdat->num, bdat->den, '+');
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(self, other, '+');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat - numeric  ->  numeric
 | |
|  *
 | |
|  * Performs subtraction.
 | |
|  *
 | |
|  *    Rational(2, 3)  - Rational(2, 3)   #=> (0/1)
 | |
|  *    Rational(900)   - Rational(1)      #=> (899/1)
 | |
|  *    Rational(-2, 9) - Rational(-9, 2)  #=> (77/18)
 | |
|  *    Rational(9, 8)  - 4                #=> (-23/8)
 | |
|  *    Rational(20, 9) - 9.8              #=> -7.577777777777778
 | |
|  */
 | |
| VALUE
 | |
| rb_rational_minus(VALUE self, VALUE other)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(other)) {
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_rational_new_no_reduce2(CLASS_OF(self),
 | |
| 					     rb_int_minus(dat->num, rb_int_mul(other, dat->den)),
 | |
| 					     dat->den);
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(other)) {
 | |
| 	return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other));
 | |
|     }
 | |
|     else if (RB_TYPE_P(other, T_RATIONAL)) {
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    return f_addsub(self,
 | |
| 			    adat->num, adat->den,
 | |
| 			    bdat->num, bdat->den, '-');
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(self, other, '-');
 | |
|     }
 | |
| }
 | |
| 
 | |
| inline static VALUE
 | |
| f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
 | |
| {
 | |
|     VALUE num, den;
 | |
| 
 | |
|     assert(RB_TYPE_P(self, T_RATIONAL));
 | |
| 
 | |
|     /* Integer#** can return Rational with Float right now */
 | |
|     if (RB_FLOAT_TYPE_P(anum) || RB_FLOAT_TYPE_P(aden) ||
 | |
|         RB_FLOAT_TYPE_P(bnum) || RB_FLOAT_TYPE_P(bden)) {
 | |
|         double an = NUM2DBL(anum), ad = NUM2DBL(aden);
 | |
|         double bn = NUM2DBL(bnum), bd = NUM2DBL(bden);
 | |
|         double x = (an * bn) / (ad * bd);
 | |
|         return DBL2NUM(x);
 | |
|     }
 | |
| 
 | |
|     assert(RB_INTEGER_TYPE_P(anum));
 | |
|     assert(RB_INTEGER_TYPE_P(aden));
 | |
|     assert(RB_INTEGER_TYPE_P(bnum));
 | |
|     assert(RB_INTEGER_TYPE_P(bden));
 | |
| 
 | |
|     if (k == '/') {
 | |
| 	VALUE t;
 | |
| 
 | |
| 	if (INT_NEGATIVE_P(bnum)) {
 | |
| 	    anum = rb_int_uminus(anum);
 | |
| 	    bnum = rb_int_uminus(bnum);
 | |
| 	}
 | |
| 	t = bnum;
 | |
| 	bnum = bden;
 | |
| 	bden = t;
 | |
|     }
 | |
| 
 | |
|     if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
 | |
| 	FIXNUM_P(bnum) && FIXNUM_P(bden)) {
 | |
| 	long an = FIX2LONG(anum);
 | |
| 	long ad = FIX2LONG(aden);
 | |
| 	long bn = FIX2LONG(bnum);
 | |
| 	long bd = FIX2LONG(bden);
 | |
| 	long g1 = i_gcd(an, bd);
 | |
| 	long g2 = i_gcd(ad, bn);
 | |
| 
 | |
| 	num = f_imul(an / g1, bn / g2);
 | |
| 	den = f_imul(ad / g2, bd / g1);
 | |
|     }
 | |
|     else {
 | |
| 	VALUE g1 = f_gcd(anum, bden);
 | |
| 	VALUE g2 = f_gcd(aden, bnum);
 | |
| 
 | |
| 	num = rb_int_mul(rb_int_idiv(anum, g1), rb_int_idiv(bnum, g2));
 | |
| 	den = rb_int_mul(rb_int_idiv(aden, g2), rb_int_idiv(bden, g1));
 | |
|     }
 | |
|     return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat * numeric  ->  numeric
 | |
|  *
 | |
|  * Performs multiplication.
 | |
|  *
 | |
|  *    Rational(2, 3)  * Rational(2, 3)   #=> (4/9)
 | |
|  *    Rational(900)   * Rational(1)      #=> (900/1)
 | |
|  *    Rational(-2, 9) * Rational(-9, 2)  #=> (1/1)
 | |
|  *    Rational(9, 8)  * 4                #=> (9/2)
 | |
|  *    Rational(20, 9) * 9.8              #=> 21.77777777777778
 | |
|  */
 | |
| VALUE
 | |
| rb_rational_mul(VALUE self, VALUE other)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(other)) {
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_muldiv(self,
 | |
| 			    dat->num, dat->den,
 | |
| 			    other, ONE, '*');
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(other)) {
 | |
| 	return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other));
 | |
|     }
 | |
|     else if (RB_TYPE_P(other, T_RATIONAL)) {
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    return f_muldiv(self,
 | |
| 			    adat->num, adat->den,
 | |
| 			    bdat->num, bdat->den, '*');
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(self, other, '*');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat / numeric     ->  numeric
 | |
|  *    rat.quo(numeric)  ->  numeric
 | |
|  *
 | |
|  * Performs division.
 | |
|  *
 | |
|  *    Rational(2, 3)  / Rational(2, 3)   #=> (1/1)
 | |
|  *    Rational(900)   / Rational(1)      #=> (900/1)
 | |
|  *    Rational(-2, 9) / Rational(-9, 2)  #=> (4/81)
 | |
|  *    Rational(9, 8)  / 4                #=> (9/32)
 | |
|  *    Rational(20, 9) / 9.8              #=> 0.22675736961451246
 | |
|  */
 | |
| VALUE
 | |
| rb_rational_div(VALUE self, VALUE other)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(other)) {
 | |
| 	if (f_zero_p(other))
 | |
|             rb_num_zerodiv();
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    return f_muldiv(self,
 | |
| 			    dat->num, dat->den,
 | |
| 			    other, ONE, '/');
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(other)) {
 | |
|         VALUE v = nurat_to_f(self);
 | |
|         return rb_flo_div_flo(v, other);
 | |
|     }
 | |
|     else if (RB_TYPE_P(other, T_RATIONAL)) {
 | |
| 	if (f_zero_p(other))
 | |
|             rb_num_zerodiv();
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    if (f_one_p(self))
 | |
| 		return f_rational_new_no_reduce2(CLASS_OF(self),
 | |
| 						 bdat->den, bdat->num);
 | |
| 
 | |
| 	    return f_muldiv(self,
 | |
| 			    adat->num, adat->den,
 | |
| 			    bdat->num, bdat->den, '/');
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(self, other, '/');
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.fdiv(numeric)  ->  float
 | |
|  *
 | |
|  * Performs division and returns the value as a Float.
 | |
|  *
 | |
|  *    Rational(2, 3).fdiv(1)       #=> 0.6666666666666666
 | |
|  *    Rational(2, 3).fdiv(0.5)     #=> 1.3333333333333333
 | |
|  *    Rational(2).fdiv(3)          #=> 0.6666666666666666
 | |
|  */
 | |
| static VALUE
 | |
| nurat_fdiv(VALUE self, VALUE other)
 | |
| {
 | |
|     VALUE div;
 | |
|     if (f_zero_p(other))
 | |
|         return rb_rational_div(self, rb_float_new(0.0));
 | |
|     if (FIXNUM_P(other) && other == LONG2FIX(1))
 | |
| 	return nurat_to_f(self);
 | |
|     div = rb_rational_div(self, other);
 | |
|     if (RB_TYPE_P(div, T_RATIONAL))
 | |
| 	return nurat_to_f(div);
 | |
|     if (RB_FLOAT_TYPE_P(div))
 | |
| 	return div;
 | |
|     return rb_funcall(div, idTo_f, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat ** numeric  ->  numeric
 | |
|  *
 | |
|  * Performs exponentiation.
