mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	This patch is suggested by nobu.
Benchmark result:
```
require 'benchmark'
n = 10 ** 7
Benchmark.bm do |x|
  x.report("Fixnum/Fixnum") { a, b = 5, 2; n.times { a.ceildiv(b) } }
  x.report("Bignum/Bignum") { a, b = 10**100, 10**99 - 1; n.times { a.ceildiv(b) } }
  x.report("Bignum/Fixnum") { a, b = 10**100, 3; n.times { a.ceildiv(b) } }
end
```
Original:
```
       user     system      total        real
Fixnum/Fixnum  3.340009   0.043029   3.383038 (  3.384022)
Bignum/Bignum  8.229500   0.118543   8.348043 (  8.349574)
Bignum/Fixnum  8.328971   0.097842   8.426813 (  8.426952)
```
Improved:
```
       user     system      total        real
Fixnum/Fixnum  0.699140   0.000961   0.700101 (  0.700199)
Bignum/Bignum  5.076165   0.083160   5.159325 (  5.159360)
Bignum/Fixnum  5.548684   0.115372   5.664056 (  5.666735)
```
		
	
			
		
			
				
	
	
		
			6430 lines
		
	
	
	
		
			156 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6430 lines
		
	
	
	
		
			156 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**********************************************************************
 | 
						|
 | 
						|
  numeric.c -
 | 
						|
 | 
						|
  $Author$
 | 
						|
  created at: Fri Aug 13 18:33:09 JST 1993
 | 
						|
 | 
						|
  Copyright (C) 1993-2007 Yukihiro Matsumoto
 | 
						|
 | 
						|
**********************************************************************/
 | 
						|
 | 
						|
#include "ruby/internal/config.h"
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include <ctype.h>
 | 
						|
#include <math.h>
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
#ifdef HAVE_FLOAT_H
 | 
						|
#include <float.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef HAVE_IEEEFP_H
 | 
						|
#include <ieeefp.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include "id.h"
 | 
						|
#include "internal.h"
 | 
						|
#include "internal/array.h"
 | 
						|
#include "internal/compilers.h"
 | 
						|
#include "internal/complex.h"
 | 
						|
#include "internal/enumerator.h"
 | 
						|
#include "internal/gc.h"
 | 
						|
#include "internal/hash.h"
 | 
						|
#include "internal/numeric.h"
 | 
						|
#include "internal/object.h"
 | 
						|
#include "internal/rational.h"
 | 
						|
#include "internal/string.h"
 | 
						|
#include "internal/util.h"
 | 
						|
#include "internal/variable.h"
 | 
						|
#include "ruby/encoding.h"
 | 
						|
#include "ruby/util.h"
 | 
						|
#include "builtin.h"
 | 
						|
 | 
						|
/* use IEEE 64bit values if not defined */
 | 
						|
#ifndef FLT_RADIX
 | 
						|
#define FLT_RADIX 2
 | 
						|
#endif
 | 
						|
#ifndef DBL_MIN
 | 
						|
#define DBL_MIN 2.2250738585072014e-308
 | 
						|
#endif
 | 
						|
#ifndef DBL_MAX
 | 
						|
#define DBL_MAX 1.7976931348623157e+308
 | 
						|
#endif
 | 
						|
#ifndef DBL_MIN_EXP
 | 
						|
#define DBL_MIN_EXP (-1021)
 | 
						|
#endif
 | 
						|
#ifndef DBL_MAX_EXP
 | 
						|
#define DBL_MAX_EXP 1024
 | 
						|
#endif
 | 
						|
#ifndef DBL_MIN_10_EXP
 | 
						|
#define DBL_MIN_10_EXP (-307)
 | 
						|
#endif
 | 
						|
#ifndef DBL_MAX_10_EXP
 | 
						|
#define DBL_MAX_10_EXP 308
 | 
						|
#endif
 | 
						|
#ifndef DBL_DIG
 | 
						|
#define DBL_DIG 15
 | 
						|
#endif
 | 
						|
#ifndef DBL_MANT_DIG
 | 
						|
#define DBL_MANT_DIG 53
 | 
						|
#endif
 | 
						|
#ifndef DBL_EPSILON
 | 
						|
#define DBL_EPSILON 2.2204460492503131e-16
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef USE_RB_INFINITY
 | 
						|
#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
 | 
						|
const union bytesequence4_or_float rb_infinity = {{0x00, 0x00, 0x80, 0x7f}};
 | 
						|
#else
 | 
						|
const union bytesequence4_or_float rb_infinity = {{0x7f, 0x80, 0x00, 0x00}};
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef USE_RB_NAN
 | 
						|
#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
 | 
						|
const union bytesequence4_or_float rb_nan = {{0x00, 0x00, 0xc0, 0x7f}};
 | 
						|
#else
 | 
						|
const union bytesequence4_or_float rb_nan = {{0x7f, 0xc0, 0x00, 0x00}};
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef HAVE_ROUND
 | 
						|
double
 | 
						|
round(double x)
 | 
						|
{
 | 
						|
    double f;
 | 
						|
 | 
						|
    if (x > 0.0) {
 | 
						|
        f = floor(x);
 | 
						|
        x = f + (x - f >= 0.5);
 | 
						|
    }
 | 
						|
    else if (x < 0.0) {
 | 
						|
        f = ceil(x);
 | 
						|
        x = f - (f - x >= 0.5);
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static double
 | 
						|
round_half_up(double x, double s)
 | 
						|
{
 | 
						|
    double f, xs = x * s;
 | 
						|
 | 
						|
    f = round(xs);
 | 
						|
    if (s == 1.0) return f;
 | 
						|
    if (x > 0) {
 | 
						|
        if ((double)((f + 0.5) / s) <= x) f += 1;
 | 
						|
        x = f;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ((double)((f - 0.5) / s) >= x) f -= 1;
 | 
						|
        x = f;
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
round_half_down(double x, double s)
 | 
						|
{
 | 
						|
    double f, xs = x * s;
 | 
						|
 | 
						|
    f = round(xs);
 | 
						|
    if (x > 0) {
 | 
						|
        if ((double)((f - 0.5) / s) >= x) f -= 1;
 | 
						|
        x = f;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ((double)((f + 0.5) / s) <= x) f += 1;
 | 
						|
        x = f;
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
round_half_even(double x, double s)
 | 
						|
{
 | 
						|
    double f, d, xs = x * s;
 | 
						|
 | 
						|
    if (x > 0.0) {
 | 
						|
        f = floor(xs);
 | 
						|
        d = xs - f;
 | 
						|
        if (d > 0.5)
 | 
						|
            d = 1.0;
 | 
						|
        else if (d == 0.5 || ((double)((f + 0.5) / s) <= x))
 | 
						|
            d = fmod(f, 2.0);
 | 
						|
        else
 | 
						|
            d = 0.0;
 | 
						|
        x = f + d;
 | 
						|
    }
 | 
						|
    else if (x < 0.0) {
 | 
						|
        f = ceil(xs);
 | 
						|
        d = f - xs;
 | 
						|
        if (d > 0.5)
 | 
						|
            d = 1.0;
 | 
						|
        else if (d == 0.5 || ((double)((f - 0.5) / s) >= x))
 | 
						|
            d = fmod(-f, 2.0);
 | 
						|
        else
 | 
						|
            d = 0.0;
 | 
						|
        x = f - d;
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE fix_lshift(long, unsigned long);
 | 
						|
static VALUE fix_rshift(long, unsigned long);
 | 
						|
static VALUE int_pow(long x, unsigned long y);
 | 
						|
static VALUE rb_int_floor(VALUE num, int ndigits);
 | 
						|
static VALUE rb_int_ceil(VALUE num, int ndigits);
 | 
						|
static VALUE flo_to_i(VALUE num);
 | 
						|
static int float_round_overflow(int ndigits, int binexp);
 | 
						|
static int float_round_underflow(int ndigits, int binexp);
 | 
						|
 | 
						|
static ID id_coerce;
 | 
						|
#define id_div idDiv
 | 
						|
#define id_divmod idDivmod
 | 
						|
#define id_to_i idTo_i
 | 
						|
#define id_eq  idEq
 | 
						|
#define id_cmp idCmp
 | 
						|
 | 
						|
VALUE rb_cNumeric;
 | 
						|
VALUE rb_cFloat;
 | 
						|
VALUE rb_cInteger;
 | 
						|
 | 
						|
VALUE rb_eZeroDivError;
 | 
						|
VALUE rb_eFloatDomainError;
 | 
						|
 | 
						|
static ID id_to, id_by;
 | 
						|
 | 
						|
void
 | 
						|
rb_num_zerodiv(void)
 | 
						|
{
 | 
						|
    rb_raise(rb_eZeroDivError, "divided by 0");
 | 
						|
}
 | 
						|
 | 
						|
enum ruby_num_rounding_mode
 | 
						|
rb_num_get_rounding_option(VALUE opts)
 | 
						|
{
 | 
						|
    static ID round_kwds[1];
 | 
						|
    VALUE rounding;
 | 
						|
    VALUE str;
 | 
						|
    const char *s;
 | 
						|
 | 
						|
    if (!NIL_P(opts)) {
 | 
						|
        if (!round_kwds[0]) {
 | 
						|
            round_kwds[0] = rb_intern_const("half");
 | 
						|
        }
 | 
						|
        if (!rb_get_kwargs(opts, round_kwds, 0, 1, &rounding)) goto noopt;
 | 
						|
        if (SYMBOL_P(rounding)) {
 | 
						|
            str = rb_sym2str(rounding);
 | 
						|
        }
 | 
						|
        else if (NIL_P(rounding)) {
 | 
						|
            goto noopt;
 | 
						|
        }
 | 
						|
        else if (!RB_TYPE_P(str = rounding, T_STRING)) {
 | 
						|
            str = rb_check_string_type(rounding);
 | 
						|
            if (NIL_P(str)) goto invalid;
 | 
						|
        }
 | 
						|
        rb_must_asciicompat(str);
 | 
						|
        s = RSTRING_PTR(str);
 | 
						|
        switch (RSTRING_LEN(str)) {
 | 
						|
          case 2:
 | 
						|
            if (rb_memcicmp(s, "up", 2) == 0)
 | 
						|
                return RUBY_NUM_ROUND_HALF_UP;
 | 
						|
            break;
 | 
						|
          case 4:
 | 
						|
            if (rb_memcicmp(s, "even", 4) == 0)
 | 
						|
                return RUBY_NUM_ROUND_HALF_EVEN;
 | 
						|
            if (strncasecmp(s, "down", 4) == 0)
 | 
						|
                return RUBY_NUM_ROUND_HALF_DOWN;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
