1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/yjit_iface.c
Alan Wu f80069820e YJIT: Don't take VM lock on constant IC fill when disabled
While theoretically it's fine to take the lock and then immediately release
it, we don't need to do it when YJIT is off.
2021-10-22 17:22:41 -04:00

1160 lines
35 KiB
C

// This file is a fragment of the yjit.o compilation unit. See yjit.c.
#include "internal.h"
#include "vm_sync.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "gc.h"
#include "iseq.h"
#include "internal/compile.h"
#include "internal/class.h"
#include "yjit.h"
#include "yjit_iface.h"
#include "yjit_codegen.h"
#include "yjit_core.h"
#include "darray.h"
#ifdef HAVE_LIBCAPSTONE
#include <capstone/capstone.h>
static VALUE cYjitDisasm;
static VALUE cYjitDisasmInsn;
#endif
static VALUE mYjit;
static VALUE cYjitBlock;
#if YJIT_STATS
static VALUE cYjitCodeComment;
#endif
#if YJIT_STATS
extern const int rb_vm_max_insn_name_size;
static int64_t exit_op_count[VM_INSTRUCTION_SIZE] = { 0 };
#endif
// Hash table of encoded instructions
extern st_table *rb_encoded_insn_data;
struct rb_yjit_options rb_yjit_opts;
static const rb_data_type_t yjit_block_type = {
"YJIT/Block",
{0, 0, 0, },
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
// Get the PC for a given index in an iseq
static VALUE *
yjit_iseq_pc_at_idx(const rb_iseq_t *iseq, uint32_t insn_idx)
{
RUBY_ASSERT(iseq != NULL);
RUBY_ASSERT(insn_idx < iseq->body->iseq_size);
VALUE *encoded = iseq->body->iseq_encoded;
VALUE *pc = &encoded[insn_idx];
return pc;
}
// For debugging. Print the disassembly of an iseq.
static void
yjit_print_iseq(const rb_iseq_t *iseq)
{
char *ptr;
long len;
VALUE disassembly = rb_iseq_disasm(iseq);
RSTRING_GETMEM(disassembly, ptr, len);
fprintf(stderr, "%.*s\n", (int)len, ptr);
}
static int
yjit_opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc)
{
const VALUE at_pc = *pc;
if (FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED)) {
return rb_vm_insn_addr2opcode((const void *)at_pc);
}
else {
return (int)at_pc;
}
}
// Verify that calling with cd on receiver goes to callee
static void
check_cfunc_dispatch(VALUE receiver, struct rb_callinfo *ci, void *callee, rb_callable_method_entry_t *compile_time_cme)
{
if (METHOD_ENTRY_INVALIDATED(compile_time_cme)) {
rb_bug("yjit: output code uses invalidated cme %p", (void *)compile_time_cme);
}
bool callee_correct = false;
const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(receiver), vm_ci_mid(ci));
if (cme->def->type == VM_METHOD_TYPE_CFUNC) {
const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
if ((void *)cfunc->func == callee) {
callee_correct = true;
}
}
if (!callee_correct) {
rb_bug("yjit: output code calls wrong method");
}
}
MJIT_FUNC_EXPORTED VALUE rb_hash_has_key(VALUE hash, VALUE key);
// GC root for interacting with the GC
struct yjit_root_struct {
int unused; // empty structs are not legal in C99
};
// Hash table of BOP blocks
static st_table *blocks_assuming_bops;
static bool
assume_bop_not_redefined(block_t *block, int redefined_flag, enum ruby_basic_operators bop)
{
if (BASIC_OP_UNREDEFINED_P(bop, redefined_flag)) {
if (blocks_assuming_bops) {
st_insert(blocks_assuming_bops, (st_data_t)block, 0);
}
return true;
}
else {
return false;
}
}
// Map klass => id_table[mid, set of blocks]
// While a block `b` is in the table, b->callee_cme == rb_callable_method_entry(klass, mid).