 | |
|  *
 | |
|  *    Rational(2)    ** Rational(3)     #=> (8/1)
 | |
|  *    Rational(10)   ** -2              #=> (1/100)
 | |
|  *    Rational(10)   ** -2.0            #=> 0.01
 | |
|  *    Rational(-4)   ** Rational(1, 2)  #=> (0.0+2.0i)
 | |
|  *    Rational(1, 2) ** 0               #=> (1/1)
 | |
|  *    Rational(1, 2) ** 0.0             #=> 1.0
 | |
|  */
 | |
| VALUE
 | |
| rb_rational_pow(VALUE self, VALUE other)
 | |
| {
 | |
|     if (k_numeric_p(other) && k_exact_zero_p(other))
 | |
| 	return f_rational_new_bang1(CLASS_OF(self), ONE);
 | |
| 
 | |
|     if (k_rational_p(other)) {
 | |
| 	get_dat1(other);
 | |
| 
 | |
| 	if (f_one_p(dat->den))
 | |
| 	    other = dat->num; /* c14n */
 | |
|     }
 | |
| 
 | |
|     /* Deal with special cases of 0**n and 1**n */
 | |
|     if (k_numeric_p(other) && k_exact_p(other)) {
 | |
| 	get_dat1(self);
 | |
| 	if (f_one_p(dat->den)) {
 | |
| 	    if (f_one_p(dat->num)) {
 | |
| 		return f_rational_new_bang1(CLASS_OF(self), ONE);
 | |
| 	    }
 | |
| 	    else if (f_minus_one_p(dat->num) && RB_INTEGER_TYPE_P(other)) {
 | |
| 		return f_rational_new_bang1(CLASS_OF(self), INT2FIX(rb_int_odd_p(other) ? -1 : 1));
 | |
| 	    }
 | |
| 	    else if (INT_ZERO_P(dat->num)) {
 | |
| 		if (rb_num_negative_p(other)) {
 | |
|                     rb_num_zerodiv();
 | |
| 		}
 | |
| 		else {
 | |
| 		    return f_rational_new_bang1(CLASS_OF(self), ZERO);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     /* General case */
 | |
|     if (FIXNUM_P(other)) {
 | |
| 	{
 | |
| 	    VALUE num, den;
 | |
| 
 | |
| 	    get_dat1(self);
 | |
| 
 | |
|             if (INT_POSITIVE_P(other)) {
 | |
| 		num = rb_int_pow(dat->num, other);
 | |
| 		den = rb_int_pow(dat->den, other);
 | |
|             }
 | |
|             else if (INT_NEGATIVE_P(other)) {
 | |
| 		num = rb_int_pow(dat->den, rb_int_uminus(other));
 | |
| 		den = rb_int_pow(dat->num, rb_int_uminus(other));
 | |
|             }
 | |
|             else {
 | |
| 		num = ONE;
 | |
| 		den = ONE;
 | |
| 	    }
 | |
| 	    if (RB_FLOAT_TYPE_P(num)) { /* infinity due to overflow */
 | |
| 		if (RB_FLOAT_TYPE_P(den))
 | |
| 		    return DBL2NUM(nan(""));
 | |
| 		return num;
 | |
| 	    }
 | |
| 	    if (RB_FLOAT_TYPE_P(den)) { /* infinity due to overflow */
 | |
| 		num = ZERO;
 | |
| 		den = ONE;
 | |
| 	    }
 | |
| 	    return f_rational_new2(CLASS_OF(self), num, den);
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_BIGNUM_TYPE_P(other)) {
 | |
| 	rb_warn("in a**b, b may be too big");
 | |
| 	return rb_float_pow(nurat_to_f(self), other);
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(other) || RB_TYPE_P(other, T_RATIONAL)) {
 | |
| 	return rb_float_pow(nurat_to_f(self), other);
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(self, other, idPow);
 | |
|     }
 | |
| }
 | |
| #define nurat_expt rb_rational_pow
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rational <=> numeric  ->  -1, 0, +1, or nil
 | |
|  *
 | |
|  * Returns -1, 0, or +1 depending on whether +rational+ is
 | |
|  * less than, equal to, or greater than +numeric+.
 | |
|  *
 | |
|  * +nil+ is returned if the two values are incomparable.
 | |
|  *
 | |
|  *    Rational(2, 3) <=> Rational(2, 3)  #=> 0
 | |
|  *    Rational(5)    <=> 5               #=> 0
 | |
|  *    Rational(2, 3) <=> Rational(1, 3)  #=> 1
 | |
|  *    Rational(1, 3) <=> 1               #=> -1
 | |
|  *    Rational(1, 3) <=> 0.3             #=> 1
 | |
|  *
 | |
|  *    Rational(1, 3) <=> "0.3"           #=> nil
 | |
|  */
 | |
| VALUE
 | |
| rb_rational_cmp(VALUE self, VALUE other)
 | |
| {
 | |
|     switch (TYPE(other)) {
 | |
|       case T_FIXNUM:
 | |
|       case T_BIGNUM:
 | |
| 	{
 | |
| 	    get_dat1(self);
 | |
| 
 | |
| 	    if (dat->den == LONG2FIX(1))
 | |
| 		return rb_int_cmp(dat->num, other); /* c14n */
 | |
| 	    other = f_rational_new_bang1(CLASS_OF(self), other);
 | |
|             /* FALLTHROUGH */
 | |
| 	}
 | |
| 
 | |
|       case T_RATIONAL:
 | |
| 	{
 | |
| 	    VALUE num1, num2;
 | |
| 
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
 | |
| 		FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
 | |
| 		num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
 | |
| 		num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
 | |
| 	    }
 | |
| 	    else {
 | |
| 		num1 = rb_int_mul(adat->num, bdat->den);
 | |
| 		num2 = rb_int_mul(bdat->num, adat->den);
 | |
| 	    }
 | |
| 	    return rb_int_cmp(rb_int_minus(num1, num2), ZERO);
 | |
| 	}
 | |
| 
 | |
|       case T_FLOAT:
 | |
|         return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other));
 | |
| 
 | |
|       default:
 | |
| 	return rb_num_coerce_cmp(self, other, idCmp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat == object  ->  true or false
 | |
|  *
 | |
|  * Returns +true+ if +rat+ equals +object+ numerically.
 | |
|  *
 | |
|  *    Rational(2, 3)  == Rational(2, 3)   #=> true
 | |
|  *    Rational(5)     == 5                #=> true
 | |
|  *    Rational(0)     == 0.0              #=> true
 | |
|  *    Rational('1/3') == 0.33             #=> false
 | |
|  *    Rational('1/2') == '1/2'            #=> false
 | |
|  */
 | |
| static VALUE
 | |
| nurat_eqeq_p(VALUE self, VALUE other)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(other)) {
 | |
|         get_dat1(self);
 | |
| 
 | |
|         if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) {
 | |
| 	    if (INT_ZERO_P(dat->num) && INT_ZERO_P(other))
 | |
| 		return Qtrue;
 | |
| 
 | |
| 	    if (!FIXNUM_P(dat->den))
 | |
| 		return Qfalse;
 | |
| 	    if (FIX2LONG(dat->den) != 1)
 | |
| 		return Qfalse;
 | |
| 	    return rb_int_equal(dat->num, other);
 | |
| 	}
 | |
|         else {
 | |
|             const double d = nurat_to_double(self);
 | |
|             return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other))));
 | |
|         }
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(other)) {
 | |
| 	const double d = nurat_to_double(self);
 | |
| 	return RBOOL(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other))));
 | |
|     }
 | |
|     else if (RB_TYPE_P(other, T_RATIONAL)) {
 | |
| 	{
 | |
| 	    get_dat2(self, other);
 | |
| 
 | |
| 	    if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num))
 | |
| 		return Qtrue;
 | |
| 
 | |
| 	    return RBOOL(rb_int_equal(adat->num, bdat->num) &&
 | |
| 			      rb_int_equal(adat->den, bdat->den));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	return rb_equal(other, self);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nurat_coerce(VALUE self, VALUE other)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(other)) {
 | |
| 	return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(other)) {
 | |
|         return rb_assoc_new(other, nurat_to_f(self));
 | |
|     }
 | |
|     else if (RB_TYPE_P(other, T_RATIONAL)) {
 | |
| 	return rb_assoc_new(other, self);
 | |
|     }
 | |
|     else if (RB_TYPE_P(other, T_COMPLEX)) {
 | |
| 	if (!k_exact_zero_p(RCOMPLEX(other)->imag))
 | |
| 	    return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
 | |
|         other = RCOMPLEX(other)->real;
 | |
|         if (RB_FLOAT_TYPE_P(other)) {
 | |
|             other = float_to_r(other);
 | |
|             RBASIC_SET_CLASS(other, CLASS_OF(self));
 | |
|         }
 | |
|         else {
 | |
|             other = f_rational_new_bang1(CLASS_OF(self), other);
 | |
|         }
 | |
|         return rb_assoc_new(other, self);
 | |
|     }
 | |
| 
 | |
|     rb_raise(rb_eTypeError, "%s can't be coerced into %s",
 | |
| 	     rb_obj_classname(other), rb_obj_classname(self));
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     rat.positive?  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ if +rat+ is greater than 0.
 | |
|  */
 | |
| static VALUE
 | |
| nurat_positive_p(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return RBOOL(INT_POSITIVE_P(dat->num));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     rat.negative?  ->  true or false
 | |
|  *
 | |
|  *  Returns +true+ if +rat+ is less than 0.
 | |
|  */
 | |
| static VALUE
 | |
| nurat_negative_p(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return RBOOL(INT_NEGATIVE_P(dat->num));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     rat.abs        ->  rational
 | |
|  *     rat.magnitude  ->  rational
 | |
|  *
 | |
|  *  Returns the absolute value of +rat+.
 | |
|  *
 | |
|  *     (1/2r).abs    #=> (1/2)
 | |
|  *     (-1/2r).abs   #=> (1/2)
 | |
|  *
 | |
|  *  Rational#magnitude is an alias for Rational#abs.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_rational_abs(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     if (INT_NEGATIVE_P(dat->num)) {
 | |
|         VALUE num = rb_int_abs(dat->num);
 | |
|         return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
 | |
|     }
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_floor(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return rb_int_idiv(dat->num, dat->den);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_ceil(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.to_i  ->  integer
 | |
|  *
 | |
|  * Returns the truncated value as an integer.
 | |
|  *
 | |
|  * Equivalent to Rational#truncate.