      invalid:
 | 
						|
        rb_raise(rb_eArgError, "invalid rounding mode: % "PRIsVALUE, rounding);
 | 
						|
    }
 | 
						|
  noopt:
 | 
						|
    return RUBY_NUM_ROUND_DEFAULT;
 | 
						|
}
 | 
						|
 | 
						|
/* experimental API */
 | 
						|
int
 | 
						|
rb_num_to_uint(VALUE val, unsigned int *ret)
 | 
						|
{
 | 
						|
#define NUMERR_TYPE     1
 | 
						|
#define NUMERR_NEGATIVE 2
 | 
						|
#define NUMERR_TOOLARGE 3
 | 
						|
    if (FIXNUM_P(val)) {
 | 
						|
        long v = FIX2LONG(val);
 | 
						|
#if SIZEOF_INT < SIZEOF_LONG
 | 
						|
        if (v > (long)UINT_MAX) return NUMERR_TOOLARGE;
 | 
						|
#endif
 | 
						|
        if (v < 0) return NUMERR_NEGATIVE;
 | 
						|
        *ret = (unsigned int)v;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RB_BIGNUM_TYPE_P(val)) {
 | 
						|
        if (BIGNUM_NEGATIVE_P(val)) return NUMERR_NEGATIVE;
 | 
						|
#if SIZEOF_INT < SIZEOF_LONG
 | 
						|
        /* long is 64bit */
 | 
						|
        return NUMERR_TOOLARGE;
 | 
						|
#else
 | 
						|
        /* long is 32bit */
 | 
						|
        if (rb_absint_size(val, NULL) > sizeof(int)) return NUMERR_TOOLARGE;
 | 
						|
        *ret = (unsigned int)rb_big2ulong((VALUE)val);
 | 
						|
        return 0;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    return NUMERR_TYPE;
 | 
						|
}
 | 
						|
 | 
						|
#define method_basic_p(klass) rb_method_basic_definition_p(klass, mid)
 | 
						|
 | 
						|
static inline int
 | 
						|
int_pos_p(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        return FIXNUM_POSITIVE_P(num);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        return BIGNUM_POSITIVE_P(num);
 | 
						|
    }
 | 
						|
    rb_raise(rb_eTypeError, "not an Integer");
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
int_neg_p(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        return FIXNUM_NEGATIVE_P(num);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        return BIGNUM_NEGATIVE_P(num);
 | 
						|
    }
 | 
						|
    rb_raise(rb_eTypeError, "not an Integer");
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
rb_int_positive_p(VALUE num)
 | 
						|
{
 | 
						|
    return int_pos_p(num);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
rb_int_negative_p(VALUE num)
 | 
						|
{
 | 
						|
    return int_neg_p(num);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
rb_num_negative_p(VALUE num)
 | 
						|
{
 | 
						|
    return rb_num_negative_int_p(num);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_funcall_op_0(VALUE x, VALUE arg, int recursive)
 | 
						|
{
 | 
						|
    ID func = (ID)arg;
 | 
						|
    if (recursive) {
 | 
						|
        const char *name = rb_id2name(func);
 | 
						|
        if (ISALNUM(name[0])) {
 | 
						|
            rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE,
 | 
						|
                          x, ID2SYM(func));
 | 
						|
        }
 | 
						|
        else if (name[0] && name[1] == '@' && !name[2]) {
 | 
						|
            rb_name_error(func, "%c%"PRIsVALUE,
 | 
						|
                          name[0], x);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE,
 | 
						|
                          ID2SYM(func), x);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return rb_funcallv(x, func, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_funcall0(VALUE x, ID func)
 | 
						|
{
 | 
						|
    return rb_exec_recursive(num_funcall_op_0, x, (VALUE)func);
 | 
						|
}
 | 
						|
 | 
						|
NORETURN(static void num_funcall_op_1_recursion(VALUE x, ID func, VALUE y));
 | 
						|
 | 
						|
static void
 | 
						|
num_funcall_op_1_recursion(VALUE x, ID func, VALUE y)
 | 
						|
{
 | 
						|
    const char *name = rb_id2name(func);
 | 
						|
    if (ISALNUM(name[0])) {
 | 
						|
        rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE"(%"PRIsVALUE")",
 | 
						|
                      x, ID2SYM(func), y);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE"%"PRIsVALUE,
 | 
						|
                      x, ID2SYM(func), y);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_funcall_op_1(VALUE y, VALUE arg, int recursive)
 | 
						|
{
 | 
						|
    ID func = (ID)((VALUE *)arg)[0];
 | 
						|
    VALUE x = ((VALUE *)arg)[1];
 | 
						|
    if (recursive) {
 | 
						|
        num_funcall_op_1_recursion(x, func, y);
 | 
						|
    }
 | 
						|
    return rb_funcall(x, func, 1, y);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_funcall1(VALUE x, ID func, VALUE y)
 | 
						|
{
 | 
						|
    VALUE args[2];
 | 
						|
    args[0] = (VALUE)func;
 | 
						|
    args[1] = x;
 | 
						|
    return rb_exec_recursive_paired(num_funcall_op_1, y, x, (VALUE)args);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    coerce(other) -> array
 | 
						|
 *
 | 
						|
 *  Returns a 2-element array containing two numeric elements,
 | 
						|
 *  formed from the two operands +self+ and +other+,
 | 
						|
 *  of a common compatible type.
 | 
						|
 *
 | 
						|
 *  Of the Core and Standard Library classes,
 | 
						|
 *  Integer, Rational, and Complex use this implementation.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    i = 2                    # => 2
 | 
						|
 *    i.coerce(3)              # => [3, 2]
 | 
						|
 *    i.coerce(3.0)            # => [3.0, 2.0]
 | 
						|
 *    i.coerce(Rational(1, 2)) # => [0.5, 2.0]
 | 
						|
 *    i.coerce(Complex(3, 4))  # Raises RangeError.
 | 
						|
 *
 | 
						|
 *    r = Rational(5, 2)       # => (5/2)
 | 
						|
 *    r.coerce(2)              # => [(2/1), (5/2)]
 | 
						|
 *    r.coerce(2.0)            # => [2.0, 2.5]
 | 
						|
 *    r.coerce(Rational(2, 3)) # => [(2/3), (5/2)]
 | 
						|
 *    r.coerce(Complex(3, 4))  # => [(3+4i), ((5/2)+0i)]
 | 
						|
 *
 | 
						|
 *    c = Complex(2, 3)        # => (2+3i)
 | 
						|
 *    c.coerce(2)              # => [(2+0i), (2+3i)]
 | 
						|
 *    c.coerce(2.0)            # => [(2.0+0i), (2+3i)]
 | 
						|
 *    c.coerce(Rational(1, 2)) # => [((1/2)+0i), (2+3i)]
 | 
						|
 *    c.coerce(Complex(3, 4))  # => [(3+4i), (2+3i)]
 | 
						|
 *
 | 
						|
 *  Raises an exception if any type conversion fails.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_coerce(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (CLASS_OF(x) == CLASS_OF(y))
 | 
						|
        return rb_assoc_new(y, x);
 | 
						|
    x = rb_Float(x);
 | 
						|
    y = rb_Float(y);
 | 
						|
    return rb_assoc_new(y, x);
 | 
						|
}
 | 
						|
 | 
						|
NORETURN(static void coerce_failed(VALUE x, VALUE y));
 | 
						|
static void
 | 
						|
coerce_failed(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (SPECIAL_CONST_P(y) || SYMBOL_P(y) || RB_FLOAT_TYPE_P(y)) {
 | 
						|
        y = rb_inspect(y);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        y = rb_obj_class(y);
 | 
						|
    }
 | 
						|
    rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
 | 
						|
             y, rb_obj_class(x));
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
do_coerce(VALUE *x, VALUE *y, int err)
 | 
						|
{
 | 
						|
    VALUE ary = rb_check_funcall(*y, id_coerce, 1, x);
 | 
						|
    if (ary == Qundef) {
 | 
						|
        if (err) {
 | 
						|
            coerce_failed(*x, *y);
 | 
						|
        }
 | 
						|
        return FALSE;
 | 
						|
    }
 | 
						|
    if (!err && NIL_P(ary)) {
 | 
						|
        return FALSE;
 | 
						|
    }
 | 
						|
    if (!RB_TYPE_P(ary, T_ARRAY) || RARRAY_LEN(ary) != 2) {
 | 
						|
        rb_raise(rb_eTypeError, "coerce must return [x, y]");
 | 
						|
    }
 | 
						|
 | 
						|
    *x = RARRAY_AREF(ary, 0);
 | 
						|
    *y = RARRAY_AREF(ary, 1);
 | 
						|
    return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_num_coerce_bin(VALUE x, VALUE y, ID func)
 | 
						|
{
 | 
						|
    do_coerce(&x, &y, TRUE);
 | 
						|
    return rb_funcall(x, func, 1, y);
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_num_coerce_cmp(VALUE x, VALUE y, ID func)
 | 
						|
{
 | 
						|
    if (do_coerce(&x, &y, FALSE))
 | 
						|
        return rb_funcall(x, func, 1, y);
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
ensure_cmp(VALUE c, VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (NIL_P(c)) rb_cmperr(x, y);
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_num_coerce_relop(VALUE x, VALUE y, ID func)
 | 
						|
{
 | 
						|
    VALUE x0 = x, y0 = y;
 | 
						|
 | 
						|
    if (!do_coerce(&x, &y, FALSE)) {
 | 
						|
        rb_cmperr(x0, y0);
 | 
						|
        UNREACHABLE_RETURN(Qnil);
 | 
						|
    }
 | 
						|
    return ensure_cmp(rb_funcall(x, func, 1, y), x0, y0);
 | 
						|
}
 | 
						|
 | 
						|
NORETURN(static VALUE num_sadded(VALUE x, VALUE name));
 | 
						|
 | 
						|
/*
 | 
						|
 * :nodoc:
 | 
						|
 *
 | 
						|
 * Trap attempts to add methods to Numeric objects. Always raises a TypeError.
