1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/hash.c
卜部昌平 0e8219f591 make functions static
These functions are used from within a compilation unit so we can
make them static, for better binary size.  This changeset reduces
the size of generated ruby binary from 26,590,128 bytes to
26,584,472 bytes on my macihne.
2019-11-19 12:36:19 +09:00

6280 lines
153 KiB
C

/**********************************************************************
hash.c -
$Author$
created at: Mon Nov 22 18:51:18 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/encoding.h"
#include "ruby/st.h"
#include "ruby/util.h"
#include "internal.h"
#include <errno.h>
#include "probes.h"
#include "id.h"
#include "symbol.h"
#include "debug_counter.h"
#include "transient_heap.h"
#include "ruby_assert.h"
#ifdef __APPLE__
# ifdef HAVE_CRT_EXTERNS_H
# include <crt_externs.h>
# else
# include "missing/crt_externs.h"
# endif
#endif
#ifndef HASH_DEBUG
#define HASH_DEBUG 0
#endif
#if HASH_DEBUG
#include "gc.h"
#endif
#define HAS_EXTRA_STATES(hash, klass) ( \
((klass = has_extra_methods(rb_obj_class(hash))) != 0) || \
FL_TEST((hash), FL_EXIVAR|RHASH_PROC_DEFAULT) || \
!NIL_P(RHASH_IFNONE(hash)))
#define SET_DEFAULT(hash, ifnone) ( \
FL_UNSET_RAW(hash, RHASH_PROC_DEFAULT), \
RHASH_SET_IFNONE(hash, ifnone))
#define SET_PROC_DEFAULT(hash, proc) set_proc_default(hash, proc)
#define COPY_DEFAULT(hash, hash2) copy_default(RHASH(hash), RHASH(hash2))
static inline void
copy_default(struct RHash *hash, const struct RHash *hash2)
{
hash->basic.flags &= ~RHASH_PROC_DEFAULT;
hash->basic.flags |= hash2->basic.flags & RHASH_PROC_DEFAULT;
RHASH_SET_IFNONE(hash, RHASH_IFNONE(hash2));
}
static VALUE
has_extra_methods(VALUE klass)
{
const VALUE base = rb_cHash;
VALUE c = klass;
while (c != base) {
if (rb_class_has_methods(c)) return klass;
c = RCLASS_SUPER(c);
}
return 0;
}
static VALUE rb_hash_s_try_convert(VALUE, VALUE);
/*
* Hash WB strategy:
* 1. Check mutate st_* functions
* * st_insert()
* * st_insert2()
* * st_update()
* * st_add_direct()
* 2. Insert WBs
*/
VALUE
rb_hash_freeze(VALUE hash)
{
return rb_obj_freeze(hash);
}
VALUE rb_cHash;
static VALUE envtbl;
static ID id_hash, id_yield, id_default, id_flatten_bang;
static ID id_hash_iter_lev;
VALUE
rb_hash_set_ifnone(VALUE hash, VALUE ifnone)
{
RB_OBJ_WRITE(hash, (&RHASH(hash)->ifnone), ifnone);
return hash;
}
static int
rb_any_cmp(VALUE a, VALUE b)
{
if (a == b) return 0;
if (RB_TYPE_P(a, T_STRING) && RBASIC(a)->klass == rb_cString &&
RB_TYPE_P(b, T_STRING) && RBASIC(b)->klass == rb_cString) {
return rb_str_hash_cmp(a, b);
}
if (a == Qundef || b == Qundef) return -1;
if (SYMBOL_P(a) && SYMBOL_P(b)) {
return a != b;
}
return !rb_eql(a, b);
}
static VALUE
hash_recursive(VALUE obj, VALUE arg, int recurse)
{
if (recurse) return INT2FIX(0);
return rb_funcallv(obj, id_hash, 0, 0);
}
VALUE
rb_hash(VALUE obj)
{
VALUE hval = rb_exec_recursive_outer(hash_recursive, obj, 0);
while (!FIXNUM_P(hval)) {
if (RB_TYPE_P(hval, T_BIGNUM)) {
int sign;
unsigned long ul;
sign = rb_integer_pack(hval, &ul, 1, sizeof(ul), 0,
INTEGER_PACK_NATIVE_BYTE_ORDER);
ul &= (1UL << (sizeof(long)*CHAR_BIT-1)) - 1;
if (sign < 0)
return LONG2FIX(-(long)ul);
return LONG2FIX((long)ul);
}
hval = rb_to_int(hval);
}
return hval;
}
static long rb_objid_hash(st_index_t index);
static st_index_t
dbl_to_index(double d)
{
union {double d; st_index_t i;} u;
u.d = d;
return u.i;
}
long
rb_dbl_long_hash(double d)
{
/* normalize -0.0 to 0.0 */
if (d == 0.0) d = 0.0;
#if SIZEOF_INT == SIZEOF_VOIDP
return rb_memhash(&d, sizeof(d));
#else
return rb_objid_hash(dbl_to_index(d));
#endif
}
static inline long
any_hash(VALUE a, st_index_t (*other_func)(VALUE))
{
VALUE hval;
st_index_t hnum;
if (SPECIAL_CONST_P(a)) {
if (STATIC_SYM_P(a)) {
hnum = a >> (RUBY_SPECIAL_SHIFT + ID_SCOPE_SHIFT);
hnum = rb_hash_start(hnum);
goto out;
}
else if (FLONUM_P(a)) {
/* prevent pathological behavior: [Bug #10761] */
goto flt;
}
hnum = rb_objid_hash((st_index_t)a);
}
else if (BUILTIN_TYPE(a) == T_STRING) {
hnum = rb_str_hash(a);
}
else if (BUILTIN_TYPE(a) == T_SYMBOL) {
hnum = RSYMBOL(a)->hashval;
}
else if (BUILTIN_TYPE(a) == T_BIGNUM) {
hval = rb_big_hash(a);
hnum = FIX2LONG(hval);
}
else if (BUILTIN_TYPE(a) == T_FLOAT) {
flt:
hnum = rb_dbl_long_hash(rb_float_value(a));
}
else {
hnum = other_func(a);
}
out:
#if SIZEOF_LONG < SIZEOF_ST_INDEX_T
if (hnum > 0)
hnum &= (unsigned long)-1 >> 2;
else
hnum |= ~((unsigned long)-1 >> 2);
#else
hnum <<= 1;
hnum = RSHIFT(hnum, 1);
#endif
return (long)hnum;
}
static st_index_t
obj_any_hash(VALUE obj)
{
obj = rb_hash(obj);
return FIX2LONG(obj);
}
static st_index_t
rb_any_hash(VALUE a)
{
return any_hash(a, obj_any_hash);
}
/* Here is a hash function for 64-bit key. It is about 5 times faster
(2 times faster when uint128 type is absent) on Haswell than
tailored Spooky or City hash function can be. */
/* Here we two primes with random bit generation. */
static const uint64_t prime1 = ((uint64_t)0x2e0bb864 << 32) | 0xe9ea7df5;
static const uint32_t prime2 = 0x830fcab9;
static inline uint64_t
mult_and_mix(uint64_t m1, uint64_t m2)
{
#if defined HAVE_UINT128_T
uint128_t r = (uint128_t) m1 * (uint128_t) m2;
return (uint64_t) (r >> 64) ^ (uint64_t) r;
#else
uint64_t hm1 = m1 >> 32, hm2 = m2 >> 32;
uint64_t lm1 = m1, lm2 = m2;
uint64_t v64_128 = hm1 * hm2;
uint64_t v32_96 = hm1 * lm2 + lm1 * hm2;
uint64_t v1_32 = lm1 * lm2;
return (v64_128 + (v32_96 >> 32)) ^ ((v32_96 << 32) + v1_32);
#endif
}
static inline uint64_t
key64_hash(uint64_t key, uint32_t seed)
{
return mult_and_mix(key + seed, prime1);
}
/* Should cast down the result for each purpose */
#define st_index_hash(index) key64_hash(rb_hash_start(index), prime2)
static long
rb_objid_hash(st_index_t index)
{
return (long)st_index_hash(index);
}
static st_index_t
objid_hash(VALUE obj)
{
VALUE object_id = rb_obj_id(obj);
if (!FIXNUM_P(object_id))
object_id = rb_big_hash(object_id);
#if SIZEOF_LONG == SIZEOF_VOIDP
return (st_index_t)st_index_hash((st_index_t)NUM2LONG(object_id));
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
return (st_index_t)st_index_hash((st_index_t)NUM2LL(object_id));
#endif
}
/**
* call-seq:
* obj.hash -> integer
*
* Generates an Integer hash value for this object. This function must have the
* property that <code>a.eql?(b)</code> implies <code>a.hash == b.hash</code>.
*
* The hash value is used along with #eql? by the Hash class to determine if
* two objects reference the same hash key. Any hash value that exceeds the
* capacity of an Integer will be truncated before being used.
*
* The hash value for an object may not be identical across invocations or
* implementations of Ruby. If you need a stable identifier across Ruby
* invocations and implementations you will need to generate one with a custom
* method.
*--
* \private
*++
*/
VALUE
rb_obj_hash(VALUE obj)
{
long hnum = any_hash(obj, objid_hash);
return ST2FIX(hnum);
}
static const struct st_hash_type objhash = {
rb_any_cmp,
rb_any_hash,
};
#define rb_ident_cmp st_numcmp
static st_index_t
rb_ident_hash(st_data_t n)
{
#ifdef USE_FLONUM /* RUBY */
/*
* - flonum (on 64-bit) is pathologically bad, mix the actual
* float value in, but do not use the float value as-is since
* many integers get interpreted as 2.0 or -2.0 [Bug #10761]
*/
if (FLONUM_P(n)) {
n ^= dbl_to_index(rb_float_value(n));
}
#endif
return (st_index_t)st_index_hash((st_index_t)n);
}
#define identhash rb_hashtype_ident
const struct st_hash_type rb_hashtype_ident = {
rb_ident_cmp,
rb_ident_hash,
};
typedef st_index_t st_hash_t;
/*
* RHASH_AR_TABLE_P(h):
* * as.ar == NULL or
* as.ar points ar_table.
* * as.ar is allocated by transient heap or xmalloc.
*
* !RHASH_AR_TABLE_P(h):
* * as.st points st_table.
*/
#define RHASH_AR_TABLE_MAX_BOUND RHASH_AR_TABLE_MAX_SIZE
#define RHASH_AR_TABLE_REF(hash, n) (&RHASH_AR_TABLE(hash)->pairs[n])
#define RHASH_AR_CLEARED_HINT 0xff
typedef struct ar_table_pair_struct {
VALUE key;
VALUE val;
} ar_table_pair;
typedef struct ar_table_struct {
/* 64bit CPU: 8B * 2 * 8 = 128B */
ar_table_pair pairs[RHASH_AR_TABLE_MAX_SIZE];
} ar_table;
size_t
rb_hash_ar_table_size(void)
{
return sizeof(ar_table);
}
static inline st_hash_t
ar_do_hash(st_data_t key)
{
return (st_hash_t)rb_any_hash(key);
}
static inline ar_hint_t
ar_do_hash_hint(st_hash_t hash_value)
{
return (ar_hint_t)hash_value;
}
static inline ar_hint_t
ar_hint(VALUE hash, unsigned int index)
{
return RHASH(hash)->ar_hint.ary[index];
}
static inline void
ar_hint_set_hint(VALUE hash, unsigned int index, ar_hint_t hint)
{
RHASH(hash)->ar_hint.ary[index] = hint;
}
static inline void
ar_hint_set(VALUE hash, unsigned int index, st_hash_t hash_value)
{
ar_hint_set_hint(hash, index, ar_do_hash_hint(hash_value));
}
static inline void
ar_clear_entry(VALUE hash, unsigned int index)
{
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index);
pair->key = Qundef;
ar_hint_set_hint(hash, index, RHASH_AR_CLEARED_HINT);
}
static inline int
ar_cleared_entry(VALUE hash, unsigned int index)
{
if (ar_hint(hash, index) == RHASH_AR_CLEARED_HINT) {
/* RHASH_AR_CLEARED_HINT is only a hint, not mean cleared entry,
* so you need to check key == Qundef
*/
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index);
return pair->key == Qundef;
}
else {
return FALSE;
}
}
static inline void
ar_set_entry(VALUE hash, unsigned int index, st_data_t key, st_data_t val, st_hash_t hash_value)
{
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index);
pair->key = key;
pair->val = val;
ar_hint_set(hash, index, hash_value);
}
#define RHASH_AR_TABLE_SIZE(h) (HASH_ASSERT(RHASH_AR_TABLE_P(h)), \
RHASH_AR_TABLE_SIZE_RAW(h))
#define RHASH_AR_TABLE_BOUND_RAW(h) \
((unsigned int)((RBASIC(h)->flags >> RHASH_AR_TABLE_BOUND_SHIFT) & \
(RHASH_AR_TABLE_BOUND_MASK >> RHASH_AR_TABLE_BOUND_SHIFT)))
#define RHASH_AR_TABLE_BOUND(h) (HASH_ASSERT(RHASH_AR_TABLE_P(h)), \
RHASH_AR_TABLE_BOUND_RAW(h))
#define RHASH_ST_TABLE_SET(h, s) rb_hash_st_table_set(h, s)
#define RHASH_TYPE(hash) (RHASH_AR_TABLE_P(hash) ? &objhash : RHASH_ST_TABLE(hash)->type)
#define HASH_ASSERT(expr) RUBY_ASSERT_MESG_WHEN(HASH_DEBUG, expr, #expr)
#if HASH_DEBUG
#define hash_verify(hash) hash_verify_(hash, __FILE__, __LINE__)
void
rb_hash_dump(VALUE hash)
{
rb_obj_info_dump(hash);
if (RHASH_AR_TABLE_P(hash)) {
unsigned i, n = 0, bound = RHASH_AR_TABLE_BOUND(hash);
fprintf(stderr, " size:%u bound:%u\n",
RHASH_AR_TABLE_SIZE(hash), RHASH_AR_TABLE_BOUND(hash));
for (i=0; i<bound; i++) {
st_data_t k, v;
if (!ar_cleared_entry(hash, i)) {
char b1[0x100], b2[0x100];
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
k = pair->key;
v = pair->val;
fprintf(stderr, " %d key:%s val:%s hint:%02x\n", i,
rb_raw_obj_info(b1, 0x100, k),
rb_raw_obj_info(b2, 0x100, v),
ar_hint(hash, i));
n++;
}
else {
fprintf(stderr, " %d empty\n", i);
}
}
}
}
static VALUE
hash_verify_(VALUE hash, const char *file, int line)
{
HASH_ASSERT(RB_TYPE_P(hash, T_HASH));
if (RHASH_AR_TABLE_P(hash)) {
unsigned i, n = 0, bound = RHASH_AR_TABLE_BOUND(hash);
for (i=0; i<bound; i++) {
st_data_t k, v;
if (!ar_cleared_entry(hash, i)) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
k = pair->key;
v = pair->val;
HASH_ASSERT(k != Qundef);
HASH_ASSERT(v != Qundef);
n++;
}
}
if (n != RHASH_AR_TABLE_SIZE(hash)) {
rb_bug("n:%u, RHASH_AR_TABLE_SIZE:%u", n, RHASH_AR_TABLE_SIZE(hash));
}
}
else {
HASH_ASSERT(RHASH_ST_TABLE(hash) != NULL);
HASH_ASSERT(RHASH_AR_TABLE_SIZE_RAW(hash) == 0);
HASH_ASSERT(RHASH_AR_TABLE_BOUND_RAW(hash) == 0);
}
if (RHASH_TRANSIENT_P(hash)) {
volatile st_data_t MAYBE_UNUSED(key) = RHASH_AR_TABLE_REF(hash, 0)->key; /* read */
HASH_ASSERT(RHASH_AR_TABLE(hash) != NULL);
HASH_ASSERT(rb_transient_heap_managed_ptr_p(RHASH_AR_TABLE(hash)));
}
return hash;
}
#else
#define hash_verify(h) ((void)0)
#endif
static inline int
RHASH_TABLE_NULL_P(VALUE hash)
{
if (RHASH(hash)->as.ar == NULL) {
HASH_ASSERT(RHASH_AR_TABLE_P(hash));
return TRUE;
}
else {
return FALSE;
}
}
static inline int
RHASH_TABLE_EMPTY_P(VALUE hash)
{
return RHASH_SIZE(hash) == 0;
}
int
rb_hash_ar_table_p(VALUE hash)
{
if (FL_TEST_RAW((hash), RHASH_ST_TABLE_FLAG)) {
HASH_ASSERT(RHASH(hash)->as.st != NULL);
return FALSE;
}
else {
return TRUE;
}
}
ar_table *
rb_hash_ar_table(VALUE hash)
{
HASH_ASSERT(RHASH_AR_TABLE_P(hash));
return RHASH(hash)->as.ar;
}
st_table *
rb_hash_st_table(VALUE hash)
{
HASH_ASSERT(!RHASH_AR_TABLE_P(hash));
return RHASH(hash)->as.st;
}
void
rb_hash_st_table_set(VALUE hash, st_table *st)
{
HASH_ASSERT(st != NULL);
FL_SET_RAW((hash), RHASH_ST_TABLE_FLAG);
RHASH(hash)->as.st = st;
}
static void
hash_ar_table_set(VALUE hash, ar_table *ar)
{
HASH_ASSERT(RHASH_AR_TABLE_P(hash));
HASH_ASSERT((RHASH_TRANSIENT_P(hash) && ar == NULL) ? FALSE : TRUE);
RHASH(hash)->as.ar = ar;
hash_verify(hash);
}
#define RHASH_SET_ST_FLAG(h) FL_SET_RAW(h, RHASH_ST_TABLE_FLAG)
#define RHASH_UNSET_ST_FLAG(h) FL_UNSET_RAW(h, RHASH_ST_TABLE_FLAG)
static inline void
RHASH_AR_TABLE_BOUND_SET(VALUE h, st_index_t n)
{
HASH_ASSERT(RHASH_AR_TABLE_P(h));
HASH_ASSERT(n <= RHASH_AR_TABLE_MAX_BOUND);
RBASIC(h)->flags &= ~RHASH_AR_TABLE_BOUND_MASK;
RBASIC(h)->flags |= n << RHASH_AR_TABLE_BOUND_SHIFT;
}
static inline void
RHASH_AR_TABLE_SIZE_SET(VALUE h, st_index_t n)
{
HASH_ASSERT(RHASH_AR_TABLE_P(h));
HASH_ASSERT(n <= RHASH_AR_TABLE_MAX_SIZE);
RBASIC(h)->flags &= ~RHASH_AR_TABLE_SIZE_MASK;
RBASIC(h)->flags |= n << RHASH_AR_TABLE_SIZE_SHIFT;
}
static inline void
HASH_AR_TABLE_SIZE_ADD(VALUE h, st_index_t n)
{
HASH_ASSERT(RHASH_AR_TABLE_P(h));
RHASH_AR_TABLE_SIZE_SET(h, RHASH_AR_TABLE_SIZE(h) + n);
hash_verify(h);
}
#define RHASH_AR_TABLE_SIZE_INC(h) HASH_AR_TABLE_SIZE_ADD(h, 1)
static inline void
RHASH_AR_TABLE_SIZE_DEC(VALUE h)
{
HASH_ASSERT(RHASH_AR_TABLE_P(h));
int new_size = RHASH_AR_TABLE_SIZE(h) - 1;
if (new_size != 0) {
RHASH_AR_TABLE_SIZE_SET(h, new_size);
}
else {
RHASH_AR_TABLE_SIZE_SET(h, 0);
RHASH_AR_TABLE_BOUND_SET(h, 0);
}
hash_verify(h);
}
static inline void
RHASH_AR_TABLE_CLEAR(VALUE h)
{
RBASIC(h)->flags &= ~RHASH_AR_TABLE_SIZE_MASK;
RBASIC(h)->flags &= ~RHASH_AR_TABLE_BOUND_MASK;
hash_ar_table_set(h, NULL);
}
static ar_table*
ar_alloc_table(VALUE hash)
{
ar_table *tab = (ar_table*)rb_transient_heap_alloc(hash, sizeof(ar_table));
if (tab != NULL) {
RHASH_SET_TRANSIENT_FLAG(hash);
}
else {
RHASH_UNSET_TRANSIENT_FLAG(hash);
tab = (ar_table*)ruby_xmalloc(sizeof(ar_table));
}
RHASH_AR_TABLE_SIZE_SET(hash, 0);
RHASH_AR_TABLE_BOUND_SET(hash, 0);
hash_ar_table_set(hash, tab);
return tab;
}
NOINLINE(static int ar_equal(VALUE x, VALUE y));
static int
ar_equal(VALUE x, VALUE y)
{
return rb_any_cmp(x, y) == 0;
}
static unsigned
ar_find_entry_hint(VALUE hash, ar_hint_t hint, st_data_t key)
{
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
const ar_hint_t *hints = RHASH(hash)->ar_hint.ary;
/* if table is NULL, then bound also should be 0 */
for (i = 0; i < bound; i++) {
if (hints[i] == hint) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
if (ar_equal(key, pair->key)) {
RB_DEBUG_COUNTER_INC(artable_hint_hit);
return i;
}
else {
#if 0
static int pid;
static char fname[256];
static FILE *fp;
if (pid != getpid()) {
snprintf(fname, sizeof(fname), "/tmp/ruby-armiss.%d", pid = getpid());
if ((fp = fopen(fname, "w")) == NULL) rb_bug("fopen");
}
st_hash_t h1 = ar_do_hash(key);
st_hash_t h2 = ar_do_hash(pair->key);
fprintf(fp, "miss: hash_eq:%d hints[%d]:%02x hint:%02x\n"
" key :%016lx %s\n"
" pair->key:%016lx %s\n",
h1 == h2, i, hints[i], hint,
h1, rb_obj_info(key), h2, rb_obj_info(pair->key));
#endif
RB_DEBUG_COUNTER_INC(artable_hint_miss);
}
}
}
RB_DEBUG_COUNTER_INC(artable_hint_notfound);
return RHASH_AR_TABLE_MAX_BOUND;
}
static unsigned
ar_find_entry(VALUE hash, st_hash_t hash_value, st_data_t key)
{
ar_hint_t hint = ar_do_hash_hint(hash_value);
return ar_find_entry_hint(hash, hint, key);
}
static inline void
ar_free_and_clear_table(VALUE hash)
{
ar_table *tab = RHASH_AR_TABLE(hash);
if (tab) {
if (RHASH_TRANSIENT_P(hash)) {
RHASH_UNSET_TRANSIENT_FLAG(hash);
}
else {
ruby_xfree(RHASH_AR_TABLE(hash));
}
RHASH_AR_TABLE_CLEAR(hash);
}
HASH_ASSERT(RHASH_AR_TABLE_SIZE(hash) == 0);
HASH_ASSERT(RHASH_AR_TABLE_BOUND(hash) == 0);
HASH_ASSERT(RHASH_TRANSIENT_P(hash) == 0);
}
static void
ar_try_convert_table(VALUE hash)
{
st_table *new_tab;
const unsigned size = RHASH_AR_TABLE_SIZE(hash);
st_index_t i;
if (!RHASH_AR_TABLE_P(hash) || size < RHASH_AR_TABLE_MAX_SIZE) {
return;
}
new_tab = st_init_table_with_size(&objhash, size * 2);
for (i = 0; i < RHASH_AR_TABLE_MAX_BOUND; i++) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
st_add_direct(new_tab, pair->key, pair->val);
}
ar_free_and_clear_table(hash);
RHASH_ST_TABLE_SET(hash, new_tab);
return;
}
static st_table *
ar_force_convert_table(VALUE hash, const char *file, int line)
{
st_table *new_tab;
if (RHASH_ST_TABLE_P(hash)) {
return RHASH_ST_TABLE(hash);
}
if (RHASH_AR_TABLE(hash)) {
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
#if RHASH_CONVERT_TABLE_DEBUG
rb_obj_info_dump(hash);
fprintf(stderr, "force_convert: %s:%d\n", file, line);
RB_DEBUG_COUNTER_INC(obj_hash_force_convert);
#endif
new_tab = st_init_table_with_size(&objhash, RHASH_AR_TABLE_SIZE(hash));
for (i = 0; i < bound; i++) {
if (ar_cleared_entry(hash, i)) continue;
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
st_add_direct(new_tab, pair->key, pair->val);
}
ar_free_and_clear_table(hash);
}
else {
new_tab = st_init_table(&objhash);
}
RHASH_ST_TABLE_SET(hash, new_tab);
return new_tab;
}
static ar_table *
hash_ar_table(VALUE hash)
{
if (RHASH_TABLE_NULL_P(hash)) {
ar_alloc_table(hash);
}
return RHASH_AR_TABLE(hash);
}
static int
ar_compact_table(VALUE hash)
{
const unsigned bound = RHASH_AR_TABLE_BOUND(hash);
const unsigned size = RHASH_AR_TABLE_SIZE(hash);
if (size == bound) {
return size;
}
else {
unsigned i, j=0;
ar_table_pair *pairs = RHASH_AR_TABLE(hash)->pairs;
for (i=0; i<bound; i++) {
if (ar_cleared_entry(hash, i)) {
if (j <= i) j = i+1;
for (; j<bound; j++) {
if (!ar_cleared_entry(hash, j)) {
pairs[i] = pairs[j];
ar_hint_set_hint(hash, i, (st_hash_t)ar_hint(hash, j));
ar_clear_entry(hash, j);
j++;
goto found;
}
}
/* non-empty is not found */
goto done;
found:;
}
}
done:
HASH_ASSERT(i<=bound);
RHASH_AR_TABLE_BOUND_SET(hash, size);
hash_verify(hash);
return size;
}
}
static int
ar_add_direct_with_hash(VALUE hash, st_data_t key, st_data_t val, st_hash_t hash_value)
{
unsigned bin = RHASH_AR_TABLE_BOUND(hash);
if (RHASH_AR_TABLE_SIZE(hash) >= RHASH_AR_TABLE_MAX_SIZE) {
return 1;
}
else {
if (UNLIKELY(bin >= RHASH_AR_TABLE_MAX_BOUND)) {
bin = ar_compact_table(hash);
hash_ar_table(hash);
}
HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND);
ar_set_entry(hash, bin, key, val, hash_value);
RHASH_AR_TABLE_BOUND_SET(hash, bin+1);
RHASH_AR_TABLE_SIZE_INC(hash);
return 0;
}
}
static int
ar_general_foreach(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg)
{
if (RHASH_AR_TABLE_SIZE(hash) > 0) {
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
for (i = 0; i < bound; i++) {
if (ar_cleared_entry(hash, i)) continue;
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
enum st_retval retval = (*func)(pair->key, pair->val, arg, 0);
/* pair may be not valid here because of theap */
switch (retval) {
case ST_CONTINUE:
break;
case ST_CHECK:
case ST_STOP:
return 0;
case ST_REPLACE:
if (replace) {
VALUE key = pair->key;
VALUE val = pair->val;
retval = (*replace)(&key, &val, arg, TRUE);
// TODO: pair should be same as pair before.
