1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/lib/matrix.rb
shyouhei f2a91397fd Add uplevel keyword to Kernel#warn and use it
If uplevel keyword is given, the warning message is prepended
with caller file and line information and the string "warning: ".
The use of the uplevel keyword makes Kernel#warn format output
similar to how rb_warn formats output.

This patch modifies net/ftp and net/imap to use Kernel#warn
instead of $stderr.puts or $stderr.printf, since they are used
for printing warnings.

This makes lib/cgi/core and tempfile use $stderr.puts instead of
warn for debug logging, since they are used for debug printing
and not for warning.

This does not modify bundler, rubygems, or rdoc, as those are
maintained outside of ruby and probably wish to remain backwards
compatible with older ruby versions.

rb_warn_m code is originally from nobu, but I've changed it
so that it only includes the path and lineno from uplevel
(not the method), and also prepends the string "warning: ",
to make it more similar to rb_warn.

From: Jeremy Evans code@jeremyevans.net
Signed-off-by: Urabe Shyouhei shyouhei@ruby-lang.org


git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@61155 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2017-12-12 11:56:25 +00:00

2148 lines
53 KiB
Ruby

# encoding: utf-8
# frozen_string_literal: false
#
# = matrix.rb
#
# An implementation of Matrix and Vector classes.
#
# See classes Matrix and Vector for documentation.
#
# Current Maintainer:: Marc-André Lafortune
# Original Author:: Keiju ISHITSUKA
# Original Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly))
##
require "e2mmap.rb"
module ExceptionForMatrix # :nodoc:
extend Exception2MessageMapper
def_e2message(TypeError, "wrong argument type %s (expected %s)")
def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)")
def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch")
def_exception("ErrNotRegular", "Not Regular Matrix")
def_exception("ErrOperationNotDefined", "Operation(%s) can\\'t be defined: %s op %s")
def_exception("ErrOperationNotImplemented", "Sorry, Operation(%s) not implemented: %s op %s")
end
#
# The +Matrix+ class represents a mathematical matrix. It provides methods for creating
# matrices, operating on them arithmetically and algebraically,
# and determining their mathematical properties such as trace, rank, inverse, determinant,
# or eigensystem.
#
class Matrix
include Enumerable
include ExceptionForMatrix
autoload :EigenvalueDecomposition, "matrix/eigenvalue_decomposition"
autoload :LUPDecomposition, "matrix/lup_decomposition"
# instance creations
private_class_method :new
attr_reader :rows
protected :rows
#
# Creates a matrix where each argument is a row.
# Matrix[ [25, 93], [-1, 66] ]
# => 25 93
# -1 66
#
def Matrix.[](*rows)
rows(rows, false)
end
#
# Creates a matrix where +rows+ is an array of arrays, each of which is a row
# of the matrix. If the optional argument +copy+ is false, use the given
# arrays as the internal structure of the matrix without copying.
# Matrix.rows([[25, 93], [-1, 66]])
# => 25 93
# -1 66
#
def Matrix.rows(rows, copy = true)
rows = convert_to_array(rows, copy)
rows.map! do |row|
convert_to_array(row, copy)
end
size = (rows[0] || []).size
rows.each do |row|
raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
end
new rows, size
end
#
# Creates a matrix using +columns+ as an array of column vectors.
# Matrix.columns([[25, 93], [-1, 66]])
# => 25 -1
# 93 66
#
def Matrix.columns(columns)
rows(columns, false).transpose
end
#
# Creates a matrix of size +row_count+ x +column_count+.
# It fills the values by calling the given block,
# passing the current row and column.
# Returns an enumerator if no block is given.
#
# m = Matrix.build(2, 4) {|row, col| col - row }
# => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
# m = Matrix.build(3) { rand }
# => a 3x3 matrix with random elements
#
def Matrix.build(row_count, column_count = row_count)
row_count = CoercionHelper.coerce_to_int(row_count)
column_count = CoercionHelper.coerce_to_int(column_count)
raise ArgumentError if row_count < 0 || column_count < 0
return to_enum :build, row_count, column_count unless block_given?
rows = Array.new(row_count) do |i|
Array.new(column_count) do |j|
yield i, j
end
end
new rows, column_count
end
#
# Creates a matrix where the diagonal elements are composed of +values+.
# Matrix.diagonal(9, 5, -3)
# => 9 0 0
# 0 5 0
# 0 0 -3
#
def Matrix.diagonal(*values)
size = values.size
return Matrix.empty if size == 0
rows = Array.new(size) {|j|
row = Array.new(size, 0)
row[j] = values[j]
row
}
new rows
end
#
# Creates an +n+ by +n+ diagonal matrix where each diagonal element is
# +value+.
# Matrix.scalar(2, 5)
# => 5 0
# 0 5
#
def Matrix.scalar(n, value)
diagonal(*Array.new(n, value))
end
#
# Creates an +n+ by +n+ identity matrix.
# Matrix.identity(2)
# => 1 0
# 0 1
#
def Matrix.identity(n)
scalar(n, 1)
end
class << Matrix
alias unit identity
alias I identity
end
#
# Creates a zero matrix.
# Matrix.zero(2)
# => 0 0
# 0 0
#
def Matrix.zero(row_count, column_count = row_count)
rows = Array.new(row_count){Array.new(column_count, 0)}
new rows, column_count
end
#
# Creates a single-row matrix where the values of that row are as given in
# +row+.
# Matrix.row_vector([4,5,6])
# => 4 5 6
#
def Matrix.row_vector(row)
row = convert_to_array(row)
new [row]
end
#
# Creates a single-column matrix where the values of that column are as given
# in +column+.
# Matrix.column_vector([4,5,6])
# => 4
# 5
# 6
#
def Matrix.column_vector(column)
column = convert_to_array(column)