 | 
						|
 *
 | 
						|
 * Numerics should be values; singleton_methods should not be added to them.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_sadded(VALUE x, VALUE name)
 | 
						|
{
 | 
						|
    ID mid = rb_to_id(name);
 | 
						|
    /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
 | 
						|
    rb_remove_method_id(rb_singleton_class(x), mid);
 | 
						|
    rb_raise(rb_eTypeError,
 | 
						|
             "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
 | 
						|
             rb_id2str(mid),
 | 
						|
             rb_obj_class(x));
 | 
						|
 | 
						|
    UNREACHABLE_RETURN(Qnil);
 | 
						|
}
 | 
						|
 | 
						|
#if 0
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    clone(freeze: true) -> self
 | 
						|
 *
 | 
						|
 *  Returns +self+.
 | 
						|
 *
 | 
						|
 *  Raises an exception if the value for +freeze+ is neither +true+ nor +nil+.
 | 
						|
 *
 | 
						|
 *  Related: Numeric#dup.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
num_clone(int argc, VALUE *argv, VALUE x)
 | 
						|
{
 | 
						|
    return rb_immutable_obj_clone(argc, argv, x);
 | 
						|
}
 | 
						|
#else
 | 
						|
# define num_clone rb_immutable_obj_clone
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    dup -> self
 | 
						|
 *
 | 
						|
 *  Returns +self+.
 | 
						|
 *
 | 
						|
 *  Related: Numeric#clone.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
num_dup(VALUE x)
 | 
						|
{
 | 
						|
    return x;
 | 
						|
}
 | 
						|
#else
 | 
						|
# define num_dup num_uplus
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    +self -> self
 | 
						|
 *
 | 
						|
 *  Returns +self+.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_uplus(VALUE num)
 | 
						|
{
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    i -> complex
 | 
						|
 *
 | 
						|
 *  Returns <tt>Complex(0, self)</tt>:
 | 
						|
 *
 | 
						|
 *    2.i              # => (0+2i)
 | 
						|
 *    -2.i             # => (0-2i)
 | 
						|
 *    2.0.i            # => (0+2.0i)
 | 
						|
 *    Rational(1, 2).i # => (0+(1/2)*i)
 | 
						|
 *    Complex(3, 4).i  # Raises NoMethodError.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_imaginary(VALUE num)
 | 
						|
{
 | 
						|
    return rb_complex_new(INT2FIX(0), num);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    -self -> numeric
 | 
						|
 *
 | 
						|
 *  Unary Minus---Returns the receiver, negated.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_uminus(VALUE num)
 | 
						|
{
 | 
						|
    VALUE zero;
 | 
						|
 | 
						|
    zero = INT2FIX(0);
 | 
						|
    do_coerce(&zero, &num, TRUE);
 | 
						|
 | 
						|
    return num_funcall1(zero, '-', num);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    fdiv(other) -> float
 | 
						|
 *
 | 
						|
 *  Returns the quotient <tt>self/other</tt> as a float,
 | 
						|
 *  using method +/+ in the derived class of +self+.
 | 
						|
 *  (\Numeric itself does not define method +/+.)
 | 
						|
 *
 | 
						|
 *  Of the Core and Standard Library classes,
 | 
						|
 *  only BigDecimal uses this implementation.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_fdiv(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    return rb_funcall(rb_Float(x), '/', 1, y);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    div(other) -> integer
 | 
						|
 *
 | 
						|
 *  Returns the quotient <tt>self/other</tt> as an integer (via +floor+),
 | 
						|
 *  using method +/+ in the derived class of +self+.
 | 
						|
 *  (\Numeric itself does not define method +/+.)
 | 
						|
 *
 | 
						|
 *  Of the Core and Standard Library classes,
 | 
						|
 *  Only Float and Rational use this implementation.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_div(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
 | 
						|
    return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self % other -> real_numeric
 | 
						|
 *
 | 
						|
 *  Returns +self+ modulo +other+ as a real number.
 | 
						|
 *
 | 
						|
 *  Of the Core and Standard Library classes,
 | 
						|
 *  only Rational uses this implementation.
 | 
						|
 *
 | 
						|
 *  For \Rational +r+ and real number +n+, these expressions are equivalent:
 | 
						|
 *
 | 
						|
 *    r % n
 | 
						|
 *    r-n*(r/n).floor
 | 
						|
 *    r.divmod(n)[1]
 | 
						|
 *
 | 
						|
 *  See Numeric#divmod.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    r = Rational(1, 2)    # => (1/2)
 | 
						|
 *    r2 = Rational(2, 3)   # => (2/3)
 | 
						|
 *    r % r2                # => (1/2)
 | 
						|
 *    r % 2                 # => (1/2)
 | 
						|
 *    r % 2.0               # => 0.5
 | 
						|
 *
 | 
						|
 *    r = Rational(301,100) # => (301/100)
 | 
						|
 *    r2 = Rational(7,5)    # => (7/5)
 | 
						|
 *    r % r2                # => (21/100)
 | 
						|
 *    r % -r2               # => (-119/100)
 | 
						|
 *    (-r) % r2             # => (119/100)
 | 
						|
 *    (-r) %-r2             # => (-21/100)
 | 
						|
 *
 | 
						|
 *  Numeric#modulo is an alias for Numeric#%.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_modulo(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    VALUE q = num_funcall1(x, id_div, y);
 | 
						|
    return rb_funcall(x, '-', 1,
 | 
						|
                      rb_funcall(y, '*', 1, q));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    remainder(other) -> real_number
 | 
						|
 *
 | 
						|
 *  Returns the remainder after dividing +self+ by +other+.
 | 
						|
 *
 | 
						|
 *  Of the Core and Standard Library classes,
 | 
						|
 *  only Float and Rational use this implementation.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    11.0.remainder(4)              # => 3.0
 | 
						|
 *    11.0.remainder(-4)             # => 3.0
 | 
						|
 *    -11.0.remainder(4)             # => -3.0
 | 
						|
 *    -11.0.remainder(-4)            # => -3.0
 | 
						|
 *
 | 
						|
 *    12.0.remainder(4)              # => 0.0
 | 
						|
 *    12.0.remainder(-4)             # => 0.0
 | 
						|
 *    -12.0.remainder(4)             # => -0.0
 | 
						|
 *    -12.0.remainder(-4)            # => -0.0
 | 
						|
 *
 | 
						|
 *    13.0.remainder(4.0)            # => 1.0
 | 
						|
 *    13.0.remainder(Rational(4, 1)) # => 1.0
 | 
						|
 *
 | 
						|
 *    Rational(13, 1).remainder(4)   # => (1/1)
 | 
						|
 *    Rational(13, 1).remainder(-4)  # => (1/1)
 | 
						|
 *    Rational(-13, 1).remainder(4)  # => (-1/1)
 | 
						|
 *    Rational(-13, 1).remainder(-4) # => (-1/1)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_remainder(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    VALUE z = num_funcall1(x, '%', y);
 | 
						|
 | 
						|
    if ((!rb_equal(z, INT2FIX(0))) &&
 | 
						|
        ((rb_num_negative_int_p(x) &&
 | 
						|
          rb_num_positive_int_p(y)) ||
 | 
						|
         (rb_num_positive_int_p(x) &&
 | 
						|
          rb_num_negative_int_p(y)))) {
 | 
						|
        if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
            if (isinf(RFLOAT_VALUE(y))) {
 | 
						|
                return x;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return rb_funcall(z, '-', 1, y);
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    divmod(other) -> array
 | 
						|
 *
 | 
						|
 *  Returns a 2-element array <tt>[q, r]</tt>, where
 | 
						|
 *
 | 
						|
 *    q = (self/other).floor                  # Quotient
 | 
						|
 *    r = self % other                        # Remainder
 | 
						|
 *
 | 
						|
 *  Of the Core and Standard Library classes,
 | 
						|
 *  only Rational uses this implementation.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    Rational(11, 1).divmod(4)               # => [2, (3/1)]
 | 
						|
 *    Rational(11, 1).divmod(-4)              # => [-3, (-1/1)]
 | 
						|
 *    Rational(-11, 1).divmod(4)              # => [-3, (1/1)]
 | 
						|
 *    Rational(-11, 1).divmod(-4)             # => [2, (-3/1)]
 | 
						|
 *
 | 
						|
 *    Rational(12, 1).divmod(4)               # => [3, (0/1)]
 | 
						|
 *    Rational(12, 1).divmod(-4)              # => [-3, (0/1)]
 | 
						|
 *    Rational(-12, 1).divmod(4)              # => [-3, (0/1)]
 | 
						|
 *    Rational(-12, 1).divmod(-4)             # => [3, (0/1)]
 | 
						|
 *
 | 
						|
 *    Rational(13, 1).divmod(4.0)             # => [3, 1.0]
 | 
						|
 *    Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_divmod(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    return rb_assoc_new(num_div(x, y), num_modulo(x, y));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    abs -> numeric
 | 
						|
 *
 | 
						|
 *  Returns the absolute value of +self+.