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
pair->key = key;
pair->val = val;
}
break;
case ST_DELETE:
ar_clear_entry(hash, i);
RHASH_AR_TABLE_SIZE_DEC(hash);
break;
}
}
}
return 0;
}
static int
ar_foreach_with_replace(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg)
{
return ar_general_foreach(hash, func, replace, arg);
}
struct functor {
st_foreach_callback_func *func;
st_data_t arg;
};
static int
apply_functor(st_data_t k, st_data_t v, st_data_t d, int _)
{
const struct functor *f = (void *)d;
return f->func(k, v, f->arg);
}
static int
ar_foreach(VALUE hash, st_foreach_callback_func *func, st_data_t arg)
{
const struct functor f = { func, arg };
return ar_general_foreach(hash, apply_functor, NULL, (st_data_t)&f);
}
static int
ar_foreach_check(VALUE hash, st_foreach_check_callback_func *func, st_data_t arg,
st_data_t never)
{
if (RHASH_AR_TABLE_SIZE(hash) > 0) {
unsigned i, ret = 0, bound = RHASH_AR_TABLE_BOUND(hash);
enum st_retval retval;
st_data_t key;
ar_table_pair *pair;
ar_hint_t hint;
for (i = 0; i < bound; i++) {
if (ar_cleared_entry(hash, i)) continue;
pair = RHASH_AR_TABLE_REF(hash, i);
key = pair->key;
hint = ar_hint(hash, i);
retval = (*func)(key, pair->val, arg, 0);
hash_verify(hash);
switch (retval) {
case ST_CHECK: {
if (pair->key == never) break;
ret = ar_find_entry_hint(hash, hint, key);
if (ret == RHASH_AR_TABLE_MAX_BOUND) {
retval = (*func)(0, 0, arg, 1);
return 2;
}
}
case ST_CONTINUE:
break;
case ST_STOP:
case ST_REPLACE:
return 0;
case ST_DELETE: {
if (!ar_cleared_entry(hash, i)) {
ar_clear_entry(hash, i);
RHASH_AR_TABLE_SIZE_DEC(hash);
}
break;
}
}
}
}
return 0;
}
static int
ar_update(VALUE hash, st_data_t key,
st_update_callback_func *func, st_data_t arg)
{
int retval, existing;
unsigned bin = RHASH_AR_TABLE_MAX_BOUND;
st_data_t value = 0, old_key;
st_hash_t hash_value = ar_do_hash(key);
if (RHASH_AR_TABLE_SIZE(hash) > 0) {
bin = ar_find_entry(hash, hash_value, key);
existing = (bin != RHASH_AR_TABLE_MAX_BOUND) ? TRUE : FALSE;
}
else {
hash_ar_table(hash); /* allocate ltbl if needed */
existing = FALSE;
}
if (existing) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin);
key = pair->key;
value = pair->val;
}
old_key = key;
retval = (*func)(&key, &value, arg, existing);
/* pair can be invalid here because of theap */
switch (retval) {
case ST_CONTINUE:
if (!existing) {
if (ar_add_direct_with_hash(hash, key, value, hash_value)) {
return -1;
}
}
else {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin);
if (old_key != key) {
pair->key = key;
}
pair->val = value;
}
break;
case ST_DELETE:
if (existing) {
ar_clear_entry(hash, bin);
RHASH_AR_TABLE_SIZE_DEC(hash);
}
break;
}
return existing;
}
static int
ar_insert(VALUE hash, st_data_t key, st_data_t value)
{
unsigned bin = RHASH_AR_TABLE_BOUND(hash);
st_hash_t hash_value = ar_do_hash(key);
hash_ar_table(hash); /* prepare ltbl */
bin = ar_find_entry(hash, hash_value, key);
if (bin == RHASH_AR_TABLE_MAX_BOUND) {
if (RHASH_AR_TABLE_SIZE(hash) >= RHASH_AR_TABLE_MAX_SIZE) {
return -1;
}
else if (bin >= RHASH_AR_TABLE_MAX_BOUND) {
bin = ar_compact_table(hash);
hash_ar_table(hash);
}
HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND);
ar_set_entry(hash, bin, key, value, hash_value);
RHASH_AR_TABLE_BOUND_SET(hash, bin+1);
RHASH_AR_TABLE_SIZE_INC(hash);
return 0;
}
else {
RHASH_AR_TABLE_REF(hash, bin)->val = value;
return 1;
}
}
static int
ar_lookup(VALUE hash, st_data_t key, st_data_t *value)
{
if (RHASH_AR_TABLE_SIZE(hash) == 0) {
return 0;
}
else {
st_hash_t hash_value = ar_do_hash(key);
unsigned bin = ar_find_entry(hash, hash_value, key);
if (bin == RHASH_AR_TABLE_MAX_BOUND) {
return 0;
}
else {
HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND);
if (value != NULL) {
*value = RHASH_AR_TABLE_REF(hash, bin)->val;
}
return 1;
}
}
}
static int
ar_delete(VALUE hash, st_data_t *key, st_data_t *value)
{
unsigned bin;
st_hash_t hash_value = ar_do_hash(*key);
bin = ar_find_entry(hash, hash_value, *key);
if (bin == RHASH_AR_TABLE_MAX_BOUND) {
if (value != 0) *value = 0;
return 0;
}
else {
if (value != 0) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin);
*value = pair->val;
}
ar_clear_entry(hash, bin);
RHASH_AR_TABLE_SIZE_DEC(hash);
return 1;
}
}
static int
ar_shift(VALUE hash, st_data_t *key, st_data_t *value)
{
if (RHASH_AR_TABLE_SIZE(hash) > 0) {
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
for (i = 0; i < bound; i++) {
if (!ar_cleared_entry(hash, i)) {
ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i);
if (value != 0) *value = pair->val;
*key = pair->key;
ar_clear_entry(hash, i);
RHASH_AR_TABLE_SIZE_DEC(hash);
return 1;
}
}
}
if (value != NULL) *value = 0;
return 0;
}
static long
ar_keys(VALUE hash, st_data_t *keys, st_index_t size)
{
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
st_data_t *keys_start = keys, *keys_end = keys + size;
for (i = 0; i < bound; i++) {
if (keys == keys_end) {
break;
}
else {
if (!ar_cleared_entry(hash, i)) {
*keys++ = RHASH_AR_TABLE_REF(hash, i)->key;
}
}
}
return keys - keys_start;
}
static long
ar_values(VALUE hash, st_data_t *values, st_index_t size)
{
unsigned i, bound = RHASH_AR_TABLE_BOUND(hash);
st_data_t *values_start = values, *values_end = values + size;
for (i = 0; i < bound; i++) {
if (values == values_end) {
break;
}
else {
if (!ar_cleared_entry(hash, i)) {
*values++ = RHASH_AR_TABLE_REF(hash, i)->val;
}
}
}
return values - values_start;
}
static ar_table*
ar_copy(VALUE hash1, VALUE hash2)
{
ar_table *old_tab = RHASH_AR_TABLE(hash2);
if (old_tab != NULL) {
ar_table *new_tab = RHASH_AR_TABLE(hash1);
if (new_tab == NULL) {
new_tab = (ar_table*) rb_transient_heap_alloc(hash1, sizeof(ar_table));
if (new_tab != NULL) {
RHASH_SET_TRANSIENT_FLAG(hash1);
}
else {
RHASH_UNSET_TRANSIENT_FLAG(hash1);
new_tab = (ar_table*)ruby_xmalloc(sizeof(ar_table));
}
}
*new_tab = *old_tab;
RHASH(hash1)->ar_hint.word = RHASH(hash2)->ar_hint.word;
RHASH_AR_TABLE_BOUND_SET(hash1, RHASH_AR_TABLE_BOUND(hash2));
RHASH_AR_TABLE_SIZE_SET(hash1, RHASH_AR_TABLE_SIZE(hash2));
hash_ar_table_set(hash1, new_tab);
rb_gc_writebarrier_remember(hash1);
return new_tab;
}
else {
RHASH_AR_TABLE_BOUND_SET(hash1, RHASH_AR_TABLE_BOUND(hash2));
RHASH_AR_TABLE_SIZE_SET(hash1, RHASH_AR_TABLE_SIZE(hash2));
if (RHASH_TRANSIENT_P(hash1)) {
RHASH_UNSET_TRANSIENT_FLAG(hash1);
}
else if (RHASH_AR_TABLE(hash1)) {
ruby_xfree(RHASH_AR_TABLE(hash1));
}
hash_ar_table_set(hash1, NULL);
rb_gc_writebarrier_remember(hash1);
return old_tab;
}
}
static void
ar_clear(VALUE hash)
{
if (RHASH_AR_TABLE(hash) != NULL) {
RHASH_AR_TABLE_SIZE_SET(hash, 0);
RHASH_AR_TABLE_BOUND_SET(hash, 0);
}
else {
HASH_ASSERT(RHASH_AR_TABLE_SIZE(hash) == 0);
HASH_ASSERT(RHASH_AR_TABLE_BOUND(hash) == 0);
}
}
#if USE_TRANSIENT_HEAP
void
rb_hash_transient_heap_evacuate(VALUE hash, int promote)
{
if (RHASH_TRANSIENT_P(hash)) {
ar_table *new_tab;
ar_table *old_tab = RHASH_AR_TABLE(hash);
if (UNLIKELY(old_tab == NULL)) {
rb_gc_force_recycle(hash);
return;
}
HASH_ASSERT(old_tab != NULL);
if (promote) {
promote:
new_tab = ruby_xmalloc(sizeof(ar_table));
RHASH_UNSET_TRANSIENT_FLAG(hash);
}
else {
new_tab = rb_transient_heap_alloc(hash, sizeof(ar_table));
if (new_tab == NULL) goto promote;
}
*new_tab = *old_tab;
hash_ar_table_set(hash, new_tab);
}
hash_verify(hash);
}
#endif
typedef int st_foreach_func(st_data_t, st_data_t, st_data_t);
struct foreach_safe_arg {
st_table *tbl;
st_foreach_func *func;
st_data_t arg;
};
static int
foreach_safe_i(st_data_t key, st_data_t value, st_data_t args, int error)
{
int status;
struct foreach_safe_arg *arg = (void *)args;
if (error) return ST_STOP;
status = (*arg->func)(key, value, arg->arg);
if (status == ST_CONTINUE) {
return ST_CHECK;
}
return status;
}
void
st_foreach_safe(st_table *table, st_foreach_func *func, st_data_t a)
{
struct foreach_safe_arg arg;
arg.tbl = table;
arg.func = (st_foreach_func *)func;
arg.arg = a;
if (st_foreach_check(table, foreach_safe_i, (st_data_t)&arg, 0)) {
rb_raise(rb_eRuntimeError, "hash modified during iteration");
}
}
typedef int rb_foreach_func(VALUE, VALUE, VALUE);
struct hash_foreach_arg {
VALUE hash;
rb_foreach_func *func;
VALUE arg;
};
static int
hash_ar_foreach_iter(st_data_t key, st_data_t value, st_data_t argp, int error)
{
struct hash_foreach_arg *arg = (struct hash_foreach_arg *)argp;
int status;
if (error) return ST_STOP;
status = (*arg->func)((VALUE)key, (VALUE)value, arg->arg);
/* TODO: rehash check? rb_raise(rb_eRuntimeError, "rehash occurred during iteration"); */
switch (status) {
case ST_DELETE:
return ST_DELETE;
case ST_CONTINUE:
break;
case ST_STOP:
return ST_STOP;
}
return ST_CHECK;
}
static int
hash_foreach_iter(st_data_t key, st_data_t value, st_data_t argp, int error)
{
struct hash_foreach_arg *arg = (struct hash_foreach_arg *)argp;
int status;
st_table *tbl;
if (error) return ST_STOP;
tbl = RHASH_ST_TABLE(arg->hash);
status = (*arg->func)((VALUE)key, (VALUE)value, arg->arg);
if (RHASH_ST_TABLE(arg->hash) != tbl) {
rb_raise(rb_eRuntimeError, "rehash occurred during iteration");
}
switch (status) {
case ST_DELETE:
return ST_DELETE;
case ST_CONTINUE:
break;
case ST_STOP:
return ST_STOP;
}
return ST_CHECK;
}
static int
iter_lev_in_ivar(VALUE hash)
{
VALUE levval = rb_ivar_get(hash, id_hash_iter_lev);
HASH_ASSERT(FIXNUM_P(levval));
return FIX2INT(levval);
}
void rb_ivar_set_internal(VALUE obj, ID id, VALUE val);
static void
iter_lev_in_ivar_set(VALUE hash, int lev)
{
rb_ivar_set_internal(hash, id_hash_iter_lev, INT2FIX(lev));
}
static int
iter_lev_in_flags(VALUE hash)
{
unsigned int u = (unsigned int)((RBASIC(hash)->flags >> RHASH_LEV_SHIFT) & RHASH_LEV_MAX);
return (int)u;
}
static int
RHASH_ITER_LEV(VALUE hash)
{
int lev = iter_lev_in_flags(hash);
if (lev == RHASH_LEV_MAX) {
return iter_lev_in_ivar(hash);
}
else {
return lev;
}
}
static void
hash_iter_lev_inc(VALUE hash)
{
int lev = iter_lev_in_flags(hash);
if (lev == RHASH_LEV_MAX) {
lev = iter_lev_in_ivar(hash);
iter_lev_in_ivar_set(hash, lev+1);
}
else {
lev += 1;
RBASIC(hash)->flags = ((RBASIC(hash)->flags & ~RHASH_LEV_MASK) | (lev << RHASH_LEV_SHIFT));
if (lev == RHASH_LEV_MAX) {
iter_lev_in_ivar_set(hash, lev);
}
}
}
static void
hash_iter_lev_dec(VALUE hash)
{
int lev = iter_lev_in_flags(hash);
if (lev == RHASH_LEV_MAX) {
lev = iter_lev_in_ivar(hash);
HASH_ASSERT(lev > 0);
iter_lev_in_ivar_set(hash, lev-1);
}
else {
HASH_ASSERT(lev > 0);
RBASIC(hash)->flags = ((RBASIC(hash)->flags & ~RHASH_LEV_MASK) | ((lev-1) << RHASH_LEV_SHIFT));
}
}
static VALUE
hash_foreach_ensure_rollback(VALUE hash)
{
hash_iter_lev_inc(hash);
return 0;
}
static VALUE
hash_foreach_ensure(VALUE hash)
{
hash_iter_lev_dec(hash);
return 0;
}
int
rb_hash_stlike_foreach(VALUE hash, st_foreach_callback_func *func, st_data_t arg)
{
if (RHASH_AR_TABLE_P(hash)) {
return ar_foreach(hash, func, arg);
}
else {
return st_foreach(RHASH_ST_TABLE(hash), func, arg);
}
}
int
rb_hash_stlike_foreach_with_replace(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg)
{
if (RHASH_AR_TABLE_P(hash)) {
return ar_foreach_with_replace(hash, func, replace, arg);
}
else {
return st_foreach_with_replace(RHASH_ST_TABLE(hash), func, replace, arg);
}
}
static VALUE
hash_foreach_call(VALUE arg)
{
VALUE hash = ((struct hash_foreach_arg *)arg)->hash;
int ret = 0;
if (RHASH_AR_TABLE_P(hash)) {
ret = ar_foreach_check(hash, hash_ar_foreach_iter,
(st_data_t)arg, (st_data_t)Qundef);
}
else if (RHASH_ST_TABLE_P(hash)) {
ret = st_foreach_check(RHASH_ST_TABLE(hash), hash_foreach_iter,
(st_data_t)arg, (st_data_t)Qundef);
}
if (ret) {
rb_raise(rb_eRuntimeError, "ret: %d, hash modified during iteration", ret);
}
return Qnil;
}
void
rb_hash_foreach(VALUE hash, rb_foreach_func *func, VALUE farg)
{
struct hash_foreach_arg arg;
if (RHASH_TABLE_EMPTY_P(hash))
return;
hash_iter_lev_inc(hash);
arg.hash = hash;
arg.func = (rb_foreach_func *)func;
arg.arg = farg;
rb_ensure(hash_foreach_call, (VALUE)&arg, hash_foreach_ensure, hash);
hash_verify(hash);
}
static VALUE
hash_alloc_flags(VALUE klass, VALUE flags, VALUE ifnone)
{
const VALUE wb = (RGENGC_WB_PROTECTED_HASH ? FL_WB_PROTECTED : 0);
NEWOBJ_OF(hash, struct RHash, klass, T_HASH | wb | flags);
RHASH_SET_IFNONE((VALUE)hash, ifnone);
return (VALUE)hash;
}
static VALUE
hash_alloc(VALUE klass)
{
return hash_alloc_flags(klass, 0, Qnil);
}
static VALUE
empty_hash_alloc(VALUE klass)
{
RUBY_DTRACE_CREATE_HOOK(HASH, 0);
return hash_alloc(klass);
}
VALUE
rb_hash_new(void)
{
return hash_alloc(rb_cHash);
}
MJIT_FUNC_EXPORTED VALUE
rb_hash_new_with_size(st_index_t size)
{
VALUE ret = rb_hash_new();
if (size == 0) {
/* do nothing */
}
else if (size <= RHASH_AR_TABLE_MAX_SIZE) {
ar_alloc_table(ret);
}
else {
RHASH_ST_TABLE_SET(ret, st_init_table_with_size(&objhash, size));
}
return ret;
}
static VALUE
hash_dup(VALUE hash, VALUE klass, VALUE flags)
{
VALUE ret = hash_alloc_flags(klass, flags,
RHASH_IFNONE(hash));
if (!RHASH_EMPTY_P(hash)) {
if (RHASH_AR_TABLE_P(hash))
ar_copy(ret, hash);
else if (RHASH_ST_TABLE_P(hash))
RHASH_ST_TABLE_SET(ret, st_copy(RHASH_ST_TABLE(hash)));
}
return ret;
}
VALUE
rb_hash_dup(VALUE hash)
{
const VALUE flags = RBASIC(hash)->flags;
VALUE ret = hash_dup(hash, rb_obj_class(hash),
flags & (FL_EXIVAR|RHASH_PROC_DEFAULT));
if (flags & FL_EXIVAR)
rb_copy_generic_ivar(ret, hash);
return ret;
}
MJIT_FUNC_EXPORTED VALUE
rb_hash_resurrect(VALUE hash)
{
VALUE ret = hash_dup(hash, rb_cHash, 0);
return ret;
}
static void
rb_hash_modify_check(VALUE hash)
{
rb_check_frozen(hash);
}
MJIT_FUNC_EXPORTED struct st_table *
#if RHASH_CONVERT_TABLE_DEBUG
rb_hash_tbl_raw(VALUE hash, const char *file, int line)
{
return ar_force_convert_table(hash, file, line);
}
#else
rb_hash_tbl_raw(VALUE hash)
{
return ar_force_convert_table(hash, NULL, 0);
}
#endif
struct st_table *
rb_hash_tbl(VALUE hash, const char *file, int line)
{
OBJ_WB_UNPROTECT(hash);
return RHASH_TBL_RAW(hash);
}
static void
rb_hash_modify(VALUE hash)
{
rb_hash_modify_check(hash);
}
NORETURN(static void no_new_key(void));
static void
no_new_key(void)
{
rb_raise(rb_eRuntimeError, "can't add a new key into hash during iteration");
}
struct update_callback_arg {
VALUE hash;
st_data_t arg;
};
#define NOINSERT_UPDATE_CALLBACK(func) \
static int \
func##_noinsert(st_data_t *key, st_data_t *val, st_data_t arg, int existing) \
{ \
if (!existing) no_new_key(); \
return func(key, val, (struct update_arg *)arg, existing); \
} \
\
static int \
func##_insert(st_data_t *key, st_data_t *val, st_data_t arg, int existing) \
{ \
return func(key, val, (struct update_arg *)arg, existing); \
}
struct update_arg {
st_data_t arg;
VALUE hash;
VALUE new_key;
VALUE old_key;
VALUE new_value;
VALUE old_value;
};
typedef int (*tbl_update_func)(st_data_t *, st_data_t *, st_data_t, int);
int
rb_hash_stlike_update(VALUE hash, st_data_t key, st_update_callback_func func, st_data_t arg)
{
if (RHASH_AR_TABLE_P(hash)) {
int result = ar_update(hash, (st_data_t)key, func, arg);
if (result == -1) {
ar_try_convert_table(hash);
}
else {
return result;
}
}
return st_update(RHASH_ST_TABLE(hash), (st_data_t)key, func, arg);
}
static int
tbl_update(VALUE hash, VALUE key, tbl_update_func func, st_data_t optional_arg)
{
struct update_arg arg;
int result;
arg.arg = optional_arg;
arg.hash = hash;
arg.new_key = 0;
arg.old_key = Qundef;
arg.new_value = 0;
arg.old_value = Qundef;
result = rb_hash_stlike_update(hash, key, func, (st_data_t)&arg);
/* write barrier */
if (arg.new_key) RB_OBJ_WRITTEN(hash, arg.old_key, arg.new_key);
if (arg.new_value) RB_OBJ_WRITTEN(hash, arg.old_value, arg.new_value);
return result;
}
#define UPDATE_CALLBACK(iter_lev, func) ((iter_lev) > 0 ? func##_noinsert : func##_insert)
#define RHASH_UPDATE_ITER(h, iter_lev, key, func, a) do { \
tbl_update((h), (key), UPDATE_CALLBACK((iter_lev), func), (st_data_t)(a)); \
} while (0)
#define RHASH_UPDATE(hash, key, func, arg) \
RHASH_UPDATE_ITER(hash, RHASH_ITER_LEV(hash), key, func, arg)
static void
set_proc_default(VALUE hash, VALUE proc)
{
if (rb_proc_lambda_p(proc)) {
int n = rb_proc_arity(proc);
if (n != 2 && (n >= 0 || n < -3)) {
if (n < 0) n = -n-1;
rb_raise(rb_eTypeError, "default_proc takes two arguments (2 for %d)", n);
}
}
FL_SET_RAW(hash, RHASH_PROC_DEFAULT);
RHASH_SET_IFNONE(hash, proc);
}
/*
* call-seq:
* Hash.new -> new_hash
* Hash.new(obj) -> new_hash
* Hash.new {|hash, key| block } -> new_hash
*
* Returns a new, empty hash. If this hash is subsequently accessed by
* a key that doesn't correspond to a hash entry, the value returned
* depends on the style of <code>new</code> used to create the hash. In
* the first form, the access returns <code>nil</code>. If
* <i>obj</i> is specified, this single object will be used for
* all <em>default values</em>. If a block is specified, it will be
* called with the hash object and the key, and should return the
* default value. It is the block's responsibility to store the value
* in the hash if required.
