1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/ext/bigdecimal/sample/linear.rb
naruse c4fdfabcc8 handle ext/ as r53141
g -L frozen_string_literal ext/**/*.rb|xargs ruby -Ka -e'ARGV.each{|fn|puts
fn;open(fn,"r+"){|f|s=f.read.sub(/\A(#!.*\n)?(#.*coding.*\n)?/,"\\&#
frozen_string_literal: false\n");f.rewind;f.write s}}'

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@53143 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2015-12-16 05:31:54 +00:00

73 lines
1.6 KiB
Ruby

#!/usr/local/bin/ruby
# frozen_string_literal: false
#
# linear.rb
#
# Solves linear equation system(A*x = b) by LU decomposition method.
# where A is a coefficient matrix,x is an answer vector,b is a constant vector.
#
# USAGE:
# ruby linear.rb [input file solved]
#
# :stopdoc:
require "bigdecimal"
require "bigdecimal/ludcmp"
#
# NOTE:
# Change following BigDecimal.limit() if needed.
BigDecimal.limit(100)
#
include LUSolve
def rd_order(na)
printf("Number of equations ?") if(na <= 0)
n = ARGF.gets().to_i
end
na = ARGV.size
zero = BigDecimal.new("0.0")
one = BigDecimal.new("1.0")
while (n=rd_order(na))>0
a = []
as= []
b = []
if na <= 0
# Read data from console.
printf("\nEnter coefficient matrix element A[i,j]\n");
for i in 0...n do
for j in 0...n do
printf("A[%d,%d]? ",i,j); s = ARGF.gets
a << BigDecimal.new(s);
as << BigDecimal.new(s);
end
printf("Contatant vector element b[%d] ? ",i); b << BigDecimal.new(ARGF.gets);
end
else
# Read data from specified file.
printf("Coefficient matrix and constant vector.\n");
for i in 0...n do
s = ARGF.gets
printf("%d) %s",i,s)
s = s.split
for j in 0...n do
a << BigDecimal.new(s[j]);
as << BigDecimal.new(s[j]);
end
b << BigDecimal.new(s[n]);
end
end
x = lusolve(a,b,ludecomp(a,n,zero,one),zero)
printf("Answer(x[i] & (A*x-b)[i]) follows\n")
for i in 0...n do
printf("x[%d]=%s ",i,x[i].to_s)
s = zero
for j in 0...n do
s = s + as[i*n+j]*x[j]
end
printf(" & %s\n",(s-b[i]).to_s)
end
end