new [column].transpose, 1
end
#
# Creates a empty matrix of +row_count+ x +column_count+.
# At least one of +row_count+ or +column_count+ must be 0.
#
# m = Matrix.empty(2, 0)
# m == Matrix[ [], [] ]
# => true
# n = Matrix.empty(0, 3)
# n == Matrix.columns([ [], [], [] ])
# => true
# m * n
# => Matrix[[0, 0, 0], [0, 0, 0]]
#
def Matrix.empty(row_count = 0, column_count = 0)
raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0
new([[]]*row_count, column_count)
end
#
# Create a matrix by stacking matrices vertically
#
# x = Matrix[[1, 2], [3, 4]]
# y = Matrix[[5, 6], [7, 8]]
# Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
#
def Matrix.vstack(x, *matrices)
x = CoercionHelper.coerce_to_matrix(x)
result = x.send(:rows).map(&:dup)
matrices.each do |m|
m = CoercionHelper.coerce_to_matrix(m)
if m.column_count != x.column_count
raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}"
end
result.concat(m.send(:rows))
end
new result, x.column_count
end
#
# Create a matrix by stacking matrices horizontally
#
# x = Matrix[[1, 2], [3, 4]]
# y = Matrix[[5, 6], [7, 8]]
# Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
#
def Matrix.hstack(x, *matrices)
x = CoercionHelper.coerce_to_matrix(x)
result = x.send(:rows).map(&:dup)
total_column_count = x.column_count
matrices.each do |m|
m = CoercionHelper.coerce_to_matrix(m)
if m.row_count != x.row_count
raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}"
end
result.each_with_index do |row, i|
row.concat m.send(:rows)[i]
end
total_column_count += m.column_count
end
new result, total_column_count
end
#
# Create a matrix by combining matrices entrywise, using the given block
#
# x = Matrix[[6, 6], [4, 4]]
# y = Matrix[[1, 2], [3, 4]]
# Matrix.combine(x, y) {|a, b| a - b} # => Matrix[[5, 4], [1, 0]]
#
def Matrix.combine(*matrices)
return to_enum(__method__, *matrices) unless block_given?
return Matrix.empty if matrices.empty?
matrices.map!(&CoercionHelper.method(:coerce_to_matrix))
x = matrices.first
matrices.each do |m|
Matrix.Raise ErrDimensionMismatch unless x.row_count == m.row_count && x.column_count == m.column_count
end
rows = Array.new(x.row_count) do |i|
Array.new(x.column_count) do |j|
yield matrices.map{|m| m[i,j]}
end
end
new rows, x.column_count
end
def combine(*matrices, &block)
Matrix.combine(self, *matrices, &block)
end
#
# Matrix.new is private; use Matrix.rows, columns, [], etc... to create.
#
def initialize(rows, column_count = rows[0].size)
# No checking is done at this point. rows must be an Array of Arrays.
# column_count must be the size of the first row, if there is one,
# otherwise it *must* be specified and can be any integer >= 0
@rows = rows
@column_count = column_count
end
def new_matrix(rows, column_count = rows[0].size) # :nodoc:
self.class.send(:new, rows, column_count) # bypass privacy of Matrix.new
end
private :new_matrix
#
# Returns element (+i+,+j+) of the matrix. That is: row +i+, column +j+.
#
def [](i, j)
@rows.fetch(i){return nil}[j]
end
alias element []
alias component []
def []=(i, j, v)
@rows[i][j] = v
end
alias set_element []=
alias set_component []=
private :[]=, :set_element, :set_component
#
# Returns the number of rows.
#
def row_count
@rows.size
end
alias_method :row_size, :row_count
#
# Returns the number of columns.
#
attr_reader :column_count
alias_method :column_size, :column_count
#
# Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
# an array). When a block is given, the elements of that vector are iterated.
#
def row(i, &block) # :yield: e
if block_given?
@rows.fetch(i){return self}.each(&block)
self
else
Vector.elements(@rows.fetch(i){return nil})
end
end
#
# Returns column vector number +j+ of the matrix as a Vector (starting at 0
# like an array). When a block is given, the elements of that vector are
# iterated.
#
def column(j) # :yield: e
if block_given?
return self if j >= column_count || j < -column_count
row_count.times do |i|
yield @rows[i][j]
end
self
else
return nil if j >= column_count || j < -column_count
col = Array.new(row_count) {|i|
@rows[i][j]
}
Vector.elements(col, false)
end
end
#
# Returns a matrix that is the result of iteration of the given block over all
# elements of the matrix.
# Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
# => 1 4
# 9 16
#
def collect(&block) # :yield: e
return to_enum(:collect) unless block_given?
rows = @rows.collect{|row| row.collect(&block)}
new_matrix rows, column_count
end
alias map collect
#
# Yields all elements of the matrix, starting with those of the first row,
# or returns an Enumerator if no block given.
# Elements can be restricted by passing an argument:
# * :all (default): yields all elements
# * :diagonal: yields only elements on the diagonal
# * :off_diagonal: yields all elements except on the diagonal
# * :lower: yields only elements on or below the diagonal
# * :strict_lower: yields only elements below the diagonal
# * :strict_upper: yields only elements above the diagonal
# * :upper: yields only elements on or above the diagonal
#
# Matrix[ [1,2], [3,4] ].each { |e| puts e }
# # => prints the numbers 1 to 4
# Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
#
def each(which = :all) # :yield: e
return to_enum :each, which unless block_given?
last = column_count - 1
case which
when :all
block = Proc.new
@rows.each do |row|
row.each(&block)
end
when :diagonal
@rows.each_with_index do |row, row_index|
yield row.fetch(row_index){return self}
end
when :off_diagonal
@rows.each_with_index do |row, row_index|
column_count.times do |col_index|
yield row[col_index] unless row_index == col_index
end
end
when :lower
@rows.each_with_index do |row, row_index|
0.upto([row_index, last].min) do |col_index|
yield row[col_index]
end
end
when :strict_lower
@rows.each_with_index do |row, row_index|
[row_index, column_count].min.times do |col_index|
yield row[col_index]
end
end
when :strict_upper
@rows.each_with_index do |row, row_index|
(row_index+1).upto(last) do |col_index|
yield row[col_index]
end
end
when :upper
@rows.each_with_index do |row, row_index|
row_index.upto(last) do |col_index|
yield row[col_index]
end
end
else
raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
end
self
end
#
# Same as #each, but the row index and column index in addition to the element
#
# Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
# puts "#{e} at #{row}, #{col}"
# end
# # => Prints:
# # 1 at 0, 0
# # 2 at 0, 1
# # 3 at 1, 0
# # 4 at 1, 1
#
def each_with_index(which = :all) # :yield: e, row, column
return to_enum :each_with_index, which unless block_given?