*
* h = Hash.new("Go Fish")
* h["a"] = 100
* h["b"] = 200
* h["a"] #=> 100
* h["c"] #=> "Go Fish"
* # The following alters the single default object
* h["c"].upcase! #=> "GO FISH"
* h["d"] #=> "GO FISH"
* h.keys #=> ["a", "b"]
*
* # While this creates a new default object each time
* h = Hash.new { |hash, key| hash[key] = "Go Fish: #{key}" }
* h["c"] #=> "Go Fish: c"
* h["c"].upcase! #=> "GO FISH: C"
* h["d"] #=> "Go Fish: d"
* h.keys #=> ["c", "d"]
*
*/
static VALUE
rb_hash_initialize(int argc, VALUE *argv, VALUE hash)
{
VALUE ifnone;
rb_hash_modify(hash);
if (rb_block_given_p()) {
rb_check_arity(argc, 0, 0);
ifnone = rb_block_proc();
SET_PROC_DEFAULT(hash, ifnone);
}
else {
rb_check_arity(argc, 0, 1);
ifnone = argc == 0 ? Qnil : argv[0];
RHASH_SET_IFNONE(hash, ifnone);
}
return hash;
}
/*
* call-seq:
* Hash[ key, value, ... ] -> new_hash
* Hash[ [ [key, value], ... ] ] -> new_hash
* Hash[ object ] -> new_hash
*
* Creates a new hash populated with the given objects.
*
* Similar to the literal <code>{ _key_ => _value_, ... }</code>. In the first
* form, keys and values occur in pairs, so there must be an even number of
* arguments.
*
* The second and third form take a single argument which is either an array
* of key-value pairs or an object convertible to a hash.
*
* Hash["a", 100, "b", 200] #=> {"a"=>100, "b"=>200}
* Hash[ [ ["a", 100], ["b", 200] ] ] #=> {"a"=>100, "b"=>200}
* Hash["a" => 100, "b" => 200] #=> {"a"=>100, "b"=>200}
*/
static VALUE
rb_hash_s_create(int argc, VALUE *argv, VALUE klass)
{
VALUE hash, tmp;
if (argc == 1) {
tmp = rb_hash_s_try_convert(Qnil, argv[0]);
if (!NIL_P(tmp)) {
hash = hash_alloc(klass);
if (RHASH_AR_TABLE_P(tmp)) {
ar_copy(hash, tmp);
}
else {
RHASH_ST_TABLE_SET(hash, st_copy(RHASH_ST_TABLE(tmp)));
}
return hash;
}
tmp = rb_check_array_type(argv[0]);
if (!NIL_P(tmp)) {
long i;
hash = hash_alloc(klass);
for (i = 0; i < RARRAY_LEN(tmp); ++i) {
VALUE e = RARRAY_AREF(tmp, i);
VALUE v = rb_check_array_type(e);
VALUE key, val = Qnil;
if (NIL_P(v)) {
rb_raise(rb_eArgError, "wrong element type %s at %ld (expected array)",
rb_builtin_class_name(e), i);
}
switch (RARRAY_LEN(v)) {
default:
rb_raise(rb_eArgError, "invalid number of elements (%ld for 1..2)",
RARRAY_LEN(v));
case 2:
val = RARRAY_AREF(v, 1);
case 1:
key = RARRAY_AREF(v, 0);
rb_hash_aset(hash, key, val);
}
}
return hash;
}
}
if (argc % 2 != 0) {
rb_raise(rb_eArgError, "odd number of arguments for Hash");
}
hash = hash_alloc(klass);
rb_hash_bulk_insert(argc, argv, hash);
hash_verify(hash);
return hash;
}
VALUE
rb_to_hash_type(VALUE hash)
{
return rb_convert_type_with_id(hash, T_HASH, "Hash", idTo_hash);
}
#define to_hash rb_to_hash_type
VALUE
rb_check_hash_type(VALUE hash)
{
return rb_check_convert_type_with_id(hash, T_HASH, "Hash", idTo_hash);
}
/*
* call-seq:
* Hash.try_convert(obj) -> hash or nil
*
* Try to convert <i>obj</i> into a hash, using to_hash method.
* Returns converted hash or nil if <i>obj</i> cannot be converted
* for any reason.
*
* Hash.try_convert({1=>2}) # => {1=>2}
* Hash.try_convert("1=>2") # => nil
*/
static VALUE
rb_hash_s_try_convert(VALUE dummy, VALUE hash)
{
return rb_check_hash_type(hash);
}
struct rehash_arg {
VALUE hash;
st_table *tbl;
};
static int
rb_hash_rehash_i(VALUE key, VALUE value, VALUE arg)
{
if (RHASH_AR_TABLE_P(arg)) {
ar_insert(arg, (st_data_t)key, (st_data_t)value);
}
else {
st_insert(RHASH_ST_TABLE(arg), (st_data_t)key, (st_data_t)value);
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.rehash -> hsh
*
* Rebuilds the hash based on the current hash values for each key. If
* values of key objects have changed since they were inserted, this
* method will reindex <i>hsh</i>. If Hash#rehash is
* called while an iterator is traversing the hash, a
* RuntimeError will be raised in the iterator.
*
* a = [ "a", "b" ]
* c = [ "c", "d" ]
* h = { a => 100, c => 300 }
* h[a] #=> 100
* a[0] = "z"
* h[a] #=> nil
* h.rehash #=> {["z", "b"]=>100, ["c", "d"]=>300}
* h[a] #=> 100
*/
VALUE
rb_hash_rehash(VALUE hash)
{
VALUE tmp;
st_table *tbl;
if (RHASH_ITER_LEV(hash) > 0) {
rb_raise(rb_eRuntimeError, "rehash during iteration");
}
rb_hash_modify_check(hash);
if (RHASH_AR_TABLE_P(hash)) {
tmp = hash_alloc(0);
ar_alloc_table(tmp);
rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp);
ar_free_and_clear_table(hash);
ar_copy(hash, tmp);
ar_free_and_clear_table(tmp);
}
else if (RHASH_ST_TABLE_P(hash)) {
st_table *old_tab = RHASH_ST_TABLE(hash);
tmp = hash_alloc(0);
tbl = st_init_table_with_size(old_tab->type, old_tab->num_entries);
RHASH_ST_TABLE_SET(tmp, tbl);
rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp);
st_free_table(old_tab);
RHASH_ST_TABLE_SET(hash, tbl);
RHASH_ST_CLEAR(tmp);
}
hash_verify(hash);
return hash;
}
VALUE
rb_hash_default_value(VALUE hash, VALUE key)
{
if (rb_method_basic_definition_p(CLASS_OF(hash), id_default)) {
VALUE ifnone = RHASH_IFNONE(hash);
if (!FL_TEST(hash, RHASH_PROC_DEFAULT)) return ifnone;
if (key == Qundef) return Qnil;
return rb_funcall(ifnone, id_yield, 2, hash, key);
}
else {
return rb_funcall(hash, id_default, 1, key);
}
}
static inline int
hash_stlike_lookup(VALUE hash, st_data_t key, st_data_t *pval)
{
hash_verify(hash);
if (RHASH_AR_TABLE_P(hash)) {
return ar_lookup(hash, key, pval);
}
else {
return st_lookup(RHASH_ST_TABLE(hash), key, pval);
}
}
MJIT_FUNC_EXPORTED int
rb_hash_stlike_lookup(VALUE hash, st_data_t key, st_data_t *pval)
{
return hash_stlike_lookup(hash, key, pval);
}
/*
* call-seq:
* hsh[key] -> value
*
* Element Reference---Retrieves the <i>value</i> object corresponding
* to the <i>key</i> object. If not found, returns the default value (see
* Hash::new for details).
*
* h = { "a" => 100, "b" => 200 }
* h["a"] #=> 100
* h["c"] #=> nil
*
*/
VALUE
rb_hash_aref(VALUE hash, VALUE key)
{
st_data_t val;
if (hash_stlike_lookup(hash, key, &val)) {
return (VALUE)val;
}
else {
return rb_hash_default_value(hash, key);
}
}
VALUE
rb_hash_lookup2(VALUE hash, VALUE key, VALUE def)
{
st_data_t val;
if (hash_stlike_lookup(hash, key, &val)) {
return (VALUE)val;
}
else {
return def; /* without Hash#default */
}
}
VALUE
rb_hash_lookup(VALUE hash, VALUE key)
{
return rb_hash_lookup2(hash, key, Qnil);
}
/*
* call-seq:
* hsh.fetch(key [, default] ) -> obj
* hsh.fetch(key) {| key | block } -> obj
*
* Returns a value from the hash for the given key. If the key can't be
* found, there are several options: With no other arguments, it will
* raise a KeyError exception; if <i>default</i> is given,
* then that will be returned; if the optional code block is specified,
* then that will be run and its result returned.
*
* h = { "a" => 100, "b" => 200 }
* h.fetch("a") #=> 100
* h.fetch("z", "go fish") #=> "go fish"
* h.fetch("z") { |el| "go fish, #{el}"} #=> "go fish, z"
*
* The following example shows that an exception is raised if the key
* is not found and a default value is not supplied.
*
* h = { "a" => 100, "b" => 200 }
* h.fetch("z")
*
* <em>produces:</em>
*
* prog.rb:2:in `fetch': key not found (KeyError)
* from prog.rb:2
*
*/
static VALUE
rb_hash_fetch_m(int argc, VALUE *argv, VALUE hash)
{
VALUE key;
st_data_t val;
long block_given;
rb_check_arity(argc, 1, 2);
key = argv[0];
block_given = rb_block_given_p();
if (block_given && argc == 2) {
rb_warn("block supersedes default value argument");
}
if (hash_stlike_lookup(hash, key, &val)) {
return (VALUE)val;
}
else {
if (block_given) {
return rb_yield(key);
}
else if (argc == 1) {
VALUE desc = rb_protect(rb_inspect, key, 0);
if (NIL_P(desc)) {
desc = rb_any_to_s(key);
}
desc = rb_str_ellipsize(desc, 65);
rb_key_err_raise(rb_sprintf("key not found: %"PRIsVALUE, desc), hash, key);
}
else {
return argv[1];
}
}
}
VALUE
rb_hash_fetch(VALUE hash, VALUE key)
{
return rb_hash_fetch_m(1, &key, hash);
}
/*
* call-seq:
* hsh.default(key=nil) -> obj
*
* Returns the default value, the value that would be returned by
* <i>hsh</i>[<i>key</i>] if <i>key</i> did not exist in <i>hsh</i>.
* See also Hash::new and Hash#default=.
*
* h = Hash.new #=> {}
* h.default #=> nil
* h.default(2) #=> nil
*
* h = Hash.new("cat") #=> {}
* h.default #=> "cat"
* h.default(2) #=> "cat"
*
* h = Hash.new {|h,k| h[k] = k.to_i*10} #=> {}
* h.default #=> nil
* h.default(2) #=> 20
*/
static VALUE
rb_hash_default(int argc, VALUE *argv, VALUE hash)
{
VALUE args[2], ifnone;
rb_check_arity(argc, 0, 1);
ifnone = RHASH_IFNONE(hash);
if (FL_TEST(hash, RHASH_PROC_DEFAULT)) {
if (argc == 0) return Qnil;
args[0] = hash;
args[1] = argv[0];
return rb_funcallv(ifnone, id_yield, 2, args);
}
return ifnone;
}
/*
* call-seq:
* hsh.default = obj -> obj
*
* Sets the default value, the value returned for a key that does not
* exist in the hash. It is not possible to set the default to a
* Proc that will be executed on each key lookup.
*
* h = { "a" => 100, "b" => 200 }
* h.default = "Go fish"
* h["a"] #=> 100
* h["z"] #=> "Go fish"
* # This doesn't do what you might hope...
* h.default = proc do |hash, key|
* hash[key] = key + key
* end
* h[2] #=> #<Proc:0x401b3948@-:6>
* h["cat"] #=> #<Proc:0x401b3948@-:6>
*/
static VALUE
rb_hash_set_default(VALUE hash, VALUE ifnone)
{
rb_hash_modify_check(hash);
SET_DEFAULT(hash, ifnone);
return ifnone;
}
/*
* call-seq:
* hsh.default_proc -> anObject
*
* If Hash::new was invoked with a block, return that
* block, otherwise return <code>nil</code>.
*
* h = Hash.new {|h,k| h[k] = k*k } #=> {}
* p = h.default_proc #=> #<Proc:0x401b3d08@-:1>
* a = [] #=> []
* p.call(a, 2)
* a #=> [nil, nil, 4]
*/
static VALUE
rb_hash_default_proc(VALUE hash)
{
if (FL_TEST(hash, RHASH_PROC_DEFAULT)) {
return RHASH_IFNONE(hash);
}
return Qnil;
}
/*
* call-seq:
* hsh.default_proc = proc_obj or nil
*
* Sets the default proc to be executed on each failed key lookup.
*
* h.default_proc = proc do |hash, key|
* hash[key] = key + key
* end
* h[2] #=> 4
* h["cat"] #=> "catcat"
*/
VALUE
rb_hash_set_default_proc(VALUE hash, VALUE proc)
{
VALUE b;
rb_hash_modify_check(hash);
if (NIL_P(proc)) {
SET_DEFAULT(hash, proc);
return proc;
}
b = rb_check_convert_type_with_id(proc, T_DATA, "Proc", idTo_proc);
if (NIL_P(b) || !rb_obj_is_proc(b)) {
rb_raise(rb_eTypeError,
"wrong default_proc type %s (expected Proc)",
rb_obj_classname(proc));
}
proc = b;
SET_PROC_DEFAULT(hash, proc);
return proc;
}
static int
key_i(VALUE key, VALUE value, VALUE arg)
{
VALUE *args = (VALUE *)arg;
if (rb_equal(value, args[0])) {
args[1] = key;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.key(value) -> key
*
* Returns the key of an occurrence of a given value. If the value is
* not found, returns <code>nil</code>.
*
* h = { "a" => 100, "b" => 200, "c" => 300, "d" => 300 }
* h.key(200) #=> "b"
* h.key(300) #=> "c"
* h.key(999) #=> nil
*
*/
static VALUE
rb_hash_key(VALUE hash, VALUE value)
{
VALUE args[2];
args[0] = value;
args[1] = Qnil;
rb_hash_foreach(hash, key_i, (VALUE)args);
return args[1];
}
/* :nodoc: */
static VALUE
rb_hash_index(VALUE hash, VALUE value)
{
rb_warn("Hash#index is deprecated; use Hash#key");
return rb_hash_key(hash, value);
}
int
rb_hash_stlike_delete(VALUE hash, st_data_t *pkey, st_data_t *pval)
{
if (RHASH_AR_TABLE_P(hash)) {
return ar_delete(hash, pkey, pval);
}
else {
return st_delete(RHASH_ST_TABLE(hash), pkey, pval);
}
}
/*
* delete a specified entry a given key.
* if there is the corresponding entry, return a value of the entry.
* if there is no corresponding entry, return Qundef.
*/
VALUE
rb_hash_delete_entry(VALUE hash, VALUE key)
{
st_data_t ktmp = (st_data_t)key, val;
if (rb_hash_stlike_delete(hash, &ktmp, &val)) {
return (VALUE)val;
}
else {
return Qundef;
}
}
/*
* delete a specified entry by a given key.