 | |
|  *
 | |
|  *    Rational(2, 3).to_i    #=> 0
 | |
|  *    Rational(3).to_i       #=> 3
 | |
|  *    Rational(300.6).to_i   #=> 300
 | |
|  *    Rational(98, 71).to_i  #=> 1
 | |
|  *    Rational(-31, 2).to_i  #=> -15
 | |
|  */
 | |
| static VALUE
 | |
| nurat_truncate(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     if (INT_NEGATIVE_P(dat->num))
 | |
| 	return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
 | |
|     return rb_int_idiv(dat->num, dat->den);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_round_half_up(VALUE self)
 | |
| {
 | |
|     VALUE num, den, neg;
 | |
| 
 | |
|     get_dat1(self);
 | |
| 
 | |
|     num = dat->num;
 | |
|     den = dat->den;
 | |
|     neg = INT_NEGATIVE_P(num);
 | |
| 
 | |
|     if (neg)
 | |
| 	num = rb_int_uminus(num);
 | |
| 
 | |
|     num = rb_int_plus(rb_int_mul(num, TWO), den);
 | |
|     den = rb_int_mul(den, TWO);
 | |
|     num = rb_int_idiv(num, den);
 | |
| 
 | |
|     if (neg)
 | |
| 	num = rb_int_uminus(num);
 | |
| 
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_round_half_down(VALUE self)
 | |
| {
 | |
|     VALUE num, den, neg;
 | |
| 
 | |
|     get_dat1(self);
 | |
| 
 | |
|     num = dat->num;
 | |
|     den = dat->den;
 | |
|     neg = INT_NEGATIVE_P(num);
 | |
| 
 | |
|     if (neg)
 | |
| 	num = rb_int_uminus(num);
 | |
| 
 | |
|     num = rb_int_plus(rb_int_mul(num, TWO), den);
 | |
|     num = rb_int_minus(num, ONE);
 | |
|     den = rb_int_mul(den, TWO);
 | |
|     num = rb_int_idiv(num, den);
 | |
| 
 | |
|     if (neg)
 | |
| 	num = rb_int_uminus(num);
 | |
| 
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_round_half_even(VALUE self)
 | |
| {
 | |
|     VALUE num, den, neg, qr;
 | |
| 
 | |
|     get_dat1(self);
 | |
| 
 | |
|     num = dat->num;
 | |
|     den = dat->den;
 | |
|     neg = INT_NEGATIVE_P(num);
 | |
| 
 | |
|     if (neg)
 | |
| 	num = rb_int_uminus(num);
 | |
| 
 | |
|     num = rb_int_plus(rb_int_mul(num, TWO), den);
 | |
|     den = rb_int_mul(den, TWO);
 | |
|     qr = rb_int_divmod(num, den);
 | |
|     num = RARRAY_AREF(qr, 0);
 | |
|     if (INT_ZERO_P(RARRAY_AREF(qr, 1)))
 | |
| 	num = rb_int_and(num, LONG2FIX(((int)~1)));
 | |
| 
 | |
|     if (neg)
 | |
| 	num = rb_int_uminus(num);
 | |
| 
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| f_round_common(int argc, VALUE *argv, VALUE self, VALUE (*func)(VALUE))
 | |
| {
 | |
|     VALUE n, b, s;
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1) == 0)
 | |
| 	return (*func)(self);
 | |
| 
 | |
|     n = argv[0];
 | |
| 
 | |
|     if (!k_integer_p(n))
 | |
| 	rb_raise(rb_eTypeError, "not an integer");
 | |
| 
 | |
|     b = f_expt10(n);
 | |
|     s = rb_rational_mul(self, b);
 | |
| 
 | |
|     if (k_float_p(s)) {
 | |
| 	if (INT_NEGATIVE_P(n))
 | |
| 	    return ZERO;
 | |
| 	return self;
 | |
|     }
 | |
| 
 | |
|     if (!k_rational_p(s)) {
 | |
| 	s = f_rational_new_bang1(CLASS_OF(self), s);
 | |
|     }
 | |
| 
 | |
|     s = (*func)(s);
 | |
| 
 | |
|     s = rb_rational_div(f_rational_new_bang1(CLASS_OF(self), s), b);
 | |
| 
 | |
|     if (RB_TYPE_P(s, T_RATIONAL) && FIX2INT(rb_int_cmp(n, ONE)) < 0)
 | |
| 	s = nurat_truncate(s);
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_rational_floor(VALUE self, int ndigits)
 | |
| {
 | |
|     if (ndigits == 0) {
 | |
|         return nurat_floor(self);
 | |
|     }
 | |
|     else {
 | |
|         VALUE n = INT2NUM(ndigits);
 | |
|         return f_round_common(1, &n, self, nurat_floor);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.floor([ndigits])  ->  integer or rational
 | |
|  *
 | |
|  * Returns the largest number less than or equal to +rat+ with
 | |
|  * a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  * When the precision is negative, the returned value is an integer
 | |
|  * with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  * Returns a rational when +ndigits+ is positive,
 | |
|  * otherwise returns an integer.
 | |
|  *
 | |
|  *    Rational(3).floor      #=> 3
 | |
|  *    Rational(2, 3).floor   #=> 0
 | |
|  *    Rational(-3, 2).floor  #=> -2
 | |
|  *
 | |
|  *      #    decimal      -  1  2  3 . 4  5  6
 | |
|  *      #                   ^  ^  ^  ^   ^  ^
 | |
|  *      #   precision      -3 -2 -1  0  +1 +2
 | |
|  *
 | |
|  *    Rational('-123.456').floor(+1).to_f  #=> -123.5
 | |
|  *    Rational('-123.456').floor(-1)       #=> -130
 | |
|  */
 | |
| static VALUE
 | |
| nurat_floor_n(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return f_round_common(argc, argv, self, nurat_floor);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.ceil([ndigits])  ->  integer or rational
 | |
|  *
 | |
|  * Returns the smallest number greater than or equal to +rat+ with
 | |
|  * a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  * When the precision is negative, the returned value is an integer
 | |
|  * with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  * Returns a rational when +ndigits+ is positive,
 | |
|  * otherwise returns an integer.
 | |
|  *
 | |
|  *    Rational(3).ceil      #=> 3
 | |
|  *    Rational(2, 3).ceil   #=> 1
 | |
|  *    Rational(-3, 2).ceil  #=> -1
 | |
|  *
 | |
|  *      #    decimal      -  1  2  3 . 4  5  6
 | |
|  *      #                   ^  ^  ^  ^   ^  ^
 | |
|  *      #   precision      -3 -2 -1  0  +1 +2
 | |
|  *
 | |
|  *    Rational('-123.456').ceil(+1).to_f  #=> -123.4
 | |
|  *    Rational('-123.456').ceil(-1)       #=> -120
 | |
|  */
 | |
| static VALUE
 | |
| nurat_ceil_n(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return f_round_common(argc, argv, self, nurat_ceil);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.truncate([ndigits])  ->  integer or rational
 | |
|  *
 | |
|  * Returns +rat+ truncated (toward zero) to
 | |
|  * a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  * When the precision is negative, the returned value is an integer
 | |
|  * with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  * Returns a rational when +ndigits+ is positive,
 | |
|  * otherwise returns an integer.
 | |
|  *
 | |
|  *    Rational(3).truncate      #=> 3
 | |
|  *    Rational(2, 3).truncate   #=> 0
 | |
|  *    Rational(-3, 2).truncate  #=> -1
 | |
|  *
 | |
|  *      #    decimal      -  1  2  3 . 4  5  6
 | |
|  *      #                   ^  ^  ^  ^   ^  ^
 | |
|  *      #   precision      -3 -2 -1  0  +1 +2
 | |
|  *
 | |
|  *    Rational('-123.456').truncate(+1).to_f  #=> -123.4
 | |
|  *    Rational('-123.456').truncate(-1)       #=> -120
 | |
|  */
 | |
| static VALUE
 | |
| nurat_truncate_n(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     return f_round_common(argc, argv, self, nurat_truncate);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.round([ndigits] [, half: mode])  ->  integer or rational
 | |
|  *
 | |
|  * Returns +rat+ rounded to the nearest value with
 | |
|  * a precision of +ndigits+ decimal digits (default: 0).
 | |
|  *
 | |
|  * When the precision is negative, the returned value is an integer
 | |
|  * with at least <code>ndigits.abs</code> trailing zeros.
 | |
|  *
 | |
|  * Returns a rational when +ndigits+ is positive,
 | |
|  * otherwise returns an integer.
 | |
|  *
 | |
|  *    Rational(3).round      #=> 3
 | |
|  *    Rational(2, 3).round   #=> 1
 | |
|  *    Rational(-3, 2).round  #=> -2
 | |
|  *
 | |
|  *      #    decimal      -  1  2  3 . 4  5  6
 | |
|  *      #                   ^  ^  ^  ^   ^  ^
 | |
|  *      #   precision      -3 -2 -1  0  +1 +2
 | |
|  *
 | |
|  *    Rational('-123.456').round(+1).to_f  #=> -123.5
 | |
|  *    Rational('-123.456').round(-1)       #=> -120
 | |
|  *
 | |
|  * The optional +half+ keyword argument is available
 | |
|  * similar to Float#round.
 | |
|  *
 | |
|  *    Rational(25, 100).round(1, half: :up)    #=> (3/10)
 | |
|  *    Rational(25, 100).round(1, half: :down)  #=> (1/5)
 | |
|  *    Rational(25, 100).round(1, half: :even)  #=> (1/5)
 | |
|  *    Rational(35, 100).round(1, half: :up)    #=> (2/5)
 | |
|  *    Rational(35, 100).round(1, half: :down)  #=> (3/10)
 | |
|  *    Rational(35, 100).round(1, half: :even)  #=> (2/5)
 | |
|  *    Rational(-25, 100).round(1, half: :up)   #=> (-3/10)
 | |
|  *    Rational(-25, 100).round(1, half: :down) #=> (-1/5)
 | |
|  *    Rational(-25, 100).round(1, half: :even) #=> (-1/5)
 | |
|  */
 | |
| static VALUE
 | |
| nurat_round_n(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     VALUE opt;
 | |
|     enum ruby_num_rounding_mode mode = (
 | |
|         argc = rb_scan_args(argc, argv, "*:", NULL, &opt),
 | |
| 	rb_num_get_rounding_option(opt));
 | |
|     VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round);
 | |
|     return f_round_common(argc, argv, self, round_func);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_flo_round_by_rational(int argc, VALUE *argv, VALUE num)
 | |
| {
 | |
|     return nurat_to_f(nurat_round_n(argc, argv, float_to_r(num)));
 | |
| }
 | |
| 
 | |
| static double
 | |
| nurat_to_double(VALUE self)
 | |
| {
 | |
|     get_dat1(self);
 | |
|     if (!RB_INTEGER_TYPE_P(dat->num) || !RB_INTEGER_TYPE_P(dat->den)) {
 | |
|         return NUM2DBL(dat->num) / NUM2DBL(dat->den);
 | |
|     }
 | |
|     return rb_int_fdiv_double(dat->num, dat->den);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.to_f  ->  float
 | |
|  *
 | |
|  * Returns the value as a Float.
