mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
da0c4e5e11
* enumerator.c (lazyenum_size): adjust arguments. * enumerator.c (enumerable_lazy): use lazyenum_size() instead of enum_size(). git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@41688 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2042 lines
48 KiB
C
2042 lines
48 KiB
C
/************************************************
|
|
|
|
enumerator.c - provides Enumerator class
|
|
|
|
$Author$
|
|
|
|
Copyright (C) 2001-2003 Akinori MUSHA
|
|
|
|
$Idaemons: /home/cvs/rb/enumerator/enumerator.c,v 1.1.1.1 2001/07/15 10:12:48 knu Exp $
|
|
$RoughId: enumerator.c,v 1.6 2003/07/27 11:03:24 nobu Exp $
|
|
$Id$
|
|
|
|
************************************************/
|
|
|
|
#include "ruby/ruby.h"
|
|
#include "node.h"
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Document-class: Enumerator
|
|
*
|
|
* A class which allows both internal and external iteration.
|
|
*
|
|
* An Enumerator can be created by the following methods.
|
|
* - Kernel#to_enum
|
|
* - Kernel#enum_for
|
|
* - Enumerator.new
|
|
*
|
|
* Most methods have two forms: a block form where the contents
|
|
* are evaluated for each item in the enumeration, and a non-block form
|
|
* which returns a new Enumerator wrapping the iteration.
|
|
*
|
|
* enumerator = %w(one two three).each
|
|
* puts enumerator.class # => Enumerator
|
|
*
|
|
* enumerator.each_with_object("foo") do |item, obj|
|
|
* puts "#{obj}: #{item}"
|
|
* end
|
|
*
|
|
* # foo: one
|
|
* # foo: two
|
|
* # foo: three
|
|
*
|
|
* enum_with_obj = enumerator.each_with_object("foo")
|
|
* puts enum_with_obj.class # => Enumerator
|
|
*
|
|
* enum_with_obj.each do |item, obj|
|
|
* puts "#{obj}: #{item}"
|
|
* end
|
|
*
|
|
* # foo: one
|
|
* # foo: two
|
|
* # foo: three
|
|
*
|
|
* This allows you to chain Enumerators together. For example, you
|
|
* can map a list's elements to strings containing the index
|
|
* and the element as a string via:
|
|
*
|
|
* puts %w[foo bar baz].map.with_index { |w, i| "#{i}:#{w}" }
|
|
* # => ["0:foo", "1:bar", "2:baz"]
|
|
*
|
|
* An Enumerator can also be used as an external iterator.
|
|
* For example, Enumerator#next returns the next value of the iterator
|
|
* or raises StopIteration if the Enumerator is at the end.
|
|
*
|
|
* e = [1,2,3].each # returns an enumerator object.
|
|
* puts e.next # => 1
|
|
* puts e.next # => 2
|
|
* puts e.next # => 3
|
|
* puts e.next # raises StopIteration
|
|
*
|
|
* You can use this to implement an internal iterator as follows:
|
|
*
|
|
* def ext_each(e)
|
|
* while true
|
|
* begin
|
|
* vs = e.next_values
|
|
* rescue StopIteration
|
|
* return $!.result
|
|
* end
|
|
* y = yield(*vs)
|
|
* e.feed y
|
|
* end
|
|
* end
|
|
*
|
|
* o = Object.new
|
|
*
|
|
* def o.each
|
|
* puts yield
|
|
* puts yield(1)
|
|
* puts yield(1, 2)
|
|
* 3
|
|
* end
|
|
*
|
|
* # use o.each as an internal iterator directly.
|
|
* puts o.each {|*x| puts x; [:b, *x] }
|
|
* # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
|
|
*
|
|
* # convert o.each to an external iterator for
|
|
* # implementing an internal iterator.
|
|
* puts ext_each(o.to_enum) {|*x| puts x; [:b, *x] }
|
|
* # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
|
|
*
|
|
*/
|
|
VALUE rb_cEnumerator;
|
|
VALUE rb_cLazy;
|
|
static ID id_rewind, id_each, id_new, id_initialize, id_yield, id_call, id_size, id_to_enum;
|
|
static ID id_eqq, id_next, id_result, id_lazy, id_receiver, id_arguments, id_memo, id_method, id_force;
|
|
static VALUE sym_each, sym_cycle;
|
|
|
|
VALUE rb_eStopIteration;
|
|
|
|
struct enumerator {
|
|
VALUE obj;
|
|
ID meth;
|
|
VALUE args;
|
|
VALUE fib;
|
|
VALUE dst;
|
|
VALUE lookahead;
|
|
VALUE feedvalue;
|
|
VALUE stop_exc;
|
|
VALUE size;
|
|
rb_enumerator_size_func *size_fn;
|
|
};
|
|
|
|
static VALUE rb_cGenerator, rb_cYielder;
|
|
|
|
struct generator {
|
|
VALUE proc;
|
|
};
|
|
|
|
struct yielder {
|
|
VALUE proc;
|
|
};
|
|
|
|
static VALUE generator_allocate(VALUE klass);
|
|
static VALUE generator_init(VALUE obj, VALUE proc);
|
|
|
|
/*
|
|
* Enumerator
|
|
*/
|
|
static void
|
|
enumerator_mark(void *p)
|
|
{
|
|
struct enumerator *ptr = p;
|
|
rb_gc_mark(ptr->obj);
|
|
rb_gc_mark(ptr->args);
|
|
rb_gc_mark(ptr->fib);
|
|
rb_gc_mark(ptr->dst);
|
|
rb_gc_mark(ptr->lookahead);
|
|
rb_gc_mark(ptr->feedvalue);
|
|
rb_gc_mark(ptr->stop_exc);
|
|
rb_gc_mark(ptr->size);
|
|
}
|
|
|
|
#define enumerator_free RUBY_TYPED_DEFAULT_FREE
|
|
|
|
static size_t
|
|
enumerator_memsize(const void *p)
|
|
{
|
|
return p ? sizeof(struct enumerator) : 0;
|
|
}
|
|
|
|
static const rb_data_type_t enumerator_data_type = {
|
|
"enumerator",
|
|
{
|
|
enumerator_mark,
|
|
enumerator_free,
|
|
enumerator_memsize,
|
|
},
|
|
};
|
|
|
|
static struct enumerator *
|
|
enumerator_ptr(VALUE obj)
|
|
{
|
|
struct enumerator *ptr;
|
|
|
|
TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr);
|
|
if (!ptr || ptr->obj == Qundef) {
|
|
rb_raise(rb_eArgError, "uninitialized enumerator");
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.to_enum(method = :each, *args) -> enum
|
|
* obj.enum_for(method = :each, *args) -> enum
|
|
* obj.to_enum(method = :each, *args) {|*args| block} -> enum
|
|
* obj.enum_for(method = :each, *args){|*args| block} -> enum
|
|
*
|
|
* Creates a new Enumerator which will enumerate by calling +method+ on
|
|
* +obj+, passing +args+ if any.
|
|
*
|
|
* If a block is given, it will be used to calculate the size of
|
|
* the enumerator without the need to iterate it (see Enumerator#size).
|
|
*
|
|
* === Examples
|
|
*
|
|
* str = "xyz"
|
|
*
|
|
* enum = str.enum_for(:each_byte)
|
|
* enum.each { |b| puts b }
|
|
* # => 120
|
|
* # => 121
|
|
* # => 122
|
|
*
|
|
* # protect an array from being modified by some_method
|
|
* a = [1, 2, 3]
|
|
* some_method(a.to_enum)
|
|
*
|
|
* It is typical to call to_enum when defining methods for
|
|
* a generic Enumerable, in case no block is passed.
|
|
*
|
|
* Here is such an example, with parameter passing and a sizing block:
|
|
*
|
|
* module Enumerable
|
|
* # a generic method to repeat the values of any enumerable
|
|
* def repeat(n)
|
|
* raise ArgumentError, "#{n} is negative!" if n < 0
|
|
* unless block_given?
|
|
* return to_enum(__method__, n) do # __method__ is :repeat here
|
|
* sz = size # Call size and multiply by n...