* if there is the corresponding entry, return a value of the entry.
* if there is no corresponding entry, return Qnil.
*/
VALUE
rb_hash_delete(VALUE hash, VALUE key)
{
VALUE deleted_value = rb_hash_delete_entry(hash, key);
if (deleted_value != Qundef) { /* likely pass */
return deleted_value;
}
else {
return Qnil;
}
}
/*
* call-seq:
* hsh.delete(key) -> value
* hsh.delete(key) {| key | block } -> value
*
* Deletes the key-value pair and returns the value from <i>hsh</i> whose
* key is equal to <i>key</i>. If the key is not found, it returns
* <em>nil</em>. If the optional code block is given and the
* key is not found, pass in the key and return the result of
* <i>block</i>.
*
* h = { "a" => 100, "b" => 200 }
* h.delete("a") #=> 100
* h.delete("z") #=> nil
* h.delete("z") { |el| "#{el} not found" } #=> "z not found"
*
*/
static VALUE
rb_hash_delete_m(VALUE hash, VALUE key)
{
VALUE val;
rb_hash_modify_check(hash);
val = rb_hash_delete_entry(hash, key);
if (val != Qundef) {
return val;
}
else {
if (rb_block_given_p()) {
return rb_yield(key);
}
else {
return Qnil;
}
}
}
struct shift_var {
VALUE key;
VALUE val;
};
static int
shift_i_safe(VALUE key, VALUE value, VALUE arg)
{
struct shift_var *var = (struct shift_var *)arg;
var->key = key;
var->val = value;
return ST_STOP;
}
/*
* call-seq:
* hsh.shift -> anArray or obj
*
* Removes a key-value pair from <i>hsh</i> and returns it as the
* two-item array <code>[</code> <i>key, value</i> <code>]</code>, or
* the hash's default value if the hash is empty.
*
* h = { 1 => "a", 2 => "b", 3 => "c" }
* h.shift #=> [1, "a"]
* h #=> {2=>"b", 3=>"c"}
*/
static VALUE
rb_hash_shift(VALUE hash)
{
struct shift_var var;
rb_hash_modify_check(hash);
if (RHASH_AR_TABLE_P(hash)) {
var.key = Qundef;
if (RHASH_ITER_LEV(hash) == 0) {
if (ar_shift(hash, &var.key, &var.val)) {
return rb_assoc_new(var.key, var.val);
}
}
else {
rb_hash_foreach(hash, shift_i_safe, (VALUE)&var);
if (var.key != Qundef) {
rb_hash_delete_entry(hash, var.key);
return rb_assoc_new(var.key, var.val);
}
}
}
if (RHASH_ST_TABLE_P(hash)) {
var.key = Qundef;
if (RHASH_ITER_LEV(hash) == 0) {
if (st_shift(RHASH_ST_TABLE(hash), &var.key, &var.val)) {
return rb_assoc_new(var.key, var.val);
}
}
else {
rb_hash_foreach(hash, shift_i_safe, (VALUE)&var);
if (var.key != Qundef) {
rb_hash_delete_entry(hash, var.key);
return rb_assoc_new(var.key, var.val);
}
}
}
return rb_hash_default_value(hash, Qnil);
}
static int
delete_if_i(VALUE key, VALUE value, VALUE hash)
{
if (RTEST(rb_yield_values(2, key, value))) {
return ST_DELETE;
}
return ST_CONTINUE;
}
static VALUE
hash_enum_size(VALUE hash, VALUE args, VALUE eobj)
{
return rb_hash_size(hash);
}
/*
* call-seq:
* hsh.delete_if {| key, value | block } -> hsh
* hsh.delete_if -> an_enumerator
*
* Deletes every key-value pair from <i>hsh</i> for which <i>block</i>
* evaluates to <code>true</code>.
*
* If no block is given, an enumerator is returned instead.
*
* h = { "a" => 100, "b" => 200, "c" => 300 }
* h.delete_if {|key, value| key >= "b" } #=> {"a"=>100}
*
*/
VALUE
rb_hash_delete_if(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_modify_check(hash);
if (!RHASH_TABLE_EMPTY_P(hash)) {
rb_hash_foreach(hash, delete_if_i, hash);
}
return hash;
}
/*
* call-seq:
* hsh.reject! {| key, value | block } -> hsh or nil
* hsh.reject! -> an_enumerator
*
* Equivalent to Hash#delete_if, but returns
* <code>nil</code> if no changes were made.
*/
VALUE
rb_hash_reject_bang(VALUE hash)
{
st_index_t n;
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_modify(hash);
n = RHASH_SIZE(hash);
if (!n) return Qnil;
rb_hash_foreach(hash, delete_if_i, hash);
if (n == RHASH_SIZE(hash)) return Qnil;
return hash;
}
static int
reject_i(VALUE key, VALUE value, VALUE result)
{
if (!RTEST(rb_yield_values(2, key, value))) {
rb_hash_aset(result, key, value);
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.reject {|key, value| block} -> a_hash
* hsh.reject -> an_enumerator
*
* Returns a new hash consisting of entries for which the block returns false.
*
* If no block is given, an enumerator is returned instead.
*
* h = { "a" => 100, "b" => 200, "c" => 300 }
* h.reject {|k,v| k < "b"} #=> {"b" => 200, "c" => 300}
* h.reject {|k,v| v > 100} #=> {"a" => 100}
*/
VALUE
rb_hash_reject(VALUE hash)
{
VALUE result;
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
if (RTEST(ruby_verbose)) {
VALUE klass;
if (HAS_EXTRA_STATES(hash, klass)) {
rb_warn("extra states are no longer copied: %+"PRIsVALUE, hash);
}
}
result = rb_hash_new();
if (!RHASH_EMPTY_P(hash)) {
rb_hash_foreach(hash, reject_i, result);
}
return result;
}
/*
* call-seq:
* hsh.slice(*keys) -> a_hash
*
* Returns a hash containing only the given keys and their values.
*
* h = { a: 100, b: 200, c: 300 }
* h.slice(:a) #=> {:a=>100}
* h.slice(:b, :c, :d) #=> {:b=>200, :c=>300}
*/
static VALUE
rb_hash_slice(int argc, VALUE *argv, VALUE hash)
{
int i;
VALUE key, value, result;
if (argc == 0 || RHASH_EMPTY_P(hash)) {
return rb_hash_new();
}
result = rb_hash_new_with_size(argc);
for (i = 0; i < argc; i++) {
key = argv[i];
value = rb_hash_lookup2(hash, key, Qundef);
if (value != Qundef)
rb_hash_aset(result, key, value);
}
return result;
}
/*
* call-seq:
* hsh.values_at(key, ...) -> array
*
* Return an array containing the values associated with the given keys.
* Also see Hash.select.
*
* h = { "cat" => "feline", "dog" => "canine", "cow" => "bovine" }
* h.values_at("cow", "cat") #=> ["bovine", "feline"]
*/
VALUE
rb_hash_values_at(int argc, VALUE *argv, VALUE hash)
{
VALUE result = rb_ary_new2(argc);
long i;
for (i=0; i<argc; i++) {
rb_ary_push(result, rb_hash_aref(hash, argv[i]));
}
return result;
}
/*
* call-seq:
* hsh.fetch_values(key, ...) -> array
* hsh.fetch_values(key, ...) { |key| block } -> array
*
* Returns an array containing the values associated with the given keys
* but also raises KeyError when one of keys can't be found.
* Also see Hash#values_at and Hash#fetch.
*
* h = { "cat" => "feline", "dog" => "canine", "cow" => "bovine" }
*
* h.fetch_values("cow", "cat") #=> ["bovine", "feline"]
* h.fetch_values("cow", "bird") # raises KeyError
* h.fetch_values("cow", "bird") { |k| k.upcase } #=> ["bovine", "BIRD"]
*/
VALUE
rb_hash_fetch_values(int argc, VALUE *argv, VALUE hash)
{
VALUE result = rb_ary_new2(argc);
long i;
for (i=0; i<argc; i++) {
rb_ary_push(result, rb_hash_fetch(hash, argv[i]));
}
return result;
}
static int
select_i(VALUE key, VALUE value, VALUE result)
{
if (RTEST(rb_yield_values(2, key, value))) {
rb_hash_aset(result, key, value);
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.select {|key, value| block} -> a_hash
* hsh.select -> an_enumerator
* hsh.filter {|key, value| block} -> a_hash
* hsh.filter -> an_enumerator
*
* Returns a new hash consisting of entries for which the block returns true.
*
* If no block is given, an enumerator is returned instead.
*
* h = { "a" => 100, "b" => 200, "c" => 300 }
* h.select {|k,v| k > "a"} #=> {"b" => 200, "c" => 300}
* h.select {|k,v| v < 200} #=> {"a" => 100}
*
* Hash#filter is an alias for Hash#select.
*/
VALUE
rb_hash_select(VALUE hash)
{
VALUE result;
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
result = rb_hash_new();
if (!RHASH_EMPTY_P(hash)) {
rb_hash_foreach(hash, select_i, result);
}
return result;
}
static int
keep_if_i(VALUE key, VALUE value, VALUE hash)
{
if (!RTEST(rb_yield_values(2, key, value))) {
return ST_DELETE;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.select! {| key, value | block } -> hsh or nil
* hsh.select! -> an_enumerator
* hsh.filter! {| key, value | block } -> hsh or nil
* hsh.filter! -> an_enumerator
*
* Equivalent to Hash#keep_if, but returns
* +nil+ if no changes were made.
*
* Hash#filter! is an alias for Hash#select!.
*/
VALUE
rb_hash_select_bang(VALUE hash)
{
st_index_t n;
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_modify_check(hash);
n = RHASH_SIZE(hash);
if (!n) return Qnil;
rb_hash_foreach(hash, keep_if_i, hash);
if (n == RHASH_SIZE(hash)) return Qnil;
return hash;
}
/*
* call-seq:
* hsh.keep_if {| key, value | block } -> hsh
* hsh.keep_if -> an_enumerator
*
* Deletes every key-value pair from <i>hsh</i> for which <i>block</i>
* evaluates to +false+.
*
* If no block is given, an enumerator is returned instead.
*
* See also Hash#select!.
*/
VALUE
rb_hash_keep_if(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_modify_check(hash);
if (!RHASH_TABLE_EMPTY_P(hash)) {
rb_hash_foreach(hash, keep_if_i, hash);
}
return hash;
}
static int
clear_i(VALUE key, VALUE value, VALUE dummy)
{
return ST_DELETE;
}
/*
* call-seq:
* hsh.clear -> hsh
*
* Removes all key-value pairs from <i>hsh</i>.
*
* h = { "a" => 100, "b" => 200 } #=> {"a"=>100, "b"=>200}
* h.clear #=> {}
*
*/
VALUE
rb_hash_clear(VALUE hash)
{
rb_hash_modify_check(hash);
if (RHASH_ITER_LEV(hash) > 0) {
rb_hash_foreach(hash, clear_i, 0);
}
else if (RHASH_AR_TABLE_P(hash)) {
ar_clear(hash);
}
else {
st_clear(RHASH_ST_TABLE(hash));
}
return hash;
}
static int
hash_aset(st_data_t *key, st_data_t *val, struct update_arg *arg, int existing)
{
if (existing) {
arg->new_value = arg->arg;
arg->old_value = *val;
}
else {
arg->new_key = *key;
arg->new_value = arg->arg;
}
*val = arg->arg;
return ST_CONTINUE;
}
VALUE
rb_hash_key_str(VALUE key)
{
if (!RB_FL_ANY_RAW(key, FL_EXIVAR) && RBASIC_CLASS(key) == rb_cString) {
return rb_fstring(key);
}
else {
return rb_str_new_frozen(key);
}
}
static int
hash_aset_str(st_data_t *key, st_data_t *val, struct update_arg *arg, int existing)
{
if (!existing && !RB_OBJ_FROZEN(*key)) {
*key = rb_hash_key_str(*key);
}
return hash_aset(key, val, arg, existing);
}
NOINSERT_UPDATE_CALLBACK(hash_aset)
NOINSERT_UPDATE_CALLBACK(hash_aset_str)
/*
* call-seq:
* hsh[key] = value -> value
* hsh.store(key, value) -> value
*
* == Element Assignment
*
* Associates the value given by +value+ with the key given by +key+.
*
* h = { "a" => 100, "b" => 200 }
* h["a"] = 9
* h["c"] = 4
* h #=> {"a"=>9, "b"=>200, "c"=>4}
* h.store("d", 42) #=> 42
* h #=> {"a"=>9, "b"=>200, "c"=>4, "d"=>42}
*
* +key+ should not have its value changed while it is in use as a key (an
* <tt>unfrozen String</tt> passed as a key will be duplicated and frozen).
*
* a = "a"
* b = "b".freeze
* h = { a => 100, b => 200 }
* h.key(100).equal? a #=> false
* h.key(200).equal? b #=> true
*
*/
VALUE
rb_hash_aset(VALUE hash, VALUE key, VALUE val)
{
int iter_lev = RHASH_ITER_LEV(hash);
rb_hash_modify(hash);
if (RHASH_TABLE_NULL_P(hash)) {
if (iter_lev > 0) no_new_key();
ar_alloc_table(hash);
}
if (RHASH_TYPE(hash) == &identhash || rb_obj_class(key) != rb_cString) {
RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset, val);
}
else {
RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset_str, val);
}
return val;
}
/*
* call-seq:
* hsh.replace(other_hash) -> hsh
*
* Replaces the contents of <i>hsh</i> with the contents of
* <i>other_hash</i>.
*
* h = { "a" => 100, "b" => 200 }
* h.replace({ "c" => 300, "d" => 400 }) #=> {"c"=>300, "d"=>400}
*
*/
static VALUE
rb_hash_replace(VALUE hash, VALUE hash2)
{
rb_hash_modify_check(hash);
if (hash == hash2) return hash;
if (RHASH_ITER_LEV(hash) > 0) {
rb_raise(rb_eRuntimeError, "can't replace hash during iteration");
}
hash2 = to_hash(hash2);
COPY_DEFAULT(hash, hash2);
if (RHASH_AR_TABLE_P(hash)) {
if (RHASH_AR_TABLE_P(hash2)) {
ar_clear(hash);
}
else {
ar_free_and_clear_table(hash);
RHASH_ST_TABLE_SET(hash, st_init_table_with_size(RHASH_TYPE(hash2), RHASH_SIZE(hash2)));
}
}
else {
if (RHASH_AR_TABLE_P(hash2)) {
st_free_table(RHASH_ST_TABLE(hash));
RHASH_ST_CLEAR(hash);
}
else {
st_clear(RHASH_ST_TABLE(hash));
RHASH_TBL_RAW(hash)->type = RHASH_ST_TABLE(hash2)->type;
}
}
rb_hash_foreach(hash2, rb_hash_rehash_i, (VALUE)hash);
rb_gc_writebarrier_remember(hash);
return hash;
}
/*
* call-seq:
* hsh.length -> integer
* hsh.size -> integer
*
* Returns the number of key-value pairs in the hash.
*
* h = { "d" => 100, "a" => 200, "v" => 300, "e" => 400 }
* h.size #=> 4
* h.delete("a") #=> 200
* h.size #=> 3
* h.length #=> 3
*
* Hash#length is an alias for Hash#size.
*/
VALUE
rb_hash_size(VALUE hash)
{
return INT2FIX(RHASH_SIZE(hash));
}
size_t
rb_hash_size_num(VALUE hash)
{
return (long)RHASH_SIZE(hash);
}
/*
* call-seq:
* hsh.empty? -> true or false
*
* Returns <code>true</code> if <i>hsh</i> contains no key-value pairs.
*
* {}.empty? #=> true
*
*/
static VALUE
rb_hash_empty_p(VALUE hash)
{
return RHASH_EMPTY_P(hash) ? Qtrue : Qfalse;
}
static int
each_value_i(VALUE key, VALUE value, VALUE _)
{
rb_yield(value);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.each_value {| value | block } -> hsh
* hsh.each_value -> an_enumerator
*
* Calls <i>block</i> once for each key in <i>hsh</i>, passing the
* value as a parameter.
*
* If no block is given, an enumerator is returned instead.
*
* h = { "a" => 100, "b" => 200 }
* h.each_value {|value| puts value }
*
* <em>produces:</em>
*
* 100
* 200
*/
static VALUE
rb_hash_each_value(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_foreach(hash, each_value_i, 0);
return hash;
}
static int
each_key_i(VALUE key, VALUE value, VALUE _)
{
rb_yield(key);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.each_key {| key | block } -> hsh
* hsh.each_key -> an_enumerator
*
* Calls <i>block</i> once for each key in <i>hsh</i>, passing the key
* as a parameter.
*
* If no block is given, an enumerator is returned instead.
*
* h = { "a" => 100, "b" => 200 }
* h.each_key {|key| puts key }
*
* <em>produces:</em>
*
* a
* b
*/
static VALUE
rb_hash_each_key(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_foreach(hash, each_key_i, 0);
return hash;
}
static int
each_pair_i(VALUE key, VALUE value, VALUE _)
{
rb_yield(rb_assoc_new(key, value));
return ST_CONTINUE;
}
static int
each_pair_i_fast(VALUE key, VALUE value, VALUE _)
{
VALUE argv[2];
argv[0] = key;
argv[1] = value;
rb_yield_values2(2, argv);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.each {| key, value | block } -> hsh
* hsh.each_pair {| key, value | block } -> hsh
* hsh.each -> an_enumerator
* hsh.each_pair -> an_enumerator
*
* Calls <i>block</i> once for each key in <i>hsh</i>, passing the key-value
* pair as parameters.
*
* If no block is given, an enumerator is returned instead.
*
* h = { "a" => 100, "b" => 200 }
* h.each {|key, value| puts "#{key} is #{value}" }
*
* <em>produces:</em>
*
* a is 100
* b is 200
*
*/
static VALUE
rb_hash_each_pair(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
if (rb_block_arity() > 1)
rb_hash_foreach(hash, each_pair_i_fast, 0);
else
rb_hash_foreach(hash, each_pair_i, 0);
return hash;
}
static int
transform_keys_i(VALUE key, VALUE value, VALUE result)
{
VALUE new_key = rb_yield(key);
rb_hash_aset(result, new_key, value);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.transform_keys {|key| block } -> new_hash
* hsh.transform_keys -> an_enumerator
*
* Returns a new hash with the results of running the block once for
* every key.
* This method does not change the values.
*
* h = { a: 1, b: 2, c: 3 }
* h.transform_keys {|k| k.to_s } #=> { "a" => 1, "b" => 2, "c" => 3 }
* h.transform_keys(&:to_s) #=> { "a" => 1, "b" => 2, "c" => 3 }
* h.transform_keys.with_index {|k, i| "#{k}.#{i}" }
* #=> { "a.0" => 1, "b.1" => 2, "c.2" => 3 }
*
* If no block is given, an enumerator is returned instead.
*/
static VALUE
rb_hash_transform_keys(VALUE hash)
{
VALUE result;
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
result = rb_hash_new();
if (!RHASH_EMPTY_P(hash)) {
rb_hash_foreach(hash, transform_keys_i, result);
}
return result;
}
static VALUE rb_hash_flatten(int argc, VALUE *argv, VALUE hash);
/*
* call-seq:
* hsh.transform_keys! {|key| block } -> hsh
* hsh.transform_keys! -> an_enumerator
*
* Invokes the given block once for each key in <i>hsh</i>, replacing it
* with the new key returned by the block, and then returns <i>hsh</i>.
* This method does not change the values.
*
* h = { a: 1, b: 2, c: 3 }
* h.transform_keys! {|k| k.to_s } #=> { "a" => 1, "b" => 2, "c" => 3 }
* h.transform_keys!(&:to_sym) #=> { a: 1, b: 2, c: 3 }
* h.transform_keys!.with_index {|k, i| "#{k}.#{i}" }
* #=> { "a.0" => 1, "b.1" => 2, "c.2" => 3 }
*
* If no block is given, an enumerator is returned instead.
*/
static VALUE
rb_hash_transform_keys_bang(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_modify_check(hash);
if (!RHASH_TABLE_EMPTY_P(hash)) {
long i;
VALUE pairs = rb_hash_flatten(0, NULL, hash);
rb_hash_clear(hash);
for (i = 0; i < RARRAY_LEN(pairs); i += 2) {
VALUE key = RARRAY_AREF(pairs, i), new_key = rb_yield(key),
val = RARRAY_AREF(pairs, i+1);
rb_hash_aset(hash, new_key, val);
}
}
return hash;
}
static int
transform_values_foreach_func(st_data_t key, st_data_t value, st_data_t argp, int error)
{
return ST_REPLACE;
}
static int
transform_values_foreach_replace(st_data_t *key, st_data_t *value, st_data_t argp, int existing)
{
VALUE new_value = rb_yield((VALUE)*value);
*value = new_value;
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.transform_values {|value| block } -> new_hash
* hsh.transform_values -> an_enumerator
*
* Returns a new hash with the results of running the block once for
* every value.
* This method does not change the keys.
*
* h = { a: 1, b: 2, c: 3 }
* h.transform_values {|v| v * v + 1 } #=> { a: 2, b: 5, c: 10 }
* h.transform_values(&:to_s) #=> { a: "1", b: "2", c: "3" }
* h.transform_values.with_index {|v, i| "#{v}.#{i}" }
* #=> { a: "1.0", b: "2.1", c: "3.2" }
*
* If no block is given, an enumerator is returned instead.