last = column_count - 1
case which
when :all
@rows.each_with_index do |row, row_index|
row.each_with_index do |e, col_index|
yield e, row_index, col_index
end
end
when :diagonal
@rows.each_with_index do |row, row_index|
yield row.fetch(row_index){return self}, row_index, row_index
end
when :off_diagonal
@rows.each_with_index do |row, row_index|
column_count.times do |col_index|
yield row[col_index], row_index, col_index unless row_index == col_index
end
end
when :lower
@rows.each_with_index do |row, row_index|
0.upto([row_index, last].min) do |col_index|
yield row[col_index], row_index, col_index
end
end
when :strict_lower
@rows.each_with_index do |row, row_index|
[row_index, column_count].min.times do |col_index|
yield row[col_index], row_index, col_index
end
end
when :strict_upper
@rows.each_with_index do |row, row_index|
(row_index+1).upto(last) do |col_index|
yield row[col_index], row_index, col_index
end
end
when :upper
@rows.each_with_index do |row, row_index|
row_index.upto(last) do |col_index|
yield row[col_index], row_index, col_index
end
end
else
raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
end
self
end
SELECTORS = {all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
#
# :call-seq:
# index(value, selector = :all) -> [row, column]
# index(selector = :all){ block } -> [row, column]
# index(selector = :all) -> an_enumerator
#
# The index method is specialized to return the index as [row, column]
# It also accepts an optional +selector+ argument, see #each for details.
#
# Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
# Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
#
def index(*args)
raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
return to_enum :find_index, which, *args unless block_given? || args.size == 1
if args.size == 1
value = args.first
each_with_index(which) do |e, row_index, col_index|
return row_index, col_index if e == value
end
else
each_with_index(which) do |e, row_index, col_index|
return row_index, col_index if yield e
end
end
nil
end
alias_method :find_index, :index
#
# Returns a section of the matrix. The parameters are either:
# * start_row, nrows, start_col, ncols; OR
# * row_range, col_range
#
# Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
# => 9 0 0
# 0 5 0
#
# Like Array#[], negative indices count backward from the end of the
# row or column (-1 is the last element). Returns nil if the starting
# row or column is greater than row_count or column_count respectively.
#
def minor(*param)
case param.size
when 2
row_range, col_range = param
from_row = row_range.first
from_row += row_count if from_row < 0
to_row = row_range.end
to_row += row_count if to_row < 0
to_row += 1 unless row_range.exclude_end?
size_row = to_row - from_row
from_col = col_range.first
from_col += column_count if from_col < 0
to_col = col_range.end
to_col += column_count if to_col < 0
to_col += 1 unless col_range.exclude_end?
size_col = to_col - from_col
when 4
from_row, size_row, from_col, size_col = param
return nil if size_row < 0 || size_col < 0
from_row += row_count if from_row < 0
from_col += column_count if from_col < 0
else
raise ArgumentError, param.inspect
end
return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
rows = @rows[from_row, size_row].collect{|row|
row[from_col, size_col]
}
new_matrix rows, [column_count - from_col, size_col].min
end
#
# Returns the submatrix obtained by deleting the specified row and column.
#
# Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
# => 9 0 0
# 0 0 0
# 0 0 4
#
def first_minor(row, column)
raise RuntimeError, "first_minor of empty matrix is not defined" if empty?
unless 0 <= row && row < row_count
raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})"
end
unless 0 <= column && column < column_count
raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})"
end
arrays = to_a
arrays.delete_at(row)
arrays.each do |array|
array.delete_at(column)
end
new_matrix arrays, column_count - 1
end
#
# Returns the (row, column) cofactor which is obtained by multiplying
# the first minor by (-1)**(row + column).
#
# Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1)
# => -108
#
def cofactor(row, column)
raise RuntimeError, "cofactor of empty matrix is not defined" if empty?
Matrix.Raise ErrDimensionMismatch unless square?
det_of_minor = first_minor(row, column).determinant
det_of_minor * (-1) ** (row + column)
end
#
# Returns the adjugate of the matrix.
#
# Matrix[ [7,6],[3,9] ].adjugate
# => 9 -6
# -3 7
#
def adjugate
Matrix.Raise ErrDimensionMismatch unless square?
Matrix.build(row_count, column_count) do |row, column|
cofactor(column, row)
end
end
#
# Returns the Laplace expansion along given row or column.
#
# Matrix[[7,6], [3,9]].laplace_expansion(column: 1)
# => 45
#
# Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0)
# => Vector[3, -2]
#
#
def laplace_expansion(row: nil, column: nil)
num = row || column
if !num || (row && column)
raise ArgumentError, "exactly one the row or column arguments must be specified"
end
Matrix.Raise ErrDimensionMismatch unless square?
raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty?
unless 0 <= num && num < row_count
raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})"
end
send(row ? :row : :column, num).map.with_index { |e, k|
e * cofactor(*(row ? [num, k] : [k,num]))
}.inject(:+)
end
alias_method :cofactor_expansion, :laplace_expansion
#--
# TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Returns +true+ if this is a diagonal matrix.
# Raises an error if matrix is not square.
#
def diagonal?
Matrix.Raise ErrDimensionMismatch unless square?
each(:off_diagonal).all?(&:zero?)
end
#
# Returns +true+ if this is an empty matrix, i.e. if the number of rows
# or the number of columns is 0.
#
def empty?
column_count == 0 || row_count == 0
end
#
# Returns +true+ if this is an hermitian matrix.
# Raises an error if matrix is not square.
#
def hermitian?
Matrix.Raise ErrDimensionMismatch unless square?
each_with_index(:upper).all? do |e, row, col|
e == rows[col][row].conj
end
end
#
# Returns +true+ if this is a lower triangular matrix.
#
def lower_triangular?
each(:strict_upper).all?(&:zero?)
end
#
# Returns +true+ if this is a normal matrix.
# Raises an error if matrix is not square.
#
def normal?