 | |
|  *
 | |
|  *    Rational(2).to_f      #=> 2.0
 | |
|  *    Rational(9, 4).to_f   #=> 2.25
 | |
|  *    Rational(-3, 4).to_f  #=> -0.75
 | |
|  *    Rational(20, 3).to_f  #=> 6.666666666666667
 | |
|  */
 | |
| static VALUE
 | |
| nurat_to_f(VALUE self)
 | |
| {
 | |
|     return DBL2NUM(nurat_to_double(self));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.to_r  ->  self
 | |
|  *
 | |
|  * Returns self.
 | |
|  *
 | |
|  *    Rational(2).to_r      #=> (2/1)
 | |
|  *    Rational(-8, 6).to_r  #=> (-4/3)
 | |
|  */
 | |
| static VALUE
 | |
| nurat_to_r(VALUE self)
 | |
| {
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| #define id_ceil rb_intern("ceil")
 | |
| static VALUE
 | |
| f_ceil(VALUE x)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(x))
 | |
|         return x;
 | |
|     if (RB_FLOAT_TYPE_P(x))
 | |
|         return rb_float_ceil(x, 0);
 | |
| 
 | |
|     return rb_funcall(x, id_ceil, 0);
 | |
| }
 | |
| 
 | |
| #define id_quo idQuo
 | |
| static VALUE
 | |
| f_quo(VALUE x, VALUE y)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(x))
 | |
|         return rb_int_div(x, y);
 | |
|     if (RB_FLOAT_TYPE_P(x))
 | |
|         return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
 | |
| 
 | |
|     return rb_funcallv(x, id_quo, 1, &y);
 | |
| }
 | |
| 
 | |
| #define f_reciprocal(x) f_quo(ONE, (x))
 | |
| 
 | |
| /*
 | |
|   The algorithm here is the method described in CLISP.  Bruno Haible has
 | |
|   graciously given permission to use this algorithm.  He says, "You can use
 | |
|   it, if you present the following explanation of the algorithm."
 | |
| 
 | |
|   Algorithm (recursively presented):
 | |
|     If x is a rational number, return x.
 | |
|     If x = 0.0, return 0.
 | |
|     If x < 0.0, return (- (rationalize (- x))).
 | |
|     If x > 0.0:
 | |
|       Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
 | |
|       exponent, sign).
 | |
|       If m = 0 or e >= 0: return x = m*2^e.
 | |
|       Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
 | |
|       with smallest possible numerator and denominator.
 | |
|       Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
 | |
|         But in this case the result will be x itself anyway, regardless of
 | |
|         the choice of a. Therefore we can simply ignore this case.
 | |
|       Note 2: At first, we need to consider the closed interval [a,b].
 | |
|         but since a and b have the denominator 2^(|e|+1) whereas x itself
 | |
|         has a denominator <= 2^|e|, we can restrict the search to the open
 | |
|         interval (a,b).
 | |
|       So, for given a and b (0 < a < b) we are searching a rational number
 | |
|       y with a <= y <= b.
 | |
|       Recursive algorithm fraction_between(a,b):
 | |
|         c := (ceiling a)
 | |
|         if c < b
 | |
|           then return c       ; because a <= c < b, c integer
 | |
|           else
 | |
|             ; a is not integer (otherwise we would have had c = a < b)
 | |
|             k := c-1          ; k = floor(a), k < a < b <= k+1
 | |
|             return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
 | |
|                               ; note 1 <= 1/(b-k) < 1/(a-k)
 | |
| 
 | |
|   You can see that we are actually computing a continued fraction expansion.
 | |
| 
 | |
|   Algorithm (iterative):
 | |
|     If x is rational, return x.
 | |
|     Call (integer-decode-float x). It returns a m,e,s (mantissa,
 | |
|       exponent, sign).
 | |
|     If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
 | |
|     Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
 | |
|     (positive and already in lowest terms because the denominator is a
 | |
|     power of two and the numerator is odd).
 | |
|     Start a continued fraction expansion
 | |
|       p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
 | |
|     Loop
 | |
|       c := (ceiling a)
 | |
|       if c >= b
 | |
|         then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
 | |
|              goto Loop
 | |
|     finally partial_quotient(c).
 | |
|     Here partial_quotient(c) denotes the iteration
 | |
|       i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
 | |
|     At the end, return s * (p[i]/q[i]).
 | |
|     This rational number is already in lowest terms because
 | |
|     p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
 | |
| */
 | |
| 
 | |
| static void
 | |
| nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q)
 | |
| {
 | |
|     VALUE c, k, t, p0, p1, p2, q0, q1, q2;
 | |
| 
 | |
|     p0 = ZERO;
 | |
|     p1 = ONE;
 | |
|     q0 = ONE;
 | |
|     q1 = ZERO;
 | |
| 
 | |
|     while (1) {
 | |
| 	c = f_ceil(a);
 | |
| 	if (f_lt_p(c, b))
 | |
| 	    break;
 | |
| 	k = f_sub(c, ONE);
 | |
| 	p2 = f_add(f_mul(k, p1), p0);
 | |
| 	q2 = f_add(f_mul(k, q1), q0);
 | |
| 	t = f_reciprocal(f_sub(b, k));
 | |
| 	b = f_reciprocal(f_sub(a, k));
 | |
| 	a = t;
 | |
| 	p0 = p1;
 | |
| 	q0 = q1;
 | |
| 	p1 = p2;
 | |
| 	q1 = q2;
 | |
|     }
 | |
|     *p = f_add(f_mul(c, p1), p0);
 | |
|     *q = f_add(f_mul(c, q1), q0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.rationalize       ->  self
 | |
|  *    rat.rationalize(eps)  ->  rational
 | |
|  *
 | |
|  * Returns a simpler approximation of the value if the optional
 | |
|  * argument +eps+ is given (rat-|eps| <= result <= rat+|eps|),
 | |
|  * self otherwise.
 | |
|  *
 | |
|  *    r = Rational(5033165, 16777216)
 | |
|  *    r.rationalize                    #=> (5033165/16777216)
 | |
|  *    r.rationalize(Rational('0.01'))  #=> (3/10)
 | |
|  *    r.rationalize(Rational('0.1'))   #=> (1/3)
 | |
|  */
 | |
| static VALUE
 | |
| nurat_rationalize(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     VALUE e, a, b, p, q;
 | |
|     VALUE rat = self;
 | |
|     get_dat1(self);
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1) == 0)
 | |
| 	return self;
 | |
| 
 | |
|     e = f_abs(argv[0]);
 | |
| 
 | |
|     if (INT_NEGATIVE_P(dat->num)) {
 | |
|         rat = f_rational_new2(RBASIC_CLASS(self), rb_int_uminus(dat->num), dat->den);
 | |
|     }
 | |
| 
 | |
|     a = FIXNUM_ZERO_P(e) ? rat : rb_rational_minus(rat, e);
 | |
|     b = FIXNUM_ZERO_P(e) ? rat : rb_rational_plus(rat, e);
 | |
| 
 | |
|     if (f_eqeq_p(a, b))
 | |
| 	return self;
 | |
| 
 | |
|     nurat_rationalize_internal(a, b, &p, &q);
 | |
|     if (rat != self) {
 | |
|         RATIONAL_SET_NUM(rat, rb_int_uminus(p));
 | |
|         RATIONAL_SET_DEN(rat, q);
 | |
|         return rat;
 | |
|     }
 | |
|     return f_rational_new2(CLASS_OF(self), p, q);
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| st_index_t
 | |
| rb_rational_hash(VALUE self)
 | |
| {
 | |
|     st_index_t v, h[2];
 | |
|     VALUE n;
 | |
| 
 | |
|     get_dat1(self);
 | |
|     n = rb_hash(dat->num);
 | |
|     h[0] = NUM2LONG(n);
 | |
|     n = rb_hash(dat->den);
 | |
|     h[1] = NUM2LONG(n);
 | |
|     v = rb_memhash(h, sizeof(h));
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_hash(VALUE self)
 | |
| {
 | |
|     return ST2FIX(rb_rational_hash(self));
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| f_format(VALUE self, VALUE (*func)(VALUE))
 | |
| {
 | |
|     VALUE s;
 | |
|     get_dat1(self);
 | |
| 
 | |
|     s = (*func)(dat->num);
 | |
|     rb_str_cat2(s, "/");
 | |
|     rb_str_concat(s, (*func)(dat->den));
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.to_s  ->  string
 | |
|  *
 | |
|  * Returns the value as a string.
 | |
|  *
 | |
|  *    Rational(2).to_s      #=> "2/1"
 | |
|  *    Rational(-8, 6).to_s  #=> "-4/3"
 | |
|  *    Rational('1/2').to_s  #=> "1/2"
 | |
|  */
 | |
| static VALUE
 | |
| nurat_to_s(VALUE self)
 | |
| {
 | |
|     return f_format(self, f_to_s);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    rat.inspect  ->  string
 | |
|  *
 | |
|  * Returns the value as a string for inspection.