|
|
* sz * n if sz # but return nil if size itself is nil
|
|
* end
|
|
* end
|
|
* each do |*val|
|
|
* n.times { yield *val }
|
|
* end
|
|
* end
|
|
* end
|
|
*
|
|
* %i[hello world].repeat(2) { |w| puts w }
|
|
* # => Prints 'hello', 'hello', 'world', 'world'
|
|
* enum = (1..14).repeat(3)
|
|
* # => returns an Enumerator when called without a block
|
|
* enum.first(4) # => [1, 1, 1, 2]
|
|
* enum.size # => 42
|
|
*/
|
|
static VALUE
|
|
obj_to_enum(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE enumerator, meth = sym_each;
|
|
|
|
if (argc > 0) {
|
|
--argc;
|
|
meth = *argv++;
|
|
}
|
|
enumerator = rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
|
|
if (rb_block_given_p()) {
|
|
enumerator_ptr(enumerator)->size = rb_block_proc();
|
|
}
|
|
return enumerator;
|
|
}
|
|
|
|
static VALUE
|
|
enumerator_allocate(VALUE klass)
|
|
{
|
|
struct enumerator *ptr;
|
|
VALUE enum_obj;
|
|
|
|
enum_obj = TypedData_Make_Struct(klass, struct enumerator, &enumerator_data_type, ptr);
|
|
ptr->obj = Qundef;
|
|
|
|
return enum_obj;
|
|
}
|
|
|
|
static VALUE
|
|
enumerator_init(VALUE enum_obj, VALUE obj, VALUE meth, int argc, VALUE *argv, rb_enumerator_size_func *size_fn, VALUE size)
|
|
{
|
|
struct enumerator *ptr;
|
|
|
|
TypedData_Get_Struct(enum_obj, struct enumerator, &enumerator_data_type, ptr);
|
|
|
|
if (!ptr) {
|
|
rb_raise(rb_eArgError, "unallocated enumerator");
|
|
}
|
|
|
|
ptr->obj = obj;
|
|
ptr->meth = rb_to_id(meth);
|
|
if (argc) ptr->args = rb_ary_new4(argc, argv);
|
|
ptr->fib = 0;
|
|
ptr->dst = Qnil;
|
|
ptr->lookahead = Qundef;
|
|
ptr->feedvalue = Qundef;
|
|
ptr->stop_exc = Qfalse;
|
|
ptr->size = size;
|
|
ptr->size_fn = size_fn;
|
|
|
|
return enum_obj;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Enumerator.new(size = nil) { |yielder| ... }
|
|
* Enumerator.new(obj, method = :each, *args)
|
|
*
|
|
* Creates a new Enumerator object, which can be used as an
|
|
* Enumerable.
|
|
*
|
|
* In the first form, iteration is defined by the given block, in
|
|
* which a "yielder" object, given as block parameter, can be used to
|
|
* yield a value by calling the +yield+ method (aliased as +<<+):
|
|
*
|
|
* fib = Enumerator.new do |y|
|
|
* a = b = 1
|
|
* loop do
|
|
* y << a
|
|
* a, b = b, a + b
|
|
* end
|
|
* end
|
|
*
|
|
* p fib.take(10) # => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
|
|
*
|
|
* The optional parameter can be used to specify how to calculate the size
|
|
* in a lazy fashion (see Enumerator#size). It can either be a value or
|
|
* a callable object.
|
|
*
|
|
* In the second, deprecated, form, a generated Enumerator iterates over the
|
|
* given object using the given method with the given arguments passed.
|
|
*
|
|
* Use of this form is discouraged. Use Kernel#enum_for or Kernel#to_enum
|
|
* instead.
|
|
*
|
|
* e = Enumerator.new(ObjectSpace, :each_object)
|
|
* #-> ObjectSpace.enum_for(:each_object)
|
|
*
|
|
* e.select { |obj| obj.is_a?(Class) } #=> array of all classes
|
|
*
|
|
*/
|
|
static VALUE
|
|
enumerator_initialize(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE recv, meth = sym_each;
|
|
VALUE size = Qnil;
|
|
|
|
if (rb_block_given_p()) {
|
|
rb_check_arity(argc, 0, 1);
|
|
recv = generator_init(generator_allocate(rb_cGenerator), rb_block_proc());
|
|
if (argc) {
|
|
if (NIL_P(argv[0]) || rb_obj_is_proc(argv[0]) ||
|
|
(RB_TYPE_P(argv[0], T_FLOAT) && RFLOAT_VALUE(argv[0]) == INFINITY)) {
|
|
size = argv[0];
|
|
}
|
|
else {
|
|
size = rb_to_int(argv[0]);
|
|
}
|
|
argc = 0;
|
|
}
|
|
}
|
|
else {
|
|
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
|
|
rb_warn("Enumerator.new without a block is deprecated; use Object#to_enum");
|
|
recv = *argv++;
|
|
if (--argc) {
|
|
meth = *argv++;
|
|
--argc;
|
|
}
|
|
}
|
|
|
|
return enumerator_init(obj, recv, meth, argc, argv, 0, size);
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
enumerator_init_copy(VALUE obj, VALUE orig)
|
|
{
|
|
struct enumerator *ptr0, *ptr1;
|
|
|
|
if (!OBJ_INIT_COPY(obj, orig)) return obj;
|
|
ptr0 = enumerator_ptr(orig);
|
|
if (ptr0->fib) {
|
|
/* Fibers cannot be copied */
|
|
rb_raise(rb_eTypeError, "can't copy execution context");
|
|
}
|
|
|
|
TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, ptr1);
|
|
|
|
if (!ptr1) {
|
|
rb_raise(rb_eArgError, "unallocated enumerator");
|
|
}
|
|
|
|
ptr1->obj = ptr0->obj;
|
|
ptr1->meth = ptr0->meth;
|
|
ptr1->args = ptr0->args;
|
|
ptr1->fib = 0;
|
|
ptr1->lookahead = Qundef;
|
|
ptr1->feedvalue = Qundef;
|
|
ptr1->size = ptr0->size;
|
|
ptr1->size_fn = ptr0->size_fn;
|
|
|
|
return obj;
|
|
}
|
|
|
|
/*
|
|
* For backwards compatibility; use rb_enumeratorize_with_size
|
|
*/
|
|
VALUE
|
|
rb_enumeratorize(VALUE obj, VALUE meth, int argc, VALUE *argv)
|
|
{
|
|
return rb_enumeratorize_with_size(obj, meth, argc, argv, 0);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_to_enum_i(VALUE self, VALUE meth, int argc, VALUE *argv, rb_enumerator_size_func *size_fn);
|
|
|
|
VALUE
|
|
rb_enumeratorize_with_size(VALUE obj, VALUE meth, int argc, VALUE *argv, rb_enumerator_size_func *size_fn)
|
|
{
|
|
/* Similar effect as calling obj.to_enum, i.e. dispatching to either
|
|
Kernel#to_enum vs Lazy#to_enum */
|
|
if (RTEST(rb_obj_is_kind_of(obj, rb_cLazy)))
|
|
return lazy_to_enum_i(obj, meth, argc, argv, size_fn);
|
|
else
|
|
return enumerator_init(enumerator_allocate(rb_cEnumerator),
|
|
obj, meth, argc, argv, size_fn, Qnil);
|
|
}
|
|
|
|
static VALUE
|
|
enumerator_block_call(VALUE obj, rb_block_call_func *func, VALUE arg)
|
|
{
|
|
int argc = 0;
|
|
VALUE *argv = 0;
|
|
const struct enumerator *e = enumerator_ptr(obj);
|
|
ID meth = e->meth;
|
|
|
|
if (e->args) {
|
|
argc = RARRAY_LENINT(e->args);
|
|
argv = RARRAY_PTR(e->args);
|
|
}
|
|
return rb_block_call(e->obj, meth, argc, argv, func, arg);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* enum.each {...}
|
|
*
|
|
* Iterates over the block according to how this Enumerable was constructed.
|
|
* If no block is given, returns self.
|
|
*
|
|
*/
|
|
static VALUE
|
|
enumerator_each(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
if (argc > 0) {
|
|
struct enumerator *e = enumerator_ptr(obj = rb_obj_dup(obj));
|
|
VALUE args = e->args;
|
|
if (args) {
|
|
args = rb_ary_dup(args);
|
|
rb_ary_cat(args, argv, argc);
|
|
}
|
|
else {
|
|
args = rb_ary_new4(argc, argv);
|
|
}
|
|
e->args = args;
|
|
}
|
|
if (!rb_block_given_p()) return obj;
|
|
return enumerator_block_call(obj, 0, obj);
|
|
}
|
|
|
|
static VALUE
|
|
enumerator_with_index_i(VALUE val, VALUE m, int argc, VALUE *argv)
|
|
{
|
|
VALUE *memo = (VALUE *)m;
|
|
VALUE idx = *memo;
|
|
*memo = rb_int_succ(idx);
|
|
|
|
if (argc <= 1)
|
|
return rb_yield_values(2, val, idx);
|
|
|
|
return rb_yield_values(2, rb_ary_new4(argc, argv), idx);
|
|
}
|
|
|
|
static VALUE
|
|
enumerator_size(VALUE obj);
|
|
|
|
static VALUE
|
|
enumerator_enum_size(VALUE obj, VALUE args, VALUE eobj)
|
|
{
|
|
return enumerator_size(obj);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.with_index(offset = 0) {|(*args), idx| ... }
|
|
* e.with_index(offset = 0)
|
|
*
|
|
* Iterates the given block for each element with an index, which
|
|
* starts from +offset+. If no block is given, returns a new Enumerator
|
|
* that includes the index, starting from +offset+
|
|
*
|
|
* +offset+:: the starting index to use
|
|
*
|
|
*/
|
|
static VALUE
|
|
enumerator_with_index(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE memo;
|
|
|
|
rb_scan_args(argc, argv, "01", &memo);
|
|
RETURN_SIZED_ENUMERATOR(obj, argc, argv, enumerator_enum_size);
|
|
if (NIL_P(memo))
|
|
memo = INT2FIX(0);
|
|
else
|
|
memo = rb_to_int(memo);
|
|
return enumerator_block_call(obj, enumerator_with_index_i, (VALUE)&memo);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.each_with_index {|(*args), idx| ... }
|
|
* e.each_with_index
|
|
*
|
|
* Same as Enumerator#with_index(0), i.e. there is no starting offset.