// See assume_method_lookup_stable()
static st_table *method_lookup_dependency;
// For adding to method_lookup_dependency data with st_update
struct lookup_dependency_insertion {
block_t *block;
ID mid;
};
// Map cme => set of blocks
// See assume_method_lookup_stable()
static st_table *cme_validity_dependency;
static int
add_cme_validity_dependency_i(st_data_t *key, st_data_t *value, st_data_t new_block, int existing)
{
st_table *block_set;
if (existing) {
block_set = (st_table *)*value;
}
else {
// Make the set and put it into cme_validity_dependency
block_set = st_init_numtable();
*value = (st_data_t)block_set;
}
// Put block into set
st_insert(block_set, new_block, 1);
return ST_CONTINUE;
}
static int
add_lookup_dependency_i(st_data_t *key, st_data_t *value, st_data_t data, int existing)
{
struct lookup_dependency_insertion *info = (void *)data;
// Find or make an id table
struct rb_id_table *id2blocks;
if (existing) {
id2blocks = (void *)*value;
}
else {
// Make an id table and put it into the st_table
id2blocks = rb_id_table_create(1);
*value = (st_data_t)id2blocks;
}
// Find or make a block set
st_table *block_set;
{
VALUE blocks;
if (rb_id_table_lookup(id2blocks, info->mid, &blocks)) {
// Take existing set
block_set = (st_table *)blocks;
}
else {
// Make new block set and put it into the id table
block_set = st_init_numtable();
rb_id_table_insert(id2blocks, info->mid, (VALUE)block_set);
}
}
st_insert(block_set, (st_data_t)info->block, 1);
return ST_CONTINUE;
}
// Remember that a block assumes that
// `rb_callable_method_entry(receiver_klass, cme->called_id) == cme` and that
// `cme` is valid.
// When either of these assumptions becomes invalid, rb_yjit_method_lookup_change() or
// rb_yjit_cme_invalidate() invalidates the block.
//
// @raise NoMemoryError
static void
assume_method_lookup_stable(VALUE receiver_klass, const rb_callable_method_entry_t *cme, block_t *block)
{
RUBY_ASSERT(cme_validity_dependency);
RUBY_ASSERT(method_lookup_dependency);
RUBY_ASSERT(rb_callable_method_entry(receiver_klass, cme->called_id) == cme);
RUBY_ASSERT_ALWAYS(RB_TYPE_P(receiver_klass, T_CLASS) || RB_TYPE_P(receiver_klass, T_ICLASS));
RUBY_ASSERT_ALWAYS(!rb_objspace_garbage_object_p(receiver_klass));
cme_dependency_t cme_dep = { receiver_klass, (VALUE)cme };
rb_darray_append(&block->cme_dependencies, cme_dep);
st_update(cme_validity_dependency, (st_data_t)cme, add_cme_validity_dependency_i, (st_data_t)block);
struct lookup_dependency_insertion info = { block, cme->called_id };
st_update(method_lookup_dependency, (st_data_t)receiver_klass, add_lookup_dependency_i, (st_data_t)&info);
}
static st_table *blocks_assuming_single_ractor_mode;
// Can raise NoMemoryError.
RBIMPL_ATTR_NODISCARD()
static bool
assume_single_ractor_mode(block_t *block) {
if (rb_multi_ractor_p()) return false;
st_insert(blocks_assuming_single_ractor_mode, (st_data_t)block, 1);
return true;
}
static st_table *blocks_assuming_stable_global_constant_state;
// Assume that the global constant state has not changed since call to this function.
// Can raise NoMemoryError.
static void
assume_stable_global_constant_state(block_t *block)
{
st_insert(blocks_assuming_stable_global_constant_state, (st_data_t)block, 1);
}
static int
mark_and_pin_keys_i(st_data_t k, st_data_t v, st_data_t ignore)
{
rb_gc_mark((VALUE)k);
return ST_CONTINUE;
}
// GC callback during mark phase
static void
yjit_root_mark(void *ptr)
{
if (method_lookup_dependency) {
// TODO: This is a leak. Unused blocks linger in the table forever, preventing the
// callee class they speculate on from being collected.
// We could do a bespoke weak reference scheme on classes similar to
// the interpreter's call cache. See finalizer for T_CLASS and cc_table_free().
st_foreach(method_lookup_dependency, mark_and_pin_keys_i, 0);
}
if (cme_validity_dependency) {
// Why not let the GC move the cme keys in this table?
// Because this is basically a compare_by_identity Hash.
// If a key moves, we would need to reinsert it into the table so it is rehashed.
// That is tricky to do, espcially as it could trigger allocation which could
// trigger GC. Not sure if it is okay to trigger GC while the GC is updating
// references.
st_foreach(cme_validity_dependency, mark_and_pin_keys_i, 0);
}
}
static void
yjit_root_free(void *ptr)
{
// Do nothing. The root lives as long as the process.