 | 
						|
 *
 | 
						|
 *    12.abs        #=> 12
 | 
						|
 *    (-34.56).abs  #=> 34.56
 | 
						|
 *    -34.56.abs    #=> 34.56
 | 
						|
 *
 | 
						|
 *  Numeric#magnitude is an alias for Numeric#abs.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_abs(VALUE num)
 | 
						|
{
 | 
						|
    if (rb_num_negative_int_p(num)) {
 | 
						|
        return num_funcall0(num, idUMinus);
 | 
						|
    }
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    zero? -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +zero+ has a zero value, +false+ otherwise.
 | 
						|
 *
 | 
						|
 *  Of the Core and Standard Library classes,
 | 
						|
 *  only Rational and Complex use this implementation.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_zero_p(VALUE num)
 | 
						|
{
 | 
						|
    return rb_equal(num, INT2FIX(0));
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
int_zero_p(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        return FIXNUM_ZERO_P(num);
 | 
						|
    }
 | 
						|
    assert(RB_BIGNUM_TYPE_P(num));
 | 
						|
    return rb_bigzero_p(num);
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_zero_p(VALUE num)
 | 
						|
{
 | 
						|
    return RBOOL(int_zero_p(num));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    nonzero?  ->  self or nil
 | 
						|
 *
 | 
						|
 *  Returns +self+ if +self+ is not a zero value, +nil+ otherwise;
 | 
						|
 *  uses method <tt>zero?</tt> for the evaluation.
 | 
						|
 *
 | 
						|
 *  The returned +self+ allows the method to be chained:
 | 
						|
 *
 | 
						|
 *    a = %w[z Bb bB bb BB a aA Aa AA A]
 | 
						|
 *    a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
 | 
						|
 *    # => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
 | 
						|
 *
 | 
						|
 *  Of the Core and Standard Library classes,
 | 
						|
 *  Integer, Float, Rational, and Complex use this implementation.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_nonzero_p(VALUE num)
 | 
						|
{
 | 
						|
    if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
 | 
						|
        return Qnil;
 | 
						|
    }
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    to_int -> integer
 | 
						|
 *
 | 
						|
 *  Returns +self+ as an integer;
 | 
						|
 *  converts using method +to_i+ in the derived class.
 | 
						|
 *
 | 
						|
 *  Of the Core and Standard Library classes,
 | 
						|
 *  only Rational and Complex use this implementation.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    Rational(1, 2).to_int # => 0
 | 
						|
 *    Rational(2, 1).to_int # => 2
 | 
						|
 *    Complex(2, 0).to_int  # => 2
 | 
						|
 *    Complex(2, 1)         # Raises RangeError (non-zero imaginary part)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_to_int(VALUE num)
 | 
						|
{
 | 
						|
    return num_funcall0(num, id_to_i);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    positive? -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +self+ is greater than 0, +false+ otherwise.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_positive_p(VALUE num)
 | 
						|
{
 | 
						|
    const ID mid = '>';
 | 
						|
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        if (method_basic_p(rb_cInteger))
 | 
						|
            return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0));
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        if (method_basic_p(rb_cInteger))
 | 
						|
            return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num));
 | 
						|
    }
 | 
						|
    return rb_num_compare_with_zero(num, mid);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    negative? -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +self+ is less than 0, +false+ otherwise.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_negative_p(VALUE num)
 | 
						|
{
 | 
						|
    return RBOOL(rb_num_negative_int_p(num));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/********************************************************************
 | 
						|
 *
 | 
						|
 *  Document-class: Float
 | 
						|
 *
 | 
						|
 *  A \Float object represents a sometimes-inexact real number using the native
 | 
						|
 *  architecture's double-precision floating point representation.
 | 
						|
 *
 | 
						|
 *  Floating point has a different arithmetic and is an inexact number.
 | 
						|
 *  So you should know its esoteric system. See following:
 | 
						|
 *
 | 
						|
 *  - https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
 | 
						|
 *  - https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise
 | 
						|
 *  - https://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
 | 
						|
 *
 | 
						|
 *  You can create a \Float object explicitly with:
 | 
						|
 *
 | 
						|
 *  - A {floating-point literal}[rdoc-ref:syntax/literals.rdoc@Float+Literals].
 | 
						|
 *
 | 
						|
 *  You can convert certain objects to Floats with:
 | 
						|
 *
 | 
						|
 *  - \Method #Float.
 | 
						|
 *
 | 
						|
 *  == What's Here
 | 
						|
 *
 | 
						|
 *  First, what's elsewhere. \Class \Float:
 | 
						|
 *
 | 
						|
 *  - Inherits from {class Numeric}[rdoc-ref:Numeric@What-27s+Here].
 | 
						|
 *
 | 
						|
 *  Here, class \Float provides methods for:
 | 
						|
 *
 | 
						|
 *  - {Querying}[rdoc-ref:Float@Querying]
 | 
						|
 *  - {Comparing}[rdoc-ref:Float@Comparing]
 | 
						|
 *  - {Converting}[rdoc-ref:Float@Converting]
 | 
						|
 *
 | 
						|
 *  === Querying
 | 
						|
 *
 | 
						|
 *  - #finite?: Returns whether +self+ is finite.
 | 
						|
 *  - #hash: Returns the integer hash code for +self+.
 | 
						|
 *  - #infinite?: Returns whether +self+ is infinite.
 | 
						|
 *  - #nan?: Returns whether +self+ is a NaN (not-a-number).
 | 
						|
 *
 | 
						|
 *  === Comparing
 | 
						|
 *
 | 
						|
 *  - #<: Returns whether +self+ is less than the given value.
 | 
						|
 *  - #<=: Returns whether +self+ is less than or equal to the given value.
 | 
						|
 *  - #<=>: Returns a number indicating whether +self+ is less than, equal
 | 
						|
 *    to, or greater than the given value.
 | 
						|
 *  - #== (aliased as #=== and #eql?): Returns whether +self+ is equal to
 | 
						|
 *    the given value.
 | 
						|
 *  - #>: Returns whether +self+ is greater than the given value.
 | 
						|
 *  - #>=: Returns whether +self+ is greater than or equal to the given value.
 | 
						|
 *
 | 
						|
 *  === Converting
 | 
						|
 *
 | 
						|
 *  - #% (aliased as #modulo): Returns +self+ modulo the given value.
 | 
						|
 *  - #*: Returns the product of +self+ and the given value.
 | 
						|
 *  - #**: Returns the value of +self+ raised to the power of the given value.
 | 
						|
 *  - #+: Returns the sum of +self+ and the given value.
 | 
						|
 *  - #-: Returns the difference of +self+ and the given value.
 | 
						|
 *  - #/: Returns the quotient of +self+ and the given value.
 | 
						|
 *  - #ceil: Returns the smallest number greater than or equal to +self+.
 | 
						|
 *  - #coerce: Returns a 2-element array containing the given value converted to a \Float
 | 
						|
      and +self+
 | 
						|
 *  - #divmod: Returns a 2-element array containing the quotient and remainder
 | 
						|
 *    results of dividing +self+ by the given value.
 | 
						|
 *  - #fdiv: Returns the Float result of dividing +self+ by the given value.
 | 
						|
 *  - #floor: Returns the greatest number smaller than or equal to +self+.
 | 
						|
 *  - #next_float: Returns the next-larger representable \Float.
 | 
						|
 *  - #prev_float: Returns the next-smaller representable \Float.
 | 
						|
 *  - #quo: Returns the quotient from dividing +self+ by the given value.
 | 
						|
 *  - #round: Returns +self+ rounded to the nearest value, to a given precision.
 | 
						|
 *  - #to_i (aliased as #to_int): Returns +self+ truncated to an Integer.
 | 
						|
 *  - #to_s (aliased as #inspect): Returns a string containing the place-value
 | 
						|
 *    representation of +self+ in the given radix.
 | 
						|
 *  - #truncate: Returns +self+ truncated to a given precision.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_float_new_in_heap(double d)
 | 
						|
{
 | 
						|
    NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0));
 | 
						|
 | 
						|
#if SIZEOF_DOUBLE <= SIZEOF_VALUE
 | 
						|
    flt->float_value = d;
 | 
						|
#else
 | 
						|
    union {
 | 
						|
        double d;
 | 
						|
        rb_float_value_type v;
 | 
						|
    } u = {d};
 | 
						|
    flt->float_value = u.v;
 | 
						|
#endif
 | 
						|
    OBJ_FREEZE((VALUE)flt);
 | 
						|
    return (VALUE)flt;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    to_s -> string
 | 
						|
 *
 | 
						|
 *  Returns a string containing a representation of +self+;
 | 
						|
 *  depending of the value of +self+, the string representation
 | 
						|
 *  may contain:
 | 
						|
 *
 | 
						|
 *  - A fixed-point number.
 | 
						|
 *  - A number in "scientific notation" (containing an exponent).
 | 
						|
 *  - 'Infinity'.
 | 
						|
 *  - '-Infinity'.
 | 
						|
 *  - 'NaN' (indicating not-a-number).
