mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
a6dd859aff
In order to reliably test compaction we need to be able to move objects between size pools. In order for this to happen there must be pages in a size pool into which we can allocate. The existing implementation of `double_heap` only doubled the existing number of pages in the heap, so if a size pool had a low number of pages (or 0) it's not guaranteed that enough space will be created to move objects into that size pool. This commit deprecates the `double_heap` option and replaces it with `expand_heap` instead. expand heap will expand each heap by enough pages to hold a number of slots defined by `GC_HEAP_INIT_SLOTS` or by `heap->total_pags` whichever is larger. If both `double_heap` and `expand_heap` are present, a deprecation warning will be shown for `double_heap` and the `expand_heap` behaviour will take precedence Given that this is an API intended for debugging and testing GC compaction I'm not concerned about the extra memory usage or time taken to create the pages. However, for completeness: Running the following `test.rb` and using `time` on my Macbook Pro shows the following memory usage and time impact: pp "RSS (kb): #{`ps -o rss #{Process.pid}`.lines.last.to_i}" GC.verify_compaction_references(double_heap: true, toward: :empty) pp "RSS (kb): #{`ps -o rss #{Process.pid}`.lines.last.to_i}" ❯ time make run ./miniruby -I./lib -I. -I.ext/common -r./arm64-darwin21-fake ./test.rb "RSS (kb): 24000" <internal:gc>:251: warning: double_heap is deprecated and will be removed "RSS (kb): 25232" ________________________________________________________ Executed in 124.37 millis fish external usr time 82.22 millis 0.09 millis 82.12 millis sys time 28.76 millis 2.61 millis 26.15 millis ❯ time make run ./miniruby -I./lib -I. -I.ext/common -r./arm64-darwin21-fake ./test.rb "RSS (kb): 24000" "RSS (kb): 49040" ________________________________________________________ Executed in 150.13 millis fish external usr time 103.32 millis 0.10 millis 103.22 millis sys time 35.73 millis 2.59 millis 33.14 millis