*/
static VALUE
rb_hash_transform_values(VALUE hash)
{
VALUE result;
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
result = hash_dup(hash, rb_cHash, 0);
if (!RHASH_EMPTY_P(hash)) {
rb_hash_stlike_foreach_with_replace(result, transform_values_foreach_func, transform_values_foreach_replace, 0);
}
return result;
}
/*
* call-seq:
* hsh.transform_values! {|value| block } -> hsh
* hsh.transform_values! -> an_enumerator
*
* Invokes the given block once for each value in <i>hsh</i>, replacing it
* with the new value returned by the block, and then returns <i>hsh</i>.
* This method does not change the keys.
*
* h = { a: 1, b: 2, c: 3 }
* h.transform_values! {|v| v * v + 1 } #=> { a: 2, b: 5, c: 10 }
* h.transform_values!(&:to_s) #=> { a: "2", b: "5", c: "10" }
* h.transform_values!.with_index {|v, i| "#{v}.#{i}" }
* #=> { a: "2.0", b: "5.1", c: "10.2" }
*
* If no block is given, an enumerator is returned instead.
*/
static VALUE
rb_hash_transform_values_bang(VALUE hash)
{
RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size);
rb_hash_modify_check(hash);
if (!RHASH_TABLE_EMPTY_P(hash)) {
rb_hash_stlike_foreach_with_replace(hash, transform_values_foreach_func, transform_values_foreach_replace, 0);
}
return hash;
}
static int
to_a_i(VALUE key, VALUE value, VALUE ary)
{
rb_ary_push(ary, rb_assoc_new(key, value));
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.to_a -> array
*
* Converts <i>hsh</i> to a nested array of <code>[</code> <i>key,
* value</i> <code>]</code> arrays.
*
* h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }
* h.to_a #=> [["c", 300], ["a", 100], ["d", 400]]
*/
static VALUE
rb_hash_to_a(VALUE hash)
{
VALUE ary;
ary = rb_ary_new_capa(RHASH_SIZE(hash));
rb_hash_foreach(hash, to_a_i, ary);
return ary;
}
static int
inspect_i(VALUE key, VALUE value, VALUE str)
{
VALUE str2;
str2 = rb_inspect(key);
if (RSTRING_LEN(str) > 1) {
rb_str_buf_cat_ascii(str, ", ");
}
else {
rb_enc_copy(str, str2);
}
rb_str_buf_append(str, str2);
rb_str_buf_cat_ascii(str, "=>");
str2 = rb_inspect(value);
rb_str_buf_append(str, str2);
return ST_CONTINUE;
}
static VALUE
inspect_hash(VALUE hash, VALUE dummy, int recur)
{
VALUE str;
if (recur) return rb_usascii_str_new2("{...}");
str = rb_str_buf_new2("{");
rb_hash_foreach(hash, inspect_i, str);
rb_str_buf_cat2(str, "}");
return str;
}
/*
* call-seq:
* hsh.to_s -> string
* hsh.inspect -> string
*
* Return the contents of this hash as a string.
*
* h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }
* h.to_s #=> "{\"c\"=>300, \"a\"=>100, \"d\"=>400}"
*/
static VALUE
rb_hash_inspect(VALUE hash)
{
if (RHASH_EMPTY_P(hash))
return rb_usascii_str_new2("{}");
return rb_exec_recursive(inspect_hash, hash, 0);
}
/*
* call-seq:
* hsh.to_hash => hsh
*
* Returns +self+.
*/
static VALUE
rb_hash_to_hash(VALUE hash)
{
return hash;
}
VALUE
rb_hash_set_pair(VALUE hash, VALUE arg)
{
VALUE pair;
pair = rb_check_array_type(arg);
if (NIL_P(pair)) {
rb_raise(rb_eTypeError, "wrong element type %s (expected array)",
rb_builtin_class_name(arg));
}
if (RARRAY_LEN(pair) != 2) {
rb_raise(rb_eArgError, "element has wrong array length (expected 2, was %ld)",
RARRAY_LEN(pair));
}
rb_hash_aset(hash, RARRAY_AREF(pair, 0), RARRAY_AREF(pair, 1));
return hash;
}
static int
to_h_i(VALUE key, VALUE value, VALUE hash)
{
rb_hash_set_pair(hash, rb_yield_values(2, key, value));
return ST_CONTINUE;
}
static VALUE
rb_hash_to_h_block(VALUE hash)
{
VALUE h = rb_hash_new_with_size(RHASH_SIZE(hash));
rb_hash_foreach(hash, to_h_i, h);
return h;
}
/*
* call-seq:
* hsh.to_h -> hsh or new_hash
* hsh.to_h {|key, value| block } -> new_hash
*
* Returns +self+. If called on a subclass of Hash, converts
* the receiver to a Hash object.
*
* If a block is given, the results of the block on each pair of
* the receiver will be used as pairs.
*/
static VALUE
rb_hash_to_h(VALUE hash)
{
if (rb_block_given_p()) {
return rb_hash_to_h_block(hash);
}
if (rb_obj_class(hash) != rb_cHash) {
const VALUE flags = RBASIC(hash)->flags;
hash = hash_dup(hash, rb_cHash, flags & RHASH_PROC_DEFAULT);
}
return hash;
}
static int
keys_i(VALUE key, VALUE value, VALUE ary)
{
rb_ary_push(ary, key);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.keys -> array
*
* Returns a new array populated with the keys from this hash. See also
* Hash#values.
*
* h = { "a" => 100, "b" => 200, "c" => 300, "d" => 400 }
* h.keys #=> ["a", "b", "c", "d"]
*
*/
MJIT_FUNC_EXPORTED VALUE
rb_hash_keys(VALUE hash)
{
st_index_t size = RHASH_SIZE(hash);
VALUE keys = rb_ary_new_capa(size);
if (size == 0) return keys;
if (ST_DATA_COMPATIBLE_P(VALUE)) {
RARRAY_PTR_USE_TRANSIENT(keys, ptr, {
if (RHASH_AR_TABLE_P(hash)) {
size = ar_keys(hash, ptr, size);
}
else {
st_table *table = RHASH_ST_TABLE(hash);
size = st_keys(table, ptr, size);
}
});
rb_gc_writebarrier_remember(keys);
rb_ary_set_len(keys, size);
}
else {
rb_hash_foreach(hash, keys_i, keys);
}
return keys;
}
static int
values_i(VALUE key, VALUE value, VALUE ary)
{
rb_ary_push(ary, value);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.values -> array
*
* Returns a new array populated with the values from <i>hsh</i>. See
* also Hash#keys.
*
* h = { "a" => 100, "b" => 200, "c" => 300 }
* h.values #=> [100, 200, 300]
*
*/
VALUE
rb_hash_values(VALUE hash)
{
VALUE values;
st_index_t size = RHASH_SIZE(hash);
values = rb_ary_new_capa(size);
if (size == 0) return values;
if (ST_DATA_COMPATIBLE_P(VALUE)) {
if (RHASH_AR_TABLE_P(hash)) {
rb_gc_writebarrier_remember(values);
RARRAY_PTR_USE_TRANSIENT(values, ptr, {
size = ar_values(hash, ptr, size);
});
}
else if (RHASH_ST_TABLE_P(hash)) {
st_table *table = RHASH_ST_TABLE(hash);
rb_gc_writebarrier_remember(values);
RARRAY_PTR_USE_TRANSIENT(values, ptr, {
size = st_values(table, ptr, size);
});
}
rb_ary_set_len(values, size);
}
else {
rb_hash_foreach(hash, values_i, values);
}
return values;
}
/*
* call-seq:
* hsh.has_key?(key) -> true or false
* hsh.include?(key) -> true or false
* hsh.key?(key) -> true or false
* hsh.member?(key) -> true or false
*
* Returns <code>true</code> if the given key is present in <i>hsh</i>.
*
* h = { "a" => 100, "b" => 200 }
* h.has_key?("a") #=> true
* h.has_key?("z") #=> false
*
* Note that #include? and #member? do not test member
* equality using <code>==</code> as do other Enumerables.
*
* See also Enumerable#include?
*/
MJIT_FUNC_EXPORTED VALUE
rb_hash_has_key(VALUE hash, VALUE key)
{
if (hash_stlike_lookup(hash, key, NULL)) {
return Qtrue;
}
else {
return Qfalse;
}
}
static int
rb_hash_search_value(VALUE key, VALUE value, VALUE arg)
{
VALUE *data = (VALUE *)arg;
if (rb_equal(value, data[1])) {
data[0] = Qtrue;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.has_value?(value) -> true or false
* hsh.value?(value) -> true or false
*
* Returns <code>true</code> if the given value is present for some key
* in <i>hsh</i>.
*
* h = { "a" => 100, "b" => 200 }
* h.value?(100) #=> true
* h.value?(999) #=> false
*/
static VALUE
rb_hash_has_value(VALUE hash, VALUE val)
{
VALUE data[2];
data[0] = Qfalse;
data[1] = val;
rb_hash_foreach(hash, rb_hash_search_value, (VALUE)data);
return data[0];
}
struct equal_data {
VALUE result;
VALUE hash;
int eql;
};
static int
eql_i(VALUE key, VALUE val1, VALUE arg)
{
struct equal_data *data = (struct equal_data *)arg;
st_data_t val2;
if (!hash_stlike_lookup(data->hash, key, &val2)) {
data->result = Qfalse;
return ST_STOP;
}
else {
if (!(data->eql ? rb_eql(val1, (VALUE)val2) : (int)rb_equal(val1, (VALUE)val2))) {
data->result = Qfalse;
return ST_STOP;
}
return ST_CONTINUE;
}
}
static VALUE
recursive_eql(VALUE hash, VALUE dt, int recur)
{
struct equal_data *data;
if (recur) return Qtrue; /* Subtle! */
data = (struct equal_data*)dt;
data->result = Qtrue;
rb_hash_foreach(hash, eql_i, dt);
return data->result;
}
static VALUE
hash_equal(VALUE hash1, VALUE hash2, int eql)
{
struct equal_data data;
if (hash1 == hash2) return Qtrue;
if (!RB_TYPE_P(hash2, T_HASH)) {
if (!rb_respond_to(hash2, idTo_hash)) {
return Qfalse;
}
if (eql) {
if (rb_eql(hash2, hash1)) {
return Qtrue;
}
else {
return Qfalse;
}
}
else {
return rb_equal(hash2, hash1);
}
}
if (RHASH_SIZE(hash1) != RHASH_SIZE(hash2))
return Qfalse;
if (!RHASH_TABLE_EMPTY_P(hash1) && !RHASH_TABLE_EMPTY_P(hash2)) {
if (RHASH_TYPE(hash1) != RHASH_TYPE(hash2)) {
return Qfalse;
}
else {
data.hash = hash2;
data.eql = eql;
return rb_exec_recursive_paired(recursive_eql, hash1, hash2, (VALUE)&data);
}
}
#if 0
if (!(rb_equal(RHASH_IFNONE(hash1), RHASH_IFNONE(hash2)) &&
FL_TEST(hash1, RHASH_PROC_DEFAULT) == FL_TEST(hash2, RHASH_PROC_DEFAULT)))
return Qfalse;
#endif
return Qtrue;
}
/*
* call-seq:
* hsh == other_hash -> true or false
*
* Equality---Two hashes are equal if they each contain the same number
* of keys and if each key-value pair is equal to (according to
* Object#==) the corresponding elements in the other hash.
*
* h1 = { "a" => 1, "c" => 2 }
* h2 = { 7 => 35, "c" => 2, "a" => 1 }
* h3 = { "a" => 1, "c" => 2, 7 => 35 }
* h4 = { "a" => 1, "d" => 2, "f" => 35 }
* h1 == h2 #=> false
* h2 == h3 #=> true
* h3 == h4 #=> false
*
* The orders of each hashes are not compared.
*
* h1 = { "a" => 1, "c" => 2 }
* h2 = { "c" => 2, "a" => 1 }
* h1 == h2 #=> true
*
*/
static VALUE
rb_hash_equal(VALUE hash1, VALUE hash2)
{
return hash_equal(hash1, hash2, FALSE);
}
/*
* call-seq:
* hash.eql?(other) -> true or false
*
* Returns <code>true</code> if <i>hash</i> and <i>other</i> are
* both hashes with the same content.
* The orders of each hashes are not compared.
*/
static VALUE
rb_hash_eql(VALUE hash1, VALUE hash2)
{
return hash_equal(hash1, hash2, TRUE);
}
static int
hash_i(VALUE key, VALUE val, VALUE arg)
{
st_index_t *hval = (st_index_t *)arg;
st_index_t hdata[2];
hdata[0] = rb_hash(key);
hdata[1] = rb_hash(val);
*hval ^= st_hash(hdata, sizeof(hdata), 0);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.hash -> integer
*
* Compute a hash-code for this hash. Two hashes with the same content
* will have the same hash code (and will compare using <code>eql?</code>).
*
* See also Object#hash.
*/
static VALUE
rb_hash_hash(VALUE hash)
{
st_index_t size = RHASH_SIZE(hash);
st_index_t hval = rb_hash_start(size);
hval = rb_hash_uint(hval, (st_index_t)rb_hash_hash);
if (size) {
rb_hash_foreach(hash, hash_i, (VALUE)&hval);
}
hval = rb_hash_end(hval);
return ST2FIX(hval);
}
static int
rb_hash_invert_i(VALUE key, VALUE value, VALUE hash)
{
rb_hash_aset(hash, value, key);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.invert -> new_hash
*
* Returns a new hash created by using <i>hsh</i>'s values as keys, and
* the keys as values.
* If a key with the same value already exists in the <i>hsh</i>, then
* the last one defined will be used, the earlier value(s) will be discarded.
*
* h = { "n" => 100, "m" => 100, "y" => 300, "d" => 200, "a" => 0 }
* h.invert #=> {0=>"a", 100=>"m", 200=>"d", 300=>"y"}
*
* If there is no key with the same value, Hash#invert is involutive.
*
* h = { a: 1, b: 3, c: 4 }
* h.invert.invert == h #=> true
*
* The condition, no key with the same value, can be tested by comparing
* the size of inverted hash.
*
* # no key with the same value
* h = { a: 1, b: 3, c: 4 }
* h.size == h.invert.size #=> true
*
* # two (or more) keys has the same value
* h = { a: 1, b: 3, c: 1 }
* h.size == h.invert.size #=> false
*
*/
static VALUE
rb_hash_invert(VALUE hash)
{
VALUE h = rb_hash_new_with_size(RHASH_SIZE(hash));
rb_hash_foreach(hash, rb_hash_invert_i, h);
return h;
}
static int
rb_hash_update_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing)
{
if (existing) {
arg->old_value = *value;
arg->new_value = arg->arg;
}
else {
arg->new_key = *key;
arg->new_value = arg->arg;
}
*value = arg->arg;
return ST_CONTINUE;
}
NOINSERT_UPDATE_CALLBACK(rb_hash_update_callback)
static int
rb_hash_update_i(VALUE key, VALUE value, VALUE hash)
{
RHASH_UPDATE(hash, key, rb_hash_update_callback, value);
return ST_CONTINUE;
}
static int
rb_hash_update_block_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing)
{
VALUE newvalue = (VALUE)arg->arg;
if (existing) {
newvalue = rb_yield_values(3, (VALUE)*key, (VALUE)*value, newvalue);
arg->old_value = *value;
}
else {
arg->new_key = *key;
}
arg->new_value = newvalue;
*value = newvalue;
return ST_CONTINUE;
}
NOINSERT_UPDATE_CALLBACK(rb_hash_update_block_callback)
static int
rb_hash_update_block_i(VALUE key, VALUE value, VALUE hash)
{
RHASH_UPDATE(hash, key, rb_hash_update_block_callback, value);
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.merge!(other_hash1, other_hash2, ...) -> hsh
* hsh.update(other_hash1, other_hash2, ...) -> hsh
* hsh.merge!(other_hash1, other_hash2, ...) {|key, oldval, newval| block}
* -> hsh
* hsh.update(other_hash1, other_hash2, ...) {|key, oldval, newval| block}
* -> hsh
*
* Adds the contents of the given hashes to the receiver.
*
* If no block is given, entries with duplicate keys are overwritten
* with the values from each +other_hash+ successively,
* otherwise the value for each duplicate key is determined by
* calling the block with the key, its value in the receiver and
* its value in each +other_hash+.
*
* h1 = { "a" => 100, "b" => 200 }
* h1.merge! #=> {"a"=>100, "b"=>200}
* h1 #=> {"a"=>100, "b"=>200}
*
* h1 = { "a" => 100, "b" => 200 }
* h2 = { "b" => 246, "c" => 300 }
* h1.merge!(h2) #=> {"a"=>100, "b"=>246, "c"=>300}
* h1 #=> {"a"=>100, "b"=>246, "c"=>300}
*
* h1 = { "a" => 100, "b" => 200 }
* h2 = { "b" => 246, "c" => 300 }
* h3 = { "b" => 357, "d" => 400 }
* h1.merge!(h2, h3)
* #=> {"a"=>100, "b"=>357, "c"=>300, "d"=>400}
* h1 #=> {"a"=>100, "b"=>357, "c"=>300, "d"=>400}
*
* h1 = { "a" => 100, "b" => 200 }
* h2 = { "b" => 246, "c" => 300 }
* h3 = { "b" => 357, "d" => 400 }
* h1.merge!(h2, h3) {|key, v1, v2| v1 }
* #=> {"a"=>100, "b"=>200, "c"=>300, "d"=>400}
* h1 #=> {"a"=>100, "b"=>200, "c"=>300, "d"=>400}
*
* Hash#update is an alias for Hash#merge!.
*/
static VALUE
rb_hash_update(int argc, VALUE *argv, VALUE self)
{
int i;
bool block_given = rb_block_given_p();
rb_hash_modify(self);
for (i = 0; i < argc; i++){
VALUE hash = to_hash(argv[i]);
if (block_given) {
rb_hash_foreach(hash, rb_hash_update_block_i, self);
}
else {
rb_hash_foreach(hash, rb_hash_update_i, self);
}
}
return self;
}
struct update_func_arg {
VALUE hash;
VALUE value;
rb_hash_update_func *func;
};
static int
rb_hash_update_func_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing)
{
struct update_func_arg *uf_arg = (struct update_func_arg *)arg->arg;
VALUE newvalue = uf_arg->value;
if (existing) {
newvalue = (*uf_arg->func)((VALUE)*key, (VALUE)*value, newvalue);
arg->old_value = *value;
}
else {
arg->new_key = *key;
}
arg->new_value = newvalue;
*value = newvalue;
return ST_CONTINUE;
}
NOINSERT_UPDATE_CALLBACK(rb_hash_update_func_callback)
static int
rb_hash_update_func_i(VALUE key, VALUE value, VALUE arg0)
{
struct update_func_arg *arg = (struct update_func_arg *)arg0;
VALUE hash = arg->hash;
arg->value = value;
RHASH_UPDATE(hash, key, rb_hash_update_func_callback, (VALUE)arg);
return ST_CONTINUE;
}
VALUE
rb_hash_update_by(VALUE hash1, VALUE hash2, rb_hash_update_func *func)
{
rb_hash_modify(hash1);
hash2 = to_hash(hash2);
if (func) {
struct update_func_arg arg;
arg.hash = hash1;
arg.func = func;
rb_hash_foreach(hash2, rb_hash_update_func_i, (VALUE)&arg);
}
else {
rb_hash_foreach(hash2, rb_hash_update_i, hash1);
}
return hash1;
}
/*
* call-seq:
* hsh.merge(other_hash1, other_hash2, ...) -> new_hash
* hsh.merge(other_hash1, other_hash2, ...) {|key, oldval, newval| block}
* -> new_hash
*
* Returns a new hash that combines the contents of the receiver and
* the contents of the given hashes.
*
* If no block is given, entries with duplicate keys are overwritten
* with the values from each +other_hash+ successively,
* otherwise the value for each duplicate key is determined by
* calling the block with the key, its value in the receiver and
* its value in each +other_hash+.
*
* When called without any argument, returns a copy of the receiver.
*
* h1 = { "a" => 100, "b" => 200 }
* h2 = { "b" => 246, "c" => 300 }
* h3 = { "b" => 357, "d" => 400 }
* h1.merge #=> {"a"=>100, "b"=>200}
* h1.merge(h2) #=> {"a"=>100, "b"=>246, "c"=>300}
* h1.merge(h2, h3) #=> {"a"=>100, "b"=>357, "c"=>300, "d"=>400}
* h1.merge(h2) {|key, oldval, newval| newval - oldval}
* #=> {"a"=>100, "b"=>46, "c"=>300}
* h1.merge(h2, h3) {|key, oldval, newval| newval - oldval}
* #=> {"a"=>100, "b"=>311, "c"=>300, "d"=>400}
* h1 #=> {"a"=>100, "b"=>200}
*
*/
static VALUE
rb_hash_merge(int argc, VALUE *argv, VALUE self)
{
return rb_hash_update(argc, argv, rb_hash_dup(self));
}
static int
assoc_cmp(VALUE a, VALUE b)
{
return !RTEST(rb_equal(a, b));
}
static VALUE
lookup2_call(VALUE arg)
{
VALUE *args = (VALUE *)arg;
return rb_hash_lookup2(args[0], args[1], Qundef);
}
struct reset_hash_type_arg {
VALUE hash;
const struct st_hash_type *orighash;
};
static VALUE
reset_hash_type(VALUE arg)
{
struct reset_hash_type_arg *p = (struct reset_hash_type_arg *)arg;
HASH_ASSERT(RHASH_ST_TABLE_P(p->hash));
RHASH_ST_TABLE(p->hash)->type = p->orighash;
return Qundef;
}
static int
assoc_i(VALUE key, VALUE val, VALUE arg)
{
VALUE *args = (VALUE *)arg;
if (RTEST(rb_equal(args[0], key))) {
args[1] = rb_assoc_new(key, val);
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.assoc(obj) -> an_array or nil
*
* Searches through the hash comparing _obj_ with the key using <code>==</code>.