 | 
						|
 *
 | 
						|
 *    3.14.to_s         # => "3.14"
 | 
						|
 *    (10.1**50).to_s   # => "1.644631821843879e+50"
 | 
						|
 *    (10.1**500).to_s  # => "Infinity"
 | 
						|
 *    (-10.1**500).to_s # => "-Infinity"
 | 
						|
 *    (0.0/0.0).to_s    # => "NaN"
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_to_s(VALUE flt)
 | 
						|
{
 | 
						|
    enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
 | 
						|
    enum {float_dig = DBL_DIG+1};
 | 
						|
    char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
 | 
						|
    double value = RFLOAT_VALUE(flt);
 | 
						|
    VALUE s;
 | 
						|
    char *p, *e;
 | 
						|
    int sign, decpt, digs;
 | 
						|
 | 
						|
    if (isinf(value)) {
 | 
						|
        static const char minf[] = "-Infinity";
 | 
						|
        const int pos = (value > 0); /* skip "-" */
 | 
						|
        return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
 | 
						|
    }
 | 
						|
    else if (isnan(value))
 | 
						|
        return rb_usascii_str_new2("NaN");
 | 
						|
 | 
						|
    p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
 | 
						|
    s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
 | 
						|
    if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
 | 
						|
    memcpy(buf, p, digs);
 | 
						|
    xfree(p);
 | 
						|
    if (decpt > 0) {
 | 
						|
        if (decpt < digs) {
 | 
						|
            memmove(buf + decpt + 1, buf + decpt, digs - decpt);
 | 
						|
            buf[decpt] = '.';
 | 
						|
            rb_str_cat(s, buf, digs + 1);
 | 
						|
        }
 | 
						|
        else if (decpt <= DBL_DIG) {
 | 
						|
            long len;
 | 
						|
            char *ptr;
 | 
						|
            rb_str_cat(s, buf, digs);
 | 
						|
            rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
 | 
						|
            ptr = RSTRING_PTR(s) + len;
 | 
						|
            if (decpt > digs) {
 | 
						|
                memset(ptr, '0', decpt - digs);
 | 
						|
                ptr += decpt - digs;
 | 
						|
            }
 | 
						|
            memcpy(ptr, ".0", 2);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            goto exp;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (decpt > -4) {
 | 
						|
        long len;
 | 
						|
        char *ptr;
 | 
						|
        rb_str_cat(s, "0.", 2);
 | 
						|
        rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
 | 
						|
        ptr = RSTRING_PTR(s);
 | 
						|
        memset(ptr += len, '0', -decpt);
 | 
						|
        memcpy(ptr -= decpt, buf, digs);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        goto exp;
 | 
						|
    }
 | 
						|
    return s;
 | 
						|
 | 
						|
  exp:
 | 
						|
    if (digs > 1) {
 | 
						|
        memmove(buf + 2, buf + 1, digs - 1);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        buf[2] = '0';
 | 
						|
        digs++;
 | 
						|
    }
 | 
						|
    buf[1] = '.';
 | 
						|
    rb_str_cat(s, buf, digs + 1);
 | 
						|
    rb_str_catf(s, "e%+03d", decpt - 1);
 | 
						|
    return s;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    coerce(other) -> array
 | 
						|
 *
 | 
						|
 *  Returns a 2-element array containing +other+ converted to a \Float
 | 
						|
 *  and +self+:
 | 
						|
 *
 | 
						|
 *    f = 3.14                 # => 3.14
 | 
						|
 *    f.coerce(2)              # => [2.0, 3.14]
 | 
						|
 *    f.coerce(2.0)            # => [2.0, 3.14]
 | 
						|
 *    f.coerce(Rational(1, 2)) # => [0.5, 3.14]
 | 
						|
 *    f.coerce(Complex(1, 0))  # => [1.0, 3.14]
 | 
						|
 *
 | 
						|
 *  Raises an exception if a type conversion fails.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_coerce(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    return rb_assoc_new(rb_Float(y), x);
 | 
						|
}
 | 
						|
 | 
						|
MJIT_FUNC_EXPORTED VALUE
 | 
						|
rb_float_uminus(VALUE flt)
 | 
						|
{
 | 
						|
    return DBL2NUM(-RFLOAT_VALUE(flt));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self + other -> numeric
 | 
						|
 *
 | 
						|
 *  Returns a new \Float which is the sum of +self+ and +other+:
 | 
						|
 *
 | 
						|
 *    f = 3.14
 | 
						|
 *    f + 1                 # => 4.140000000000001
 | 
						|
 *    f + 1.0               # => 4.140000000000001
 | 
						|
 *    f + Rational(1, 1)    # => 4.140000000000001
 | 
						|
 *    f + Complex(1, 0)     # => (4.140000000000001+0i)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_float_plus(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, '+');
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self - other -> numeric
 | 
						|
 *
 | 
						|
 *  Returns a new \Float which is the difference of +self+ and +other+:
 | 
						|
 *
 | 
						|
 *    f = 3.14
 | 
						|
 *    f - 1                 # => 2.14
 | 
						|
 *    f - 1.0               # => 2.14
 | 
						|
 *    f - Rational(1, 1)    # => 2.14
 | 
						|
 *    f - Complex(1, 0)     # => (2.14+0i)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_float_minus(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, '-');
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self * other -> numeric
 | 
						|
 *
 | 
						|
 *  Returns a new \Float which is the product of +self+ and +other+:
 | 
						|
 *
 | 
						|
 *    f = 3.14
 | 
						|
 *    f * 2              # => 6.28
 | 
						|
 *    f * 2.0            # => 6.28
 | 
						|
 *    f * Rational(1, 2) # => 1.57
 | 
						|
 *    f * Complex(2, 0)  # => (6.28+0.0i)
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_float_mul(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, '*');
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
double_div_double(double x, double y)
 | 
						|
{
 | 
						|
    if (LIKELY(y != 0.0)) {
 | 
						|
        return x / y;
 | 
						|
    }
 | 
						|
    else if (x == 0.0) {
 | 
						|
        return nan("");
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        double z = signbit(y) ? -1.0 : 1.0;
 | 
						|
        return x * z * HUGE_VAL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
MJIT_FUNC_EXPORTED VALUE
 | 
						|
rb_flo_div_flo(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    double num = RFLOAT_VALUE(x);
 | 
						|
    double den = RFLOAT_VALUE(y);
 | 
						|
    double ret = double_div_double(num, den);
 | 
						|
    return DBL2NUM(ret);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self / other -> numeric
 | 
						|
 *
 | 
						|
 *  Returns a new \Float which is the result of dividing +self+ by +other+:
 | 
						|
 *
 | 
						|
 *    f = 3.14
 | 
						|
 *    f / 2              # => 1.57
 | 
						|
 *    f / 2.0            # => 1.57
 | 
						|
 *    f / Rational(2, 1) # => 1.57
 | 
						|
 *    f / Complex(2, 0)  # => (1.57+0.0i)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_float_div(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    double num = RFLOAT_VALUE(x);
 | 
						|
    double den;
 | 
						|
    double ret;
 | 
						|
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        den = FIX2LONG(y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        den = rb_big2dbl(y);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        den = RFLOAT_VALUE(y);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, '/');
 | 
						|
    }
 | 
						|
 | 
						|
    ret = double_div_double(num, den);
 | 
						|
    return DBL2NUM(ret);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    quo(other) -> numeric
 | 
						|
 *
 | 
						|
 *  Returns the quotient from dividing +self+ by +other+:
 | 
						|
 *
 | 
						|
 *    f = 3.14
 | 
						|
 *    f.quo(2)              # => 1.57
 | 
						|
 *    f.quo(-2)             # => -1.57
 | 
						|
 *    f.quo(Rational(2, 1)) # => 1.57
 | 
						|
 *    f.quo(Complex(2, 0))  # => (1.57+0.0i)
 | 
						|
 *
 | 
						|
 *  Float#fdiv is an alias for Float#quo.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_quo(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    return num_funcall1(x, '/', y);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
flodivmod(double x, double y, double *divp, double *modp)
 | 
						|
{
 | 
						|
    double div, mod;
 | 
						|
 | 
						|
    if (isnan(y)) {
 | 
						|
        /* y is NaN so all results are NaN */
 | 
						|
        if (modp) *modp = y;
 | 
						|
        if (divp) *divp = y;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (y == 0.0) rb_num_zerodiv();
 | 
						|
    if ((x == 0.0) || (isinf(y) && !isinf(x)))
 | 
						|
        mod = x;
 | 
						|
    else {
 | 
						|
#ifdef HAVE_FMOD
 | 
						|
        mod = fmod(x, y);
 | 
						|
#else
 | 
						|
        double z;
 | 
						|
 | 
						|
        modf(x/y, &z);
 | 
						|
        mod = x - z * y;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    if (isinf(x) && !isinf(y))
 | 
						|
        div = x;
 | 
						|
    else {
 | 
						|
        div = (x - mod) / y;
 | 
						|
        if (modp && divp) div = round(div);
 | 
						|
    }
 | 
						|
    if (y*mod < 0) {
 | 
						|
        mod += y;
 | 
						|
        div -= 1.0;
 | 
						|
    }
 | 
						|
    if (modp) *modp = mod;
 | 
						|
    if (divp) *divp = div;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the modulo of division of x by y.
 | 
						|
 * An error will be raised if y == 0.
 | 
						|
 */
 | 
						|
 | 
						|
MJIT_FUNC_EXPORTED double
 | 
						|
ruby_float_mod(double x, double y)
 | 
						|
{
 | 
						|
    double mod;
 | 
						|
    flodivmod(x, y, 0, &mod);
 | 
						|
    return mod;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self % other -> float
 | 
						|
 *
 | 
						|
 *  Returns +self+ modulo +other+ as a float.