}
static size_t
yjit_root_memsize(const void *ptr)
{
// Count off-gc-heap allocation size of the dependency table
return st_memsize(method_lookup_dependency); // TODO: more accurate accounting
}
// GC callback during compaction
static void
yjit_root_update_references(void *ptr)
{
}
// Custom type for interacting with the GC
// TODO: make this write barrier protected
static const rb_data_type_t yjit_root_type = {
"yjit_root",
{yjit_root_mark, yjit_root_free, yjit_root_memsize, yjit_root_update_references},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
// st_table iterator for invalidating blocks that are keys to the table.
static int
block_set_invalidate_i(st_data_t key, st_data_t v, st_data_t ignore)
{
block_t *version = (block_t *)key;
// Thankfully, st_table supports deleting while iterating.
invalidate_block_version(version);
return ST_CONTINUE;
}
// Callback for when rb_callable_method_entry(klass, mid) is going to change.
// Invalidate blocks that assume stable method lookup of `mid` in `klass` when this happens.
void
rb_yjit_method_lookup_change(VALUE klass, ID mid)
{
if (!method_lookup_dependency) return;
RB_VM_LOCK_ENTER();
st_data_t image;
st_data_t key = (st_data_t)klass;
if (st_lookup(method_lookup_dependency, key, &image)) {
struct rb_id_table *id2blocks = (void *)image;
VALUE blocks;
// Invalidate all blocks in method_lookup_dependency[klass][mid]
if (rb_id_table_lookup(id2blocks, mid, &blocks)) {
rb_id_table_delete(id2blocks, mid);
st_table *block_set = (st_table *)blocks;
#if YJIT_STATS
yjit_runtime_counters.invalidate_method_lookup += block_set->num_entries;
#endif
st_foreach(block_set, block_set_invalidate_i, 0);
st_free_table(block_set);
}
}
RB_VM_LOCK_LEAVE();
}
// Callback for when a cme becomes invalid.
// Invalidate all blocks that depend on cme being valid.
void
rb_yjit_cme_invalidate(VALUE cme)
{
if (!cme_validity_dependency) return;
RUBY_ASSERT(IMEMO_TYPE_P(cme, imemo_ment));
RB_VM_LOCK_ENTER();
// Delete the block set from the table
st_data_t cme_as_st_data = (st_data_t)cme;
st_data_t blocks;
if (st_delete(cme_validity_dependency, &cme_as_st_data, &blocks)) {
st_table *block_set = (st_table *)blocks;
#if YJIT_STATS
yjit_runtime_counters.invalidate_method_lookup += block_set->num_entries;
#endif
// Invalidate each block
st_foreach(block_set, block_set_invalidate_i, 0);
st_free_table(block_set);
}
RB_VM_LOCK_LEAVE();
}
// For dealing with refinements
void
rb_yjit_invalidate_all_method_lookup_assumptions(void)
{
// It looks like Module#using actually doesn't need to invalidate all the
// method caches, so we do nothing here for now.
}
// Remove a block from the method lookup dependency table
static void
remove_method_lookup_dependency(block_t *block, VALUE receiver_klass, const rb_callable_method_entry_t *callee_cme)
{
RUBY_ASSERT(receiver_klass);
RUBY_ASSERT(callee_cme); // callee_cme should be set when receiver_klass is set
st_data_t image;
st_data_t key = (st_data_t)receiver_klass;
if (st_lookup(method_lookup_dependency, key, &image)) {
struct rb_id_table *id2blocks = (void *)image;
ID mid = callee_cme->called_id;
// Find block set
VALUE blocks;
if (rb_id_table_lookup(id2blocks, mid, &blocks)) {
st_table *block_set = (st_table *)blocks;
// Remove block from block set
st_data_t block_as_st_data = (st_data_t)block;
(void)st_delete(block_set, &block_as_st_data, NULL);
if (block_set->num_entries == 0) {
// Block set now empty. Remove from id table.