* Returns the key-value pair (two elements array) or +nil+
* if no match is found. See Array#assoc.
*
* h = {"colors" => ["red", "blue", "green"],
* "letters" => ["a", "b", "c" ]}
* h.assoc("letters") #=> ["letters", ["a", "b", "c"]]
* h.assoc("foo") #=> nil
*/
VALUE
rb_hash_assoc(VALUE hash, VALUE key)
{
st_table *table;
const struct st_hash_type *orighash;
VALUE args[2];
if (RHASH_EMPTY_P(hash)) return Qnil;
ar_force_convert_table(hash, __FILE__, __LINE__);
HASH_ASSERT(RHASH_ST_TABLE_P(hash));
table = RHASH_ST_TABLE(hash);
orighash = table->type;
if (orighash != &identhash) {
VALUE value;
struct reset_hash_type_arg ensure_arg;
struct st_hash_type assochash;
assochash.compare = assoc_cmp;
assochash.hash = orighash->hash;
table->type = &assochash;
args[0] = hash;
args[1] = key;
ensure_arg.hash = hash;
ensure_arg.orighash = orighash;
value = rb_ensure(lookup2_call, (VALUE)&args, reset_hash_type, (VALUE)&ensure_arg);
if (value != Qundef) return rb_assoc_new(key, value);
}
args[0] = key;
args[1] = Qnil;
rb_hash_foreach(hash, assoc_i, (VALUE)args);
return args[1];
}
static int
rassoc_i(VALUE key, VALUE val, VALUE arg)
{
VALUE *args = (VALUE *)arg;
if (RTEST(rb_equal(args[0], val))) {
args[1] = rb_assoc_new(key, val);
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hash.rassoc(obj) -> an_array or nil
*
* Searches through the hash comparing _obj_ with the value using <code>==</code>.
* Returns the first key-value pair (two-element array) that matches. See
* also Array#rassoc.
*
* a = {1=> "one", 2 => "two", 3 => "three", "ii" => "two"}
* a.rassoc("two") #=> [2, "two"]
* a.rassoc("four") #=> nil
*/
VALUE
rb_hash_rassoc(VALUE hash, VALUE obj)
{
VALUE args[2];
args[0] = obj;
args[1] = Qnil;
rb_hash_foreach(hash, rassoc_i, (VALUE)args);
return args[1];
}
static int
flatten_i(VALUE key, VALUE val, VALUE ary)
{
VALUE pair[2];
pair[0] = key;
pair[1] = val;
rb_ary_cat(ary, pair, 2);
return ST_CONTINUE;
}
/*
* call-seq:
* hash.flatten -> an_array
* hash.flatten(level) -> an_array
*
* Returns a new array that is a one-dimensional flattening of this
* hash. That is, for every key or value that is an array, extract
* its elements into the new array. Unlike Array#flatten, this
* method does not flatten recursively by default. The optional
* <i>level</i> argument determines the level of recursion to flatten.
*
* a = {1=> "one", 2 => [2,"two"], 3 => "three"}
* a.flatten # => [1, "one", 2, [2, "two"], 3, "three"]
* a.flatten(2) # => [1, "one", 2, 2, "two", 3, "three"]
*/
static VALUE
rb_hash_flatten(int argc, VALUE *argv, VALUE hash)
{
VALUE ary;
rb_check_arity(argc, 0, 1);
if (argc) {
int level = NUM2INT(argv[0]);
if (level == 0) return rb_hash_to_a(hash);
ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2);
rb_hash_foreach(hash, flatten_i, ary);
level--;
if (level > 0) {
VALUE ary_flatten_level = INT2FIX(level);
rb_funcallv(ary, id_flatten_bang, 1, &ary_flatten_level);
}
else if (level < 0) {
/* flatten recursively */
rb_funcallv(ary, id_flatten_bang, 0, 0);
}
}
else {
ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2);
rb_hash_foreach(hash, flatten_i, ary);
}
return ary;
}
static int
delete_if_nil(VALUE key, VALUE value, VALUE hash)
{
if (NIL_P(value)) {
return ST_DELETE;
}
return ST_CONTINUE;
}
static int
set_if_not_nil(VALUE key, VALUE value, VALUE hash)
{
if (!NIL_P(value)) {
rb_hash_aset(hash, key, value);
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.compact -> new_hash
*
* Returns a new hash with the nil values/key pairs removed
*
* h = { a: 1, b: false, c: nil }
* h.compact #=> { a: 1, b: false }
* h #=> { a: 1, b: false, c: nil }
*
*/
static VALUE
rb_hash_compact(VALUE hash)
{
VALUE result = rb_hash_new();
if (!RHASH_EMPTY_P(hash)) {
rb_hash_foreach(hash, set_if_not_nil, result);
}
return result;
}
/*
* call-seq:
* hsh.compact! -> hsh or nil
*
* Removes all nil values from the hash.
* Returns nil if no changes were made, otherwise returns the hash.
*
* h = { a: 1, b: false, c: nil }
* h.compact! #=> { a: 1, b: false }
*
*/
static VALUE
rb_hash_compact_bang(VALUE hash)
{
st_index_t n;
rb_hash_modify_check(hash);
n = RHASH_SIZE(hash);
if (n) {
rb_hash_foreach(hash, delete_if_nil, hash);
if (n != RHASH_SIZE(hash))
return hash;
}
return Qnil;
}
static st_table *rb_init_identtable_with_size(st_index_t size);
/*
* call-seq:
* hsh.compare_by_identity -> hsh
*
* Makes <i>hsh</i> compare its keys by their identity, i.e. it
* will consider exact same objects as same keys.
*
* h1 = { "a" => 100, "b" => 200, :c => "c" }
* h1["a"] #=> 100
* h1.compare_by_identity
* h1.compare_by_identity? #=> true
* h1["a".dup] #=> nil # different objects.
* h1[:c] #=> "c" # same symbols are all same.
*
*/
static VALUE
rb_hash_compare_by_id(VALUE hash)
{
VALUE tmp;
st_table *identtable;
if (rb_hash_compare_by_id_p(hash)) return hash;
rb_hash_modify_check(hash);
ar_force_convert_table(hash, __FILE__, __LINE__);
HASH_ASSERT(RHASH_ST_TABLE_P(hash));
tmp = hash_alloc(0);
identtable = rb_init_identtable_with_size(RHASH_SIZE(hash));
RHASH_ST_TABLE_SET(tmp, identtable);
rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp);
st_free_table(RHASH_ST_TABLE(hash));
RHASH_ST_TABLE_SET(hash, identtable);
RHASH_ST_CLEAR(tmp);
rb_gc_force_recycle(tmp);
return hash;
}
/*
* call-seq:
* hsh.compare_by_identity? -> true or false
*
* Returns <code>true</code> if <i>hsh</i> will compare its keys by
* their identity. Also see Hash#compare_by_identity.
*
*/
MJIT_FUNC_EXPORTED VALUE
rb_hash_compare_by_id_p(VALUE hash)
{
if (RHASH_ST_TABLE_P(hash) && RHASH_ST_TABLE(hash)->type == &identhash) {
return Qtrue;
}
else {
return Qfalse;
}
}
VALUE
rb_ident_hash_new(void)
{
VALUE hash = rb_hash_new();
RHASH_ST_TABLE_SET(hash, st_init_table(&identhash));
return hash;
}
st_table *
rb_init_identtable(void)
{
return st_init_table(&identhash);
}
static st_table *
rb_init_identtable_with_size(st_index_t size)
{
return st_init_table_with_size(&identhash, size);
}
static int
any_p_i(VALUE key, VALUE value, VALUE arg)
{
VALUE ret = rb_yield(rb_assoc_new(key, value));
if (RTEST(ret)) {
*(VALUE *)arg = Qtrue;
return ST_STOP;
}
return ST_CONTINUE;
}
static int
any_p_i_fast(VALUE key, VALUE value, VALUE arg)
{
VALUE ret = rb_yield_values(2, key, value);
if (RTEST(ret)) {
*(VALUE *)arg = Qtrue;
return ST_STOP;
}
return ST_CONTINUE;
}
static int
any_p_i_pattern(VALUE key, VALUE value, VALUE arg)
{
VALUE ret = rb_funcall(((VALUE *)arg)[1], idEqq, 1, rb_assoc_new(key, value));
if (RTEST(ret)) {
*(VALUE *)arg = Qtrue;
return ST_STOP;
}
return ST_CONTINUE;
}
/*
* call-seq:
* hsh.any? [{ |(key, value)| block }] -> true or false
* hsh.any?(pattern) -> true or false
*
* See also Enumerable#any?
*/
static VALUE
rb_hash_any_p(int argc, VALUE *argv, VALUE hash)
{
VALUE args[2];
args[0] = Qfalse;
rb_check_arity(argc, 0, 1);
if (RHASH_EMPTY_P(hash)) return Qfalse;
if (argc) {
if (rb_block_given_p()) {
rb_warn("given block not used");
}
args[1] = argv[0];
rb_hash_foreach(hash, any_p_i_pattern, (VALUE)args);
}
else {
if (!rb_block_given_p()) {
/* yields pairs, never false */
return Qtrue;
}
if (rb_block_arity() > 1)
rb_hash_foreach(hash, any_p_i_fast, (VALUE)args);
else
rb_hash_foreach(hash, any_p_i, (VALUE)args);
}
return args[0];
}
/*
* call-seq:
* hsh.dig(key, ...) -> object
*
* Extracts the nested value specified by the sequence of <i>key</i>
* objects by calling +dig+ at each step, returning +nil+ if any
* intermediate step is +nil+.
*
* h = { foo: {bar: {baz: 1}}}
*
* h.dig(:foo, :bar, :baz) #=> 1
* h.dig(:foo, :zot, :xyz) #=> nil
*
* g = { foo: [10, 11, 12] }
* g.dig(:foo, 1) #=> 11
* g.dig(:foo, 1, 0) #=> TypeError: Integer does not have #dig method
* g.dig(:foo, :bar) #=> TypeError: no implicit conversion of Symbol into Integer
*/
static VALUE
rb_hash_dig(int argc, VALUE *argv, VALUE self)
{
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
self = rb_hash_aref(self, *argv);
if (!--argc) return self;
++argv;
return rb_obj_dig(argc, argv, self, Qnil);
}
static int
hash_le_i(VALUE key, VALUE value, VALUE arg)
{
VALUE *args = (VALUE *)arg;
VALUE v = rb_hash_lookup2(args[0], key, Qundef);
if (v != Qundef && rb_equal(value, v)) return ST_CONTINUE;
args[1] = Qfalse;
return ST_STOP;
}
static VALUE
hash_le(VALUE hash1, VALUE hash2)
{
VALUE args[2];
args[0] = hash2;
args[1] = Qtrue;
rb_hash_foreach(hash1, hash_le_i, (VALUE)args);
return args[1];
}
/*
* call-seq:
* hash <= other -> true or false
*
* Returns <code>true</code> if <i>hash</i> is subset of
* <i>other</i> or equals to <i>other</i>.
*
* h1 = {a:1, b:2}
* h2 = {a:1, b:2, c:3}
* h1 <= h2 #=> true
* h2 <= h1 #=> false
* h1 <= h1 #=> true
*/
static VALUE
rb_hash_le(VALUE hash, VALUE other)
{
other = to_hash(other);
if (RHASH_SIZE(hash) > RHASH_SIZE(other)) return Qfalse;
return hash_le(hash, other);
}
/*
* call-seq:
* hash < other -> true or false
*
* Returns <code>true</code> if <i>hash</i> is subset of
* <i>other</i>.
*
* h1 = {a:1, b:2}
* h2 = {a:1, b:2, c:3}
* h1 < h2 #=> true
* h2 < h1 #=> false
* h1 < h1 #=> false
*/
static VALUE
rb_hash_lt(VALUE hash, VALUE other)
{
other = to_hash(other);
if (RHASH_SIZE(hash) >= RHASH_SIZE(other)) return Qfalse;
return hash_le(hash, other);
}
/*
* call-seq:
* hash >= other -> true or false
*
* Returns <code>true</code> if <i>other</i> is subset of
* <i>hash</i> or equals to <i>hash</i>.
*
* h1 = {a:1, b:2}
* h2 = {a:1, b:2, c:3}
* h1 >= h2 #=> false
* h2 >= h1 #=> true
* h1 >= h1 #=> true
*/
static VALUE
rb_hash_ge(VALUE hash, VALUE other)
{
other = to_hash(other);
if (RHASH_SIZE(hash) < RHASH_SIZE(other)) return Qfalse;
return hash_le(other, hash);
}
/*
* call-seq:
* hash > other -> true or false
*
* Returns <code>true</code> if <i>other</i> is subset of
* <i>hash</i>.
*
* h1 = {a:1, b:2}
* h2 = {a:1, b:2, c:3}
* h1 > h2 #=> false
* h2 > h1 #=> true
* h1 > h1 #=> false
*/
static VALUE
rb_hash_gt(VALUE hash, VALUE other)
{
other = to_hash(other);
if (RHASH_SIZE(hash) <= RHASH_SIZE(other)) return Qfalse;
return hash_le(other, hash);
}
static VALUE
hash_proc_call(RB_BLOCK_CALL_FUNC_ARGLIST(key, hash))
{
rb_check_arity(argc, 1, 1);
return rb_hash_aref(hash, *argv);
}
/*
* call-seq:
* hash.to_proc -> proc
*
* Returns a Proc which maps keys to values.
*
* h = {a:1, b:2}
* hp = h.to_proc
* hp.call(:a) #=> 1
* hp.call(:b) #=> 2
* hp.call(:c) #=> nil
* [:a, :b, :c].map(&h) #=> [1, 2, nil]
*/
static VALUE
rb_hash_to_proc(VALUE hash)
{
return rb_func_proc_new(hash_proc_call, hash);
}
static VALUE
rb_hash_deconstruct_keys(VALUE hash, VALUE keys)
{
return hash;
}
static int
add_new_i(st_data_t *key, st_data_t *val, st_data_t arg, int existing)
{
VALUE *args = (VALUE *)arg;
if (existing) return ST_STOP;
RB_OBJ_WRITTEN(args[0], Qundef, (VALUE)*key);
RB_OBJ_WRITE(args[0], (VALUE *)val, args[1]);
return ST_CONTINUE;
}
/*
* add +key+ to +val+ pair if +hash+ does not contain +key+.
* returns non-zero if +key+ was contained.
*/
int
rb_hash_add_new_element(VALUE hash, VALUE key, VALUE val)
{
st_table *tbl;
int ret = 0;
VALUE args[2];
args[0] = hash;
args[1] = val;
if (RHASH_AR_TABLE_P(hash)) {
hash_ar_table(hash);
ret = ar_update(hash, (st_data_t)key, add_new_i, (st_data_t)args);
if (ret != -1) {
return ret;
}
ar_try_convert_table(hash);
}
tbl = RHASH_TBL_RAW(hash);
return st_update(tbl, (st_data_t)key, add_new_i, (st_data_t)args);
}
static st_data_t
key_stringify(VALUE key)
{
return (rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) ?
rb_hash_key_str(key) : key;
}
static void
ar_bulk_insert(VALUE hash, long argc, const VALUE *argv)
{
long i;
for (i = 0; i < argc; ) {
st_data_t k = key_stringify(argv[i++]);
st_data_t v = argv[i++];
ar_insert(hash, k, v);
RB_OBJ_WRITTEN(hash, Qundef, k);
RB_OBJ_WRITTEN(hash, Qundef, v);
}
}
void
rb_hash_bulk_insert(long argc, const VALUE *argv, VALUE hash)
{
HASH_ASSERT(argc % 2 == 0);
if (argc > 0) {
st_index_t size = argc / 2;
if (RHASH_TABLE_NULL_P(hash)) {
if (size <= RHASH_AR_TABLE_MAX_SIZE) {
hash_ar_table(hash);
}
else {
RHASH_TBL_RAW(hash);
}
}
if (RHASH_AR_TABLE_P(hash) &&
(RHASH_AR_TABLE_SIZE(hash) + size <= RHASH_AR_TABLE_MAX_SIZE)) {
ar_bulk_insert(hash, argc, argv);
}
else {
rb_hash_bulk_insert_into_st_table(argc, argv, hash);
}
}
}
static char **origenviron;
#ifdef _WIN32
#define GET_ENVIRON(e) ((e) = rb_w32_get_environ())
#define FREE_ENVIRON(e) rb_w32_free_environ(e)
static char **my_environ;
#undef environ
#define environ my_environ
#undef getenv
static char *(*w32_getenv)(const char*);
static char *
w32_getenv_unknown(const char *name)
{
char *(*func)(const char*);
if (rb_locale_encindex() == rb_ascii8bit_encindex()) {
func = rb_w32_getenv;
}
else {
func = rb_w32_ugetenv;
}
/* atomic assignment in flat memory model */
return (w32_getenv = func)(name);
}
static char *(*w32_getenv)(const char*) = w32_getenv_unknown;
#define getenv(n) w32_getenv(n)
#elif defined(__APPLE__)
#undef environ
#define environ (*_NSGetEnviron())
#define GET_ENVIRON(e) (e)
#define FREE_ENVIRON(e)
#else
extern char **environ;
#define GET_ENVIRON(e) (e)
#define FREE_ENVIRON(e)
#endif
#ifdef ENV_IGNORECASE
#define ENVMATCH(s1, s2) (STRCASECMP((s1), (s2)) == 0)
#define ENVNMATCH(s1, s2, n) (STRNCASECMP((s1), (s2), (n)) == 0)
#else
#define ENVMATCH(n1, n2) (strcmp((n1), (n2)) == 0)
#define ENVNMATCH(s1, s2, n) (memcmp((s1), (s2), (n)) == 0)
#endif
static VALUE
env_enc_str_new(const char *ptr, long len, rb_encoding *enc)
{
#ifdef _WIN32
rb_encoding *internal = rb_default_internal_encoding();
const int ecflags = ECONV_INVALID_REPLACE | ECONV_UNDEF_REPLACE;
rb_encoding *utf8 = rb_utf8_encoding();
VALUE str = rb_enc_str_new(NULL, 0, (internal ? internal : enc));
if (NIL_P(rb_str_cat_conv_enc_opts(str, 0, ptr, len, utf8, ecflags, Qnil))) {
rb_str_initialize(str, ptr, len, NULL);
}
#else
VALUE str = rb_external_str_new_with_enc(ptr, len, enc);
#endif
rb_obj_freeze(str);
return str;
}
static VALUE
env_enc_str_new_cstr(const char *ptr, rb_encoding *enc)
{
return env_enc_str_new(ptr, strlen(ptr), enc);
}
static VALUE
env_str_new(const char *ptr, long len)
{
return env_enc_str_new(ptr, len, rb_locale_encoding());
}
static VALUE
env_str_new2(const char *ptr)
{
if (!ptr) return Qnil;
return env_str_new(ptr, strlen(ptr));
}
static const char TZ_ENV[] = "TZ";
extern bool ruby_tz_uptodate_p;
static rb_encoding *
env_encoding_for(const char *name, const char *ptr)
{
if (ENVMATCH(name, PATH_ENV)) {
return rb_filesystem_encoding();
}
else {
return rb_locale_encoding();
}
}
static VALUE
env_name_new(const char *name, const char *ptr)
{
return env_enc_str_new_cstr(ptr, env_encoding_for(name, ptr));
}
static void *
get_env_cstr(
#ifdef _WIN32
volatile VALUE *pstr,
#else
VALUE str,
#endif
const char *name)
{
#ifdef _WIN32
VALUE str = *pstr;
#endif
char *var;
rb_encoding *enc = rb_enc_get(str);
if (!rb_enc_asciicompat(enc)) {
rb_raise(rb_eArgError, "bad environment variable %s: ASCII incompatible encoding: %s",
name, rb_enc_name(enc));
}
#ifdef _WIN32
if (!rb_enc_str_asciionly_p(str)) {
*pstr = str = rb_str_conv_enc(str, NULL, rb_utf8_encoding());
}
#endif
var = RSTRING_PTR(str);
if (memchr(var, '\0', RSTRING_LEN(str))) {
rb_raise(rb_eArgError, "bad environment variable %s: contains null byte", name);
}
return rb_str_fill_terminator(str, 1); /* ASCII compatible */
}
#ifdef _WIN32
#define get_env_ptr(var, val) \
(var = get_env_cstr(&(val), #var))
#else
#define get_env_ptr(var, val) \
(var = get_env_cstr(val, #var))
#endif
static inline const char *
env_name(volatile VALUE *s)
{
const char *name;
SafeStringValue(*s);
get_env_ptr(name, *s);
return name;
}
#define env_name(s) env_name(&(s))
static VALUE env_aset(VALUE nm, VALUE val);
static VALUE
env_delete(VALUE name)
{
const char *nam, *val;
nam = env_name(name);
val = getenv(nam);
if (val) {
VALUE value = env_str_new2(val);
ruby_setenv(nam, 0);
if (ENVMATCH(nam, PATH_ENV)) {
RB_GC_GUARD(name);
}
else if (ENVMATCH(nam, TZ_ENV)) {
ruby_tz_uptodate_p = FALSE;
}
return value;
}
return Qnil;
}
/*
* call-seq:
* ENV.delete(name) -> value
* ENV.delete(name) { |name| block } -> value
*
* Deletes the environment variable with +name+ if it exists and returns its value:
* ENV['foo'] = '0'
* ENV.delete('foo') # => '0'
* Returns +nil+ if the named environment variable does not exist:
* ENV.delete('foo') # => nil
* If a block given and the environment variable does not exist,
* yields +name+ to the block and returns +nil+:
* ENV.delete('foo') { |name| puts name } # => nil
* foo
* If a block given and the environment variable exists,
* deletes the environment variable and returns its value (ignoring the block):
* ENV['foo'] = '0'
* ENV.delete('foo') { |name| fail 'ignored' } # => "0"
* Raises TypeError if +name+ is not a String and cannot be coerced with \#to_str:
* ENV.delete(Object.new) # => TypeError raised
*/
static VALUE
env_delete_m(VALUE obj, VALUE name)
{
VALUE val;
val = env_delete(name);
if (NIL_P(val) && rb_block_given_p()) rb_yield(name);
return val;
}
/*
* call-seq:
* ENV[name] -> value
*
* Returns the value for the environment variable +name+ if it exists:
* ENV['foo'] = 'bar'
* ENV['foo'] # => "bar"