|
|
*
|
|
* If no block is given, a new Enumerator is returned that includes the index.
|
|
*
|
|
*/
|
|
static VALUE
|
|
enumerator_each_with_index(VALUE obj)
|
|
{
|
|
return enumerator_with_index(0, NULL, obj);
|
|
}
|
|
|
|
static VALUE
|
|
enumerator_with_object_i(VALUE val, VALUE memo, int argc, VALUE *argv)
|
|
{
|
|
if (argc <= 1)
|
|
return rb_yield_values(2, val, memo);
|
|
|
|
return rb_yield_values(2, rb_ary_new4(argc, argv), memo);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.each_with_object(obj) {|(*args), obj| ... }
|
|
* e.each_with_object(obj)
|
|
* e.with_object(obj) {|(*args), obj| ... }
|
|
* e.with_object(obj)
|
|
*
|
|
* Iterates the given block for each element with an arbitrary object, +obj+,
|
|
* and returns +obj+
|
|
*
|
|
* If no block is given, returns a new Enumerator.
|
|
*
|
|
* === Example
|
|
*
|
|
* to_three = Enumerator.new do |y|
|
|
* 3.times do |x|
|
|
* y << x
|
|
* end
|
|
* end
|
|
*
|
|
* to_three_with_string = to_three.with_object("foo")
|
|
* to_three_with_string.each do |x,string|
|
|
* puts "#{string}: #{x}"
|
|
* end
|
|
*
|
|
* # => foo:0
|
|
* # => foo:1
|
|
* # => foo:2
|
|
*/
|
|
static VALUE
|
|
enumerator_with_object(VALUE obj, VALUE memo)
|
|
{
|
|
RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enumerator_enum_size);
|
|
enumerator_block_call(obj, enumerator_with_object_i, memo);
|
|
|
|
return memo;
|
|
}
|
|
|
|
static VALUE
|
|
next_ii(VALUE i, VALUE obj, int argc, VALUE *argv)
|
|
{
|
|
struct enumerator *e = enumerator_ptr(obj);
|
|
VALUE feedvalue = Qnil;
|
|
VALUE args = rb_ary_new4(argc, argv);
|
|
rb_fiber_yield(1, &args);
|
|
if (e->feedvalue != Qundef) {
|
|
feedvalue = e->feedvalue;
|
|
e->feedvalue = Qundef;
|
|
}
|
|
return feedvalue;
|
|
}
|
|
|
|
static VALUE
|
|
next_i(VALUE curr, VALUE obj)
|
|
{
|
|
struct enumerator *e = enumerator_ptr(obj);
|
|
VALUE nil = Qnil;
|
|
VALUE result;
|
|
|
|
result = rb_block_call(obj, id_each, 0, 0, next_ii, obj);
|
|
e->stop_exc = rb_exc_new2(rb_eStopIteration, "iteration reached an end");
|
|
rb_ivar_set(e->stop_exc, id_result, result);
|
|
return rb_fiber_yield(1, &nil);
|
|
}
|
|
|
|
static void
|
|
next_init(VALUE obj, struct enumerator *e)
|
|
{
|
|
VALUE curr = rb_fiber_current();
|
|
e->dst = curr;
|
|
e->fib = rb_fiber_new(next_i, obj);
|
|
e->lookahead = Qundef;
|
|
}
|
|
|
|
static VALUE
|
|
get_next_values(VALUE obj, struct enumerator *e)
|
|
{
|
|
VALUE curr, vs;
|
|
|
|
if (e->stop_exc)
|
|
rb_exc_raise(e->stop_exc);
|
|
|
|
curr = rb_fiber_current();
|
|
|
|
if (!e->fib || !rb_fiber_alive_p(e->fib)) {
|
|
next_init(obj, e);
|
|
}
|
|
|
|
vs = rb_fiber_resume(e->fib, 1, &curr);
|
|
if (e->stop_exc) {
|
|
e->fib = 0;
|
|
e->dst = Qnil;
|
|
e->lookahead = Qundef;
|
|
e->feedvalue = Qundef;
|
|
rb_exc_raise(e->stop_exc);
|
|
}
|
|
return vs;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.next_values -> array
|
|
*
|
|
* Returns the next object as an array in the enumerator, and move the
|
|
* internal position forward. When the position reached at the end,
|
|
* StopIteration is raised.
|
|
*
|
|
* This method can be used to distinguish <code>yield</code> and <code>yield
|
|
* nil</code>.
|
|
*
|
|
* === Example
|
|
*
|
|
* o = Object.new
|
|
* def o.each
|
|
* yield
|
|
* yield 1
|
|
* yield 1, 2
|
|
* yield nil
|
|
* yield [1, 2]
|
|
* end
|
|
* e = o.to_enum
|
|
* p e.next_values
|
|
* p e.next_values
|
|
* p e.next_values
|
|
* p e.next_values
|
|
* p e.next_values
|
|
* e = o.to_enum
|
|
* p e.next
|
|
* p e.next
|
|
* p e.next
|
|
* p e.next
|
|
* p e.next
|
|
*
|
|
* ## yield args next_values next
|
|
* # yield [] nil
|
|
* # yield 1 [1] 1
|
|
* # yield 1, 2 [1, 2] [1, 2]
|
|
* # yield nil [nil] nil
|
|
* # yield [1, 2] [[1, 2]] [1, 2]
|
|
*
|
|
* Note that +next_values+ does not affect other non-external enumeration
|
|
* methods unless underlying iteration method itself has side-effect, e.g.
|
|
* IO#each_line.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
enumerator_next_values(VALUE obj)
|
|
{
|
|
struct enumerator *e = enumerator_ptr(obj);
|
|
VALUE vs;
|
|
|
|
if (e->lookahead != Qundef) {
|
|
vs = e->lookahead;
|
|
e->lookahead = Qundef;
|
|
return vs;
|
|
}
|
|
|
|
return get_next_values(obj, e);
|
|
}
|
|
|
|
static VALUE
|
|
ary2sv(VALUE args, int dup)
|
|
{
|
|
if (!RB_TYPE_P(args, T_ARRAY))
|
|
return args;
|
|
|
|
switch (RARRAY_LEN(args)) {
|
|
case 0:
|
|
return Qnil;
|
|
|
|
case 1:
|
|
return RARRAY_AREF(args, 0);
|
|
|
|
default:
|
|
if (dup)
|
|
return rb_ary_dup(args);
|
|
return args;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.next -> object
|
|
*
|
|
* Returns the next object in the enumerator, and move the internal position
|
|
* forward. When the position reached at the end, StopIteration is raised.
|
|
*
|
|
* === Example
|
|
*
|
|
* a = [1,2,3]
|
|
* e = a.to_enum
|
|
* p e.next #=> 1
|
|
* p e.next #=> 2
|
|
* p e.next #=> 3
|
|
* p e.next #raises StopIteration
|
|
*
|
|
* Note that enumeration sequence by +next+ does not affect other non-external
|
|
* enumeration methods, unless the underlying iteration methods itself has
|
|
* side-effect, e.g. IO#each_line.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
enumerator_next(VALUE obj)
|
|
{
|
|
VALUE vs = enumerator_next_values(obj);
|
|
return ary2sv(vs, 0);
|
|
}
|
|
|
|
static VALUE
|
|
enumerator_peek_values(VALUE obj)
|
|
{
|
|
struct enumerator *e = enumerator_ptr(obj);
|
|
|
|
if (e->lookahead == Qundef) {
|
|
e->lookahead = get_next_values(obj, e);
|
|
}
|
|
return e->lookahead;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.peek_values -> array
|
|
*
|
|
* Returns the next object as an array, similar to Enumerator#next_values, but
|
|
* doesn't move the internal position forward. If the position is already at
|
|
* the end, StopIteration is raised.