rb_id_table_delete(id2blocks, mid);
st_free_table(block_set);
}
}
}
}
// Remove a block from cme_validity_dependency
static void
remove_cme_validity_dependency(block_t *block, const rb_callable_method_entry_t *callee_cme)
{
RUBY_ASSERT(callee_cme);
st_data_t blocks;
if (st_lookup(cme_validity_dependency, (st_data_t)callee_cme, &blocks)) {
st_table *block_set = (st_table *)blocks;
st_data_t block_as_st_data = (st_data_t)block;
(void)st_delete(block_set, &block_as_st_data, NULL);
}
}
static void
yjit_unlink_method_lookup_dependency(block_t *block)
{
cme_dependency_t *cme_dep;
rb_darray_foreach(block->cme_dependencies, cme_dependency_idx, cme_dep) {
remove_method_lookup_dependency(block, cme_dep->receiver_klass, (const rb_callable_method_entry_t *)cme_dep->callee_cme);
remove_cme_validity_dependency(block, (const rb_callable_method_entry_t *)cme_dep->callee_cme);
}
rb_darray_free(block->cme_dependencies);
}
static void
yjit_block_assumptions_free(block_t *block)
{
st_data_t as_st_data = (st_data_t)block;
if (blocks_assuming_stable_global_constant_state) {
st_delete(blocks_assuming_stable_global_constant_state, &as_st_data, NULL);
}
if (blocks_assuming_single_ractor_mode) {
st_delete(blocks_assuming_single_ractor_mode, &as_st_data, NULL);
}
if (blocks_assuming_bops) {
st_delete(blocks_assuming_bops, &as_st_data, NULL);
}
}
typedef VALUE (*yjit_func_t)(rb_execution_context_t *, rb_control_frame_t *);
bool
rb_yjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec)
{
#if (OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE) && JIT_ENABLED
bool success = true;
RB_VM_LOCK_ENTER();
// TODO: I think we need to stop all other ractors here
// Compile a block version starting at the first instruction
uint8_t *code_ptr = gen_entry_point(iseq, 0, ec);
if (code_ptr)
{
iseq->body->jit_func = (yjit_func_t)code_ptr;
}
else {
iseq->body->jit_func = 0;
success = false;
}
RB_VM_LOCK_LEAVE();
return success;
#else
return false;
#endif
}
struct yjit_block_itr {
const rb_iseq_t *iseq;
VALUE list;
};
/* Get a list of the YJIT blocks associated with `rb_iseq` */
static VALUE
yjit_blocks_for(VALUE mod, VALUE rb_iseq)
{
if (CLASS_OF(rb_iseq) != rb_cISeq) {
return rb_ary_new();
}
const rb_iseq_t *iseq = rb_iseqw_to_iseq(rb_iseq);
VALUE all_versions = rb_ary_new();
rb_darray_for(iseq->body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t versions = rb_darray_get(iseq->body->yjit_blocks, version_array_idx);
rb_darray_for(versions, block_idx) {
block_t *block = rb_darray_get(versions, block_idx);
// FIXME: The object craeted here can outlive the block itself
VALUE rb_block = TypedData_Wrap_Struct(cYjitBlock, &yjit_block_type, block);
rb_ary_push(all_versions, rb_block);
}
}
return all_versions;
}
/* Get the address of the the code associated with a YJIT::Block */
static VALUE
block_address(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
uint8_t *code_addr = cb_get_ptr(cb, block->start_pos);
return LONG2NUM((intptr_t)code_addr);
}
/* Get the machine code for YJIT::Block as a binary string */
static VALUE
block_code(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
return (VALUE)rb_str_new(
(const char*)cb->mem_block + block->start_pos,
block->end_pos - block->start_pos
);
}
/* Get the start index in the Instruction Sequence that corresponds to this
* YJIT::Block */
static VALUE
iseq_start_index(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
return INT2NUM(block->blockid.idx);
}
/* Get the end index in the Instruction Sequence that corresponds to this
* YJIT::Block */
static VALUE
iseq_end_index(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
return INT2NUM(block->end_idx);
}
/* Called when a basic operation is redefined */
void
rb_yjit_bop_redefined(VALUE klass, const rb_method_entry_t *me, enum ruby_basic_operators bop)
{
if (blocks_assuming_bops) {
#if YJIT_STATS
yjit_runtime_counters.invalidate_bop_redefined += blocks_assuming_bops->num_entries;
#endif
st_foreach(blocks_assuming_bops, block_set_invalidate_i, 0);
}
}
/* Called when the constant state changes */
void
rb_yjit_constant_state_changed(void)
{
if (blocks_assuming_stable_global_constant_state) {
#if YJIT_STATS
yjit_runtime_counters.constant_state_bumps++;
yjit_runtime_counters.invalidate_constant_state_bump += blocks_assuming_stable_global_constant_state->num_entries;
#endif
st_foreach(blocks_assuming_stable_global_constant_state, block_set_invalidate_i, 0);
}
}
// Callback from the opt_setinlinecache instruction in the interpreter.
// Invalidate the block for the matching opt_getinlinecache so it could regenerate code
// using the new value in the constant cache.
void
rb_yjit_constant_ic_update(const rb_iseq_t *iseq, IC ic)
{
if (!rb_yjit_enabled_p()) return;
// We can't generate code in these situations, so no need to invalidate.
// See gen_opt_getinlinecache.
if (ic->entry->ic_cref || rb_multi_ractor_p()) {
return;
}
RB_VM_LOCK_ENTER();
rb_vm_barrier(); // Stop other ractors since we are going to patch machine code.