* Returns nil if the named variable does not exist:
* ENV.delete('foo')
* ENV['foo'] # => nil
* Raises TypeError if +name+ is not a String and cannot be coerced with \#to_str:
* ENV.delete(Object.new) # => TypeError raised
*/
static VALUE
rb_f_getenv(VALUE obj, VALUE name)
{
const char *nam, *env;
nam = env_name(name);
env = getenv(nam);
if (env) {
return env_name_new(nam, env);
}
return Qnil;
}
/*
* call-seq:
* ENV.fetch(name) -> value
* ENV.fetch(name, default) -> value
* ENV.fetch(name) { |name| block } -> value
*
* If +name+ is the name of an environment variable, returns its value:
* ENV['foo'] = 'bar'
* ENV.fetch('foo') # => "bar"
* Otherwise if a block is given (but not a default value),
* yields +name+ to the block and returns the block's return value:
* ENV.fetch('foo') { |name| :need_not_return_a_string } # => :need_not_return_a_string
* Otherwise if a default value is given (but not a block), returns the default value:
* ENV.delete('foo')
* ENV.fetch('foo', :default_need_not_be_a_string) # => :default_need_not_be_a_string
* If the environment variable does not exist and both default and block are given,
* issues a warning ("warning: block supersedes default value argument"),
* yields +name+ to the block, and returns the block's return value:
* ENV.fetch('foo', :default) { |name| :block_return } # => :block_return
* Raises TypeError if +name+ is not a String and cannot be coerced with \#to_str:
* ENV.delete(Object.new) # => TypeError raised
* Raises KeyError if +name+ is a String, but is not found,
* and neither default value nor block is given:
* ENV.fetch('foo') # => KeyError raised
*/
static VALUE
env_fetch(int argc, VALUE *argv, VALUE _)
{
VALUE key;
long block_given;
const char *nam, *env;
rb_check_arity(argc, 1, 2);
key = argv[0];
block_given = rb_block_given_p();
if (block_given && argc == 2) {
rb_warn("block supersedes default value argument");
}
nam = env_name(key);
env = getenv(nam);
if (!env) {
if (block_given) return rb_yield(key);
if (argc == 1) {
rb_key_err_raise(rb_sprintf("key not found: \"%"PRIsVALUE"\"", key), envtbl, key);
}
return argv[1];
}
return env_name_new(nam, env);
}
int
rb_env_path_tainted(void)
{
rb_warning("rb_env_path_tainted is deprecated and will be removed in Ruby 3.2.");
return 0;
}
#if defined(_WIN32) || (defined(HAVE_SETENV) && defined(HAVE_UNSETENV))
#elif defined __sun
static int
in_origenv(const char *str)
{
char **env;
for (env = origenviron; *env; ++env) {
if (*env == str) return 1;
}
return 0;
}
#else
static int
envix(const char *nam)
{
register int i, len = strlen(nam);
char **env;
env = GET_ENVIRON(environ);
for (i = 0; env[i]; i++) {
if (ENVNMATCH(env[i],nam,len) && env[i][len] == '=')
break; /* memcmp must come first to avoid */
} /* potential SEGV's */
FREE_ENVIRON(environ);
return i;
}
#endif
#if defined(_WIN32)
static size_t
getenvsize(const WCHAR* p)
{
const WCHAR* porg = p;
while (*p++) p += lstrlenW(p) + 1;
return p - porg + 1;
}
static size_t
getenvblocksize(void)
{
#ifdef _MAX_ENV
return _MAX_ENV;
#else
return 32767;
#endif
}
static int
check_envsize(size_t n)
{
if (_WIN32_WINNT < 0x0600 && rb_w32_osver() < 6) {
/* https://msdn.microsoft.com/en-us/library/windows/desktop/ms682653(v=vs.85).aspx */
/* Windows Server 2003 and Windows XP: The maximum size of the
* environment block for the process is 32,767 characters. */
WCHAR* p = GetEnvironmentStringsW();
if (!p) return -1; /* never happen */
n += getenvsize(p);
FreeEnvironmentStringsW(p);
if (n >= getenvblocksize()) {
return -1;
}
}
return 0;
}
#endif
#if defined(_WIN32) || \
(defined(__sun) && !(defined(HAVE_SETENV) && defined(HAVE_UNSETENV)))
NORETURN(static void invalid_envname(const char *name));
static void
invalid_envname(const char *name)
{
rb_syserr_fail_str(EINVAL, rb_sprintf("ruby_setenv(%s)", name));
}
static const char *
check_envname(const char *name)
{
if (strchr(name, '=')) {
invalid_envname(name);
}
return name;
}
#endif
void
ruby_setenv(const char *name, const char *value)
{
#if defined(_WIN32)
# if defined(MINGW_HAS_SECURE_API) || RUBY_MSVCRT_VERSION >= 80
# define HAVE__WPUTENV_S 1
# endif
VALUE buf;
WCHAR *wname;
WCHAR *wvalue = 0;
int failed = 0;
int len;
check_envname(name);
len = MultiByteToWideChar(CP_UTF8, 0, name, -1, NULL, 0);
if (value) {
int len2;
len2 = MultiByteToWideChar(CP_UTF8, 0, value, -1, NULL, 0);
if (check_envsize((size_t)len + len2)) { /* len and len2 include '\0' */
goto fail; /* 2 for '=' & '\0' */
}
wname = ALLOCV_N(WCHAR, buf, len + len2);
wvalue = wname + len;
MultiByteToWideChar(CP_UTF8, 0, name, -1, wname, len);
MultiByteToWideChar(CP_UTF8, 0, value, -1, wvalue, len2);
#ifndef HAVE__WPUTENV_S
wname[len-1] = L'=';
#endif
}
else {
wname = ALLOCV_N(WCHAR, buf, len + 1);
MultiByteToWideChar(CP_UTF8, 0, name, -1, wname, len);
wvalue = wname + len;
*wvalue = L'\0';
#ifndef HAVE__WPUTENV_S
wname[len-1] = L'=';
#endif
}
#ifndef HAVE__WPUTENV_S
failed = _wputenv(wname);
#else
failed = _wputenv_s(wname, wvalue);
#endif
ALLOCV_END(buf);
/* even if putenv() failed, clean up and try to delete the
* variable from the system area. */
if (!value || !*value) {
/* putenv() doesn't handle empty value */
if (!SetEnvironmentVariable(name, value) &&
GetLastError() != ERROR_ENVVAR_NOT_FOUND) goto fail;
}
if (failed) {
fail:
invalid_envname(name);
}
#elif defined(HAVE_SETENV) && defined(HAVE_UNSETENV)
if (value) {
if (setenv(name, value, 1))
rb_sys_fail_str(rb_sprintf("setenv(%s)", name));
}
else {
#ifdef VOID_UNSETENV
unsetenv(name);
#else
if (unsetenv(name))
rb_sys_fail_str(rb_sprintf("unsetenv(%s)", name));
#endif
}
#elif defined __sun
/* Solaris 9 (or earlier) does not have setenv(3C) and unsetenv(3C). */
/* The below code was tested on Solaris 10 by:
% ./configure ac_cv_func_setenv=no ac_cv_func_unsetenv=no
*/
size_t len, mem_size;
char **env_ptr, *str, *mem_ptr;
check_envname(name);
len = strlen(name);
if (value) {
mem_size = len + strlen(value) + 2;
mem_ptr = malloc(mem_size);
if (mem_ptr == NULL)
rb_sys_fail_str(rb_sprintf("malloc("PRIuSIZE")", mem_size));
snprintf(mem_ptr, mem_size, "%s=%s", name, value);
}
for (env_ptr = GET_ENVIRON(environ); (str = *env_ptr) != 0; ++env_ptr) {
if (!strncmp(str, name, len) && str[len] == '=') {
if (!in_origenv(str)) free(str);
while ((env_ptr[0] = env_ptr[1]) != 0) env_ptr++;
break;
}
}
if (value) {
if (putenv(mem_ptr)) {
free(mem_ptr);
rb_sys_fail_str(rb_sprintf("putenv(%s)", name));
}
}
#else /* WIN32 */
size_t len;
int i;
i=envix(name); /* where does it go? */
if (environ == origenviron) { /* need we copy environment? */
int j;
int max;
char **tmpenv;
for (max = i; environ[max]; max++) ;
tmpenv = ALLOC_N(char*, max+2);
for (j=0; j<max; j++) /* copy environment */
tmpenv[j] = ruby_strdup(environ[j]);
tmpenv[max] = 0;
environ = tmpenv; /* tell exec where it is now */
}
if (environ[i]) {
char **envp = origenviron;
while (*envp && *envp != environ[i]) envp++;
if (!*envp)
xfree(environ[i]);
if (!value) {
while (environ[i]) {
environ[i] = environ[i+1];
i++;
}
return;
}
}
else { /* does not exist yet */
if (!value) return;
REALLOC_N(environ, char*, i+2); /* just expand it a bit */
environ[i+1] = 0; /* make sure it's null terminated */
}
len = strlen(name) + strlen(value) + 2;
environ[i] = ALLOC_N(char, len);
snprintf(environ[i],len,"%s=%s",name,value); /* all that work just for this */
#endif /* WIN32 */
}
void
ruby_unsetenv(const char *name)
{
ruby_setenv(name, 0);
}
/*
* call-seq:
* ENV[name] = value
* ENV.store(name, value) -> value
*
* Sets the environment variable +name+ to +value+. If the value given is
* +nil+ the environment variable is deleted.
* +name+ must be a string.
*
*/
static VALUE
env_aset_m(VALUE obj, VALUE nm, VALUE val)
{
return env_aset(nm, val);
}
static VALUE
env_aset(VALUE nm, VALUE val)
{
char *name, *value;
if (NIL_P(val)) {
env_delete(nm);
return Qnil;
}
SafeStringValue(nm);
SafeStringValue(val);
/* nm can be modified in `val.to_str`, don't get `name` before
* check for `val` */
get_env_ptr(name, nm);
get_env_ptr(value, val);
ruby_setenv(name, value);
if (ENVMATCH(name, PATH_ENV)) {
RB_GC_GUARD(nm);
}
else if (ENVMATCH(name, TZ_ENV)) {
ruby_tz_uptodate_p = FALSE;
}
return val;
}
static VALUE
env_keys(void)
{
char **env;
VALUE ary;
ary = rb_ary_new();
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_ary_push(ary, env_str_new(*env, s-*env));
}
env++;
}
FREE_ENVIRON(environ);
return ary;
}
/*
* call-seq:
* ENV.keys -> Array
*
* Returns every environment variable name in an Array
*/
static VALUE
env_f_keys(VALUE _)
{
return env_keys();
}
static VALUE
rb_env_size(VALUE ehash, VALUE args, VALUE eobj)
{
char **env;
long cnt = 0;
env = GET_ENVIRON(environ);
for (; *env ; ++env) {
if (strchr(*env, '=')) {
cnt++;
}
}
FREE_ENVIRON(environ);
return LONG2FIX(cnt);
}
/*
* call-seq:
* ENV.each_key { |name| block } -> ENV
* ENV.each_key -> Enumerator
*
* Yields each environment variable name.
*
* An Enumerator is returned if no block is given.
*/
static VALUE
env_each_key(VALUE ehash)
{
VALUE keys;
long i;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
keys = env_keys();
for (i=0; i<RARRAY_LEN(keys); i++) {
rb_yield(RARRAY_AREF(keys, i));
}
return ehash;
}
static VALUE
env_values(void)
{
VALUE ary;
char **env;
ary = rb_ary_new();
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_ary_push(ary, env_str_new2(s+1));
}
env++;
}
FREE_ENVIRON(environ);
return ary;
}
/*
* call-seq:
* ENV.values -> Array
*
* Returns every environment variable value as an Array
*/
static VALUE
env_f_values(VALUE _)
{
return env_values();
}
/*
* call-seq:
* ENV.each_value { |value| block } -> ENV
* ENV.each_value -> Enumerator
*
* Yields each environment variable +value+.
*
* An Enumerator is returned if no block was given.
*/
static VALUE
env_each_value(VALUE ehash)
{
VALUE values;
long i;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
values = env_values();
for (i=0; i<RARRAY_LEN(values); i++) {
rb_yield(RARRAY_AREF(values, i));
}
return ehash;
}
/*
* call-seq:
* ENV.each { |name, value| block } -> ENV
* ENV.each -> Enumerator
* ENV.each_pair { |name, value| block } -> ENV
* ENV.each_pair -> Enumerator
*
* Yields each environment variable +name+ and +value+.
*
* If no block is given an Enumerator is returned.
*/
static VALUE
env_each_pair(VALUE ehash)
{
char **env;
VALUE ary;
long i;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
ary = rb_ary_new();
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_ary_push(ary, env_str_new(*env, s-*env));
rb_ary_push(ary, env_str_new2(s+1));
}
env++;
}
FREE_ENVIRON(environ);
if (rb_block_arity() > 1) {
for (i=0; i<RARRAY_LEN(ary); i+=2) {
rb_yield_values(2, RARRAY_AREF(ary, i), RARRAY_AREF(ary, i+1));
}
}
else {
for (i=0; i<RARRAY_LEN(ary); i+=2) {
rb_yield(rb_assoc_new(RARRAY_AREF(ary, i), RARRAY_AREF(ary, i+1)));
}
}
return ehash;
}
/*
* call-seq:
* ENV.reject! { |name, value| block } -> ENV or nil
* ENV.reject! -> Enumerator
*
* Equivalent to ENV.delete_if but returns +nil+ if no changes were made.
*
* Returns an Enumerator if no block was given.
*/
static VALUE
env_reject_bang(VALUE ehash)
{
VALUE keys;
long i;
int del = 0;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
keys = env_keys();
RBASIC_CLEAR_CLASS(keys);
for (i=0; i<RARRAY_LEN(keys); i++) {
VALUE val = rb_f_getenv(Qnil, RARRAY_AREF(keys, i));
if (!NIL_P(val)) {
if (RTEST(rb_yield_values(2, RARRAY_AREF(keys, i), val))) {
env_delete(RARRAY_AREF(keys, i));
del++;
}
}
}
RB_GC_GUARD(keys);
if (del == 0) return Qnil;
return envtbl;
}
/*
* call-seq:
* ENV.delete_if { |name, value| block } -> ENV
* ENV.delete_if -> Enumerator
*
* Deletes every environment variable for which the block evaluates to +true+.
*
* If no block is given an enumerator is returned instead.
*/
static VALUE
env_delete_if(VALUE ehash)
{
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
env_reject_bang(ehash);
return envtbl;
}
/*
* call-seq:
* ENV.values_at(name, ...) -> Array
*
* Returns an array containing the environment variable values associated with
* the given names. See also ENV.select.
*/
static VALUE
env_values_at(int argc, VALUE *argv, VALUE _)
{
VALUE result;
long i;
result = rb_ary_new();
for (i=0; i<argc; i++) {
rb_ary_push(result, rb_f_getenv(Qnil, argv[i]));
}
return result;
}
/*
* call-seq:
* ENV.select { |name, value| block } -> Hash
* ENV.select -> Enumerator
* ENV.filter { |name, value| block } -> Hash
* ENV.filter -> Enumerator
*
* Returns a copy of the environment for entries where the block returns true.
*
* Returns an Enumerator if no block was given.
*
* ENV.filter is an alias for ENV.select.
*/
static VALUE
env_select(VALUE ehash)
{
VALUE result;
VALUE keys;
long i;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
result = rb_hash_new();
keys = env_keys();
for (i = 0; i < RARRAY_LEN(keys); ++i) {
VALUE key = RARRAY_AREF(keys, i);
VALUE val = rb_f_getenv(Qnil, key);
if (!NIL_P(val)) {
if (RTEST(rb_yield_values(2, key, val))) {
rb_hash_aset(result, key, val);
}
}
}
RB_GC_GUARD(keys);
return result;
}
/*
* call-seq:
* ENV.select! { |name, value| block } -> ENV or nil
* ENV.select! -> Enumerator
* ENV.filter! { |name, value| block } -> ENV or nil
* ENV.filter! -> Enumerator
*
* Equivalent to ENV.keep_if but returns +nil+ if no changes were made.
*
* ENV.filter! is an alias for ENV.select!.
*/
static VALUE
env_select_bang(VALUE ehash)
{
VALUE keys;
long i;
int del = 0;
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
keys = env_keys();
RBASIC_CLEAR_CLASS(keys);
for (i=0; i<RARRAY_LEN(keys); i++) {
VALUE val = rb_f_getenv(Qnil, RARRAY_AREF(keys, i));
if (!NIL_P(val)) {
if (!RTEST(rb_yield_values(2, RARRAY_AREF(keys, i), val))) {
env_delete(RARRAY_AREF(keys, i));
del++;
}
}
}
RB_GC_GUARD(keys);
if (del == 0) return Qnil;
return envtbl;
}
/*
* call-seq:
* ENV.keep_if { |name, value| block } -> ENV
* ENV.keep_if -> Enumerator
*
* Deletes every environment variable where the block evaluates to +false+.
*
* Returns an enumerator if no block was given.
*/
static VALUE
env_keep_if(VALUE ehash)
{
RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size);
env_select_bang(ehash);
return envtbl;
}
/*
* call-seq:
* ENV.slice(*keys) -> a_hash
*
* Returns a hash containing only the given keys from ENV and their values.
*
* ENV.slice("TERM","HOME") #=> {"TERM"=>"xterm-256color", "HOME"=>"/Users/rhc"}
*/
static VALUE
env_slice(int argc, VALUE *argv, VALUE _)
{
int i;
VALUE key, value, result;
if (argc == 0) {
return rb_hash_new();
}
result = rb_hash_new_with_size(argc);
for (i = 0; i < argc; i++) {
key = argv[i];
value = rb_f_getenv(Qnil, key);
if (value != Qnil)
rb_hash_aset(result, key, value);
}
return result;
}
VALUE
rb_env_clear(void)
{
VALUE keys;
long i;
keys = env_keys();
for (i=0; i<RARRAY_LEN(keys); i++) {
VALUE val = rb_f_getenv(Qnil, RARRAY_AREF(keys, i));
if (!NIL_P(val)) {
env_delete(RARRAY_AREF(keys, i));
}
}
RB_GC_GUARD(keys);
return envtbl;
}
/*
* call-seq:
* ENV.clear
*
* Removes every environment variable.
*/
static VALUE
env_clear(VALUE _)
{
return rb_env_clear();
}
/*
* call-seq:
* ENV.to_s -> "ENV"
*
* Returns "ENV"
*/
static VALUE
env_to_s(VALUE _)
{
return rb_usascii_str_new2("ENV");
}
/*
* call-seq:
* ENV.inspect -> string
*
* Returns the contents of the environment as a String.
*/
static VALUE
env_inspect(VALUE _)
{
char **env;
VALUE str, i;
str = rb_str_buf_new2("{");
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (env != environ) {
rb_str_buf_cat2(str, ", ");
}
if (s) {
rb_str_buf_cat2(str, "\"");
rb_str_buf_cat(str, *env, s-*env);
rb_str_buf_cat2(str, "\"=>");
i = rb_inspect(rb_str_new2(s+1));
rb_str_buf_append(str, i);
}
env++;
}
FREE_ENVIRON(environ);
rb_str_buf_cat2(str, "}");
return str;
}
/*
* call-seq:
* ENV.to_a -> Array
*
* Converts the environment variables into an array of names and value arrays.
*
* ENV.to_a # => [["TERM", "xterm-color"], ["SHELL", "/bin/bash"], ...]
*
*/
static VALUE
env_to_a(VALUE _)
{
char **env;
VALUE ary;
ary = rb_ary_new();
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_ary_push(ary, rb_assoc_new(env_str_new(*env, s-*env),
env_str_new2(s+1)));
}
env++;
}
FREE_ENVIRON(environ);
return ary;
}
/*
* call-seq:
* ENV.rehash
*
* Re-hashing the environment variables does nothing. It is provided for
* compatibility with Hash.
*/
static VALUE
env_none(VALUE _)
{
return Qnil;
}
/*
* call-seq:
* ENV.length
* ENV.size
*
* Returns the number of environment variables.
*/
static VALUE
env_size(VALUE _)
{
int i;
char **env;
env = GET_ENVIRON(environ);
for (i=0; env[i]; i++)
;
FREE_ENVIRON(environ);
return INT2FIX(i);
}
/*
* call-seq:
* ENV.empty? -> true or false
*
* Returns true when there are no environment variables
*/
static VALUE
env_empty_p(VALUE _)
{
char **env;
env = GET_ENVIRON(environ);
if (env[0] == 0) {
FREE_ENVIRON(environ);
return Qtrue;
}
FREE_ENVIRON(environ);
return Qfalse;
}
/*
* call-seq:
* ENV.key?(name) -> true or false
* ENV.include?(name) -> true or false
* ENV.has_key?(name) -> true or false
* ENV.member?(name) -> true or false
*
* Returns +true+ if there is an environment variable with the given +name+.