Matrix.Raise ErrDimensionMismatch unless square?
rows.each_with_index do |row_i, i|
rows.each_with_index do |row_j, j|
s = 0
rows.each_with_index do |row_k, k|
s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
end
return false unless s == 0
end
end
true
end
#
# Returns +true+ if this is an orthogonal matrix
# Raises an error if matrix is not square.
#
def orthogonal?
Matrix.Raise ErrDimensionMismatch unless square?
rows.each_with_index do |row, i|
column_count.times do |j|
s = 0
row_count.times do |k|
s += row[k] * rows[k][j]
end
return false unless s == (i == j ? 1 : 0)
end
end
true
end
#
# Returns +true+ if this is a permutation matrix
# Raises an error if matrix is not square.
#
def permutation?
Matrix.Raise ErrDimensionMismatch unless square?
cols = Array.new(column_count)
rows.each_with_index do |row, i|
found = false
row.each_with_index do |e, j|
if e == 1
return false if found || cols[j]
found = cols[j] = true
elsif e != 0
return false
end
end
return false unless found
end
true
end
#
# Returns +true+ if all entries of the matrix are real.
#
def real?
all?(&:real?)
end
#
# Returns +true+ if this is a regular (i.e. non-singular) matrix.
#
def regular?
not singular?
end
#
# Returns +true+ if this is a singular matrix.
#
def singular?
determinant == 0
end
#
# Returns +true+ if this is a square matrix.
#
def square?
column_count == row_count
end
#
# Returns +true+ if this is a symmetric matrix.
# Raises an error if matrix is not square.
#
def symmetric?
Matrix.Raise ErrDimensionMismatch unless square?
each_with_index(:strict_upper) do |e, row, col|
return false if e != rows[col][row]
end
true
end
#
# Returns +true+ if this is a unitary matrix
# Raises an error if matrix is not square.
#
def unitary?
Matrix.Raise ErrDimensionMismatch unless square?
rows.each_with_index do |row, i|
column_count.times do |j|
s = 0
row_count.times do |k|
s += row[k].conj * rows[k][j]
end
return false unless s == (i == j ? 1 : 0)
end
end
true
end
#
# Returns +true+ if this is an upper triangular matrix.
#
def upper_triangular?
each(:strict_lower).all?(&:zero?)
end
#
# Returns +true+ if this is a matrix with only zero elements
#
def zero?
all?(&:zero?)
end
#--
# OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Returns +true+ if and only if the two matrices contain equal elements.
#
def ==(other)
return false unless Matrix === other &&
column_count == other.column_count # necessary for empty matrices
rows == other.rows
end
def eql?(other)
return false unless Matrix === other &&
column_count == other.column_count # necessary for empty matrices
rows.eql? other.rows
end
#
# Returns a clone of the matrix, so that the contents of each do not reference
# identical objects.
# There should be no good reason to do this since Matrices are immutable.
#
def clone
new_matrix @rows.map(&:dup), column_count
end
#
# Returns a hash-code for the matrix.
#
def hash
@rows.hash
end
#--
# ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Matrix multiplication.
# Matrix[[2,4], [6,8]] * Matrix.identity(2)
# => 2 4
# 6 8
#
def *(m) # m is matrix or vector or number
case(m)
when Numeric
rows = @rows.collect {|row|
row.collect {|e| e * m }
}
return new_matrix rows, column_count
when Vector
m = self.class.column_vector(m)
r = self * m
return r.column(0)
when Matrix
Matrix.Raise ErrDimensionMismatch if column_count != m.row_count
rows = Array.new(row_count) {|i|
Array.new(m.column_count) {|j|
(0 ... column_count).inject(0) do |vij, k|
vij + self[i, k] * m[k, j]
end
}
}
return new_matrix rows, m.column_count
else
return apply_through_coercion(m, __method__)
end
end
#
# Matrix addition.
# Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
# => 6 0
# -4 12
#
def +(m)
case m
when Numeric
Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class
when Vector
m = self.class.column_vector(m)
when Matrix
else
return apply_through_coercion(m, __method__)
end
Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
rows = Array.new(row_count) {|i|
Array.new(column_count) {|j|
self[i, j] + m[i, j]
}
}
new_matrix rows, column_count
end
#
# Matrix subtraction.
# Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
# => -8 2
# 8 1
#
def -(m)
case m
when Numeric
Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class
when Vector
m = self.class.column_vector(m)
when Matrix
else
return apply_through_coercion(m, __method__)
end
Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
rows = Array.new(row_count) {|i|
Array.new(column_count) {|j|
self[i, j] - m[i, j]
}
}
new_matrix rows, column_count
end
#
# Matrix division (multiplication by the inverse).
# Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
# => -7 1
# -3 -6
#
def /(other)
case other
when Numeric
rows = @rows.collect {|row|
row.collect {|e| e / other }
}
return new_matrix rows, column_count
when Matrix
return self * other.inverse
else
return apply_through_coercion(other, __method__)
end
end
#
# Hadamard product
# Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]])
# => 1 4
# 9 8
#
def hadamard_product(m)
combine(m){|a, b| a * b}
end
alias_method :entrywise_product, :hadamard_product
#
# Returns the inverse of the matrix.
# Matrix[[-1, -1], [0, -1]].inverse
# => -1 1
# 0 -1
#
def inverse
Matrix.Raise ErrDimensionMismatch unless square?