{
const struct rb_iseq_constant_body *const body = iseq->body;
VALUE *code = body->iseq_encoded;
// This should come from a running iseq, so direct threading translation
// should have been done
RUBY_ASSERT(FL_TEST((VALUE)iseq, ISEQ_TRANSLATED));
RUBY_ASSERT(ic->get_insn_idx < body->iseq_size);
RUBY_ASSERT(rb_vm_insn_addr2insn((const void *)code[ic->get_insn_idx]) == BIN(opt_getinlinecache));
// Find the matching opt_getinlinecache and invalidate all the blocks there
RUBY_ASSERT(insn_op_type(BIN(opt_getinlinecache), 1) == TS_IC);
if (ic == (IC)code[ic->get_insn_idx + 1 + 1]) {
rb_yjit_block_array_t getinlinecache_blocks = yjit_get_version_array(iseq, ic->get_insn_idx);
rb_darray_for(getinlinecache_blocks, i) {
block_t *block = rb_darray_get(getinlinecache_blocks, i);
invalidate_block_version(block);
#if YJIT_STATS
yjit_runtime_counters.invalidate_constant_ic_fill++;
#endif
}
}
else {
RUBY_ASSERT(false && "ic->get_insn_diex not set properly");
}
}
RB_VM_LOCK_LEAVE();
}
void
rb_yjit_before_ractor_spawn(void)
{
if (blocks_assuming_single_ractor_mode) {
#if YJIT_STATS
yjit_runtime_counters.invalidate_ractor_spawn += blocks_assuming_single_ractor_mode->num_entries;
#endif
st_foreach(blocks_assuming_single_ractor_mode, block_set_invalidate_i, 0);
}
}
#ifdef HAVE_LIBCAPSTONE
static const rb_data_type_t yjit_disasm_type = {
"YJIT/Disasm",
{0, (void(*)(void *))cs_close, 0, },
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
yjit_disasm_init(VALUE klass)
{
csh * handle;
VALUE disasm = TypedData_Make_Struct(klass, csh, &yjit_disasm_type, handle);
if (cs_open(CS_ARCH_X86, CS_MODE_64, handle) != CS_ERR_OK) {
rb_raise(rb_eRuntimeError, "failed to make Capstone handle");
}
return disasm;
}
static VALUE
yjit_disasm(VALUE self, VALUE code, VALUE from)
{
size_t count;
csh * handle;
cs_insn *insns;
TypedData_Get_Struct(self, csh, &yjit_disasm_type, handle);
count = cs_disasm(*handle, (uint8_t*)StringValuePtr(code), RSTRING_LEN(code), NUM2ULL(from), 0, &insns);
VALUE insn_list = rb_ary_new_capa(count);
for (size_t i = 0; i < count; i++) {
VALUE vals = rb_ary_new_from_args(3, LONG2NUM(insns[i].address),
rb_str_new2(insns[i].mnemonic),
rb_str_new2(insns[i].op_str));
rb_ary_push(insn_list, rb_struct_alloc(cYjitDisasmInsn, vals));
}
cs_free(insns, count);
return insn_list;
}
#endif
static VALUE
at_exit_print_stats(RB_BLOCK_CALL_FUNC_ARGLIST(yieldarg, data))
{
// Defined in yjit.rb
rb_funcall(mYjit, rb_intern("_print_stats"), 0);
return Qnil;
}
// Primitive called in yjit.rb. Export all machine code comments as a Ruby array.
static VALUE
comments_for(rb_execution_context_t *ec, VALUE self, VALUE start_address, VALUE end_address)
{
VALUE comment_array = rb_ary_new();
#if RUBY_DEBUG
uint8_t *start = (void *)NUM2ULL(start_address);
uint8_t *end = (void *)NUM2ULL(end_address);
rb_darray_for(yjit_code_comments, i) {
struct yjit_comment comment = rb_darray_get(yjit_code_comments, i);
uint8_t *comment_pos = cb_get_ptr(cb, comment.offset);
if (comment_pos >= end) {
break;
}
if (comment_pos >= start) {
VALUE vals = rb_ary_new_from_args(
2,
LL2NUM((long long) comment_pos),
rb_str_new_cstr(comment.comment)
);
rb_ary_push(comment_array, rb_struct_alloc(cYjitCodeComment, vals));
}
}
#endif // if RUBY_DEBUG
return comment_array;
}
// Primitive called in yjit.rb. Export all YJIT statistics as a Ruby hash.
static VALUE
get_yjit_stats(rb_execution_context_t *ec, VALUE self)
{
// Return Qnil if YJIT isn't enabled
if (cb == NULL) {
return Qnil;
}
VALUE hash = rb_hash_new();
RB_VM_LOCK_ENTER();
{
VALUE key = ID2SYM(rb_intern("inline_code_size"));
VALUE value = LL2NUM((long long)cb->write_pos);
rb_hash_aset(hash, key, value);
key = ID2SYM(rb_intern("outlined_code_size"));
value = LL2NUM((long long)ocb->write_pos);
rb_hash_aset(hash, key, value);
}
#if YJIT_STATS
if (rb_yjit_opts.gen_stats) {
// Indicate that the complete set of stats is available
rb_hash_aset(hash, ID2SYM(rb_intern("all_stats")), Qtrue);
int64_t *counter_reader = (int64_t *)&yjit_runtime_counters;
int64_t *counter_reader_end = &yjit_runtime_counters.last_member;
// For each counter in yjit_counter_names, add that counter as
// a key/value pair.