 | |
|  *
 | |
|  *    Rational(2).inspect      #=> "(2/1)"
 | |
|  *    Rational(-8, 6).inspect  #=> "(-4/3)"
 | |
|  *    Rational('1/2').inspect  #=> "(1/2)"
 | |
|  */
 | |
| static VALUE
 | |
| nurat_inspect(VALUE self)
 | |
| {
 | |
|     VALUE s;
 | |
| 
 | |
|     s = rb_usascii_str_new2("(");
 | |
|     rb_str_concat(s, f_format(self, f_inspect));
 | |
|     rb_str_cat2(s, ")");
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nurat_dumper(VALUE self)
 | |
| {
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nurat_loader(VALUE self, VALUE a)
 | |
| {
 | |
|     VALUE num, den;
 | |
| 
 | |
|     get_dat1(self);
 | |
|     num = rb_ivar_get(a, id_i_num);
 | |
|     den = rb_ivar_get(a, id_i_den);
 | |
|     nurat_int_check(num);
 | |
|     nurat_int_check(den);
 | |
|     nurat_canonicalize(&num, &den);
 | |
|     RATIONAL_SET_NUM((VALUE)dat, num);
 | |
|     RATIONAL_SET_DEN((VALUE)dat, den);
 | |
|     OBJ_FREEZE_RAW(self);
 | |
| 
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nurat_marshal_dump(VALUE self)
 | |
| {
 | |
|     VALUE a;
 | |
|     get_dat1(self);
 | |
| 
 | |
|     a = rb_assoc_new(dat->num, dat->den);
 | |
|     rb_copy_generic_ivar(a, self);
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| nurat_marshal_load(VALUE self, VALUE a)
 | |
| {
 | |
|     VALUE num, den;
 | |
| 
 | |
|     rb_check_frozen(self);
 | |
| 
 | |
|     Check_Type(a, T_ARRAY);
 | |
|     if (RARRAY_LEN(a) != 2)
 | |
| 	rb_raise(rb_eArgError, "marshaled rational must have an array whose length is 2 but %ld", RARRAY_LEN(a));
 | |
| 
 | |
|     num = RARRAY_AREF(a, 0);
 | |
|     den = RARRAY_AREF(a, 1);
 | |
|     nurat_int_check(num);
 | |
|     nurat_int_check(den);
 | |
|     nurat_canonicalize(&num, &den);
 | |
|     rb_ivar_set(self, id_i_num, num);
 | |
|     rb_ivar_set(self, id_i_den, den);
 | |
| 
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_rational_reciprocal(VALUE x)
 | |
| {
 | |
|     get_dat1(x);
 | |
|     return nurat_convert(CLASS_OF(x), dat->den, dat->num, FALSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    int.gcd(other_int)  ->  integer
 | |
|  *
 | |
|  * Returns the greatest common divisor of the two integers.
 | |
|  * The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.
 | |
|  *
 | |
|  *    36.gcd(60)                  #=> 12
 | |
|  *    2.gcd(2)                    #=> 2
 | |
|  *    3.gcd(-7)                   #=> 1
 | |
|  *    ((1<<31)-1).gcd((1<<61)-1)  #=> 1
 | |
|  */
 | |
| VALUE
 | |
| rb_gcd(VALUE self, VALUE other)
 | |
| {
 | |
|     other = nurat_int_value(other);
 | |
|     return f_gcd(self, other);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    int.lcm(other_int)  ->  integer
 | |
|  *
 | |
|  * Returns the least common multiple of the two integers.
 | |
|  * The result is always positive. 0.lcm(x) and x.lcm(0) return zero.
 | |
|  *
 | |
|  *    36.lcm(60)                  #=> 180
 | |
|  *    2.lcm(2)                    #=> 2
 | |
|  *    3.lcm(-7)                   #=> 21
 | |
|  *    ((1<<31)-1).lcm((1<<61)-1)  #=> 4951760154835678088235319297
 | |
|  */
 | |
| VALUE
 | |
| rb_lcm(VALUE self, VALUE other)
 | |
| {
 | |
|     other = nurat_int_value(other);
 | |
|     return f_lcm(self, other);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    int.gcdlcm(other_int)  ->  array
 | |
|  *
 | |
|  * Returns an array with the greatest common divisor and
 | |
|  * the least common multiple of the two integers, [gcd, lcm].
 | |
|  *
 | |
|  *    36.gcdlcm(60)                  #=> [12, 180]
 | |
|  *    2.gcdlcm(2)                    #=> [2, 2]
 | |
|  *    3.gcdlcm(-7)                   #=> [1, 21]
 | |
|  *    ((1<<31)-1).gcdlcm((1<<61)-1)  #=> [1, 4951760154835678088235319297]
 | |
|  */
 | |
| VALUE
 | |
| rb_gcdlcm(VALUE self, VALUE other)
 | |
| {
 | |
|     other = nurat_int_value(other);
 | |
|     return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_rational_raw(VALUE x, VALUE y)
 | |
| {
 | |
|     if (! RB_INTEGER_TYPE_P(x))
 | |
|         x = rb_to_int(x);
 | |
|     if (! RB_INTEGER_TYPE_P(y))
 | |
|         y = rb_to_int(y);
 | |
|     if (INT_NEGATIVE_P(y)) {
 | |
|         x = rb_int_uminus(x);
 | |
|         y = rb_int_uminus(y);
 | |
|     }
 | |
|     return nurat_s_new_internal(rb_cRational, x, y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_rational_new(VALUE x, VALUE y)
 | |
| {
 | |
|     return nurat_s_canonicalize_internal(rb_cRational, x, y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_Rational(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE a[2];
 | |
|     a[0] = x;
 | |
|     a[1] = y;
 | |
|     return nurat_s_convert(2, a, rb_cRational);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_rational_num(VALUE rat)
 | |
| {
 | |
|     return nurat_numerator(rat);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_rational_den(VALUE rat)
 | |
| {
 | |
|     return nurat_denominator(rat);
 | |
| }
 | |
| 
 | |
| #define id_numerator rb_intern("numerator")
 | |
| #define f_numerator(x) rb_funcall((x), id_numerator, 0)
 | |
| 
 | |
| #define id_denominator rb_intern("denominator")
 | |
| #define f_denominator(x) rb_funcall((x), id_denominator, 0)
 | |
| 
 | |
| #define id_to_r idTo_r
 | |
| #define f_to_r(x) rb_funcall((x), id_to_r, 0)
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    num.numerator  ->  integer
 | |
|  *
 | |
|  * Returns the numerator.
 | |
|  */
 | |
| static VALUE
 | |
| numeric_numerator(VALUE self)
 | |
| {
 | |
|     return f_numerator(f_to_r(self));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    num.denominator  ->  integer
 | |
|  *
 | |
|  * Returns the denominator (always positive).
 | |
|  */
 | |
| static VALUE
 | |
| numeric_denominator(VALUE self)
 | |
| {
 | |
|     return f_denominator(f_to_r(self));
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     num.quo(int_or_rat)   ->  rat
 | |
|  *     num.quo(flo)          ->  flo
 | |
|  *
 | |
|  *  Returns the most exact division (rational for integers, float for floats).
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_numeric_quo(VALUE x, VALUE y)
 | |
| {
 | |
|     if (RB_TYPE_P(x, T_COMPLEX)) {
 | |
|         return rb_complex_div(x, y);
 | |
|     }
 | |
| 
 | |
|     if (RB_FLOAT_TYPE_P(y)) {
 | |
|         return rb_funcallv(x, idFdiv, 1, &y);
 | |
|     }
 | |
| 
 | |
|     x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
 | |
|     return rb_rational_div(x, y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_rational_canonicalize(VALUE x)
 | |
| {
 | |
|     if (RB_TYPE_P(x, T_RATIONAL)) {
 | |
|         get_dat1(x);
 | |
|         if (f_one_p(dat->den)) return dat->num;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    int.numerator  ->  self
 | |
|  *
 | |
|  * Returns self.
 | |
|  */
 | |
| static VALUE
 | |
| integer_numerator(VALUE self)
 | |
| {
 | |
|     return self;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    int.denominator  ->  1
 | |
|  *
 | |
|  * Returns 1.
 | |
|  */
 | |
| static VALUE
 | |
| integer_denominator(VALUE self)
 | |
| {
 | |
|     return INT2FIX(1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    flo.numerator  ->  integer
 | |
|  *
 | |
|  * Returns the numerator.  The result is machine dependent.
 | |
|  *
 | |
|  *    n = 0.3.numerator    #=> 5404319552844595
 | |
|  *    d = 0.3.denominator  #=> 18014398509481984
 | |
|  *    n.fdiv(d)            #=> 0.3
 | |
|  *
 | |
|  * See also Float#denominator.
 | |
|  */
 | |
| VALUE
 | |
| rb_float_numerator(VALUE self)
 | |
| {
 | |
|     double d = RFLOAT_VALUE(self);
 | |
|     VALUE r;
 | |
|     if (!isfinite(d))
 | |
| 	return self;
 | |
|     r = float_to_r(self);
 | |
|     return nurat_numerator(r);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    flo.denominator  ->  integer
 | |
|  *
 | |
|  * Returns the denominator (always positive).  The result is machine
 | |
|  * dependent.
 | |
|  *
 | |
|  * See also Float#numerator.
 | |
|  */
 | |
| VALUE
 | |
| rb_float_denominator(VALUE self)
 | |
| {
 | |
|     double d = RFLOAT_VALUE(self);
 | |
|     VALUE r;
 | |
|     if (!isfinite(d))
 | |
| 	return INT2FIX(1);
 | |
|     r = float_to_r(self);
 | |
|     return nurat_denominator(r);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    nil.to_r  ->  (0/1)
 | |
|  *
 | |
|  * Returns zero as a rational.