self.class.I(row_count).send(:inverse_from, self)
end
alias inv inverse
def inverse_from(src) # :nodoc:
last = row_count - 1
a = src.to_a
0.upto(last) do |k|
i = k
akk = a[k][k].abs
(k+1).upto(last) do |j|
v = a[j][k].abs
if v > akk
i = j
akk = v
end
end
Matrix.Raise ErrNotRegular if akk == 0
if i != k
a[i], a[k] = a[k], a[i]
@rows[i], @rows[k] = @rows[k], @rows[i]
end
akk = a[k][k]
0.upto(last) do |ii|
next if ii == k
q = a[ii][k].quo(akk)
a[ii][k] = 0
(k + 1).upto(last) do |j|
a[ii][j] -= a[k][j] * q
end
0.upto(last) do |j|
@rows[ii][j] -= @rows[k][j] * q
end
end
(k+1).upto(last) do |j|
a[k][j] = a[k][j].quo(akk)
end
0.upto(last) do |j|
@rows[k][j] = @rows[k][j].quo(akk)
end
end
self
end
private :inverse_from
#
# Matrix exponentiation.
# Equivalent to multiplying the matrix by itself N times.
# Non integer exponents will be handled by diagonalizing the matrix.
#
# Matrix[[7,6], [3,9]] ** 2
# => 67 96
# 48 99
#
def **(other)
case other
when Integer
x = self
if other <= 0
x = self.inverse
return self.class.identity(self.column_count) if other == 0
other = -other
end
z = nil
loop do
z = z ? z * x : x if other[0] == 1
return z if (other >>= 1).zero?
x *= x
end
when Numeric
v, d, v_inv = eigensystem
v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv
else
Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class
end
end
def +@
self
end
def -@
collect {|e| -e }
end
#--
# MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Returns the determinant of the matrix.
#
# Beware that using Float values can yield erroneous results
# because of their lack of precision.
# Consider using exact types like Rational or BigDecimal instead.
#
# Matrix[[7,6], [3,9]].determinant
# => 45
#
def determinant
Matrix.Raise ErrDimensionMismatch unless square?
m = @rows
case row_count
# Up to 4x4, give result using Laplacian expansion by minors.
# This will typically be faster, as well as giving good results
# in case of Floats
when 0
+1
when 1
+ m[0][0]
when 2
+ m[0][0] * m[1][1] - m[0][1] * m[1][0]
when 3
m0, m1, m2 = m
+ m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
- m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
+ m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
when 4
m0, m1, m2, m3 = m
+ m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
- m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
+ m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
- m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
+ m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
- m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
+ m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
- m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
+ m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
- m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
+ m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
- m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
else
# For bigger matrices, use an efficient and general algorithm.
# Currently, we use the Gauss-Bareiss algorithm
determinant_bareiss
end
end
alias_method :det, :determinant
#
# Private. Use Matrix#determinant
#
# Returns the determinant of the matrix, using
# Bareiss' multistep integer-preserving gaussian elimination.
# It has the same computational cost order O(n^3) as standard Gaussian elimination.
# Intermediate results are fraction free and of lower complexity.
# A matrix of Integers will have thus intermediate results that are also Integers,
# with smaller bignums (if any), while a matrix of Float will usually have
# intermediate results with better precision.
#
def determinant_bareiss
size = row_count
last = size - 1
a = to_a
no_pivot = Proc.new{ return 0 }
sign = +1
pivot = 1
size.times do |k|
previous_pivot = pivot
if (pivot = a[k][k]) == 0
switch = (k+1 ... size).find(no_pivot) {|row|
a[row][k] != 0
}
a[switch], a[k] = a[k], a[switch]
pivot = a[k][k]
sign = -sign
end
(k+1).upto(last) do |i|
ai = a[i]
(k+1).upto(last) do |j|
ai[j] = (pivot * ai[j] - ai[k] * a[k][j]) / previous_pivot
end
end
end
sign * pivot
end
private :determinant_bareiss
#
# deprecated; use Matrix#determinant
#
def determinant_e
warn "Matrix#determinant_e is deprecated; use #determinant", uplevel: 1
determinant
end
alias det_e determinant_e
#
# Returns a new matrix resulting by stacking horizontally
# the receiver with the given matrices
#
# x = Matrix[[1, 2], [3, 4]]
# y = Matrix[[5, 6], [7, 8]]
# x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
#
def hstack(*matrices)
self.class.hstack(self, *matrices)
end
#
# Returns the rank of the matrix.
# Beware that using Float values can yield erroneous results
# because of their lack of precision.
# Consider using exact types like Rational or BigDecimal instead.
#
# Matrix[[7,6], [3,9]].rank
# => 2
#
def rank
# We currently use Bareiss' multistep integer-preserving gaussian elimination
# (see comments on determinant)
a = to_a
last_column = column_count - 1
last_row = row_count - 1
pivot_row = 0
previous_pivot = 1
0.upto(last_column) do |k|
switch_row = (pivot_row .. last_row).find {|row|
a[row][k] != 0
}
if switch_row
a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
pivot = a[pivot_row][k]
(pivot_row+1).upto(last_row) do |i|
ai = a[i]
(k+1).upto(last_column) do |j|
ai[j] = (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
end
end
pivot_row += 1
previous_pivot = pivot
end
end
pivot_row
end
#
# deprecated; use Matrix#rank
#
def rank_e
warn "Matrix#rank_e is deprecated; use #rank", uplevel: 1
rank
end
# Returns a matrix with entries rounded to the given precision
# (see Float#round)
#
def round(ndigits=0)
map{|e| e.round(ndigits)}
end
#
# Returns the trace (sum of diagonal elements) of the matrix.
# Matrix[[7,6], [3,9]].trace
# => 16
#
def trace
Matrix.Raise ErrDimensionMismatch unless square?