// Iterate through comma separated counter name list
char *name_reader = yjit_counter_names;
char *counter_name_end = yjit_counter_names + sizeof(yjit_counter_names);
while (name_reader < counter_name_end && counter_reader < counter_reader_end) {
if (*name_reader == ',' || *name_reader == ' ') {
name_reader++;
continue;
}
// Compute length of counter name
int name_len;
char *name_end;
{
name_end = strchr(name_reader, ',');
if (name_end == NULL) break;
name_len = (int)(name_end - name_reader);
}
// Put counter into hash
VALUE key = ID2SYM(rb_intern2(name_reader, name_len));
VALUE value = LL2NUM((long long)*counter_reader);
rb_hash_aset(hash, key, value);
counter_reader++;
name_reader = name_end;
}
// For each entry in exit_op_count, add a stats entry with key "exit_INSTRUCTION_NAME"
// and the value is the count of side exits for that instruction.
char key_string[rb_vm_max_insn_name_size + 6]; // Leave room for "exit_" and a final NUL
for (int i = 0; i < VM_INSTRUCTION_SIZE; i++) {
const char *i_name = insn_name(i); // Look up Ruby's NUL-terminated insn name string
snprintf(key_string, rb_vm_max_insn_name_size + 6, "%s%s", "exit_", i_name);
VALUE key = ID2SYM(rb_intern(key_string));
VALUE value = LL2NUM((long long)exit_op_count[i]);
rb_hash_aset(hash, key, value);
}
}
#endif
RB_VM_LOCK_LEAVE();
return hash;
}
// Primitive called in yjit.rb. Zero out all the counters.
static VALUE
reset_stats_bang(rb_execution_context_t *ec, VALUE self)
{
#if YJIT_STATS
memset(&exit_op_count, 0, sizeof(exit_op_count));
memset(&yjit_runtime_counters, 0, sizeof(yjit_runtime_counters));
#endif // if YJIT_STATS
return Qnil;
}
#include "yjit.rbinc"
#if YJIT_STATS
void
rb_yjit_collect_vm_usage_insn(int insn)
{
yjit_runtime_counters.vm_insns_count++;
}
void
rb_yjit_collect_binding_alloc(void)
{
yjit_runtime_counters.binding_allocations++;
}
void
rb_yjit_collect_binding_set(void)
{
yjit_runtime_counters.binding_set++;
}
static const VALUE *
yjit_count_side_exit_op(const VALUE *exit_pc)
{
int insn = rb_vm_insn_addr2opcode((const void *)*exit_pc);
exit_op_count[insn]++;
return exit_pc; // This function must return exit_pc!
}
#endif
void
rb_yjit_iseq_mark(const struct rb_iseq_constant_body *body)
{
rb_darray_for(body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
rb_darray_for(version_array, block_idx) {
block_t *block = rb_darray_get(version_array, block_idx);
rb_gc_mark_movable((VALUE)block->blockid.iseq);
cme_dependency_t *cme_dep;
rb_darray_foreach(block->cme_dependencies, cme_dependency_idx, cme_dep) {
rb_gc_mark_movable(cme_dep->receiver_klass);
rb_gc_mark_movable(cme_dep->callee_cme);
}
// Mark outgoing branch entries
rb_darray_for(block->outgoing, branch_idx) {
branch_t *branch = rb_darray_get(block->outgoing, branch_idx);
for (int i = 0; i < 2; ++i) {
rb_gc_mark_movable((VALUE)branch->targets[i].iseq);
}
}
// Walk over references to objects in generated code.