 | 
						|
 *
 | 
						|
 *  For float +f+ and real number +r+, these expressions are equivalent:
 | 
						|
 *
 | 
						|
 *    f % r
 | 
						|
 *    f-r*(f/r).floor
 | 
						|
 *    f.divmod(r)[1]
 | 
						|
 *
 | 
						|
 *  See Numeric#divmod.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    10.0 % 2              # => 0.0
 | 
						|
 *    10.0 % 3              # => 1.0
 | 
						|
 *    10.0 % 4              # => 2.0
 | 
						|
 *
 | 
						|
 *    10.0 % -2             # => 0.0
 | 
						|
 *    10.0 % -3             # => -2.0
 | 
						|
 *    10.0 % -4             # => -2.0
 | 
						|
 *
 | 
						|
 *    10.0 % 4.0            # => 2.0
 | 
						|
 *    10.0 % Rational(4, 1) # => 2.0
 | 
						|
 *
 | 
						|
 *  Float#modulo is an alias for Float#%.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_mod(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    double fy;
 | 
						|
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        fy = (double)FIX2LONG(y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        fy = rb_big2dbl(y);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        fy = RFLOAT_VALUE(y);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, '%');
 | 
						|
    }
 | 
						|
    return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
dbl2ival(double d)
 | 
						|
{
 | 
						|
    if (FIXABLE(d)) {
 | 
						|
        return LONG2FIX((long)d);
 | 
						|
    }
 | 
						|
    return rb_dbl2big(d);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    divmod(other) -> array
 | 
						|
 *
 | 
						|
 *  Returns a 2-element array <tt>[q, r]</tt>, where
 | 
						|
 *
 | 
						|
 *    q = (self/other).floor      # Quotient
 | 
						|
 *    r = self % other            # Remainder
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    11.0.divmod(4)              # => [2, 3.0]
 | 
						|
 *    11.0.divmod(-4)             # => [-3, -1.0]
 | 
						|
 *    -11.0.divmod(4)             # => [-3, 1.0]
 | 
						|
 *    -11.0.divmod(-4)            # => [2, -3.0]
 | 
						|
 *
 | 
						|
 *    12.0.divmod(4)              # => [3, 0.0]
 | 
						|
 *    12.0.divmod(-4)             # => [-3, 0.0]
 | 
						|
 *    -12.0.divmod(4)             # => [-3, -0.0]
 | 
						|
 *    -12.0.divmod(-4)            # => [3, -0.0]
 | 
						|
 *
 | 
						|
 *    13.0.divmod(4.0)            # => [3, 1.0]
 | 
						|
 *    13.0.divmod(Rational(4, 1)) # => [3, 1.0]
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_divmod(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    double fy, div, mod;
 | 
						|
    volatile VALUE a, b;
 | 
						|
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        fy = (double)FIX2LONG(y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        fy = rb_big2dbl(y);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        fy = RFLOAT_VALUE(y);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, id_divmod);
 | 
						|
    }
 | 
						|
    flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
 | 
						|
    a = dbl2ival(div);
 | 
						|
    b = DBL2NUM(mod);
 | 
						|
    return rb_assoc_new(a, b);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self ** other -> numeric
 | 
						|
 *
 | 
						|
 *  Raises +self+ to the power of +other+:
 | 
						|
 *
 | 
						|
 *    f = 3.14
 | 
						|
 *    f ** 2              # => 9.8596
 | 
						|
 *    f ** -2             # => 0.1014239928597509
 | 
						|
 *    f ** 2.1            # => 11.054834900588839
 | 
						|
 *    f ** Rational(2, 1) # => 9.8596
 | 
						|
 *    f ** Complex(2, 0)  # => (9.8596+0i)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_float_pow(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    double dx, dy;
 | 
						|
    if (y == INT2FIX(2)) {
 | 
						|
        dx = RFLOAT_VALUE(x);
 | 
						|
        return DBL2NUM(dx * dx);
 | 
						|
    }
 | 
						|
    else if (FIXNUM_P(y)) {
 | 
						|
        dx = RFLOAT_VALUE(x);
 | 
						|
        dy = (double)FIX2LONG(y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        dx = RFLOAT_VALUE(x);
 | 
						|
        dy = rb_big2dbl(y);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        dx = RFLOAT_VALUE(x);
 | 
						|
        dy = RFLOAT_VALUE(y);
 | 
						|
        if (dx < 0 && dy != round(dy))
 | 
						|
            return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, idPow);
 | 
						|
    }
 | 
						|
    return DBL2NUM(pow(dx, dy));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    eql?(other) -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +self+ and +other+ are the same type and have equal values.
 | 
						|
 *
 | 
						|
 *  Of the Core and Standard Library classes,
 | 
						|
 *  only Integer, Rational, and Complex use this implementation.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    1.eql?(1)              # => true
 | 
						|
 *    1.eql?(1.0)            # => false
 | 
						|
 *    1.eql?(Rational(1, 1)) # => false
 | 
						|
 *    1.eql?(Complex(1, 0))  # => false
 | 
						|
 *
 | 
						|
 *  \Method +eql?+ is different from +==+ in that +eql?+ requires matching types,
 | 
						|
 *  while +==+ does not.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_eql(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (TYPE(x) != TYPE(y)) return Qfalse;
 | 
						|
 | 
						|
    if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_eql(x, y);
 | 
						|
    }
 | 
						|
 | 
						|
    return rb_equal(x, y);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self <=> other -> zero or nil
 | 
						|
 *
 | 
						|
 *  Returns zero if +self+ is the same as +other+, +nil+ otherwise.
 | 
						|
 *
 | 
						|
 *  No subclass in the Ruby Core or Standard Library uses this implementation.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_cmp(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (x == y) return INT2FIX(0);
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_equal(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    VALUE result;
 | 
						|
    if (x == y) return Qtrue;
 | 
						|
    result = num_funcall1(y, id_eq, x);
 | 
						|
    return RBOOL(RTEST(result));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     self == other -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +other+ has the same value as +self+, +false+ otherwise:
 | 
						|
 *
 | 
						|
 *     2.0 == 2              # => true
 | 
						|
 *     2.0 == 2.0            # => true
 | 
						|
 *     2.0 == Rational(2, 1) # => true
 | 
						|
 *     2.0 == Complex(2, 0)  # => true
 | 
						|
 *
 | 
						|
 *  <tt>Float::NAN == Float::NAN</tt> returns an implementation-dependent value.
 | 
						|
 *
 | 
						|
 *  Related: Float#eql? (requires +other+ to be a \Float).
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
MJIT_FUNC_EXPORTED VALUE
 | 
						|
rb_float_equal(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    volatile double a, b;
 | 
						|
 | 
						|
    if (RB_INTEGER_TYPE_P(y)) {
 | 
						|
        return rb_integer_float_eq(y, x);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        b = RFLOAT_VALUE(y);
 | 
						|
#if MSC_VERSION_BEFORE(1300)
 | 
						|
        if (isnan(b)) return Qfalse;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return num_equal(x, y);
 | 
						|
    }
 | 
						|
    a = RFLOAT_VALUE(x);
 | 
						|
#if MSC_VERSION_BEFORE(1300)
 | 
						|
    if (isnan(a)) return Qfalse;
 | 
						|
#endif
 | 
						|
    return RBOOL(a == b);
 | 
						|
}
 | 
						|
 | 
						|
#define flo_eq rb_float_equal
 | 
						|
static VALUE rb_dbl_hash(double d);
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *    hash -> integer
 | 
						|
 *
 | 
						|
 * Returns the integer hash value for +self+.
 | 
						|
 *
 | 
						|
 * See also Object#hash.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_hash(VALUE num)
 | 
						|
{
 | 
						|
    return rb_dbl_hash(RFLOAT_VALUE(num));
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_dbl_hash(double d)
 | 
						|
{
 | 
						|
    return ST2FIX(rb_dbl_long_hash(d));
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_dbl_cmp(double a, double b)
 | 
						|
{
 | 
						|
    if (isnan(a) || isnan(b)) return Qnil;
 | 
						|
    if (a == b) return INT2FIX(0);
 | 
						|
    if (a > b) return INT2FIX(1);
 | 
						|
    if (a < b) return INT2FIX(-1);
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     self <=> other ->  -1, 0, +1, or nil
 | 
						|
 *
 | 
						|
 *  Returns a value that depends on the numeric relation
 | 
						|
 *  between +self+ and +other+:
 | 
						|
 *
 | 
						|
 *  - -1, if +self+ is less than +other+.
 | 
						|
 *  - 0, if +self+ is equal to +other+.
 | 
						|
 *  - 1, if +self+ is greater than +other+.
 | 
						|
 *  - +nil+, if the two values are incommensurate.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    2.0 <=> 2              # => 0
 | 
						|
      2.0 <=> 2.0            # => 0
 | 
						|
      2.0 <=> Rational(2, 1) # => 0
 | 
						|
      2.0 <=> Complex(2, 0)  # => 0
 | 
						|
      2.0 <=> 1.9            # => 1
 | 
						|
      2.0 <=> 2.1            # => -1
 | 
						|
      2.0 <=> 'foo'          # => nil
 | 
						|
 *
 | 
						|
 *  This is the basis for the tests in the Comparable module.