 | |
|  */
 | |
| static VALUE
 | |
| nilclass_to_r(VALUE self)
 | |
| {
 | |
|     return rb_rational_new1(INT2FIX(0));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    nil.rationalize([eps])  ->  (0/1)
 | |
|  *
 | |
|  * Returns zero as a rational.  The optional argument +eps+ is always
 | |
|  * ignored.
 | |
|  */
 | |
| static VALUE
 | |
| nilclass_rationalize(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     rb_check_arity(argc, 0, 1);
 | |
|     return nilclass_to_r(self);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    int.to_r  ->  rational
 | |
|  *
 | |
|  * Returns the value as a rational.
 | |
|  *
 | |
|  *    1.to_r        #=> (1/1)
 | |
|  *    (1<<64).to_r  #=> (18446744073709551616/1)
 | |
|  */
 | |
| static VALUE
 | |
| integer_to_r(VALUE self)
 | |
| {
 | |
|     return rb_rational_new1(self);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    int.rationalize([eps])  ->  rational
 | |
|  *
 | |
|  * Returns the value as a rational.  The optional argument +eps+ is
 | |
|  * always ignored.
 | |
|  */
 | |
| static VALUE
 | |
| integer_rationalize(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     rb_check_arity(argc, 0, 1);
 | |
|     return integer_to_r(self);
 | |
| }
 | |
| 
 | |
| static void
 | |
| float_decode_internal(VALUE self, VALUE *rf, int *n)
 | |
| {
 | |
|     double f;
 | |
| 
 | |
|     f = frexp(RFLOAT_VALUE(self), n);
 | |
|     f = ldexp(f, DBL_MANT_DIG);
 | |
|     *n -= DBL_MANT_DIG;
 | |
|     *rf = rb_dbl2big(f);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    flt.to_r  ->  rational
 | |
|  *
 | |
|  * Returns the value as a rational.
 | |
|  *
 | |
|  *    2.0.to_r    #=> (2/1)
 | |
|  *    2.5.to_r    #=> (5/2)
 | |
|  *    -0.75.to_r  #=> (-3/4)
 | |
|  *    0.0.to_r    #=> (0/1)
 | |
|  *    0.3.to_r    #=> (5404319552844595/18014398509481984)
 | |
|  *
 | |
|  * NOTE: 0.3.to_r isn't the same as "0.3".to_r.  The latter is
 | |
|  * equivalent to "3/10".to_r, but the former isn't so.
 | |
|  *
 | |
|  *    0.3.to_r   == 3/10r  #=> false
 | |
|  *    "0.3".to_r == 3/10r  #=> true
 | |
|  *
 | |
|  * See also Float#rationalize.
 | |
|  */
 | |
| static VALUE
 | |
| float_to_r(VALUE self)
 | |
| {
 | |
|     VALUE f;
 | |
|     int n;
 | |
| 
 | |
|     float_decode_internal(self, &f, &n);
 | |
| #if FLT_RADIX == 2
 | |
|     if (n == 0)
 | |
|         return rb_rational_new1(f);
 | |
|     if (n > 0)
 | |
|         return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));
 | |
|     n = -n;
 | |
|     return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n)));
 | |
| #else
 | |
|     f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));
 | |
|     if (RB_TYPE_P(f, T_RATIONAL))
 | |
| 	return f;
 | |
|     return rb_rational_new1(f);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_flt_rationalize_with_prec(VALUE flt, VALUE prec)
 | |
| {
 | |
|     VALUE e, a, b, p, q;
 | |
| 
 | |
|     e = f_abs(prec);
 | |
|     a = f_sub(flt, e);
 | |
|     b = f_add(flt, e);
 | |
| 
 | |
|     if (f_eqeq_p(a, b))
 | |
|         return float_to_r(flt);
 | |
| 
 | |
|     nurat_rationalize_internal(a, b, &p, &q);
 | |
|     return rb_rational_new2(p, q);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_flt_rationalize(VALUE flt)
 | |
| {
 | |
|     VALUE a, b, f, p, q, den;
 | |
|     int n;
 | |
| 
 | |
|     float_decode_internal(flt, &f, &n);
 | |
|     if (INT_ZERO_P(f) || n >= 0)
 | |
|         return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));
 | |
| 
 | |
|     {
 | |
|         VALUE radix_times_f;
 | |
| 
 | |
|         radix_times_f = rb_int_mul(INT2FIX(FLT_RADIX), f);
 | |
| #if FLT_RADIX == 2 && 0
 | |
|         den = rb_int_lshift(ONE, INT2FIX(1-n));
 | |
| #else
 | |
|         den = rb_int_positive_pow(FLT_RADIX, 1-n);
 | |
| #endif
 | |
| 
 | |
|         a = rb_int_minus(radix_times_f, INT2FIX(FLT_RADIX - 1));
 | |
|         b = rb_int_plus(radix_times_f, INT2FIX(FLT_RADIX - 1));
 | |
|     }
 | |
| 
 | |
|     if (f_eqeq_p(a, b))
 | |
|         return float_to_r(flt);
 | |
| 
 | |
|     a = rb_rational_new2(a, den);
 | |
|     b = rb_rational_new2(b, den);
 | |
|     nurat_rationalize_internal(a, b, &p, &q);
 | |
|     return rb_rational_new2(p, q);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    flt.rationalize([eps])  ->  rational
 | |
|  *
 | |
|  * Returns a simpler approximation of the value (flt-|eps| <= result
 | |
|  * <= flt+|eps|).  If the optional argument +eps+ is not given,
 | |
|  * it will be chosen automatically.
 | |
|  *
 | |
|  *    0.3.rationalize          #=> (3/10)
 | |
|  *    1.333.rationalize        #=> (1333/1000)
 | |
|  *    1.333.rationalize(0.01)  #=> (4/3)
 | |
|  *
 | |
|  * See also Float#to_r.
 | |
|  */
 | |
| static VALUE
 | |
| float_rationalize(int argc, VALUE *argv, VALUE self)
 | |
| {
 | |
|     double d = RFLOAT_VALUE(self);
 | |
|     VALUE rat;
 | |
|     int neg = d < 0.0;
 | |
|     if (neg) self = DBL2NUM(-d);
 | |
| 
 | |
|     if (rb_check_arity(argc, 0, 1)) {
 | |
|         rat = rb_flt_rationalize_with_prec(self, argv[0]);
 | |
|     }
 | |
|     else {
 | |
|         rat = rb_flt_rationalize(self);
 | |
|     }
 | |
|     if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num));
 | |
|     return rat;
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| issign(int c)
 | |
| {
 | |
|     return (c == '-' || c == '+');
 | |
| }
 | |
| 
 | |
| static int
 | |
| read_sign(const char **s, const char *const e)
 | |
| {
 | |
|     int sign = '?';
 | |
| 
 | |
|     if (*s < e && issign(**s)) {
 | |
| 	sign = **s;
 | |
| 	(*s)++;
 | |
|     }
 | |
|     return sign;
 | |
| }
 | |
| 
 | |
| inline static int
 | |
| islettere(int c)
 | |
| {
 | |
|     return (c == 'e' || c == 'E');
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| negate_num(VALUE num)
 | |
| {
 | |
|     if (FIXNUM_P(num)) {
 | |
| 	return rb_int_uminus(num);
 | |
|     }
 | |
|     else {
 | |
| 	BIGNUM_NEGATE(num);
 | |
| 	return rb_big_norm(num);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int
 | |
| read_num(const char **s, const char *const end, VALUE *num, VALUE *nexp)
 | |
| {
 | |
|     VALUE fp = ONE, exp, fn = ZERO, n = ZERO;
 | |
|     int expsign = 0, ok = 0;
 | |
|     char *e;
 | |
| 
 | |
|     *nexp = ZERO;
 | |
|     *num = ZERO;
 | |
|     if (*s < end && **s != '.') {
 | |
| 	n = rb_int_parse_cstr(*s, end-*s, &e, NULL,
 | |
| 			      10, RB_INT_PARSE_UNDERSCORE);
 | |
| 	if (NIL_P(n))
 | |
| 	    return 0;
 | |
| 	*s = e;
 | |
| 	*num = n;
 | |
| 	ok = 1;
 | |
|     }
 | |
| 
 | |
|     if (*s < end && **s == '.') {
 | |
| 	size_t count = 0;
 | |
| 
 | |
| 	(*s)++;
 | |
| 	fp = rb_int_parse_cstr(*s, end-*s, &e, &count,
 | |
| 			       10, RB_INT_PARSE_UNDERSCORE);
 | |
| 	if (NIL_P(fp))
 | |
| 	    return 1;
 | |
| 	*s = e;
 | |
| 	{
 | |
|             VALUE l = f_expt10(*nexp = SIZET2NUM(count));
 | |
| 	    n = n == ZERO ? fp : rb_int_plus(rb_int_mul(*num, l), fp);
 | |
| 	    *num = n;
 | |
| 	    fn = SIZET2NUM(count);
 | |
| 	}
 | |
| 	ok = 1;
 | |
|     }
 | |
| 
 | |
|     if (ok && *s + 1 < end && islettere(**s)) {
 | |
| 	(*s)++;
 | |
| 	expsign = read_sign(s, end);
 | |
| 	exp = rb_int_parse_cstr(*s, end-*s, &e, NULL,
 | |
| 				10, RB_INT_PARSE_UNDERSCORE);
 | |
| 	if (NIL_P(exp))
 | |
| 	    return 1;
 | |
| 	*s = e;
 | |
| 	if (exp != ZERO) {
 | |
| 	    if (expsign == '-') {
 | |
| 		if (fn != ZERO) exp = rb_int_plus(exp, fn);
 | |
| 	    }
 | |
| 	    else {
 | |
| 		if (fn != ZERO) exp = rb_int_minus(exp, fn);
 | |
|                 exp = negate_num(exp);
 | |
| 	    }
 | |
|             *nexp = exp;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| inline static const char *
 | |
| skip_ws(const char *s, const char *e)
 | |
| {
 | |
|     while (s < e && isspace((unsigned char)*s))
 | |
| 	++s;
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| parse_rat(const char *s, const char *const e, int strict, int raise)
 | |
| {
 | |
|     int sign;
 | |
|     VALUE num, den, nexp, dexp;
 | |
| 
 | |
|     s = skip_ws(s, e);
 | |
|     sign = read_sign(&s, e);
 | |
| 
 | |
|     if (!read_num(&s, e, &num, &nexp)) {
 | |
| 	if (strict) return Qnil;
 | |
| 	return nurat_s_alloc(rb_cRational);
 | |
|     }
 | |
|     den = ONE;
 | |
|     if (s < e && *s == '/') {
 | |
| 	s++;
 | |
|         if (!read_num(&s, e, &den, &dexp)) {
 | |
| 	    if (strict) return Qnil;
 | |
|             den = ONE;
 | |
| 	}
 | |
| 	else if (den == ZERO) {
 | |
|             if (!raise) return Qnil;
 | |
| 	    rb_num_zerodiv();
 | |
| 	}
 | |
| 	else if (strict && skip_ws(s, e) != e) {
 | |
| 	    return Qnil;
 | |
| 	}
 | |
| 	else {
 | |
|             nexp = rb_int_minus(nexp, dexp);
 | |
| 	    nurat_reduce(&num, &den);