(0...column_count).inject(0) do |tr, i|
tr + @rows[i][i]
end
end
alias tr trace
#
# Returns the transpose of the matrix.
# Matrix[[1,2], [3,4], [5,6]]
# => 1 2
# 3 4
# 5 6
# Matrix[[1,2], [3,4], [5,6]].transpose
# => 1 3 5
# 2 4 6
#
def transpose
return self.class.empty(column_count, 0) if row_count.zero?
new_matrix @rows.transpose, row_count
end
alias t transpose
#
# Returns a new matrix resulting by stacking vertically
# the receiver with the given matrices
#
# x = Matrix[[1, 2], [3, 4]]
# y = Matrix[[5, 6], [7, 8]]
# x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
#
def vstack(*matrices)
self.class.vstack(self, *matrices)
end
#--
# DECOMPOSITIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
#++
#
# Returns the Eigensystem of the matrix; see +EigenvalueDecomposition+.
# m = Matrix[[1, 2], [3, 4]]
# v, d, v_inv = m.eigensystem
# d.diagonal? # => true
# v.inv == v_inv # => true
# (v * d * v_inv).round(5) == m # => true
#
def eigensystem
EigenvalueDecomposition.new(self)
end
alias eigen eigensystem
#
# Returns the LUP decomposition of the matrix; see +LUPDecomposition+.
# a = Matrix[[1, 2], [3, 4]]
# l, u, p = a.lup
# l.lower_triangular? # => true
# u.upper_triangular? # => true
# p.permutation? # => true
# l * u == p * a # => true
# a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
#
def lup
LUPDecomposition.new(self)
end
alias lup_decomposition lup
#--
# COMPLEX ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
#++
#
# Returns the conjugate of the matrix.
# Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
# => 1+2i i 0
# 1 2 3
# Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
# => 1-2i -i 0
# 1 2 3
#
def conjugate
collect(&:conjugate)
end
alias conj conjugate
#
# Returns the imaginary part of the matrix.
# Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
# => 1+2i i 0
# 1 2 3
# Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
# => 2i i 0
# 0 0 0
#
def imaginary
collect(&:imaginary)
end
alias imag imaginary
#
# Returns the real part of the matrix.
# Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
# => 1+2i i 0
# 1 2 3
# Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
# => 1 0 0
# 1 2 3
#
def real
collect(&:real)
end
#
# Returns an array containing matrices corresponding to the real and imaginary
# parts of the matrix
#
# m.rect == [m.real, m.imag] # ==> true for all matrices m
#
def rect
[real, imag]
end
alias rectangular rect
#--
# CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# The coerce method provides support for Ruby type coercion.
# This coercion mechanism is used by Ruby to handle mixed-type
# numeric operations: it is intended to find a compatible common
# type between the two operands of the operator.
# See also Numeric#coerce.
#
def coerce(other)
case other
when Numeric
return Scalar.new(other), self
else
raise TypeError, "#{self.class} can't be coerced into #{other.class}"
end
end
#
# Returns an array of the row vectors of the matrix. See Vector.
#
def row_vectors
Array.new(row_count) {|i|
row(i)
}
end
#
# Returns an array of the column vectors of the matrix. See Vector.
#
def column_vectors
Array.new(column_count) {|i|
column(i)
}
end
#
# Explicit conversion to a Matrix. Returns self
#
def to_matrix
self
end
#
# Returns an array of arrays that describe the rows of the matrix.
#
def to_a
@rows.collect(&:dup)
end
def elements_to_f
warn "Matrix#elements_to_f is deprecated, use map(&:to_f)", uplevel: 1
map(&:to_f)
end
def elements_to_i
warn "Matrix#elements_to_i is deprecated, use map(&:to_i)", uplevel: 1
map(&:to_i)
end
def elements_to_r
warn "Matrix#elements_to_r is deprecated, use map(&:to_r)", uplevel: 1
map(&:to_r)
end
#--
# PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Overrides Object#to_s
#
def to_s
if empty?
"#{self.class}.empty(#{row_count}, #{column_count})"
else
"#{self.class}[" + @rows.collect{|row|
"[" + row.collect{|e| e.to_s}.join(", ") + "]"
}.join(", ")+"]"
end
end
#
# Overrides Object#inspect
#
def inspect
if empty?
"#{self.class}.empty(#{row_count}, #{column_count})"
else
"#{self.class}#{@rows.inspect}"
end
end
# Private helper modules
module ConversionHelper # :nodoc:
#
# Converts the obj to an Array. If copy is set to true
# a copy of obj will be made if necessary.
#
def convert_to_array(obj, copy = false) # :nodoc:
case obj
when Array
copy ? obj.dup : obj
when Vector
obj.to_a
else
begin
converted = obj.to_ary
rescue Exception => e
raise TypeError, "can't convert #{obj.class} into an Array (#{e.message})"
end
raise TypeError, "#{obj.class}#to_ary should return an Array" unless converted.is_a? Array
converted
end
end
private :convert_to_array
end
extend ConversionHelper
module CoercionHelper # :nodoc:
#
# Applies the operator +oper+ with argument +obj+
# through coercion of +obj+
#
def apply_through_coercion(obj, oper)
coercion = obj.coerce(self)
raise TypeError unless coercion.is_a?(Array) && coercion.length == 2
coercion[0].public_send(oper, coercion[1])
rescue
raise TypeError, "#{obj.inspect} can't be coerced into #{self.class}"
end
private :apply_through_coercion
#
# Helper method to coerce a value into a specific class.
# Raises a TypeError if the coercion fails or the returned value
# is not of the right class.
# (from Rubinius)
#
def self.coerce_to(obj, cls, meth) # :nodoc:
return obj if obj.kind_of?(cls)
raise TypeError, "Expected a #{cls} but got a #{obj.class}" unless obj.respond_to? meth
begin
ret = obj.__send__(meth)
rescue Exception => e
raise TypeError, "Coercion error: #{obj.inspect}.#{meth} => #{cls} failed:\n" \
"(#{e.message})"
end
raise TypeError, "Coercion error: obj.#{meth} did NOT return a #{cls} (was #{ret.class})" unless ret.kind_of? cls
ret
end
def self.coerce_to_int(obj)
coerce_to(obj, Integer, :to_int)
end
def self.coerce_to_matrix(obj)
coerce_to(obj, Matrix, :to_matrix)
end
end
include CoercionHelper
# Private CLASS
class Scalar < Numeric # :nodoc:
include ExceptionForMatrix
include CoercionHelper
def initialize(value)
@value = value
end
# ARITHMETIC
def +(other)
case other
when Numeric
Scalar.new(@value + other)
when Vector, Matrix
Scalar.Raise ErrOperationNotDefined, "+", @value.class, other.class
else
apply_through_coercion(other, __method__)
end
end
def -(other)
case other
when Numeric
Scalar.new(@value - other)
when Vector, Matrix
Scalar.Raise ErrOperationNotDefined, "-", @value.class, other.class
else
apply_through_coercion(other, __method__)
end
end
def *(other)
case other
when Numeric
Scalar.new(@value * other)
when Vector, Matrix
other.collect{|e| @value * e}
else
apply_through_coercion(other, __method__)
end
end
def /(other)
case other
when Numeric
Scalar.new(@value / other)
when Vector
Scalar.Raise ErrOperationNotDefined, "/", @value.class, other.class
when Matrix
self * other.inverse
else
apply_through_coercion(other, __method__)
end
end
def **(other)
case other
when Numeric
Scalar.new(@value ** other)
when Vector
Scalar.Raise ErrOperationNotDefined, "**", @value.class, other.class
when Matrix
#other.powered_by(self)
Scalar.Raise ErrOperationNotImplemented, "**", @value.class, other.class
else
apply_through_coercion(other, __method__)