 | 
						|
 *
 | 
						|
 *  <tt>Float::NAN <=> Float::NAN</tt> returns an implementation-dependent value.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_cmp(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    double a, b;
 | 
						|
    VALUE i;
 | 
						|
 | 
						|
    a = RFLOAT_VALUE(x);
 | 
						|
    if (isnan(a)) return Qnil;
 | 
						|
    if (RB_INTEGER_TYPE_P(y)) {
 | 
						|
        VALUE rel = rb_integer_float_cmp(y, x);
 | 
						|
        if (FIXNUM_P(rel))
 | 
						|
            return LONG2FIX(-FIX2LONG(rel));
 | 
						|
        return rel;
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        b = RFLOAT_VALUE(y);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
 | 
						|
            if (RTEST(i)) {
 | 
						|
                int j = rb_cmpint(i, x, y);
 | 
						|
                j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
 | 
						|
                return INT2FIX(j);
 | 
						|
            }
 | 
						|
            if (a > 0.0) return INT2FIX(1);
 | 
						|
            return INT2FIX(-1);
 | 
						|
        }
 | 
						|
        return rb_num_coerce_cmp(x, y, id_cmp);
 | 
						|
    }
 | 
						|
    return rb_dbl_cmp(a, b);
 | 
						|
}
 | 
						|
 | 
						|
MJIT_FUNC_EXPORTED int
 | 
						|
rb_float_cmp(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    return NUM2INT(ensure_cmp(flo_cmp(x, y), x, y));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self > other -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +self+ is numerically greater than +other+:
 | 
						|
 *
 | 
						|
 *    2.0 > 1              # => true
 | 
						|
 *    2.0 > 1.0            # => true
 | 
						|
 *    2.0 > Rational(1, 2) # => true
 | 
						|
 *    2.0 > 2.0            # => false
 | 
						|
 *
 | 
						|
 *  <tt>Float::NAN > Float::NAN</tt> returns an implementation-dependent value.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_float_gt(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    double a, b;
 | 
						|
 | 
						|
    a = RFLOAT_VALUE(x);
 | 
						|
    if (RB_INTEGER_TYPE_P(y)) {
 | 
						|
        VALUE rel = rb_integer_float_cmp(y, x);
 | 
						|
        if (FIXNUM_P(rel))
 | 
						|
            return RBOOL(-FIX2LONG(rel) > 0);
 | 
						|
        return Qfalse;
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        b = RFLOAT_VALUE(y);
 | 
						|
#if MSC_VERSION_BEFORE(1300)
 | 
						|
        if (isnan(b)) return Qfalse;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_relop(x, y, '>');
 | 
						|
    }
 | 
						|
#if MSC_VERSION_BEFORE(1300)
 | 
						|
    if (isnan(a)) return Qfalse;
 | 
						|
#endif
 | 
						|
    return RBOOL(a > b);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self >= other -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +self+ is numerically greater than or equal to +other+:
 | 
						|
 *
 | 
						|
 *    2.0 >= 1              # => true
 | 
						|
 *    2.0 >= 1.0            # => true
 | 
						|
 *    2.0 >= Rational(1, 2) # => true
 | 
						|
 *    2.0 >= 2.0            # => true
 | 
						|
 *    2.0 >= 2.1            # => false
 | 
						|
 *
 | 
						|
 *  <tt>Float::NAN >= Float::NAN</tt> returns an implementation-dependent value.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_ge(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    double a, b;
 | 
						|
 | 
						|
    a = RFLOAT_VALUE(x);
 | 
						|
    if (RB_TYPE_P(y, T_FIXNUM) || RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        VALUE rel = rb_integer_float_cmp(y, x);
 | 
						|
        if (FIXNUM_P(rel))
 | 
						|
            return RBOOL(-FIX2LONG(rel) >= 0);
 | 
						|
        return Qfalse;
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        b = RFLOAT_VALUE(y);
 | 
						|
#if MSC_VERSION_BEFORE(1300)
 | 
						|
        if (isnan(b)) return Qfalse;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_relop(x, y, idGE);
 | 
						|
    }
 | 
						|
#if MSC_VERSION_BEFORE(1300)
 | 
						|
    if (isnan(a)) return Qfalse;
 | 
						|
#endif
 | 
						|
    return RBOOL(a >= b);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self < other -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +self+ is numerically less than +other+:
 | 
						|
 *
 | 
						|
 *    2.0 < 3              # => true
 | 
						|
 *    2.0 < 3.0            # => true
 | 
						|
 *    2.0 < Rational(3, 1) # => true
 | 
						|
 *    2.0 < 2.0            # => false
 | 
						|
 *
 | 
						|
 *  <tt>Float::NAN < Float::NAN</tt> returns an implementation-dependent value.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_lt(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    double a, b;
 | 
						|
 | 
						|
    a = RFLOAT_VALUE(x);
 | 
						|
    if (RB_INTEGER_TYPE_P(y)) {
 | 
						|
        VALUE rel = rb_integer_float_cmp(y, x);
 | 
						|
        if (FIXNUM_P(rel))
 | 
						|
            return RBOOL(-FIX2LONG(rel) < 0);
 | 
						|
        return Qfalse;
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        b = RFLOAT_VALUE(y);
 | 
						|
#if MSC_VERSION_BEFORE(1300)
 | 
						|
        if (isnan(b)) return Qfalse;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_relop(x, y, '<');
 | 
						|
    }
 | 
						|
#if MSC_VERSION_BEFORE(1300)
 | 
						|
    if (isnan(a)) return Qfalse;
 | 
						|
#endif
 | 
						|
    return RBOOL(a < b);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self <= other -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +self+ is numerically less than or equal to +other+:
 | 
						|
 *
 | 
						|
 *    2.0 <= 3              # => true
 | 
						|
 *    2.0 <= 3.0            # => true
 | 
						|
 *    2.0 <= Rational(3, 1) # => true
 | 
						|
 *    2.0 <= 2.0            # => true
 | 
						|
 *    2.0 <= 1.0            # => false
 | 
						|
 *
 | 
						|
 *  <tt>Float::NAN <= Float::NAN</tt> returns an implementation-dependent value.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_le(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    double a, b;
 | 
						|
 | 
						|
    a = RFLOAT_VALUE(x);
 | 
						|
    if (RB_INTEGER_TYPE_P(y)) {
 | 
						|
        VALUE rel = rb_integer_float_cmp(y, x);
 | 
						|
        if (FIXNUM_P(rel))
 | 
						|
            return RBOOL(-FIX2LONG(rel) <= 0);
 | 
						|
        return Qfalse;
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        b = RFLOAT_VALUE(y);
 | 
						|
#if MSC_VERSION_BEFORE(1300)
 | 
						|
        if (isnan(b)) return Qfalse;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_relop(x, y, idLE);
 | 
						|
    }
 | 
						|
#if MSC_VERSION_BEFORE(1300)
 | 
						|
    if (isnan(a)) return Qfalse;
 | 
						|
#endif
 | 
						|
    return RBOOL(a <= b);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    eql?(other) -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +other+ is a \Float with the same value as +self+,
 | 
						|
 *  +false+ otherwise:
 | 
						|
 *
 | 
						|
 *    2.0.eql?(2.0)            # => true
 | 
						|
 *    2.0.eql?(1.0)            # => false
 | 
						|
 *    2.0.eql?(1)              # => false
 | 
						|
 *    2.0.eql?(Rational(2, 1)) # => false
 | 
						|
 *    2.0.eql?(Complex(2, 0))  # => false
 | 
						|
 *
 | 
						|
 *  <tt>Float::NAN.eql?(Float::NAN)</tt> returns an implementation-dependent value.
 | 
						|
 *
 | 
						|
 *  Related: Float#== (performs type conversions).
 | 
						|
 */
 | 
						|
 | 
						|
MJIT_FUNC_EXPORTED VALUE
 | 
						|
rb_float_eql(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        double a = RFLOAT_VALUE(x);
 | 
						|
        double b = RFLOAT_VALUE(y);
 | 
						|
#if MSC_VERSION_BEFORE(1300)
 | 
						|
        if (isnan(a) || isnan(b)) return Qfalse;
 | 
						|
#endif
 | 
						|
    return RBOOL(a == b);
 | 
						|
    }
 | 
						|
    return Qfalse;
 | 
						|
}
 | 
						|
 | 
						|
#define flo_eql rb_float_eql
 | 
						|
 | 
						|
MJIT_FUNC_EXPORTED VALUE
 | 
						|
rb_float_abs(VALUE flt)
 | 
						|
{
 | 
						|
    double val = fabs(RFLOAT_VALUE(flt));
 | 
						|
    return DBL2NUM(val);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    nan? -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +self+ is a NaN, +false+ otherwise.
 | 
						|
 *
 | 
						|
 *     f = -1.0     #=> -1.0
 | 
						|
 *     f.nan?       #=> false
 | 
						|
 *     f = 0.0/0.0  #=> NaN
 | 
						|
 *     f.nan?       #=> true
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_is_nan_p(VALUE num)
 | 
						|
{
 | 
						|
    double value = RFLOAT_VALUE(num);
 | 
						|
 | 
						|
    return RBOOL(isnan(value));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    infinite? -> -1, 1, or nil
 | 
						|
 *
 | 
						|
 *  Returns:
 | 
						|
 *
 | 
						|
 *  - 1, if +self+ is <tt>Infinity</tt>.
 | 
						|
 *  - -1 if +self+ is <tt>-Infinity</tt>.