|
|
*
|
|
* === Example
|
|
*
|
|
* o = Object.new
|
|
* def o.each
|
|
* yield
|
|
* yield 1
|
|
* yield 1, 2
|
|
* end
|
|
* e = o.to_enum
|
|
* p e.peek_values #=> []
|
|
* e.next
|
|
* p e.peek_values #=> [1]
|
|
* p e.peek_values #=> [1]
|
|
* e.next
|
|
* p e.peek_values #=> [1, 2]
|
|
* e.next
|
|
* p e.peek_values # raises StopIteration
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
enumerator_peek_values_m(VALUE obj)
|
|
{
|
|
return rb_ary_dup(enumerator_peek_values(obj));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.peek -> object
|
|
*
|
|
* Returns the next object in the enumerator, but doesn't move the internal
|
|
* position forward. If the position is already at the end, StopIteration
|
|
* is raised.
|
|
*
|
|
* === Example
|
|
*
|
|
* a = [1,2,3]
|
|
* e = a.to_enum
|
|
* p e.next #=> 1
|
|
* p e.peek #=> 2
|
|
* p e.peek #=> 2
|
|
* p e.peek #=> 2
|
|
* p e.next #=> 2
|
|
* p e.next #=> 3
|
|
* p e.next #raises StopIteration
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
enumerator_peek(VALUE obj)
|
|
{
|
|
VALUE vs = enumerator_peek_values(obj);
|
|
return ary2sv(vs, 1);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.feed obj -> nil
|
|
*
|
|
* Sets the value to be returned by the next yield inside +e+.
|
|
*
|
|
* If the value is not set, the yield returns nil.
|
|
*
|
|
* This value is cleared after being yielded.
|
|
*
|
|
* # Array#map passes the array's elements to "yield" and collects the
|
|
* # results of "yield" as an array.
|
|
* # Following example shows that "next" returns the passed elements and
|
|
* # values passed to "feed" are collected as an array which can be
|
|
* # obtained by StopIteration#result.
|
|
* e = [1,2,3].map
|
|
* p e.next #=> 1
|
|
* e.feed "a"
|
|
* p e.next #=> 2
|
|
* e.feed "b"
|
|
* p e.next #=> 3
|
|
* e.feed "c"
|
|
* begin
|
|
* e.next
|
|
* rescue StopIteration
|
|
* p $!.result #=> ["a", "b", "c"]
|
|
* end
|
|
*
|
|
* o = Object.new
|
|
* def o.each
|
|
* x = yield # (2) blocks
|
|
* p x # (5) => "foo"
|
|
* x = yield # (6) blocks
|
|
* p x # (8) => nil
|
|
* x = yield # (9) blocks
|
|
* p x # not reached w/o another e.next
|
|
* end
|
|
*
|
|
* e = o.to_enum
|
|
* e.next # (1)
|
|
* e.feed "foo" # (3)
|
|
* e.next # (4)
|
|
* e.next # (7)
|
|
* # (10)
|
|
*/
|
|
|
|
static VALUE
|
|
enumerator_feed(VALUE obj, VALUE v)
|
|
{
|
|
struct enumerator *e = enumerator_ptr(obj);
|
|
|
|
if (e->feedvalue != Qundef) {
|
|
rb_raise(rb_eTypeError, "feed value already set");
|
|
}
|
|
e->feedvalue = v;
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.rewind -> e
|
|
*
|
|
* Rewinds the enumeration sequence to the beginning.
|
|
*
|
|
* If the enclosed object responds to a "rewind" method, it is called.
|
|
*/
|
|
|
|
static VALUE
|
|
enumerator_rewind(VALUE obj)
|
|
{
|
|
struct enumerator *e = enumerator_ptr(obj);
|
|
|
|
rb_check_funcall(e->obj, id_rewind, 0, 0);
|
|
|
|
e->fib = 0;
|
|
e->dst = Qnil;
|
|
e->lookahead = Qundef;
|
|
e->feedvalue = Qundef;
|
|
e->stop_exc = Qfalse;
|
|
return obj;
|
|
}
|
|
|
|
static VALUE append_method(VALUE obj, VALUE str, ID default_method, VALUE default_args);
|
|
|
|
static VALUE
|
|
inspect_enumerator(VALUE obj, VALUE dummy, int recur)
|
|
{
|
|
struct enumerator *e;
|
|
VALUE eobj, str, cname;
|
|
|
|
TypedData_Get_Struct(obj, struct enumerator, &enumerator_data_type, e);
|
|
|
|
cname = rb_obj_class(obj);
|
|
|
|
if (!e || e->obj == Qundef) {
|
|
return rb_sprintf("#<%"PRIsVALUE": uninitialized>", rb_class_path(cname));
|
|
}
|
|
|
|
if (recur) {
|
|
str = rb_sprintf("#<%"PRIsVALUE": ...>", rb_class_path(cname));
|
|
OBJ_TAINT(str);
|
|
return str;
|
|
}
|
|
|
|
eobj = rb_attr_get(obj, id_receiver);
|
|
if (NIL_P(eobj)) {
|
|
eobj = e->obj;
|
|
}
|
|
|
|
/* (1..100).each_cons(2) => "#<Enumerator: 1..100:each_cons(2)>" */
|
|
str = rb_sprintf("#<%"PRIsVALUE": %+"PRIsVALUE, rb_class_path(cname), eobj);
|
|
append_method(obj, str, e->meth, e->args);
|
|
|
|
rb_str_buf_cat2(str, ">");
|
|
|
|
return str;
|
|
}
|
|
|
|
static VALUE
|
|
append_method(VALUE obj, VALUE str, ID default_method, VALUE default_args)
|
|
{
|
|
VALUE method, eargs;
|
|
|
|
method = rb_attr_get(obj, id_method);
|
|
if (method != Qfalse) {
|
|
ID mid = default_method;
|
|
if (!NIL_P(method)) {
|
|
Check_Type(method, T_SYMBOL);
|
|
mid = SYM2ID(method);
|
|
}
|
|
rb_str_buf_cat2(str, ":");
|
|
rb_str_buf_append(str, rb_id2str(mid));
|
|
}
|
|
|
|
eargs = rb_attr_get(obj, id_arguments);
|
|
if (NIL_P(eargs)) {
|
|
eargs = default_args;
|
|
}
|
|
if (eargs != Qfalse) {
|
|
long argc = RARRAY_LEN(eargs);
|
|
VALUE *argv = RARRAY_PTR(eargs);
|
|
|
|
if (argc > 0) {
|
|
rb_str_buf_cat2(str, "(");
|
|
|
|
while (argc--) {
|
|
VALUE arg = *argv++;
|
|
|
|
rb_str_append(str, rb_inspect(arg));
|
|
rb_str_buf_cat2(str, argc > 0 ? ", " : ")");
|
|
OBJ_INFECT(str, arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.inspect -> string
|
|
*
|
|
* Creates a printable version of <i>e</i>.
|
|
*/
|
|
|
|
static VALUE
|
|
enumerator_inspect(VALUE obj)
|
|
{
|
|
return rb_exec_recursive(inspect_enumerator, obj, 0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.size -> int, Float::INFINITY or nil
|
|
*
|
|
* Returns the size of the enumerator, or +nil+ if it can't be calculated lazily.