uint32_t *offset_element;
rb_darray_foreach(block->gc_object_offsets, offset_idx, offset_element) {
uint32_t offset_to_value = *offset_element;
uint8_t *value_address = cb_get_ptr(cb, offset_to_value);
VALUE object;
memcpy(&object, value_address, SIZEOF_VALUE);
rb_gc_mark_movable(object);
}
// Mark the machine code page this block lives on
rb_gc_mark_movable(block->code_page);
}
}
}
void
rb_yjit_iseq_update_references(const struct rb_iseq_constant_body *body)
{
rb_darray_for(body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
rb_darray_for(version_array, block_idx) {
block_t *block = rb_darray_get(version_array, block_idx);
block->blockid.iseq = (const rb_iseq_t *)rb_gc_location((VALUE)block->blockid.iseq);
cme_dependency_t *cme_dep;
rb_darray_foreach(block->cme_dependencies, cme_dependency_idx, cme_dep) {
cme_dep->receiver_klass = rb_gc_location(cme_dep->receiver_klass);
cme_dep->callee_cme = rb_gc_location(cme_dep->callee_cme);
}
// Update outgoing branch entries
rb_darray_for(block->outgoing, branch_idx) {
branch_t *branch = rb_darray_get(block->outgoing, branch_idx);
for (int i = 0; i < 2; ++i) {
branch->targets[i].iseq = (const void *)rb_gc_location((VALUE)branch->targets[i].iseq);
}
}
// Walk over references to objects in generated code.
uint32_t *offset_element;
rb_darray_foreach(block->gc_object_offsets, offset_idx, offset_element) {
uint32_t offset_to_value = *offset_element;
uint8_t *value_address = cb_get_ptr(cb, offset_to_value);
VALUE object;
memcpy(&object, value_address, SIZEOF_VALUE);
VALUE possibly_moved = rb_gc_location(object);
// Only write when the VALUE moves, to be CoW friendly.
if (possibly_moved != object) {
memcpy(value_address, &possibly_moved, SIZEOF_VALUE);
}
}
// Update the machine code page this block lives on
block->code_page = rb_gc_location(block->code_page);
}
}
}
// Free the yjit resources associated with an iseq
void
rb_yjit_iseq_free(const struct rb_iseq_constant_body *body)
{
rb_darray_for(body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
rb_darray_for(version_array, block_idx) {
block_t *block = rb_darray_get(version_array, block_idx);
yjit_free_block(block);
}
rb_darray_free(version_array);
}
rb_darray_free(body->yjit_blocks);
}
static void
yjit_code_page_free(void *code_page)
{
free_code_page((code_page_t*)code_page);
}
// Custom type for interacting with the GC
static const rb_data_type_t yjit_code_page_type = {
"yjit_code_page",
{NULL, yjit_code_page_free, NULL, NULL},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
// Allocate a code page and wrap it into a Ruby object owned by the GC
VALUE rb_yjit_code_page_alloc(void)
{
code_page_t *code_page = alloc_code_page();
VALUE cp_obj = TypedData_Wrap_Struct(0, &yjit_code_page_type, code_page);
// Write a pointer to the wrapper object at the beginning of the code page
*((VALUE*)code_page->mem_block) = cp_obj;
return cp_obj;
}
// Unwrap the Ruby object representing a code page
code_page_t *rb_yjit_code_page_unwrap(VALUE cp_obj)
{
code_page_t * code_page;
TypedData_Get_Struct(cp_obj, code_page_t, &yjit_code_page_type, code_page);
return code_page;
}
// Get the code page wrapper object for a code pointer
VALUE rb_yjit_code_page_from_ptr(uint8_t *code_ptr)
{
VALUE *page_start = (VALUE*)((intptr_t)code_ptr & ~(CODE_PAGE_SIZE - 1));
VALUE wrapper = *page_start;
return wrapper;
}
// Get the inline code block corresponding to a code pointer
void rb_yjit_get_cb(codeblock_t *cb, uint8_t *code_ptr)
{
VALUE page_wrapper = rb_yjit_code_page_from_ptr(code_ptr);
code_page_t *code_page = rb_yjit_code_page_unwrap(page_wrapper);
// A pointer to the page wrapper object is written at the start of the code page
uint8_t *mem_block = code_page->mem_block + sizeof(VALUE);
uint32_t mem_size = (code_page->page_size/2) - sizeof(VALUE);
RUBY_ASSERT(mem_block);
// Map the code block to this memory region
cb_init(cb, mem_block, mem_size);
}
// Get the outlined code block corresponding to a code pointer
void rb_yjit_get_ocb(codeblock_t *cb, uint8_t *code_ptr)
{
VALUE page_wrapper = rb_yjit_code_page_from_ptr(code_ptr);
code_page_t *code_page = rb_yjit_code_page_unwrap(page_wrapper);
// A pointer to the page wrapper object is written at the start of the code page
uint8_t *mem_block = code_page->mem_block + (code_page->page_size/2);
uint32_t mem_size = code_page->page_size/2;
RUBY_ASSERT(mem_block);
// Map the code block to this memory region
cb_init(cb, mem_block, mem_size);
}
bool
rb_yjit_enabled_p(void)
{
return rb_yjit_opts.yjit_enabled;
}
unsigned
rb_yjit_call_threshold(void)
{
return rb_yjit_opts.call_threshold;
}
# define PTR2NUM(x) (LONG2NUM((long)(x)))
/**
* call-seq: block.id -> unique_id
*
* Returns a unique integer ID for the block. For example:
*
* blocks = blocks_for(iseq)
* blocks.group_by(&:id)
*/
static VALUE
block_id(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
return PTR2NUM(block);
}
/**
* call-seq: block.outgoing_ids -> list
*
* Returns a list of outgoing ids for the current block. This list can be used
* in conjunction with Block#id to construct a graph of block objects.