306 lines
10 KiB
Ruby
306 lines
10 KiB
Ruby
# for gc.c
|
|
|
|
# The GC module provides an interface to Ruby's mark and
|
|
# sweep garbage collection mechanism.
|
|
#
|
|
# Some of the underlying methods are also available via the ObjectSpace
|
|
# module.
|
|
#
|
|
# You may obtain information about the operation of the GC through
|
|
# GC::Profiler.
|
|
module GC
|
|
|
|
# call-seq:
|
|
# GC.start -> nil
|
|
# ObjectSpace.garbage_collect -> nil
|
|
# include GC; garbage_collect -> nil
|
|
# GC.start(full_mark: true, immediate_sweep: true) -> nil
|
|
# ObjectSpace.garbage_collect(full_mark: true, immediate_sweep: true) -> nil
|
|
# include GC; garbage_collect(full_mark: true, immediate_sweep: true) -> nil
|
|
#
|
|
# Initiates garbage collection, even if manually disabled.
|
|
#
|
|
# This method is defined with keyword arguments that default to true:
|
|
#
|
|
# def GC.start(full_mark: true, immediate_sweep: true); end
|
|
#
|
|
# Use full_mark: false to perform a minor GC.
|
|
# Use immediate_sweep: false to defer sweeping (use lazy sweep).
|
|
#
|
|
# Note: These keyword arguments are implementation and version dependent. They
|
|
# are not guaranteed to be future-compatible, and may be ignored if the
|
|
# underlying implementation does not support them.
|
|
def self.start full_mark: true, immediate_mark: true, immediate_sweep: true
|
|
Primitive.gc_start_internal full_mark, immediate_mark, immediate_sweep, false
|
|
end
|
|
|
|
def garbage_collect full_mark: true, immediate_mark: true, immediate_sweep: true
|
|
Primitive.gc_start_internal full_mark, immediate_mark, immediate_sweep, false
|
|
end
|
|
|
|
# call-seq:
|
|
# GC.enable -> true or false
|
|
#
|
|
# Enables garbage collection, returning +true+ if garbage
|
|
# collection was previously disabled.
|
|
#
|
|
# GC.disable #=> false
|
|
# GC.enable #=> true
|
|
# GC.enable #=> false
|
|
#
|
|
def self.enable
|
|
Primitive.gc_enable
|
|
end
|
|
|
|
# call-seq:
|
|
# GC.disable -> true or false
|
|
#
|
|
# Disables garbage collection, returning +true+ if garbage
|
|
# collection was already disabled.
|
|
#
|
|
# GC.disable #=> false
|
|
# GC.disable #=> true
|
|
def self.disable
|
|
Primitive.gc_disable
|
|
end
|
|
|
|
# call-seq:
|
|
# GC.stress -> integer, true or false
|
|
#
|
|
# Returns current status of GC stress mode.
|
|
def self.stress
|
|
Primitive.gc_stress_get
|
|
end
|
|
|
|
# call-seq:
|
|
# GC.stress = flag -> flag
|
|
#
|
|
# Updates the GC stress mode.
|
|
#
|
|
# When stress mode is enabled, the GC is invoked at every GC opportunity:
|
|
# all memory and object allocations.
|
|
#
|
|
# Enabling stress mode will degrade performance, it is only for debugging.
|
|
#
|
|
# flag can be true, false, or an integer bit-ORed following flags.
|
|
# 0x01:: no major GC
|
|
# 0x02:: no immediate sweep
|
|
# 0x04:: full mark after malloc/calloc/realloc
|
|
def self.stress=(flag)