*/
static VALUE
env_has_key(VALUE env, VALUE key)
{
const char *s;
s = env_name(key);
if (getenv(s)) return Qtrue;
return Qfalse;
}
/*
* call-seq:
* ENV.assoc(name) -> Array or nil
*
* Returns an Array of the name and value of the environment variable with
* +name+ or +nil+ if the name cannot be found.
*/
static VALUE
env_assoc(VALUE env, VALUE key)
{
const char *s, *e;
s = env_name(key);
e = getenv(s);
if (e) return rb_assoc_new(key, env_str_new2(e));
return Qnil;
}
/*
* call-seq:
* ENV.value?(value) -> true or false
* ENV.has_value?(value) -> true or false
*
* Returns +true+ if there is an environment variable with the given +value+.
*/
static VALUE
env_has_value(VALUE dmy, VALUE obj)
{
char **env;
obj = rb_check_string_type(obj);
if (NIL_P(obj)) return Qnil;
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s++) {
long len = strlen(s);
if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) {
FREE_ENVIRON(environ);
return Qtrue;
}
}
env++;
}
FREE_ENVIRON(environ);
return Qfalse;
}
/*
* call-seq:
* ENV.rassoc(value)
*
* Returns an Array of the name and value of the environment variable with
* +value+ or +nil+ if the value cannot be found.
*/
static VALUE
env_rassoc(VALUE dmy, VALUE obj)
{
char **env;
obj = rb_check_string_type(obj);
if (NIL_P(obj)) return Qnil;
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s++) {
long len = strlen(s);
if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) {
VALUE result = rb_assoc_new(rb_str_new(*env, s-*env-1), obj);
FREE_ENVIRON(environ);
return result;
}
}
env++;
}
FREE_ENVIRON(environ);
return Qnil;
}
/*
* call-seq:
* ENV.key(value) -> name
*
* Returns the name of the environment variable with +value+. If the value is
* not found +nil+ is returned.
*/
static VALUE
env_key(VALUE dmy, VALUE value)
{
char **env;
VALUE str;
SafeStringValue(value);
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s++) {
long len = strlen(s);
if (RSTRING_LEN(value) == len && strncmp(s, RSTRING_PTR(value), len) == 0) {
str = env_str_new(*env, s-*env-1);
FREE_ENVIRON(environ);
return str;
}
}
env++;
}
FREE_ENVIRON(environ);
return Qnil;
}
/*
* call-seq:
* ENV.index(value) -> key
*
* Deprecated method that is equivalent to ENV.key
*/
static VALUE
env_index(VALUE dmy, VALUE value)
{
rb_warn("ENV.index is deprecated; use ENV.key");
return env_key(dmy, value);
}
static VALUE
env_to_hash(void)
{
char **env;
VALUE hash;
hash = rb_hash_new();
env = GET_ENVIRON(environ);
while (*env) {
char *s = strchr(*env, '=');
if (s) {
rb_hash_aset(hash, env_str_new(*env, s-*env),
env_str_new2(s+1));
}
env++;
}
FREE_ENVIRON(environ);
return hash;
}
/*
* call-seq:
* ENV.to_hash -> hash
*
* Creates a hash with a copy of the environment variables.
*
*/
static VALUE
env_f_to_hash(VALUE _)
{
return env_to_hash();
}
/*
* call-seq:
* ENV.to_h -> hash
* ENV.to_h {|name, value| block } -> hash
*
* Creates a hash with a copy of the environment variables.
*
*/
static VALUE
env_to_h(VALUE _)
{
VALUE hash = env_to_hash();
if (rb_block_given_p()) {
hash = rb_hash_to_h_block(hash);
}
return hash;
}
/*
* call-seq:
* ENV.reject { |name, value| block } -> Hash
* ENV.reject -> Enumerator
*
* Same as ENV.delete_if, but works on (and returns) a copy of the
* environment.
*/
static VALUE
env_reject(VALUE _)
{
return rb_hash_delete_if(env_to_hash());
}
/*
* call-seq:
* ENV.freeze -> raises TypeError
*
* Ruby does not allow ENV to be frozen, so calling ENV.freeze
* raises TypeError.
*/
static VALUE
env_freeze(VALUE self)
{
rb_raise(rb_eTypeError, "cannot freeze ENV");
return self; /* Not reached */
}
/*
* call-seq:
* ENV.shift -> Array or nil
*
* Removes an environment variable name-value pair from ENV and returns it as
* an Array. Returns +nil+ if when the environment is empty.
*/
static VALUE
env_shift(VALUE _)
{
char **env;
VALUE result = Qnil;
env = GET_ENVIRON(environ);
if (*env) {
char *s = strchr(*env, '=');
if (s) {
VALUE key = env_str_new(*env, s-*env);
VALUE val = env_str_new2(getenv(RSTRING_PTR(key)));
env_delete(key);
result = rb_assoc_new(key, val);
}
}
FREE_ENVIRON(environ);
return result;
}
/*
* call-seq:
* ENV.invert -> Hash
*
* Returns a new hash created by using environment variable names as values
* and values as names.
*/
static VALUE
env_invert(VALUE _)
{
return rb_hash_invert(env_to_hash());
}
static int
env_replace_i(VALUE key, VALUE val, VALUE keys)
{
env_aset(key, val);
if (rb_ary_includes(keys, key)) {
rb_ary_delete(keys, key);
}
return ST_CONTINUE;
}
/*
* call-seq:
* ENV.replace(hash) -> env
*
* Replaces the contents of the environment variables with the contents of
* +hash+.
*/
static VALUE
env_replace(VALUE env, VALUE hash)
{
VALUE keys;
long i;
keys = env_keys();
if (env == hash) return env;
hash = to_hash(hash);
rb_hash_foreach(hash, env_replace_i, keys);
for (i=0; i<RARRAY_LEN(keys); i++) {
env_delete(RARRAY_AREF(keys, i));
}
RB_GC_GUARD(keys);
return env;
}
static int
env_update_i(VALUE key, VALUE val, VALUE _)
{
if (rb_block_given_p()) {
val = rb_yield_values(3, key, rb_f_getenv(Qnil, key), val);
}
env_aset(key, val);
return ST_CONTINUE;
}
/*
* call-seq:
* ENV.update(hash) -> ENV
* ENV.update(hash) { |name, old_value, new_value| block } -> ENV
* ENV.merge!(hash) -> ENV
* ENV.merge!(hash) { |name, old_value, new_value| block } -> ENV
*
* Adds the contents of +hash+ to the environment variables. If no block is
* specified entries with duplicate keys are overwritten, otherwise the value
* of each duplicate name is determined by calling the block with the key, its
* value from the environment and its value from the hash.
*/
static VALUE
env_update(VALUE env, VALUE hash)
{
if (env == hash) return env;
hash = to_hash(hash);
rb_hash_foreach(hash, env_update_i, 0);
return env;
}
/*
* A Hash is a dictionary-like collection of unique keys and their values.
* Also called associative arrays, they are similar to Arrays, but where an
* Array uses integers as its index, a Hash allows you to use any object
* type.
*
* Hashes enumerate their values in the order that the corresponding keys
* were inserted.
*
* A Hash can be easily created by using its implicit form:
*
* grades = { "Jane Doe" => 10, "Jim Doe" => 6 }
*
* Hashes allow an alternate syntax for keys that are symbols.
* Instead of
*
* options = { :font_size => 10, :font_family => "Arial" }
*
* You could write it as:
*
* options = { font_size: 10, font_family: "Arial" }
*
* Each named key is a symbol you can access in hash:
*
* options[:font_size] # => 10
*
* A Hash can also be created through its ::new method:
*
* grades = Hash.new
* grades["Dorothy Doe"] = 9
*
* Hashes have a <em>default value</em> that is returned when accessing
* keys that do not exist in the hash. If no default is set +nil+ is used.
* You can set the default value by sending it as an argument to Hash.new:
*
* grades = Hash.new(0)
*
* Or by using the #default= method:
*
* grades = {"Timmy Doe" => 8}
* grades.default = 0
*
* Accessing a value in a Hash requires using its key:
*
* puts grades["Jane Doe"] # => 0
*
* === Common Uses
*
* Hashes are an easy way to represent data structures, such as
*
* books = {}
* books[:matz] = "The Ruby Programming Language"
* books[:black] = "The Well-Grounded Rubyist"
*
* Hashes are also commonly used as a way to have named parameters in
* functions. Note that no brackets are used below. If a hash is the last
* argument on a method call, no braces are needed, thus creating a really
* clean interface:
*
* Person.create(name: "John Doe", age: 27)
*
* def self.create(params)
* @name = params[:name]
* @age = params[:age]
* end
*
* === Hash Keys
*
* Two objects refer to the same hash key when their <code>hash</code> value
* is identical and the two objects are <code>eql?</code> to each other.
*
* A user-defined class may be used as a hash key if the <code>hash</code>
* and <code>eql?</code> methods are overridden to provide meaningful
* behavior. By default, separate instances refer to separate hash keys.
*
* A typical implementation of <code>hash</code> is based on the
* object's data while <code>eql?</code> is usually aliased to the overridden
* <code>==</code> method:
*
* class Book
* attr_reader :author, :title
*
* def initialize(author, title)
* @author = author
* @title = title
* end
*
* def ==(other)
* self.class === other and
* other.author == @author and
* other.title == @title
* end
*
* alias eql? ==
*
* def hash
* @author.hash ^ @title.hash # XOR
* end
* end
*
* book1 = Book.new 'matz', 'Ruby in a Nutshell'
* book2 = Book.new 'matz', 'Ruby in a Nutshell'
*
* reviews = {}
*
* reviews[book1] = 'Great reference!'
* reviews[book2] = 'Nice and compact!'
*
* reviews.length #=> 1
*
* See also Object#hash and Object#eql?
*/
void
Init_Hash(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
id_hash = rb_intern("hash");
id_yield = rb_intern("yield");
id_default = rb_intern("default");
id_flatten_bang = rb_intern("flatten!");
id_hash_iter_lev = rb_make_internal_id();
rb_cHash = rb_define_class("Hash", rb_cObject);
rb_include_module(rb_cHash, rb_mEnumerable);
rb_define_alloc_func(rb_cHash, empty_hash_alloc);
rb_define_singleton_method(rb_cHash, "[]", rb_hash_s_create, -1);
rb_define_singleton_method(rb_cHash, "try_convert", rb_hash_s_try_convert, 1);
rb_define_method(rb_cHash, "initialize", rb_hash_initialize, -1);
rb_define_method(rb_cHash, "initialize_copy", rb_hash_replace, 1);
rb_define_method(rb_cHash, "rehash", rb_hash_rehash, 0);
rb_define_method(rb_cHash, "to_hash", rb_hash_to_hash, 0);
rb_define_method(rb_cHash, "to_h", rb_hash_to_h, 0);
rb_define_method(rb_cHash, "to_a", rb_hash_to_a, 0);
rb_define_method(rb_cHash, "inspect", rb_hash_inspect, 0);
rb_define_alias(rb_cHash, "to_s", "inspect");
rb_define_method(rb_cHash, "to_proc", rb_hash_to_proc, 0);
rb_define_method(rb_cHash, "==", rb_hash_equal, 1);
rb_define_method(rb_cHash, "[]", rb_hash_aref, 1);
rb_define_method(rb_cHash, "hash", rb_hash_hash, 0);
rb_define_method(rb_cHash, "eql?", rb_hash_eql, 1);
rb_define_method(rb_cHash, "fetch", rb_hash_fetch_m, -1);
rb_define_method(rb_cHash, "[]=", rb_hash_aset, 2);
rb_define_method(rb_cHash, "store", rb_hash_aset, 2);
rb_define_method(rb_cHash, "default", rb_hash_default, -1);
rb_define_method(rb_cHash, "default=", rb_hash_set_default, 1);
rb_define_method(rb_cHash, "default_proc", rb_hash_default_proc, 0);
rb_define_method(rb_cHash, "default_proc=", rb_hash_set_default_proc, 1);
rb_define_method(rb_cHash, "key", rb_hash_key, 1);
rb_define_method(rb_cHash, "index", rb_hash_index, 1);
rb_define_method(rb_cHash, "size", rb_hash_size, 0);
rb_define_method(rb_cHash, "length", rb_hash_size, 0);
rb_define_method(rb_cHash, "empty?", rb_hash_empty_p, 0);
rb_define_method(rb_cHash, "each_value", rb_hash_each_value, 0);
rb_define_method(rb_cHash, "each_key", rb_hash_each_key, 0);
rb_define_method(rb_cHash, "each_pair", rb_hash_each_pair, 0);
rb_define_method(rb_cHash, "each", rb_hash_each_pair, 0);
rb_define_method(rb_cHash, "transform_keys", rb_hash_transform_keys, 0);
rb_define_method(rb_cHash, "transform_keys!", rb_hash_transform_keys_bang, 0);
rb_define_method(rb_cHash, "transform_values", rb_hash_transform_values, 0);
rb_define_method(rb_cHash, "transform_values!", rb_hash_transform_values_bang, 0);
rb_define_method(rb_cHash, "keys", rb_hash_keys, 0);
rb_define_method(rb_cHash, "values", rb_hash_values, 0);
rb_define_method(rb_cHash, "values_at", rb_hash_values_at, -1);
rb_define_method(rb_cHash, "fetch_values", rb_hash_fetch_values, -1);
rb_define_method(rb_cHash, "shift", rb_hash_shift, 0);
rb_define_method(rb_cHash, "delete", rb_hash_delete_m, 1);
rb_define_method(rb_cHash, "delete_if", rb_hash_delete_if, 0);
rb_define_method(rb_cHash, "keep_if", rb_hash_keep_if, 0);
rb_define_method(rb_cHash, "select", rb_hash_select, 0);
rb_define_method(rb_cHash, "select!", rb_hash_select_bang, 0);
rb_define_method(rb_cHash, "filter", rb_hash_select, 0);
rb_define_method(rb_cHash, "filter!", rb_hash_select_bang, 0);
rb_define_method(rb_cHash, "reject", rb_hash_reject, 0);
rb_define_method(rb_cHash, "reject!", rb_hash_reject_bang, 0);
rb_define_method(rb_cHash, "slice", rb_hash_slice, -1);
rb_define_method(rb_cHash, "clear", rb_hash_clear, 0);
rb_define_method(rb_cHash, "invert", rb_hash_invert, 0);
rb_define_method(rb_cHash, "update", rb_hash_update, -1);
rb_define_method(rb_cHash, "replace", rb_hash_replace, 1);
rb_define_method(rb_cHash, "merge!", rb_hash_update, -1);
rb_define_method(rb_cHash, "merge", rb_hash_merge, -1);
rb_define_method(rb_cHash, "assoc", rb_hash_assoc, 1);
rb_define_method(rb_cHash, "rassoc", rb_hash_rassoc, 1);
rb_define_method(rb_cHash, "flatten", rb_hash_flatten, -1);
rb_define_method(rb_cHash, "compact", rb_hash_compact, 0);
rb_define_method(rb_cHash, "compact!", rb_hash_compact_bang, 0);
rb_define_method(rb_cHash, "include?", rb_hash_has_key, 1);
rb_define_method(rb_cHash, "member?", rb_hash_has_key, 1);
rb_define_method(rb_cHash, "has_key?", rb_hash_has_key, 1);
rb_define_method(rb_cHash, "has_value?", rb_hash_has_value, 1);
rb_define_method(rb_cHash, "key?", rb_hash_has_key, 1);
rb_define_method(rb_cHash, "value?", rb_hash_has_value, 1);
rb_define_method(rb_cHash, "compare_by_identity", rb_hash_compare_by_id, 0);
rb_define_method(rb_cHash, "compare_by_identity?", rb_hash_compare_by_id_p, 0);
rb_define_method(rb_cHash, "any?", rb_hash_any_p, -1);
rb_define_method(rb_cHash, "dig", rb_hash_dig, -1);
rb_define_method(rb_cHash, "<=", rb_hash_le, 1);
rb_define_method(rb_cHash, "<", rb_hash_lt, 1);
rb_define_method(rb_cHash, ">=", rb_hash_ge, 1);
rb_define_method(rb_cHash, ">", rb_hash_gt, 1);
rb_define_method(rb_cHash, "deconstruct_keys", rb_hash_deconstruct_keys, 1);
/* Document-class: ENV
*
* ENV is a hash-like accessor for environment variables.
*
* === Interaction with the Operating System
* The ENV object interacts with the operating system's environment variables:
* - When you get the value for a name in ENV, the value is retrieved from among the current environment variables.
* - When you create or set a name-value pair in ENV, the name and value are immediately set in the environment variables.
* - When you delete a name-value pair in ENV, it is immediately deleted from the environment variables.
*
* === Names and Values
* Generally speaking, each name or value is a String.
*
* Strictly speaking:
* - Each name or value must be one of the following:
* - A String.
* - An object that responds to #to_str by returning a String, which will be used as the name or value.
* - A name may not:
* - Be the empty string.
* - Contain character <code>=</code> or the NUL character (<code>"\0"</code>).
* - Have an ASCII-incompatible encoding (e.g., UTF-16LE, ISO-2022-JP).
*
* === About Ordering
* ENV presents its content in the order found
* in the operating system's environment variables.
* Therefore the ordering of ENV content is OS-dependent, and may be indeterminate.
*
* This will be seen in:
* - A Hash returned by an ENV method.
* - An Enumerator returned by an ENV method.
* - An Array returned by ENV.keys, ENV.values, or ENV.to_a.
* - The String returned by ENV.inspect.
*/
/*
* Hack to get RDoc to regard ENV as a class:
* envtbl = rb_define_class("ENV", rb_cObject);
*/
origenviron = environ;
envtbl = rb_obj_alloc(rb_cObject);
rb_extend_object(envtbl, rb_mEnumerable);
rb_define_singleton_method(envtbl, "[]", rb_f_getenv, 1);
rb_define_singleton_method(envtbl, "fetch", env_fetch, -1);
rb_define_singleton_method(envtbl, "[]=", env_aset_m, 2);
rb_define_singleton_method(envtbl, "store", env_aset_m, 2);
rb_define_singleton_method(envtbl, "each", env_each_pair, 0);
rb_define_singleton_method(envtbl, "each_pair", env_each_pair, 0);
rb_define_singleton_method(envtbl, "each_key", env_each_key, 0);
rb_define_singleton_method(envtbl, "each_value", env_each_value, 0);
rb_define_singleton_method(envtbl, "delete", env_delete_m, 1);
rb_define_singleton_method(envtbl, "delete_if", env_delete_if, 0);
rb_define_singleton_method(envtbl, "keep_if", env_keep_if, 0);
rb_define_singleton_method(envtbl, "slice", env_slice, -1);
rb_define_singleton_method(envtbl, "clear", env_clear, 0);
rb_define_singleton_method(envtbl, "reject", env_reject, 0);
rb_define_singleton_method(envtbl, "reject!", env_reject_bang, 0);
rb_define_singleton_method(envtbl, "select", env_select, 0);
rb_define_singleton_method(envtbl, "select!", env_select_bang, 0);
rb_define_singleton_method(envtbl, "filter", env_select, 0);
rb_define_singleton_method(envtbl, "filter!", env_select_bang, 0);
rb_define_singleton_method(envtbl, "shift", env_shift, 0);
rb_define_singleton_method(envtbl, "freeze", env_freeze, 0);
rb_define_singleton_method(envtbl, "invert", env_invert, 0);
rb_define_singleton_method(envtbl, "replace", env_replace, 1);
rb_define_singleton_method(envtbl, "update", env_update, 1);
rb_define_singleton_method(envtbl, "merge!", env_update, 1);
rb_define_singleton_method(envtbl, "inspect", env_inspect, 0);
rb_define_singleton_method(envtbl, "rehash", env_none, 0);
rb_define_singleton_method(envtbl, "to_a", env_to_a, 0);
rb_define_singleton_method(envtbl, "to_s", env_to_s, 0);
rb_define_singleton_method(envtbl, "key", env_key, 1);
rb_define_singleton_method(envtbl, "index", env_index, 1);
rb_define_singleton_method(envtbl, "size", env_size, 0);
rb_define_singleton_method(envtbl, "length", env_size, 0);
rb_define_singleton_method(envtbl, "empty?", env_empty_p, 0);
rb_define_singleton_method(envtbl, "keys", env_f_keys, 0);
rb_define_singleton_method(envtbl, "values", env_f_values, 0);
rb_define_singleton_method(envtbl, "values_at", env_values_at, -1);
rb_define_singleton_method(envtbl, "include?", env_has_key, 1);
rb_define_singleton_method(envtbl, "member?", env_has_key, 1);
rb_define_singleton_method(envtbl, "has_key?", env_has_key, 1);
rb_define_singleton_method(envtbl, "has_value?", env_has_value, 1);
rb_define_singleton_method(envtbl, "key?", env_has_key, 1);
rb_define_singleton_method(envtbl, "value?", env_has_value, 1);
rb_define_singleton_method(envtbl, "to_hash", env_f_to_hash, 0);
rb_define_singleton_method(envtbl, "to_h", env_to_h, 0);
rb_define_singleton_method(envtbl, "assoc", env_assoc, 1);
rb_define_singleton_method(envtbl, "rassoc", env_rassoc, 1);
/*
* ENV is a Hash-like accessor for environment variables.
*
* See ENV (the class) for more details.
*/
rb_define_global_const("ENV", envtbl);
/* for callcc */
ruby_register_rollback_func_for_ensure(hash_foreach_ensure, hash_foreach_ensure_rollback);
HASH_ASSERT(sizeof(ar_hint_t) * RHASH_AR_TABLE_MAX_SIZE == sizeof(VALUE));
}