|
|
*
|
|
* (1..100).to_a.permutation(4).size # => 94109400
|
|
* loop.size # => Float::INFINITY
|
|
* (1..100).drop_while.size # => nil
|
|
*/
|
|
|
|
static VALUE
|
|
enumerator_size(VALUE obj)
|
|
{
|
|
struct enumerator *e = enumerator_ptr(obj);
|
|
|
|
if (e->size_fn) {
|
|
return (*e->size_fn)(e->obj, e->args, obj);
|
|
}
|
|
if (rb_obj_is_proc(e->size)) {
|
|
if (e->args)
|
|
return rb_proc_call(e->size, e->args);
|
|
else
|
|
return rb_proc_call_with_block(e->size, 0, 0, Qnil);
|
|
}
|
|
return e->size;
|
|
}
|
|
|
|
/*
|
|
* Yielder
|
|
*/
|
|
static void
|
|
yielder_mark(void *p)
|
|
{
|
|
struct yielder *ptr = p;
|
|
rb_gc_mark(ptr->proc);
|
|
}
|
|
|
|
#define yielder_free RUBY_TYPED_DEFAULT_FREE
|
|
|
|
static size_t
|
|
yielder_memsize(const void *p)
|
|
{
|
|
return p ? sizeof(struct yielder) : 0;
|
|
}
|
|
|
|
static const rb_data_type_t yielder_data_type = {
|
|
"yielder",
|
|
{
|
|
yielder_mark,
|
|
yielder_free,
|
|
yielder_memsize,
|
|
},
|
|
};
|
|
|
|
static struct yielder *
|
|
yielder_ptr(VALUE obj)
|
|
{
|
|
struct yielder *ptr;
|
|
|
|
TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr);
|
|
if (!ptr || ptr->proc == Qundef) {
|
|
rb_raise(rb_eArgError, "uninitialized yielder");
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
yielder_allocate(VALUE klass)
|
|
{
|
|
struct yielder *ptr;
|
|
VALUE obj;
|
|
|
|
obj = TypedData_Make_Struct(klass, struct yielder, &yielder_data_type, ptr);
|
|
ptr->proc = Qundef;
|
|
|
|
return obj;
|
|
}
|
|
|
|
static VALUE
|
|
yielder_init(VALUE obj, VALUE proc)
|
|
{
|
|
struct yielder *ptr;
|
|
|
|
TypedData_Get_Struct(obj, struct yielder, &yielder_data_type, ptr);
|
|
|
|
if (!ptr) {
|
|
rb_raise(rb_eArgError, "unallocated yielder");
|
|
}
|
|
|
|
ptr->proc = proc;
|
|
|
|
return obj;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
yielder_initialize(VALUE obj)
|
|
{
|
|
rb_need_block();
|
|
|
|
return yielder_init(obj, rb_block_proc());
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
yielder_yield(VALUE obj, VALUE args)
|
|
{
|
|
struct yielder *ptr = yielder_ptr(obj);
|
|
|
|
return rb_proc_call(ptr->proc, args);
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE yielder_yield_push(VALUE obj, VALUE args)
|
|
{
|
|
yielder_yield(obj, args);
|
|
return obj;
|
|
}
|
|
|
|
static VALUE
|
|
yielder_yield_i(VALUE obj, VALUE memo, int argc, VALUE *argv)
|
|
{
|
|
return rb_yield_values2(argc, argv);
|
|
}
|
|
|
|
static VALUE
|
|
yielder_new(void)
|
|
{
|
|
return yielder_init(yielder_allocate(rb_cYielder), rb_proc_new(yielder_yield_i, 0));
|
|
}
|
|
|
|
/*
|
|
* Generator
|
|
*/
|
|
static void
|
|
generator_mark(void *p)
|
|
{
|
|
struct generator *ptr = p;
|
|
rb_gc_mark(ptr->proc);
|
|
}
|
|
|
|
#define generator_free RUBY_TYPED_DEFAULT_FREE
|
|
|
|
static size_t
|
|
generator_memsize(const void *p)
|
|
{
|
|
return p ? sizeof(struct generator) : 0;
|
|
}
|
|
|
|
static const rb_data_type_t generator_data_type = {
|
|
"generator",
|
|
{
|
|
generator_mark,
|
|
generator_free,
|
|
generator_memsize,
|
|
},
|
|
};
|
|
|
|
static struct generator *
|
|
generator_ptr(VALUE obj)
|
|
{
|
|
struct generator *ptr;
|
|
|
|
TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr);
|
|
if (!ptr || ptr->proc == Qundef) {
|
|
rb_raise(rb_eArgError, "uninitialized generator");
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
generator_allocate(VALUE klass)
|
|
{
|
|
struct generator *ptr;
|
|
VALUE obj;
|
|
|
|
obj = TypedData_Make_Struct(klass, struct generator, &generator_data_type, ptr);
|
|
ptr->proc = Qundef;
|
|
|
|
return obj;
|
|
}
|
|
|
|
static VALUE
|
|
generator_init(VALUE obj, VALUE proc)
|
|
{
|
|
struct generator *ptr;
|
|
|
|
TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr);
|
|
|
|
if (!ptr) {
|
|
rb_raise(rb_eArgError, "unallocated generator");
|
|
}
|
|
|
|
ptr->proc = proc;
|
|
|
|
return obj;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
generator_initialize(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE proc;
|
|
|
|
if (argc == 0) {
|
|
rb_need_block();
|
|
|
|
proc = rb_block_proc();
|
|
}
|
|
else {
|
|
rb_scan_args(argc, argv, "1", &proc);
|
|
|
|
if (!rb_obj_is_proc(proc))
|
|
rb_raise(rb_eTypeError,
|
|
"wrong argument type %s (expected Proc)",
|
|
rb_obj_classname(proc));
|
|
|
|
if (rb_block_given_p()) {
|
|
rb_warn("given block not used");
|
|
}
|
|
}
|
|
|
|
return generator_init(obj, proc);
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
generator_init_copy(VALUE obj, VALUE orig)
|
|
{
|
|
struct generator *ptr0, *ptr1;
|
|
|
|
if (!OBJ_INIT_COPY(obj, orig)) return obj;
|
|
|
|
ptr0 = generator_ptr(orig);
|
|
|
|
TypedData_Get_Struct(obj, struct generator, &generator_data_type, ptr1);
|
|
|
|
if (!ptr1) {
|
|
rb_raise(rb_eArgError, "unallocated generator");
|
|
}
|
|
|
|
ptr1->proc = ptr0->proc;
|
|
|
|
return obj;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
generator_each(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
struct generator *ptr = generator_ptr(obj);
|
|
VALUE args = rb_ary_new2(argc + 1);
|
|
|
|
rb_ary_push(args, yielder_new());
|
|
if (argc > 0) {
|
|
rb_ary_cat(args, argv, argc);
|
|
}
|
|
|
|
return rb_proc_call(ptr->proc, args);
|
|
}
|
|
|
|
/* Lazy Enumerator methods */
|
|
static VALUE
|
|
enum_size(VALUE self)
|
|
{
|
|
VALUE r = rb_check_funcall(self, id_size, 0, 0);
|
|
return (r == Qundef) ? Qnil : r;
|
|
}
|
|
|
|
static VALUE
|
|
lazyenum_size(VALUE self, VALUE args, VALUE eobj)
|
|
{
|
|
return enum_size(self);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_size(VALUE self)
|
|
{
|
|
return enum_size(rb_ivar_get(self, id_receiver));
|
|
}
|
|
|
|
static VALUE
|
|
lazy_receiver_size(VALUE generator, VALUE args, VALUE lazy)
|
|
{
|
|
return lazy_size(lazy);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_init_iterator(VALUE val, VALUE m, int argc, VALUE *argv)
|
|
{
|
|
VALUE result;
|
|
if (argc == 1) {
|
|
VALUE args[2];
|
|
args[0] = m;
|
|
args[1] = val;
|
|
result = rb_yield_values2(2, args);
|
|
}
|
|
else {
|
|
VALUE args;
|
|
int len = rb_long2int((long)argc + 1);
|
|
|
|
args = rb_ary_tmp_new(len);
|
|
rb_ary_push(args, m);
|
|
if (argc > 0) {
|
|
rb_ary_cat(args, argv, argc);
|
|
}
|
|
result = rb_yield_values2(len, RARRAY_PTR(args));
|
|
RB_GC_GUARD(args);
|
|
}
|
|
if (result == Qundef) rb_iter_break();
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_init_block_i(VALUE val, VALUE m, int argc, VALUE *argv)
|
|
{
|
|
rb_block_call(m, id_each, argc-1, argv+1, lazy_init_iterator, val);
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Lazy.new(obj, size=nil) { |yielder, *values| ... }
|
|
*
|
|
* Creates a new Lazy enumerator. When the enumerator is actually enumerated
|
|
* (e.g. by calling #force), +obj+ will be enumerated and each value passed
|
|
* to the given block. The block can yield values back using +yielder+.
|
|
* For example, to create a method +filter_map+ in both lazy and
|
|
* non-lazy fashions:
|
|
*
|
|
* module Enumerable
|
|
* def filter_map(&block)
|
|
* map(&block).compact
|
|
* end
|
|
* end
|
|
*
|
|
* class Enumerator::Lazy
|
|
* def filter_map
|
|
* Lazy.new(self) do |yielder, *values|
|
|
* result = yield *values
|
|
* yielder << result if result
|
|
* end
|
|
* end
|
|
* end
|
|
*
|
|
* (1..Float::INFINITY).lazy.filter_map{|i| i*i if i.even?}.first(5)
|
|
* # => [4, 16, 36, 64, 100]
|
|
*/
|
|
static VALUE
|
|
lazy_initialize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE obj, size = Qnil;
|
|
VALUE generator;
|
|
|
|
rb_check_arity(argc, 1, 2);
|
|
if (!rb_block_given_p()) {
|
|
rb_raise(rb_eArgError, "tried to call lazy new without a block");
|
|
}
|
|
obj = argv[0];
|
|
if (argc > 1) {
|
|
size = argv[1];
|
|
}
|
|
generator = generator_allocate(rb_cGenerator);
|
|
rb_block_call(generator, id_initialize, 0, 0, lazy_init_block_i, obj);
|
|
enumerator_init(self, generator, sym_each, 0, 0, 0, size);
|
|
rb_ivar_set(self, id_receiver, obj);
|
|
|
|
return self;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_set_method(VALUE lazy, VALUE args, rb_enumerator_size_func *size_fn)
|
|
{
|
|
ID id = rb_frame_this_func();
|
|
struct enumerator *e = enumerator_ptr(lazy);
|
|
rb_ivar_set(lazy, id_method, ID2SYM(id));
|
|
if (NIL_P(args)) {
|
|
/* Qfalse indicates that the arguments are empty */
|
|
rb_ivar_set(lazy, id_arguments, Qfalse);
|
|
}
|
|
else {
|
|
rb_ivar_set(lazy, id_arguments, args);
|
|
}
|
|
e->size_fn = size_fn;
|
|
return lazy;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* e.lazy -> lazy_enumerator
|
|
*
|
|
* Returns a lazy enumerator, whose methods map/collect,
|
|
* flat_map/collect_concat, select/find_all, reject, grep, zip, take,
|
|
* take_while, drop, drop_while, and cycle enumerate values only on an
|
|
* as-needed basis. However, if a block is given to zip or cycle, values
|
|
* are enumerated immediately.