end
end
end
end
#
# The +Vector+ class represents a mathematical vector, which is useful in its own right, and
# also constitutes a row or column of a Matrix.
#
# == Method Catalogue
#
# To create a Vector:
# * Vector.[](*array)
# * Vector.elements(array, copy = true)
# * Vector.basis(size: n, index: k)
# * Vector.zero(n)
#
# To access elements:
# * #[](i)
#
# To enumerate the elements:
# * #each2(v)
# * #collect2(v)
#
# Properties of vectors:
# * #angle_with(v)
# * Vector.independent?(*vs)
# * #independent?(*vs)
# * #zero?
#
# Vector arithmetic:
# * #*(x) "is matrix or number"
# * #+(v)
# * #-(v)
# * #/(v)
# * #+@
# * #-@
#
# Vector functions:
# * #inner_product(v), dot(v)
# * #cross_product(v), cross(v)
# * #collect
# * #magnitude
# * #map
# * #map2(v)
# * #norm
# * #normalize
# * #r
# * #round
# * #size
#
# Conversion to other data types:
# * #covector
# * #to_a
# * #coerce(other)
#
# String representations:
# * #to_s
# * #inspect
#
class Vector
include ExceptionForMatrix
include Enumerable
include Matrix::CoercionHelper
extend Matrix::ConversionHelper
#INSTANCE CREATION
private_class_method :new
attr_reader :elements
protected :elements
#
# Creates a Vector from a list of elements.
# Vector[7, 4, ...]
#
def Vector.[](*array)
new convert_to_array(array, false)
end
#
# Creates a vector from an Array. The optional second argument specifies
# whether the array itself or a copy is used internally.
#
def Vector.elements(array, copy = true)
new convert_to_array(array, copy)
end
#
# Returns a standard basis +n+-vector, where k is the index.
#
# Vector.basis(size:, index:) # => Vector[0, 1, 0]
#
def Vector.basis(size:, index:)
raise ArgumentError, "invalid size (#{size} for 1..)" if size < 1
raise ArgumentError, "invalid index (#{index} for 0...#{size})" unless 0 <= index && index < size
array = Array.new(size, 0)
array[index] = 1
new convert_to_array(array, false)
end
#
# Return a zero vector.
#
# Vector.zero(3) => Vector[0, 0, 0]
#
def Vector.zero(size)
raise ArgumentError, "invalid size (#{size} for 0..)" if size < 0
array = Array.new(size, 0)
new convert_to_array(array, false)
end
#
# Vector.new is private; use Vector[] or Vector.elements to create.
#
def initialize(array)
# No checking is done at this point.
@elements = array
end
# ACCESSING
#
# Returns element number +i+ (starting at zero) of the vector.
#
def [](i)
@elements[i]
end
alias element []
alias component []
def []=(i, v)
@elements[i]= v
end
alias set_element []=
alias set_component []=
private :[]=, :set_element, :set_component
# Returns a vector with entries rounded to the given precision
# (see Float#round)
#
def round(ndigits=0)
map{|e| e.round(ndigits)}
end
#
# Returns the number of elements in the vector.
#
def size
@elements.size
end
#--
# ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Iterate over the elements of this vector
#
def each(&block)
return to_enum(:each) unless block_given?
@elements.each(&block)
self
end
#
# Iterate over the elements of this vector and +v+ in conjunction.
#
def each2(v) # :yield: e1, e2
raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
Vector.Raise ErrDimensionMismatch if size != v.size
return to_enum(:each2, v) unless block_given?
size.times do |i|
yield @elements[i], v[i]
end
self
end
#
# Collects (as in Enumerable#collect) over the elements of this vector and +v+
# in conjunction.
#
def collect2(v) # :yield: e1, e2
raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
Vector.Raise ErrDimensionMismatch if size != v.size
return to_enum(:collect2, v) unless block_given?
Array.new(size) do |i|
yield @elements[i], v[i]
end
end
#--
# PROPERTIES -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Returns +true+ iff all of vectors are linearly independent.
#
# Vector.independent?(Vector[1,0], Vector[0,1])
# => true
#
# Vector.independent?(Vector[1,2], Vector[2,4])
# => false
#
def Vector.independent?(*vs)
vs.each do |v|
raise TypeError, "expected Vector, got #{v.class}" unless v.is_a?(Vector)
Vector.Raise ErrDimensionMismatch unless v.size == vs.first.size
end
return false if vs.count > vs.first.size
Matrix[*vs].rank.eql?(vs.count)
end
#
# Returns +true+ iff all of vectors are linearly independent.
#
# Vector[1,0].independent?(Vector[0,1])
# => true
#
# Vector[1,2].independent?(Vector[2,4])
# => false
#
def independent?(*vs)
self.class.independent?(self, *vs)
end
#
# Returns +true+ iff all elements are zero.
#
def zero?
all?(&:zero?)
end
#--
# COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Returns +true+ iff the two vectors have the same elements in the same order.