 | |
| 	}
 | |
|     }
 | |
|     else if (strict && skip_ws(s, e) != e) {
 | |
| 	return Qnil;
 | |
|     }
 | |
| 
 | |
|     if (nexp != ZERO) {
 | |
|         if (INT_NEGATIVE_P(nexp)) {
 | |
|             VALUE mul;
 | |
|             if (FIXNUM_P(nexp)) {
 | |
|                 mul = f_expt10(LONG2NUM(-FIX2LONG(nexp)));
 | |
|                 if (! RB_FLOAT_TYPE_P(mul)) {
 | |
|                     num = rb_int_mul(num, mul);
 | |
|                     goto reduce;
 | |
|                 }
 | |
|             }
 | |
|             return sign == '-' ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
 | |
|         }
 | |
|         else {
 | |
|             VALUE div;
 | |
|             if (FIXNUM_P(nexp)) {
 | |
|                 div = f_expt10(nexp);
 | |
|                 if (! RB_FLOAT_TYPE_P(div)) {
 | |
|                     den = rb_int_mul(den, div);
 | |
|                     goto reduce;
 | |
|                 }
 | |
|             }
 | |
|             return sign == '-' ? DBL2NUM(-0.0) : DBL2NUM(+0.0);
 | |
|         }
 | |
|       reduce:
 | |
|         nurat_reduce(&num, &den);
 | |
|     }
 | |
| 
 | |
|     if (sign == '-') {
 | |
| 	num = negate_num(num);
 | |
|     }
 | |
| 
 | |
|     return rb_rational_raw(num, den);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| string_to_r_strict(VALUE self, int raise)
 | |
| {
 | |
|     VALUE num;
 | |
| 
 | |
|     rb_must_asciicompat(self);
 | |
| 
 | |
|     num = parse_rat(RSTRING_PTR(self), RSTRING_END(self), 1, raise);
 | |
|     if (NIL_P(num)) {
 | |
|         if (!raise) return Qnil;
 | |
|         rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE,
 | |
|                  self);
 | |
|     }
 | |
| 
 | |
|     if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num)) {
 | |
|         if (!raise) return Qnil;
 | |
|         rb_raise(rb_eFloatDomainError, "Infinity");
 | |
|     }
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *    str.to_r  ->  rational
 | |
|  *
 | |
|  * Returns the result of interpreting leading characters in +str+
 | |
|  * as a rational.  Leading whitespace and extraneous characters
 | |
|  * past the end of a valid number are ignored.
 | |
|  * Digit sequences can be separated by an underscore.
 | |
|  * If there is not a valid number at the start of +str+,
 | |
|  * zero is returned.  This method never raises an exception.
 | |
|  *
 | |
|  *    '  2  '.to_r       #=> (2/1)
 | |
|  *    '300/2'.to_r       #=> (150/1)
 | |
|  *    '-9.2'.to_r        #=> (-46/5)
 | |
|  *    '-9.2e2'.to_r      #=> (-920/1)
 | |
|  *    '1_234_567'.to_r   #=> (1234567/1)
 | |
|  *    '21 June 09'.to_r  #=> (21/1)
 | |
|  *    '21/06/09'.to_r    #=> (7/2)
 | |
|  *    'BWV 1079'.to_r    #=> (0/1)
 | |
|  *
 | |
|  * NOTE: "0.3".to_r isn't the same as 0.3.to_r.  The former is
 | |
|  * equivalent to "3/10".to_r, but the latter isn't so.
 | |
|  *
 | |
|  *    "0.3".to_r == 3/10r  #=> true
 | |
|  *    0.3.to_r   == 3/10r  #=> false
 | |
|  *
 | |
|  * See also Kernel#Rational.
 | |
|  */
 | |
| static VALUE
 | |
| string_to_r(VALUE self)
 | |
| {
 | |
|     VALUE num;
 | |
| 
 | |
|     rb_must_asciicompat(self);
 | |
| 
 | |
|     num = parse_rat(RSTRING_PTR(self), RSTRING_END(self), 0, TRUE);
 | |
| 
 | |
|     if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num))
 | |
| 	rb_raise(rb_eFloatDomainError, "Infinity");
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_cstr_to_rat(const char *s, int strict) /* for complex's internal */
 | |
| {
 | |
|     VALUE num;
 | |
| 
 | |
|     num = parse_rat(s, s + strlen(s), strict, TRUE);
 | |
| 
 | |
|     if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num))
 | |
| 	rb_raise(rb_eFloatDomainError, "Infinity");
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| to_rational(VALUE val)
 | |
| {
 | |
|     return rb_convert_type_with_id(val, T_RATIONAL, "Rational", idTo_r);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_convert(VALUE klass, VALUE numv, VALUE denv, int raise)
 | |
| {
 | |
|     VALUE a1 = numv, a2 = denv;
 | |
|     int state;
 | |
| 
 | |
|     assert(a1 != Qundef);
 | |
| 
 | |
|     if (NIL_P(a1) || NIL_P(a2)) {
 | |
|         if (!raise) return Qnil;
 | |
|         rb_raise(rb_eTypeError, "can't convert nil into Rational");
 | |
|     }
 | |
| 
 | |
|     if (RB_TYPE_P(a1, T_COMPLEX)) {
 | |
|         if (k_exact_zero_p(RCOMPLEX(a1)->imag))
 | |
|             a1 = RCOMPLEX(a1)->real;
 | |
|     }
 | |
| 
 | |
|     if (RB_TYPE_P(a2, T_COMPLEX)) {
 | |
|         if (k_exact_zero_p(RCOMPLEX(a2)->imag))
 | |
|             a2 = RCOMPLEX(a2)->real;
 | |
|     }
 | |
| 
 | |
|     if (RB_INTEGER_TYPE_P(a1)) {
 | |
|         // nothing to do
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(a1)) {
 | |
|         a1 = float_to_r(a1);
 | |
|     }
 | |
|     else if (RB_TYPE_P(a1, T_RATIONAL)) {
 | |
|         // nothing to do
 | |
|     }
 | |
|     else if (RB_TYPE_P(a1, T_STRING)) {
 | |
|         a1 = string_to_r_strict(a1, raise);
 | |
|         if (!raise && NIL_P(a1)) return Qnil;
 | |
|     }
 | |
|     else if (!rb_respond_to(a1, idTo_r)) {
 | |
|         VALUE tmp = rb_protect(rb_check_to_int, a1, NULL);
 | |
|         rb_set_errinfo(Qnil);
 | |
|         if (!NIL_P(tmp)) {
 | |
|             a1 = tmp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (RB_INTEGER_TYPE_P(a2)) {
 | |
|         // nothing to do
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(a2)) {
 | |
|         a2 = float_to_r(a2);
 | |
|     }
 | |
|     else if (RB_TYPE_P(a2, T_RATIONAL)) {
 | |
|         // nothing to do
 | |
|     }
 | |
|     else if (RB_TYPE_P(a2, T_STRING)) {
 | |
|         a2 = string_to_r_strict(a2, raise);
 | |
|         if (!raise && NIL_P(a2)) return Qnil;
 | |
|     }
 | |
|     else if (a2 != Qundef && !rb_respond_to(a2, idTo_r)) {
 | |
|         VALUE tmp = rb_protect(rb_check_to_int, a2, NULL);
 | |
|         rb_set_errinfo(Qnil);
 | |
|         if (!NIL_P(tmp)) {
 | |
|             a2 = tmp;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (RB_TYPE_P(a1, T_RATIONAL)) {
 | |
|         if (a2 == Qundef || (k_exact_one_p(a2)))
 | |
|             return a1;
 | |
|     }
 | |
| 
 | |
|     if (a2 == Qundef) {
 | |
|         if (!RB_INTEGER_TYPE_P(a1)) {
 | |
|             if (!raise) {
 | |
|                 VALUE result = rb_protect(to_rational, a1, NULL);
 | |
|                 rb_set_errinfo(Qnil);
 | |
|                 return result;
 | |
|             }
 | |
|             return to_rational(a1);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if (!k_numeric_p(a1)) {
 | |
|             if (!raise) {
 | |
|                 a1 = rb_protect(to_rational, a1, &state);
 | |
|                 if (state) {
 | |
|                     rb_set_errinfo(Qnil);
 | |
|                     return Qnil;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 a1 = rb_check_convert_type_with_id(a1, T_RATIONAL, "Rational", idTo_r);
 | |
|             }
 | |
|         }
 | |
|         if (!k_numeric_p(a2)) {
 | |
|             if (!raise) {
 | |
|                 a2 = rb_protect(to_rational, a2, &state);
 | |
|                 if (state) {
 | |
|                     rb_set_errinfo(Qnil);
 | |
|                     return Qnil;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 a2 = rb_check_convert_type_with_id(a2, T_RATIONAL, "Rational", idTo_r);
 | |
|             }
 | |
|         }
 | |
|         if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
 | |
|                 (!f_integer_p(a1) || !f_integer_p(a2))) {
 | |
|             VALUE tmp = rb_protect(to_rational, a1, &state);
 | |
|             if (!state) {
 | |
|                 a1 = tmp;
 | |
|             }
 | |
|             else {
 | |
|                 rb_set_errinfo(Qnil);
 | |
|             }
 | |
|             return f_div(a1, a2);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     a1 = nurat_int_value(a1);
 | |
| 
 | |
|     if (a2 == Qundef) {
 | |
|         a2 = ONE;
 | |
|     }
 | |
|     else if (!k_integer_p(a2) && !raise) {
 | |
|         return Qnil;
 | |
|     }
 | |
|     else {
 | |
|         a2 = nurat_int_value(a2);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     return nurat_s_canonicalize_internal(klass, a1, a2);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| nurat_s_convert(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     VALUE a1, a2;
 | |
| 
 | |
|     if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) {
 | |
|         a2 = Qundef;
 | |
|     }
 | |
| 
 | |
|     return nurat_convert(klass, a1, a2, TRUE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A rational number can be represented as a pair of integer numbers:
 | |
|  * a/b (b>0), where a is the numerator and b is the denominator.