|
|
*
|
|
* === Example
|
|
*
|
|
* The following program finds pythagorean triples:
|
|
*
|
|
* def pythagorean_triples
|
|
* (1..Float::INFINITY).lazy.flat_map {|z|
|
|
* (1..z).flat_map {|x|
|
|
* (x..z).select {|y|
|
|
* x**2 + y**2 == z**2
|
|
* }.map {|y|
|
|
* [x, y, z]
|
|
* }
|
|
* }
|
|
* }
|
|
* end
|
|
* # show first ten pythagorean triples
|
|
* p pythagorean_triples.take(10).force # take is lazy, so force is needed
|
|
* p pythagorean_triples.first(10) # first is eager
|
|
* # show pythagorean triples less than 100
|
|
* p pythagorean_triples.take_while { |*, z| z < 100 }.force
|
|
*/
|
|
static VALUE
|
|
enumerable_lazy(VALUE obj)
|
|
{
|
|
VALUE result = lazy_to_enum_i(obj, sym_each, 0, 0, lazyenum_size);
|
|
/* Qfalse indicates that the Enumerator::Lazy has no method name */
|
|
rb_ivar_set(result, id_method, Qfalse);
|
|
return result;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_to_enum_i(VALUE obj, VALUE meth, int argc, VALUE *argv, rb_enumerator_size_func *size_fn)
|
|
{
|
|
return enumerator_init(enumerator_allocate(rb_cLazy),
|
|
obj, meth, argc, argv, size_fn, Qnil);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* lzy.to_enum(method = :each, *args) -> lazy_enum
|
|
* lzy.enum_for(method = :each, *args) -> lazy_enum
|
|
* lzy.to_enum(method = :each, *args) {|*args| block} -> lazy_enum
|
|
* lzy.enum_for(method = :each, *args){|*args| block} -> lazy_enum
|
|
*
|
|
* Similar to Kernel#to_enum, except it returns a lazy enumerator.
|
|
* This makes it easy to define Enumerable methods that will
|
|
* naturally remain lazy if called from a lazy enumerator.
|
|
*
|
|
* For example, continuing from the example in Kernel#to_enum:
|
|
*
|
|
* # See Kernel#to_enum for the definition of repeat
|
|
* r = 1..Float::INFINITY
|
|
* r.repeat(2).first(5) # => [1, 1, 2, 2, 3]
|
|
* r.repeat(2).class # => Enumerator
|
|
* r.repeat(2).map{|n| n ** 2}.first(5) # => endless loop!
|
|
* # works naturally on lazy enumerator:
|
|
* r.lazy.repeat(2).class # => Enumerator::Lazy
|
|
* r.lazy.repeat(2).map{|n| n ** 2}.first(5) # => [1, 1, 4, 4, 9]
|
|
*/
|
|
|
|
static VALUE
|
|
lazy_to_enum(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE lazy, meth = sym_each;
|
|
|
|
if (argc > 0) {
|
|
--argc;
|
|
meth = *argv++;
|
|
}
|
|
lazy = lazy_to_enum_i(self, meth, argc, argv, 0);
|
|
if (rb_block_given_p()) {
|
|
enumerator_ptr(lazy)->size = rb_block_proc();
|
|
}
|
|
return lazy;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_map_func(VALUE val, VALUE m, int argc, VALUE *argv)
|
|
{
|
|
VALUE result = rb_yield_values2(argc - 1, &argv[1]);
|
|
|
|
rb_funcall(argv[0], id_yield, 1, result);
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_map(VALUE obj)
|
|
{
|
|
if (!rb_block_given_p()) {
|
|
rb_raise(rb_eArgError, "tried to call lazy map without a block");
|
|
}
|
|
|
|
return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj,
|
|
lazy_map_func, 0),
|
|
Qnil, lazy_receiver_size);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_flat_map_i(VALUE i, VALUE yielder, int argc, VALUE *argv)
|
|
{
|
|
return rb_funcall2(yielder, id_yield, argc, argv);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_flat_map_each(VALUE obj, VALUE yielder)
|
|
{
|
|
rb_block_call(obj, id_each, 0, 0, lazy_flat_map_i, yielder);
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_flat_map_to_ary(VALUE obj, VALUE yielder)
|
|
{
|
|
VALUE ary = rb_check_array_type(obj);
|
|
if (NIL_P(ary)) {
|
|
rb_funcall(yielder, id_yield, 1, obj);
|
|
}
|
|
else {
|
|
long i;
|
|
for (i = 0; i < RARRAY_LEN(ary); i++) {
|
|
rb_funcall(yielder, id_yield, 1, RARRAY_AREF(ary, i));
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_flat_map_func(VALUE val, VALUE m, int argc, VALUE *argv)
|
|
{
|
|
VALUE result = rb_yield_values2(argc - 1, &argv[1]);
|
|
if (RB_TYPE_P(result, T_ARRAY)) {
|
|
long i;
|
|
for (i = 0; i < RARRAY_LEN(result); i++) {
|
|
rb_funcall(argv[0], id_yield, 1, RARRAY_AREF(result, i));
|
|
}
|
|
}
|
|
else {
|
|
if (rb_respond_to(result, id_force) && rb_respond_to(result, id_each)) {
|
|
lazy_flat_map_each(result, argv[0]);
|
|
}
|
|
else {
|
|
lazy_flat_map_to_ary(result, argv[0]);
|
|
}
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* lazy.collect_concat { |obj| block } -> a_lazy_enumerator
|
|
* lazy.flat_map { |obj| block } -> a_lazy_enumerator
|
|
*
|
|
* Returns a new lazy enumerator with the concatenated results of running
|
|
* <i>block</i> once for every element in <i>lazy</i>.
|
|
*
|
|
* ["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force
|
|
* #=> ["f", "o", "o", "b", "a", "r"]
|
|
*
|
|
* A value <i>x</i> returned by <i>block</i> is decomposed if either of
|
|
* the following conditions is true:
|
|
*
|
|
* a) <i>x</i> responds to both each and force, which means that
|
|
* <i>x</i> is a lazy enumerator.
|
|
* b) <i>x</i> is an array or responds to to_ary.
|
|
*
|
|
* Otherwise, <i>x</i> is contained as-is in the return value.
|
|
*
|
|
* [{a:1}, {b:2}].lazy.flat_map {|i| i}.force
|
|
* #=> [{:a=>1}, {:b=>2}]
|
|
*/
|
|
static VALUE
|
|
lazy_flat_map(VALUE obj)
|
|
{
|
|
if (!rb_block_given_p()) {
|
|
rb_raise(rb_eArgError, "tried to call lazy flat_map without a block");
|
|
}
|
|
|
|
return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj,
|
|
lazy_flat_map_func, 0),
|
|
Qnil, 0);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_select_func(VALUE val, VALUE m, int argc, VALUE *argv)
|
|
{
|
|
VALUE element = rb_enum_values_pack(argc - 1, argv + 1);
|
|
|
|
if (RTEST(rb_yield(element))) {
|
|
return rb_funcall(argv[0], id_yield, 1, element);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_select(VALUE obj)
|
|
{
|
|
if (!rb_block_given_p()) {
|
|
rb_raise(rb_eArgError, "tried to call lazy select without a block");
|
|
}
|
|
|
|
return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj,
|
|
lazy_select_func, 0),
|
|
Qnil, 0);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_reject_func(VALUE val, VALUE m, int argc, VALUE *argv)
|
|
{
|
|
VALUE element = rb_enum_values_pack(argc - 1, argv + 1);
|
|
|
|
if (!RTEST(rb_yield(element))) {
|
|
return rb_funcall(argv[0], id_yield, 1, element);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_reject(VALUE obj)
|
|
{
|
|
if (!rb_block_given_p()) {
|
|
rb_raise(rb_eArgError, "tried to call lazy reject without a block");
|
|
}
|
|
|
|
return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj,
|
|
lazy_reject_func, 0),
|
|
Qnil, 0);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_grep_func(VALUE val, VALUE m, int argc, VALUE *argv)
|
|
{
|
|
VALUE i = rb_enum_values_pack(argc - 1, argv + 1);
|
|
VALUE result = rb_funcall(m, id_eqq, 1, i);
|
|
|
|
if (RTEST(result)) {
|
|
rb_funcall(argv[0], id_yield, 1, i);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_grep_iter(VALUE val, VALUE m, int argc, VALUE *argv)
|
|
{
|
|
VALUE i = rb_enum_values_pack(argc - 1, argv + 1);
|
|
VALUE result = rb_funcall(m, id_eqq, 1, i);
|
|
|
|
if (RTEST(result)) {
|
|
rb_funcall(argv[0], id_yield, 1, rb_yield(i));
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_grep(VALUE obj, VALUE pattern)
|
|
{
|
|
return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj,
|
|
rb_block_given_p() ?
