mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
60bf66e0cd
mathew <meta at pobox.com>. [ruby-core:07050] git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@10428 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
84 lines
2.1 KiB
Ruby
84 lines
2.1 KiB
Ruby
#
|
|
# Solves a*x = b for x, using LU decomposition.
|
|
#
|
|
module LUSolve
|
|
# Performs LU decomposition of the n by n matrix a.
|
|
def ludecomp(a,n,zero=0,one=1)
|
|
prec = BigDecimal.limit(nil)
|
|
ps = []
|
|
scales = []
|
|
for i in 0...n do # pick up largest(abs. val.) element in each row.
|
|
ps <<= i
|
|
nrmrow = zero
|
|
ixn = i*n
|
|
for j in 0...n do
|
|
biggst = a[ixn+j].abs
|
|
nrmrow = biggst if biggst>nrmrow
|
|
end
|
|
if nrmrow>zero then
|
|
scales <<= one.div(nrmrow,prec)
|
|
else
|
|
raise "Singular matrix"
|
|
end
|
|
end
|
|
n1 = n - 1
|
|
for k in 0...n1 do # Gaussian elimination with partial pivoting.
|
|
biggst = zero;
|
|
for i in k...n do
|
|
size = a[ps[i]*n+k].abs*scales[ps[i]]
|
|
if size>biggst then
|
|
biggst = size
|
|
pividx = i
|
|
end
|
|
end
|
|
raise "Singular matrix" if biggst<=zero
|
|
if pividx!=k then
|
|
j = ps[k]
|
|
ps[k] = ps[pividx]
|
|
ps[pividx] = j
|
|
end
|
|
pivot = a[ps[k]*n+k]
|
|
for i in (k+1)...n do
|
|
psin = ps[i]*n
|
|
a[psin+k] = mult = a[psin+k].div(pivot,prec)
|
|
if mult!=zero then
|
|
pskn = ps[k]*n
|
|
for j in (k+1)...n do
|
|
a[psin+j] -= mult.mult(a[pskn+j],prec)
|
|
end
|
|
end
|
|
end
|
|
end
|
|
raise "Singular matrix" if a[ps[n1]*n+n1] == zero
|
|
ps
|
|
end
|
|
|
|
# Solves a*x = b for x, using LU decomposition.
|
|
#
|
|
# a is a matrix, b is a constant vector, x is the solution vector.
|
|
#
|
|
# ps is the pivot, a vector which indicates the permutation of rows performed
|
|
# during LU decomposition.
|
|
def lusolve(a,b,ps,zero=0.0)
|
|
prec = BigDecimal.limit(nil)
|
|
n = ps.size
|
|
x = []
|
|
for i in 0...n do
|
|
dot = zero
|
|
psin = ps[i]*n
|
|
for j in 0...i do
|
|
dot = a[psin+j].mult(x[j],prec) + dot
|
|
end
|
|
x <<= b[ps[i]] - dot
|
|
end
|
|
(n-1).downto(0) do |i|
|
|
dot = zero
|
|
psin = ps[i]*n
|
|
for j in (i+1)...n do
|
|
dot = a[psin+j].mult(x[j],prec) + dot
|
|
end
|
|
x[i] = (x[i]-dot).div(a[psin+i],prec)
|
|
end
|
|
x
|
|
end
|
|
end
|