 | |
|  * Integer a equals rational a/1 mathematically.
 | |
|  *
 | |
|  * You can create a \Rational object explicitly with:
 | |
|  *
 | |
|  * - A {rational literal}[rdoc-ref:syntax/literals.rdoc@Rational+Literals].
 | |
|  *
 | |
|  * You can convert certain objects to Rationals with:
 | |
|  *
 | |
|  * - \Method #Rational.
 | |
|  *
 | |
|  * Examples
 | |
|  *
 | |
|  *    Rational(1)      #=> (1/1)
 | |
|  *    Rational(2, 3)   #=> (2/3)
 | |
|  *    Rational(4, -6)  #=> (-2/3) # Reduced.
 | |
|  *    3.to_r           #=> (3/1)
 | |
|  *    2/3r             #=> (2/3)
 | |
|  *
 | |
|  * You can also create rational objects from floating-point numbers or
 | |
|  * strings.
 | |
|  *
 | |
|  *    Rational(0.3)    #=> (5404319552844595/18014398509481984)
 | |
|  *    Rational('0.3')  #=> (3/10)
 | |
|  *    Rational('2/3')  #=> (2/3)
 | |
|  *
 | |
|  *    0.3.to_r         #=> (5404319552844595/18014398509481984)
 | |
|  *    '0.3'.to_r       #=> (3/10)
 | |
|  *    '2/3'.to_r       #=> (2/3)
 | |
|  *    0.3.rationalize  #=> (3/10)
 | |
|  *
 | |
|  * A rational object is an exact number, which helps you to write
 | |
|  * programs without any rounding errors.
 | |
|  *
 | |
|  *    10.times.inject(0) {|t| t + 0.1 }              #=> 0.9999999999999999
 | |
|  *    10.times.inject(0) {|t| t + Rational('0.1') }  #=> (1/1)
 | |
|  *
 | |
|  * However, when an expression includes an inexact component (numerical value
 | |
|  * or operation), it will produce an inexact result.
 | |
|  *
 | |
|  *    Rational(10) / 3   #=> (10/3)
 | |
|  *    Rational(10) / 3.0 #=> 3.3333333333333335
 | |
|  *
 | |
|  *    Rational(-8) ** Rational(1, 3)
 | |
|  *                       #=> (1.0000000000000002+1.7320508075688772i)
 | |
|  */
 | |
| void
 | |
| Init_Rational(void)
 | |
| {
 | |
|     VALUE compat;
 | |
|     id_abs = rb_intern_const("abs");
 | |
|     id_integer_p = rb_intern_const("integer?");
 | |
|     id_i_num = rb_intern_const("@numerator");
 | |
|     id_i_den = rb_intern_const("@denominator");
 | |
| 
 | |
|     rb_cRational = rb_define_class("Rational", rb_cNumeric);
 | |
| 
 | |
|     rb_define_alloc_func(rb_cRational, nurat_s_alloc);
 | |
|     rb_undef_method(CLASS_OF(rb_cRational), "allocate");
 | |
| 
 | |
|     rb_undef_method(CLASS_OF(rb_cRational), "new");
 | |
| 
 | |
|     rb_define_global_function("Rational", nurat_f_rational, -1);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "numerator", nurat_numerator, 0);
 | |
|     rb_define_method(rb_cRational, "denominator", nurat_denominator, 0);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "-@", rb_rational_uminus, 0);
 | |
|     rb_define_method(rb_cRational, "+", rb_rational_plus, 1);
 | |
|     rb_define_method(rb_cRational, "-", rb_rational_minus, 1);
 | |
|     rb_define_method(rb_cRational, "*", rb_rational_mul, 1);
 | |
|     rb_define_method(rb_cRational, "/", rb_rational_div, 1);
 | |
|     rb_define_method(rb_cRational, "quo", rb_rational_div, 1);
 | |
|     rb_define_method(rb_cRational, "fdiv", nurat_fdiv, 1);
 | |
|     rb_define_method(rb_cRational, "**", nurat_expt, 1);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "<=>", rb_rational_cmp, 1);
 | |
|     rb_define_method(rb_cRational, "==", nurat_eqeq_p, 1);
 | |
|     rb_define_method(rb_cRational, "coerce", nurat_coerce, 1);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "positive?", nurat_positive_p, 0);
 | |
|     rb_define_method(rb_cRational, "negative?", nurat_negative_p, 0);
 | |
|     rb_define_method(rb_cRational, "abs", rb_rational_abs, 0);
 | |
|     rb_define_method(rb_cRational, "magnitude", rb_rational_abs, 0);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "floor", nurat_floor_n, -1);
 | |
|     rb_define_method(rb_cRational, "ceil", nurat_ceil_n, -1);
 | |
|     rb_define_method(rb_cRational, "truncate", nurat_truncate_n, -1);
 | |
|     rb_define_method(rb_cRational, "round", nurat_round_n, -1);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "to_i", nurat_truncate, 0);
 | |
|     rb_define_method(rb_cRational, "to_f", nurat_to_f, 0);
 | |
|     rb_define_method(rb_cRational, "to_r", nurat_to_r, 0);
 | |
|     rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "hash", nurat_hash, 0);
 | |
| 
 | |
|     rb_define_method(rb_cRational, "to_s", nurat_to_s, 0);
 | |
|     rb_define_method(rb_cRational, "inspect", nurat_inspect, 0);
 | |
| 
 | |
|     rb_define_private_method(rb_cRational, "marshal_dump", nurat_marshal_dump, 0);
 | |
|     /* :nodoc: */
 | |
|     compat = rb_define_class_under(rb_cRational, "compatible", rb_cObject);
 | |
|     rb_define_private_method(compat, "marshal_load", nurat_marshal_load, 1);
 | |
|     rb_marshal_define_compat(rb_cRational, compat, nurat_dumper, nurat_loader);
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "gcd", rb_gcd, 1);
 | |
|     rb_define_method(rb_cInteger, "lcm", rb_lcm, 1);
 | |
|     rb_define_method(rb_cInteger, "gcdlcm", rb_gcdlcm, 1);
 | |
| 
 | |
|     rb_define_method(rb_cNumeric, "numerator", numeric_numerator, 0);
 | |
|     rb_define_method(rb_cNumeric, "denominator", numeric_denominator, 0);
 | |
|     rb_define_method(rb_cNumeric, "quo", rb_numeric_quo, 1);
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "numerator", integer_numerator, 0);
 | |
|     rb_define_method(rb_cInteger, "denominator", integer_denominator, 0);
 | |
| 
 | |
|     rb_define_method(rb_cFloat, "numerator", rb_float_numerator, 0);
 | |
|     rb_define_method(rb_cFloat, "denominator", rb_float_denominator, 0);
 | |
| 
 | |
|     rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0);
 | |
|     rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1);
 | |
|     rb_define_method(rb_cInteger, "to_r", integer_to_r, 0);
 | |
|     rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1);
 | |
|     rb_define_method(rb_cFloat, "to_r", float_to_r, 0);
 | |
|     rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1);
 | |
| 
 | |
|     rb_define_method(rb_cString, "to_r", string_to_r, 0);
 | |
| 
 | |
|     rb_define_private_method(CLASS_OF(rb_cRational), "convert", nurat_s_convert, -1);
 | |
| 
 | |
|     rb_provide("rational.so");	/* for backward compatibility */
 | |
| }
 | 