|
|
lazy_grep_iter : lazy_grep_func,
|
|
pattern),
|
|
rb_ary_new3(1, pattern), 0);
|
|
}
|
|
|
|
static VALUE
|
|
call_next(VALUE obj)
|
|
{
|
|
return rb_funcall(obj, id_next, 0);
|
|
}
|
|
|
|
static VALUE
|
|
next_stopped(VALUE obj)
|
|
{
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_zip_arrays_func(VALUE val, VALUE arrays, int argc, VALUE *argv)
|
|
{
|
|
VALUE yielder, ary, memo;
|
|
long i, count;
|
|
|
|
yielder = argv[0];
|
|
memo = rb_attr_get(yielder, id_memo);
|
|
count = NIL_P(memo) ? 0 : NUM2LONG(memo);
|
|
|
|
ary = rb_ary_new2(RARRAY_LEN(arrays) + 1);
|
|
rb_ary_push(ary, argv[1]);
|
|
for (i = 0; i < RARRAY_LEN(arrays); i++) {
|
|
rb_ary_push(ary, rb_ary_entry(RARRAY_AREF(arrays, i), count));
|
|
}
|
|
rb_funcall(yielder, id_yield, 1, ary);
|
|
rb_ivar_set(yielder, id_memo, LONG2NUM(++count));
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_zip_func(VALUE val, VALUE zip_args, int argc, VALUE *argv)
|
|
{
|
|
VALUE yielder, ary, arg, v;
|
|
long i;
|
|
|
|
yielder = argv[0];
|
|
arg = rb_attr_get(yielder, id_memo);
|
|
if (NIL_P(arg)) {
|
|
arg = rb_ary_new2(RARRAY_LEN(zip_args));
|
|
for (i = 0; i < RARRAY_LEN(zip_args); i++) {
|
|
rb_ary_push(arg, rb_funcall(RARRAY_AREF(zip_args, i), id_to_enum, 0));
|
|
}
|
|
rb_ivar_set(yielder, id_memo, arg);
|
|
}
|
|
|
|
ary = rb_ary_new2(RARRAY_LEN(arg) + 1);
|
|
rb_ary_push(ary, argv[1]);
|
|
for (i = 0; i < RARRAY_LEN(arg); i++) {
|
|
v = rb_rescue2(call_next, RARRAY_AREF(arg, i), next_stopped, 0,
|
|
rb_eStopIteration, (VALUE)0);
|
|
rb_ary_push(ary, v);
|
|
}
|
|
rb_funcall(yielder, id_yield, 1, ary);
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_zip(int argc, VALUE *argv, VALUE obj)
|
|
{
|
|
VALUE ary, v;
|
|
long i;
|
|
rb_block_call_func *func = lazy_zip_arrays_func;
|
|
|
|
if (rb_block_given_p()) {
|
|
return rb_call_super(argc, argv);
|
|
}
|
|
|
|
ary = rb_ary_new2(argc);
|
|
for (i = 0; i < argc; i++) {
|
|
v = rb_check_array_type(argv[i]);
|
|
if (NIL_P(v)) {
|
|
for (; i < argc; i++) {
|
|
if (!rb_respond_to(argv[i], id_each)) {
|
|
rb_raise(rb_eTypeError, "wrong argument type %s (must respond to :each)",
|
|
rb_obj_classname(argv[i]));
|
|
}
|
|
}
|
|
ary = rb_ary_new4(argc, argv);
|
|
func = lazy_zip_func;
|
|
break;
|
|
}
|
|
rb_ary_push(ary, v);
|
|
}
|
|
|
|
return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj,
|
|
func, ary),
|
|
ary, lazy_receiver_size);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_take_func(VALUE val, VALUE args, int argc, VALUE *argv)
|
|
{
|
|
long remain;
|
|
VALUE memo = rb_attr_get(argv[0], id_memo);
|
|
if (NIL_P(memo)) {
|
|
memo = args;
|
|
}
|
|
|
|
rb_funcall2(argv[0], id_yield, argc - 1, argv + 1);
|
|
if ((remain = NUM2LONG(memo)-1) == 0) {
|
|
return Qundef;
|
|
}
|
|
else {
|
|
rb_ivar_set(argv[0], id_memo, LONG2NUM(remain));
|
|
return Qnil;
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
lazy_take_size(VALUE generator, VALUE args, VALUE lazy)
|
|
{
|
|
VALUE receiver = lazy_size(lazy);
|
|
long len = NUM2LONG(RARRAY_AREF(rb_ivar_get(lazy, id_arguments), 0));
|
|
if (NIL_P(receiver) || (FIXNUM_P(receiver) && FIX2LONG(receiver) < len))
|
|
return receiver;
|
|
return LONG2NUM(len);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_take(VALUE obj, VALUE n)
|
|
{
|
|
long len = NUM2LONG(n);
|
|
VALUE lazy;
|
|
|
|
if (len < 0) {
|
|
rb_raise(rb_eArgError, "attempt to take negative size");
|
|
}
|
|
if (len == 0) {
|
|
VALUE len = INT2FIX(0);
|
|
lazy = lazy_to_enum_i(obj, sym_cycle, 1, &len, 0);
|
|
}
|
|
else {
|
|
lazy = rb_block_call(rb_cLazy, id_new, 1, &obj,
|
|
lazy_take_func, n);
|
|
}
|
|
return lazy_set_method(lazy, rb_ary_new3(1, n), lazy_take_size);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_take_while_func(VALUE val, VALUE args, int argc, VALUE *argv)
|
|
{
|
|
VALUE result = rb_yield_values2(argc - 1, &argv[1]);
|
|
if (!RTEST(result)) return Qundef;
|
|
rb_funcall2(argv[0], id_yield, argc - 1, argv + 1);
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_take_while(VALUE obj)
|
|
{
|
|
if (!rb_block_given_p()) {
|
|
rb_raise(rb_eArgError, "tried to call lazy take_while without a block");
|
|
}
|
|
return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj,
|
|
lazy_take_while_func, 0),
|
|
Qnil, 0);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_drop_size(VALUE generator, VALUE args, VALUE lazy)
|
|
{
|
|
long len = NUM2LONG(RARRAY_AREF(rb_ivar_get(lazy, id_arguments), 0));
|
|
VALUE receiver = lazy_size(lazy);
|
|
if (NIL_P(receiver))
|
|
return receiver;
|
|
if (FIXNUM_P(receiver)) {
|
|
len = FIX2LONG(receiver) - len;
|
|
return LONG2FIX(len < 0 ? 0 : len);
|
|
}
|
|
return rb_funcall(receiver, '-', 1, LONG2NUM(len));
|
|
}
|
|
|
|
static VALUE
|
|
lazy_drop_func(VALUE val, VALUE args, int argc, VALUE *argv)
|
|
{
|
|
long remain;
|
|
VALUE memo = rb_attr_get(argv[0], id_memo);
|
|
if (NIL_P(memo)) {
|
|
memo = args;
|
|
}
|
|
if ((remain = NUM2LONG(memo)) == 0) {
|
|
rb_funcall2(argv[0], id_yield, argc - 1, argv + 1);
|
|
}
|
|
else {
|
|
rb_ivar_set(argv[0], id_memo, LONG2NUM(--remain));
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_drop(VALUE obj, VALUE n)
|
|
{
|
|
long len = NUM2LONG(n);
|
|
|
|
if (len < 0) {
|
|
rb_raise(rb_eArgError, "attempt to drop negative size");
|
|
}
|
|
return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj,
|
|
lazy_drop_func, n),
|
|
rb_ary_new3(1, n), lazy_drop_size);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_drop_while_func(VALUE val, VALUE args, int argc, VALUE *argv)
|
|
{
|
|
VALUE memo = rb_attr_get(argv[0], id_memo);
|
|
if (NIL_P(memo) && !RTEST(rb_yield_values2(argc - 1, &argv[1]))) {
|
|
rb_ivar_set(argv[0], id_memo, memo = Qtrue);
|
|
}
|
|
if (memo == Qtrue) {
|
|
rb_funcall2(argv[0], id_yield, argc - 1, argv + 1);
|
|
}
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
lazy_drop_while(VALUE obj)
|
|
{
|
|
if (!rb_block_given_p()) {
|
|
rb_raise(rb_eArgError, "tried to call lazy drop_while without a block");
|
|
}
|
|
return lazy_set_method(rb_block_call(rb_cLazy, id_new, 1, &obj,
|
|
lazy_drop_while_func, 0),
|
|
Qnil, 0);
|
|
}
|
|
|
|
static VALUE
|
|
lazy_super(int argc, VALUE *argv, VALUE lazy)
|
|
{
|
|
return enumerable_lazy(rb_call_super(argc, argv));
|
|
}
|
|
|
|
static VALUE
|
|
lazy_lazy(VALUE obj)
|
|
{
|
|
return obj;
|
|
}
|
|
|
|
/*
|
|
* Document-class: StopIteration
|
|
*
|
|
* Raised to stop the iteration, in particular by Enumerator#next. It is
|
|
* rescued by Kernel#loop.