#
def ==(other)
return false unless Vector === other
@elements == other.elements
end
def eql?(other)
return false unless Vector === other
@elements.eql? other.elements
end
#
# Returns a copy of the vector.
#
def clone
self.class.elements(@elements)
end
#
# Returns a hash-code for the vector.
#
def hash
@elements.hash
end
#--
# ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Multiplies the vector by +x+, where +x+ is a number or a matrix.
#
def *(x)
case x
when Numeric
els = @elements.collect{|e| e * x}
self.class.elements(els, false)
when Matrix
Matrix.column_vector(self) * x
when Vector
Vector.Raise ErrOperationNotDefined, "*", self.class, x.class
else
apply_through_coercion(x, __method__)
end
end
#
# Vector addition.
#
def +(v)
case v
when Vector
Vector.Raise ErrDimensionMismatch if size != v.size
els = collect2(v) {|v1, v2|
v1 + v2
}
self.class.elements(els, false)
when Matrix
Matrix.column_vector(self) + v
else
apply_through_coercion(v, __method__)
end
end
#
# Vector subtraction.
#
def -(v)
case v
when Vector
Vector.Raise ErrDimensionMismatch if size != v.size
els = collect2(v) {|v1, v2|
v1 - v2
}
self.class.elements(els, false)
when Matrix
Matrix.column_vector(self) - v
else
apply_through_coercion(v, __method__)
end
end
#
# Vector division.
#
def /(x)
case x
when Numeric
els = @elements.collect{|e| e / x}
self.class.elements(els, false)
when Matrix, Vector
Vector.Raise ErrOperationNotDefined, "/", self.class, x.class
else
apply_through_coercion(x, __method__)
end
end
def +@
self
end
def -@
collect {|e| -e }
end
#--
# VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Returns the inner product of this vector with the other.
# Vector[4,7].inner_product Vector[10,1] => 47
#
def inner_product(v)
Vector.Raise ErrDimensionMismatch if size != v.size
p = 0
each2(v) {|v1, v2|
p += v1 * v2.conj
}
p
end
alias_method :dot, :inner_product
#
# Returns the cross product of this vector with the others.
# Vector[1, 0, 0].cross_product Vector[0, 1, 0] => Vector[0, 0, 1]
#
# It is generalized to other dimensions to return a vector perpendicular
# to the arguments.
# Vector[1, 2].cross_product # => Vector[-2, 1]
# Vector[1, 0, 0, 0].cross_product(
# Vector[0, 1, 0, 0],
# Vector[0, 0, 1, 0]
# ) #=> Vector[0, 0, 0, 1]
#
def cross_product(*vs)
raise ErrOperationNotDefined, "cross product is not defined on vectors of dimension #{size}" unless size >= 2
raise ArgumentError, "wrong number of arguments (#{vs.size} for #{size - 2})" unless vs.size == size - 2
vs.each do |v|
raise TypeError, "expected Vector, got #{v.class}" unless v.is_a? Vector
Vector.Raise ErrDimensionMismatch unless v.size == size
end
case size
when 2
Vector[-@elements[1], @elements[0]]
when 3
v = vs[0]
Vector[ v[2]*@elements[1] - v[1]*@elements[2],
v[0]*@elements[2] - v[2]*@elements[0],
v[1]*@elements[0] - v[0]*@elements[1] ]
else
rows = self, *vs, Array.new(size) {|i| Vector.basis(size: size, index: i) }
Matrix.rows(rows).laplace_expansion(row: size - 1)
end
end
alias_method :cross, :cross_product
#
# Like Array#collect.
#
def collect(&block) # :yield: e
return to_enum(:collect) unless block_given?
els = @elements.collect(&block)
self.class.elements(els, false)
end
alias map collect
#
# Returns the modulus (Pythagorean distance) of the vector.
# Vector[5,8,2].r => 9.643650761
#
def magnitude
Math.sqrt(@elements.inject(0) {|v, e| v + e.abs2})
end
alias r magnitude
alias norm magnitude
#
# Like Vector#collect2, but returns a Vector instead of an Array.
#
def map2(v, &block) # :yield: e1, e2
return to_enum(:map2, v) unless block_given?
els = collect2(v, &block)
self.class.elements(els, false)
end
class ZeroVectorError < StandardError
end
#
# Returns a new vector with the same direction but with norm 1.
# v = Vector[5,8,2].normalize
# # => Vector[0.5184758473652127, 0.8295613557843402, 0.20739033894608505]
# v.norm => 1.0
#
def normalize
n = magnitude
raise ZeroVectorError, "Zero vectors can not be normalized" if n == 0
self / n
end
#
# Returns an angle with another vector. Result is within the [0...Math::PI].
# Vector[1,0].angle_with(Vector[0,1])
# # => Math::PI / 2
#
def angle_with(v)
raise TypeError, "Expected a Vector, got a #{v.class}" unless v.is_a?(Vector)
Vector.Raise ErrDimensionMismatch if size != v.size
prod = magnitude * v.magnitude
raise ZeroVectorError, "Can't get angle of zero vector" if prod == 0
Math.acos( inner_product(v) / prod )
end
#--
# CONVERTING
#++
#
# Creates a single-row matrix from this vector.
#
def covector
Matrix.row_vector(self)
end
#
# Returns the elements of the vector in an array.
#
def to_a
@elements.dup
end
#
# Return a single-column matrix from this vector
#
def to_matrix
Matrix.column_vector(self)
end
def elements_to_f
warn "Vector#elements_to_f is deprecated", uplevel: 1
map(&:to_f)
end
def elements_to_i
warn "Vector#elements_to_i is deprecated", uplevel: 1
map(&:to_i)
end
def elements_to_r
warn "Vector#elements_to_r is deprecated", uplevel: 1
map(&:to_r)
end
#
# The coerce method provides support for Ruby type coercion.
# This coercion mechanism is used by Ruby to handle mixed-type
# numeric operations: it is intended to find a compatible common
# type between the two operands of the operator.
# See also Numeric#coerce.
#
def coerce(other)
case other
when Numeric
return Matrix::Scalar.new(other), self
else
raise TypeError, "#{self.class} can't be coerced into #{other.class}"
end
end
#--
# PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
#++
#
# Overrides Object#to_s
#
def to_s
"Vector[" + @elements.join(", ") + "]"
end
#
# Overrides Object#inspect
#
def inspect
"Vector" + @elements.inspect
end
end