|
|
Primitive.gc_stress_set_m flag
|
|
end
|
|
|
|
# call-seq:
|
|
# GC.count -> Integer
|
|
#
|
|
# The number of times GC occurred.
|
|
#
|
|
# It returns the number of times GC occurred since the process started.
|
|
def self.count
|
|
Primitive.gc_count
|
|
end
|
|
|
|
# call-seq:
|
|
# GC.stat -> Hash
|
|
# GC.stat(hash) -> Hash
|
|
# GC.stat(:key) -> Numeric
|
|
#
|
|
# Returns a Hash containing information about the GC.
|
|
#
|
|
# The contents of the hash are implementation specific and may change in
|
|
# the future without notice.
|
|
#
|
|
# The hash includes information about internal statistics about GC such as:
|
|
#
|
|
# [count]
|
|
# The total number of garbage collections ran since application start
|
|
# (count includes both minor and major garbage collections)
|
|
# [time]
|
|
# The total time spent in garbage collections (in milliseconds)
|
|
# [heap_allocated_pages]
|
|
# The total number of `:heap_eden_pages` + `:heap_tomb_pages`
|
|
# [heap_sorted_length]
|
|
# The number of pages that can fit into the buffer that holds references to
|
|
# all pages
|
|
# [heap_allocatable_pages]
|
|
# The total number of pages the application could allocate without additional GC
|
|
# [heap_available_slots]
|
|
# The total number of slots in all `:heap_allocated_pages`
|
|
# [heap_live_slots]
|
|
# The total number of slots which contain live objects
|
|
# [heap_free_slots]
|
|
# The total number of slots which do not contain live objects
|
|
# [heap_final_slots]
|
|
# The total number of slots with pending finalizers to be run
|
|
# [heap_marked_slots]
|
|
# The total number of objects marked in the last GC
|
|
# [heap_eden_pages]
|
|
# The total number of pages which contain at least one live slot
|
|
# [heap_tomb_pages]
|
|
# The total number of pages which do not contain any live slots
|
|
# [total_allocated_pages]
|
|
# The cumulative number of pages allocated since application start
|
|
# [total_freed_pages]
|
|
# The cumulative number of pages freed since application start
|
|
# [total_allocated_objects]
|
|
# The cumulative number of objects allocated since application start
|
|
# [total_freed_objects]
|
|
# The cumulative number of objects freed since application start
|
|
# [malloc_increase_bytes]
|
|
# Amount of memory allocated on the heap for objects. Decreased by any GC
|
|
# [malloc_increase_bytes_limit]
|
|
# When `:malloc_increase_bytes` crosses this limit, GC is triggered
|
|
# [minor_gc_count]
|
|
# The total number of minor garbage collections run since process start
|
|
# [major_gc_count]
|
|
# The total number of major garbage collections run since process start
|
|
# [compact_count]
|
|
# The total number of compactions run since process start
|
|
# [read_barrier_faults]
|
|
# The total number of times the read barrier was triggered during
|
|
# compaction
|
|
# [total_moved_objects]
|
|
# The total number of objects compaction has moved
|
|
# [remembered_wb_unprotected_objects]
|
|
# The total number of objects without write barriers
|
|
# [remembered_wb_unprotected_objects_limit]
|
|
# When `:remembered_wb_unprotected_objects` crosses this limit,
|
|
# major GC is triggered
|
|
# [old_objects]
|
|
# Number of live, old objects which have survived at least 3 garbage collections
|
|
# [old_objects_limit]
|
|
# When `:old_objects` crosses this limit, major GC is triggered
|
|
# [oldmalloc_increase_bytes]
|
|
# Amount of memory allocated on the heap for objects. Decreased by major GC
|
|
# [oldmalloc_increase_bytes_limit]
|
|
# When `:old_malloc_increase_bytes` crosses this limit, major GC is triggered
|
|
#
|
|
# If the optional argument, hash, is given,
|
|
# it is overwritten and returned.
|
|
# This is intended to avoid probe effect.
|
|
#
|
|
# This method is only expected to work on CRuby.
|
|
def self.stat hash_or_key = nil
|
|
Primitive.gc_stat hash_or_key
|
|
end
|
|
|
|
# call-seq:
|
|
# GC.stat_heap -> Hash
|
|
# GC.stat_heap(nil, hash) -> Hash
|
|
# GC.stat_heap(heap_name) -> Hash
|
|
# GC.stat_heap(heap_name, hash) -> Hash
|
|
# GC.stat_heap(heap_name, :key) -> Numeric
|
|
#
|
|
# Returns information for memory pools in the GC.
|
|
#
|
|
# If the first optional argument, +heap_name+, is passed in and not +nil+, it
|
|
# returns a +Hash+ containing information about the particular memory pool.
|
|
# Otherwise, it will return a +Hash+ with memory pool names as keys and
|
|
# a +Hash+ containing information about the memory pool as values.
|
|
#
|
|
# If the second optional argument, +hash_or_key+, is given as +Hash+, it will
|
|
# be overwritten and returned. This is intended to avoid the probe effect.
|
|
#
|
|
# If both optional arguments are passed in and the second optional argument is
|
|
# a symbol, it will return a +Numeric+ of the value for the particular memory
|
|
# pool.
|
|
#
|
|
# On CRuby, +heap_name+ is of the type +Integer+ but may be of type +String+
|
|
# on other implementations.
|
|
#
|
|
# The contents of the hash are implementation specific and may change in
|
|
# the future without notice.
|
|
#
|
|
# If the optional argument, hash, is given, it is overwritten and returned.
|
|
#
|
|
# This method is only expected to work on CRuby.
|
|
def self.stat_heap heap_name = nil, hash_or_key = nil
|
|
Primitive.gc_stat_heap heap_name, hash_or_key
|
|
end
|
|
|
|
# call-seq:
|
|
# GC.latest_gc_info -> {:gc_by=>:newobj}
|
|
# GC.latest_gc_info(hash) -> hash
|
|
# GC.latest_gc_info(:major_by) -> :malloc
|
|
#
|
|
# Returns information about the most recent garbage collection.
|
|
#
|
|
# If the optional argument, hash, is given,
|
|
# it is overwritten and returned.
|
|
# This is intended to avoid probe effect.
|
|
def self.latest_gc_info hash_or_key = nil
|
|
Primitive.gc_latest_gc_info hash_or_key
|
|
end
|
|
|
|
if respond_to?(:compact)
|
|
# call-seq:
|
|
# GC.verify_compaction_references(toward: nil, double_heap: false) -> hash
|
|
#
|
|
# Verify compaction reference consistency.
|
|
#
|
|
# This method is implementation specific. During compaction, objects that
|
|
# were moved are replaced with T_MOVED objects. No object should have a
|
|
# reference to a T_MOVED object after compaction.
|
|
#
|
|
# This function expands the heap to ensure room to move all objects,
|
|
# compacts the heap to make sure everything moves, updates all references,
|
|
# then performs a full GC. If any object contains a reference to a T_MOVED
|
|
# object, that object should be pushed on the mark stack, and will
|
|
# make a SEGV.
|
|
def self.verify_compaction_references(toward: nil, double_heap: false, expand_heap: false)
|
|
Primitive.gc_verify_compaction_references(double_heap, expand_heap, toward == :empty)
|
|
end
|
|
end
|
|
|
|
# call-seq:
|
|
# GC.using_rvargc? -> true or false
|
|
#
|
|
# Returns true if using experimental feature Variable Width Allocation, false
|
|
# otherwise.
|
|
def self.using_rvargc? # :nodoc:
|
|
GC::INTERNAL_CONSTANTS[:SIZE_POOL_COUNT] > 1
|
|
end
|
|
|
|
|
|
# call-seq:
|
|
# GC.measure_total_time = true/false
|
|
#
|
|
# Enable to measure GC time.
|
|
# You can get the result with <tt>GC.stat(:time)</tt>.
|
|
# Note that GC time measurement can cause some performance overhead.
|
|
def self.measure_total_time=(flag)
|
|
Primitive.cstmt! %{
|
|
rb_objspace.flags.measure_gc = RTEST(flag) ? TRUE : FALSE;
|
|
return flag;
|
|
}
|
|
end
|
|
|
|
# call-seq:
|
|
# GC.measure_total_time -> true/false
|
|
#
|
|
# Return measure_total_time flag (default: +true+).
|
|
# Note that measurement can affect the application performance.
|
|
def self.measure_total_time
|
|
Primitive.cexpr! %{
|
|
RBOOL(rb_objspace.flags.measure_gc)
|
|
}
|
|
end
|
|
|
|
# call-seq:
|
|
# GC.total_time -> int
|
|
#
|
|
# Return measured GC total time in nano seconds.
|
|
def self.total_time
|
|
Primitive.cexpr! %{
|
|
ULL2NUM(rb_objspace.profile.total_time_ns)
|
|
}
|
|
end
|
|
end
|
|
|
|
module ObjectSpace
|
|
def garbage_collect full_mark: true, immediate_mark: true, immediate_sweep: true
|
|
Primitive.gc_start_internal full_mark, immediate_mark, immediate_sweep, false
|
|
end
|
|
|
|
module_function :garbage_collect
|
|
end
|