|
|
*
|
|
* loop do
|
|
* puts "Hello"
|
|
* raise StopIteration
|
|
* puts "World"
|
|
* end
|
|
* puts "Done!"
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* Hello
|
|
* Done!
|
|
*/
|
|
|
|
/*
|
|
* call-seq:
|
|
* result -> value
|
|
*
|
|
* Returns the return value of the iterator.
|
|
*
|
|
* o = Object.new
|
|
* def o.each
|
|
* yield 1
|
|
* yield 2
|
|
* yield 3
|
|
* 100
|
|
* end
|
|
*
|
|
* e = o.to_enum
|
|
*
|
|
* puts e.next #=> 1
|
|
* puts e.next #=> 2
|
|
* puts e.next #=> 3
|
|
*
|
|
* begin
|
|
* e.next
|
|
* rescue StopIteration => ex
|
|
* puts ex.result #=> 100
|
|
* end
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
stop_result(VALUE self)
|
|
{
|
|
return rb_attr_get(self, id_result);
|
|
}
|
|
|
|
void
|
|
InitVM_Enumerator(void)
|
|
{
|
|
rb_define_method(rb_mKernel, "to_enum", obj_to_enum, -1);
|
|
rb_define_method(rb_mKernel, "enum_for", obj_to_enum, -1);
|
|
|
|
rb_cEnumerator = rb_define_class("Enumerator", rb_cObject);
|
|
rb_include_module(rb_cEnumerator, rb_mEnumerable);
|
|
|
|
rb_define_alloc_func(rb_cEnumerator, enumerator_allocate);
|
|
rb_define_method(rb_cEnumerator, "initialize", enumerator_initialize, -1);
|
|
rb_define_method(rb_cEnumerator, "initialize_copy", enumerator_init_copy, 1);
|
|
rb_define_method(rb_cEnumerator, "each", enumerator_each, -1);
|
|
rb_define_method(rb_cEnumerator, "each_with_index", enumerator_each_with_index, 0);
|
|
rb_define_method(rb_cEnumerator, "each_with_object", enumerator_with_object, 1);
|
|
rb_define_method(rb_cEnumerator, "with_index", enumerator_with_index, -1);
|
|
rb_define_method(rb_cEnumerator, "with_object", enumerator_with_object, 1);
|
|
rb_define_method(rb_cEnumerator, "next_values", enumerator_next_values, 0);
|
|
rb_define_method(rb_cEnumerator, "peek_values", enumerator_peek_values_m, 0);
|
|
rb_define_method(rb_cEnumerator, "next", enumerator_next, 0);
|
|
rb_define_method(rb_cEnumerator, "peek", enumerator_peek, 0);
|
|
rb_define_method(rb_cEnumerator, "feed", enumerator_feed, 1);
|
|
rb_define_method(rb_cEnumerator, "rewind", enumerator_rewind, 0);
|
|
rb_define_method(rb_cEnumerator, "inspect", enumerator_inspect, 0);
|
|
rb_define_method(rb_cEnumerator, "size", enumerator_size, 0);
|
|
|
|
/* Lazy */
|
|
rb_cLazy = rb_define_class_under(rb_cEnumerator, "Lazy", rb_cEnumerator);
|
|
rb_define_method(rb_mEnumerable, "lazy", enumerable_lazy, 0);
|
|
rb_define_method(rb_cLazy, "initialize", lazy_initialize, -1);
|
|
rb_define_method(rb_cLazy, "to_enum", lazy_to_enum, -1);
|
|
rb_define_method(rb_cLazy, "enum_for", lazy_to_enum, -1);
|
|
rb_define_method(rb_cLazy, "map", lazy_map, 0);
|
|
rb_define_method(rb_cLazy, "collect", lazy_map, 0);
|
|
rb_define_method(rb_cLazy, "flat_map", lazy_flat_map, 0);
|
|
rb_define_method(rb_cLazy, "collect_concat", lazy_flat_map, 0);
|
|
rb_define_method(rb_cLazy, "select", lazy_select, 0);
|
|
rb_define_method(rb_cLazy, "find_all", lazy_select, 0);
|
|
rb_define_method(rb_cLazy, "reject", lazy_reject, 0);
|
|
rb_define_method(rb_cLazy, "grep", lazy_grep, 1);
|
|
rb_define_method(rb_cLazy, "zip", lazy_zip, -1);
|
|
rb_define_method(rb_cLazy, "take", lazy_take, 1);
|
|
rb_define_method(rb_cLazy, "take_while", lazy_take_while, 0);
|
|
rb_define_method(rb_cLazy, "drop", lazy_drop, 1);
|
|
rb_define_method(rb_cLazy, "drop_while", lazy_drop_while, 0);
|
|
rb_define_method(rb_cLazy, "lazy", lazy_lazy, 0);
|
|
rb_define_method(rb_cLazy, "chunk", lazy_super, -1);
|
|
rb_define_method(rb_cLazy, "slice_before", lazy_super, -1);
|
|
|
|
rb_define_alias(rb_cLazy, "force", "to_a");
|
|
|
|
rb_eStopIteration = rb_define_class("StopIteration", rb_eIndexError);
|
|
rb_define_method(rb_eStopIteration, "result", stop_result, 0);
|
|
|
|
/* Generator */
|
|
rb_cGenerator = rb_define_class_under(rb_cEnumerator, "Generator", rb_cObject);
|
|
rb_include_module(rb_cGenerator, rb_mEnumerable);
|
|
rb_define_alloc_func(rb_cGenerator, generator_allocate);
|
|
rb_define_method(rb_cGenerator, "initialize", generator_initialize, -1);
|
|
rb_define_method(rb_cGenerator, "initialize_copy", generator_init_copy, 1);
|
|
rb_define_method(rb_cGenerator, "each", generator_each, -1);
|
|
|
|
/* Yielder */
|
|
rb_cYielder = rb_define_class_under(rb_cEnumerator, "Yielder", rb_cObject);
|
|
rb_define_alloc_func(rb_cYielder, yielder_allocate);
|
|
rb_define_method(rb_cYielder, "initialize", yielder_initialize, 0);
|
|
rb_define_method(rb_cYielder, "yield", yielder_yield, -2);
|
|
rb_define_method(rb_cYielder, "<<", yielder_yield_push, -2);
|
|
|
|
rb_provide("enumerator.so"); /* for backward compatibility */
|
|
}
|
|
|
|
void
|
|
Init_Enumerator(void)
|
|
{
|
|
id_rewind = rb_intern("rewind");
|
|
id_each = rb_intern("each");
|
|
id_call = rb_intern("call");
|
|
id_size = rb_intern("size");
|
|
id_yield = rb_intern("yield");
|
|
id_new = rb_intern("new");
|
|
id_initialize = rb_intern("initialize");
|
|
id_next = rb_intern("next");
|
|
id_result = rb_intern("result");
|
|
id_lazy = rb_intern("lazy");
|
|
id_eqq = rb_intern("===");
|
|
id_receiver = rb_intern("receiver");
|
|
id_arguments = rb_intern("arguments");
|
|
id_memo = rb_intern("memo");
|
|
id_method = rb_intern("method");
|
|
id_force = rb_intern("force");
|
|
id_to_enum = rb_intern("to_enum");
|
|
sym_each = ID2SYM(id_each);
|
|
sym_cycle = ID2SYM(rb_intern("cycle"));
|
|
|
|
InitVM(Enumerator);
|
|
}
|