*/
static VALUE
outgoing_ids(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
VALUE ids = rb_ary_new();
rb_darray_for(block->outgoing, branch_idx) {
branch_t *out_branch = rb_darray_get(block->outgoing, branch_idx);
for (size_t succ_idx = 0; succ_idx < 2; succ_idx++) {
block_t *succ = out_branch->blocks[succ_idx];
if (succ == NULL)
continue;
rb_ary_push(ids, PTR2NUM(succ));
}
}
return ids;
}
// Can raise RuntimeError
void
rb_yjit_init(struct rb_yjit_options *options)
{
if (!PLATFORM_SUPPORTED_P || !JIT_ENABLED) {
return;
}
rb_yjit_opts = *options;
rb_yjit_opts.yjit_enabled = true;
rb_yjit_opts.gen_stats = rb_yjit_opts.gen_stats || getenv("RUBY_YJIT_STATS");
#if !YJIT_STATS
if(rb_yjit_opts.gen_stats) {
rb_warning("--yjit-stats requires that Ruby is compiled with CPPFLAGS='-DYJIT_STATS=1' or CPPFLAGS='-DRUBY_DEBUG=1'");
}
#endif
// Normalize command-line options to default values
if (rb_yjit_opts.exec_mem_size < 1) {
rb_yjit_opts.exec_mem_size = 256;
}
if (rb_yjit_opts.call_threshold < 1) {
rb_yjit_opts.call_threshold = YJIT_DEFAULT_CALL_THRESHOLD;
}
if (rb_yjit_opts.max_versions < 1) {
rb_yjit_opts.max_versions = 4;
}
blocks_assuming_stable_global_constant_state = st_init_numtable();
blocks_assuming_single_ractor_mode = st_init_numtable();
blocks_assuming_bops = st_init_numtable();
yjit_init_core();
yjit_init_codegen();
// YJIT Ruby module
mYjit = rb_define_module("YJIT");
rb_define_module_function(mYjit, "blocks_for", yjit_blocks_for, 1);
// YJIT::Block (block version, code block)
cYjitBlock = rb_define_class_under(mYjit, "Block", rb_cObject);
rb_define_method(cYjitBlock, "address", block_address, 0);
rb_define_method(cYjitBlock, "id", block_id, 0);
rb_define_method(cYjitBlock, "code", block_code, 0);
rb_define_method(cYjitBlock, "iseq_start_index", iseq_start_index, 0);
rb_define_method(cYjitBlock, "iseq_end_index", iseq_end_index, 0);
rb_define_method(cYjitBlock, "outgoing_ids", outgoing_ids, 0);
// YJIT disassembler interface
#ifdef HAVE_LIBCAPSTONE
cYjitDisasm = rb_define_class_under(mYjit, "Disasm", rb_cObject);
rb_define_alloc_func(cYjitDisasm, yjit_disasm_init);
rb_define_method(cYjitDisasm, "disasm", yjit_disasm, 2);
cYjitDisasmInsn = rb_struct_define_under(cYjitDisasm, "Insn", "address", "mnemonic", "op_str", NULL);
#if RUBY_DEBUG
cYjitCodeComment = rb_struct_define_under(cYjitDisasm, "Comment", "address", "comment", NULL);
#endif
#endif
if (YJIT_STATS && rb_yjit_opts.gen_stats) {
// Setup at_exit callback for printing out counters
rb_block_call(rb_mKernel, rb_intern("at_exit"), 0, NULL, at_exit_print_stats, Qfalse);
}
// Make dependency tables
method_lookup_dependency = st_init_numtable();
cme_validity_dependency = st_init_numtable();
// Initialize the GC hooks
struct yjit_root_struct *root;
VALUE yjit_root = TypedData_Make_Struct(0, struct yjit_root_struct, &yjit_root_type, root);
rb_gc_register_mark_object(yjit_root);
}