 | 
						|
 *  - +nil+, otherwise.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    f = 1.0/0.0  # => Infinity
 | 
						|
 *    f.infinite?  # => 1
 | 
						|
 *    f = -1.0/0.0 # => -Infinity
 | 
						|
 *    f.infinite?  # => -1
 | 
						|
 *    f = 1.0      # => 1.0
 | 
						|
 *    f.infinite?  # => nil
 | 
						|
 *    f = 0.0/0.0  # => NaN
 | 
						|
 *    f.infinite?  # => nil
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_flo_is_infinite_p(VALUE num)
 | 
						|
{
 | 
						|
    double value = RFLOAT_VALUE(num);
 | 
						|
 | 
						|
    if (isinf(value)) {
 | 
						|
        return INT2FIX( value < 0 ? -1 : 1 );
 | 
						|
    }
 | 
						|
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    finite? -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +self+ is not +Infinity+, +-Infinity+, or +NaN+,
 | 
						|
 *  +false+ otherwise:
 | 
						|
 *
 | 
						|
 *    f = 2.0      # => 2.0
 | 
						|
 *    f.finite?    # => true
 | 
						|
 *    f = 1.0/0.0  # => Infinity
 | 
						|
 *    f.finite?    # => false
 | 
						|
 *    f = -1.0/0.0 # => -Infinity
 | 
						|
 *    f.finite?    # => false
 | 
						|
 *    f = 0.0/0.0  # => NaN
 | 
						|
 *    f.finite?    # => false
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_flo_is_finite_p(VALUE num)
 | 
						|
{
 | 
						|
    double value = RFLOAT_VALUE(num);
 | 
						|
 | 
						|
    return RBOOL(isfinite(value));
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_nextafter(VALUE flo, double value)
 | 
						|
{
 | 
						|
    double x, y;
 | 
						|
    x = NUM2DBL(flo);
 | 
						|
    y = nextafter(x, value);
 | 
						|
    return DBL2NUM(y);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    next_float -> float
 | 
						|
 *
 | 
						|
 *  Returns the next-larger representable \Float.
 | 
						|
 *
 | 
						|
 *  These examples show the internally stored values (64-bit hexadecimal)
 | 
						|
 *  for each \Float +f+ and for the corresponding <tt>f.next_float</tt>:
 | 
						|
 *
 | 
						|
 *    f = 0.0      # 0x0000000000000000
 | 
						|
 *    f.next_float # 0x0000000000000001
 | 
						|
 *
 | 
						|
 *    f = 0.01     # 0x3f847ae147ae147b
 | 
						|
 *    f.next_float # 0x3f847ae147ae147c
 | 
						|
 *
 | 
						|
 *  In the remaining examples here, the output is shown in the usual way
 | 
						|
 *  (result +to_s+):
 | 
						|
 *
 | 
						|
 *    0.01.next_float    # => 0.010000000000000002
 | 
						|
 *    1.0.next_float     # => 1.0000000000000002
 | 
						|
 *    100.0.next_float   # => 100.00000000000001
 | 
						|
 *
 | 
						|
 *    f = 0.01
 | 
						|
 *    (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }
 | 
						|
 *
 | 
						|
 *  Output:
 | 
						|
 *
 | 
						|
 *     0 0x1.47ae147ae147bp-7 0.01
 | 
						|
 *     1 0x1.47ae147ae147cp-7 0.010000000000000002
 | 
						|
 *     2 0x1.47ae147ae147dp-7 0.010000000000000004
 | 
						|
 *     3 0x1.47ae147ae147ep-7 0.010000000000000005
 | 
						|
 *
 | 
						|
 *    f = 0.0; 100.times { f += 0.1 }
 | 
						|
 *    f                           # => 9.99999999999998       # should be 10.0 in the ideal world.
 | 
						|
 *    10-f                        # => 1.9539925233402755e-14 # the floating point error.
 | 
						|
 *    10.0.next_float-10          # => 1.7763568394002505e-15 # 1 ulp (unit in the last place).
 | 
						|
 *    (10-f)/(10.0.next_float-10) # => 11.0                   # the error is 11 ulp.
 | 
						|
 *    (10-f)/(10*Float::EPSILON)  # => 8.8                    # approximation of the above.
 | 
						|
 *    "%a" % 10                   # => "0x1.4p+3"
 | 
						|
 *    "%a" % f                    # => "0x1.3fffffffffff5p+3" # the last hex digit is 5.  16 - 5 = 11 ulp.
 | 
						|
 *
 | 
						|
 *  Related: Float#prev_float
 | 
						|
 *
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
flo_next_float(VALUE vx)
 | 
						|
{
 | 
						|
    return flo_nextafter(vx, HUGE_VAL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     float.prev_float  ->  float
 | 
						|
 *
 | 
						|
 *  Returns the next-smaller representable \Float.
 | 
						|
 *
 | 
						|
 *  These examples show the internally stored values (64-bit hexadecimal)
 | 
						|
 *  for each \Float +f+ and for the corresponding <tt>f.pev_float</tt>:
 | 
						|
 *
 | 
						|
 *    f = 5e-324   # 0x0000000000000001
 | 
						|
 *    f.prev_float # 0x0000000000000000
 | 
						|
 *
 | 
						|
 *    f = 0.01     # 0x3f847ae147ae147b
 | 
						|
 *    f.prev_float # 0x3f847ae147ae147a
 | 
						|
 *
 | 
						|
 *  In the remaining examples here, the output is shown in the usual way
 | 
						|
 *  (result +to_s+):
 | 
						|
 *
 | 
						|
 *    0.01.prev_float   # => 0.009999999999999998
 | 
						|
 *    1.0.prev_float    # => 0.9999999999999999
 | 
						|
 *    100.0.prev_float  # => 99.99999999999999
 | 
						|
 *
 | 
						|
 *    f = 0.01
 | 
						|
 *    (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.prev_float }
 | 
						|
 *
 | 
						|
 *  Output:
 | 
						|
 *
 | 
						|
 *     0 0x1.47ae147ae147bp-7 0.01
 | 
						|
 *     1 0x1.47ae147ae147ap-7 0.009999999999999998
 | 
						|
 *     2 0x1.47ae147ae1479p-7 0.009999999999999997
 | 
						|
 *     3 0x1.47ae147ae1478p-7 0.009999999999999995
 | 
						|
 *
 | 
						|
 *  Related: Float#next_float.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
flo_prev_float(VALUE vx)
 | 
						|
{
 | 
						|
    return flo_nextafter(vx, -HUGE_VAL);
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_float_floor(VALUE num, int ndigits)
 | 
						|
{
 | 
						|
    double number;
 | 
						|
    number = RFLOAT_VALUE(num);
 | 
						|
    if (number == 0.0) {
 | 
						|
        return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
 | 
						|
    }
 | 
						|
    if (ndigits > 0) {
 | 
						|
        int binexp;
 | 
						|
        double f, mul, res;
 | 
						|
        frexp(number, &binexp);
 | 
						|
        if (float_round_overflow(ndigits, binexp)) return num;
 | 
						|
        if (number > 0.0 && float_round_underflow(ndigits, binexp))
 | 
						|
            return DBL2NUM(0.0);
 | 
						|
        f = pow(10, ndigits);
 | 
						|
        mul = floor(number * f);
 | 
						|
        res = (mul + 1) / f;
 | 
						|
        if (res > number)
 | 
						|
            res = mul / f;
 | 
						|
        return DBL2NUM(res);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        num = dbl2ival(floor(number));
 | 
						|
        if (ndigits < 0) num = rb_int_floor(num, ndigits);
 | 
						|
        return num;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
flo_ndigits(int argc, VALUE *argv)
 | 
						|
{
 | 
						|
    if (rb_check_arity(argc, 0, 1)) {
 | 
						|
        return NUM2INT(argv[0]);
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    floor(ndigits = 0) -> float or integer
 | 
						|
 *
 | 
						|
 *  Returns the largest number less than or equal to +self+ with
 | 
						|
 *  a precision of +ndigits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  When +ndigits+ is positive, returns a float with +ndigits+
 | 
						|
 *  digits after the decimal point (as available):
 | 
						|
 *
 | 
						|
 *    f = 12345.6789
 | 
						|
 *    f.floor(1) # => 12345.6
 | 
						|
 *    f.floor(3) # => 12345.678
 | 
						|
 *    f = -12345.6789
 | 
						|
 *    f.floor(1) # => -12345.7
 | 
						|
 *    f.floor(3) # => -12345.679
 | 
						|
 *
 | 
						|
 *  When +ndigits+ is non-positive, returns an integer with at least
 | 
						|
 *  <code>ndigits.abs</code> trailing zeros:
 | 
						|
 *
 | 
						|
 *    f = 12345.6789
 | 
						|
 *    f.floor(0)  # => 12345
 | 
						|
 *    f.floor(-3) # => 12000
 | 
						|
 *    f = -12345.6789
 | 
						|
 *    f.floor(0)  # => -12346
 | 
						|
 *    f.floor(-3) # => -13000
 | 
						|
 *
 | 
						|
 *  Note that the limited precision of floating-point arithmetic
 | 
						|
 *  may lead to surprising results:
 | 
						|
 *
 | 
						|
 *     (0.3 / 0.1).floor  #=> 2 (!)
 | 
						|
 *
 | 
						|
 *  Related: Float#ceil.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_floor(int argc, VALUE *argv, VALUE num)
 | 
						|
{
 | 
						|
    int ndigits = flo_ndigits(argc, argv);
 | 
						|
    return rb_float_floor(num, ndigits);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    ceil(ndigits = 0) -> float or integer
 | 
						|
 *
 | 
						|
 *  Returns the smallest number greater than or equal to +self+ with
 | 
						|
 *  a precision of +ndigits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  When +ndigits+ is positive, returns a float with +ndigits+
 | 
						|
 *  digits after the decimal point (as available):
 | 
						|
 *
 | 
						|
 *    f = 12345.6789
 | 
						|
 *    f.ceil(1) # => 12345.7
 | 
						|
 *    f.ceil(3) # => 12345.679
 | 
						|
 *    f = -12345.6789
 | 
						|
 *    f.ceil(1) # => -12345.6
 | 
						|
 *    f.ceil(3) # => -12345.678
 | 
						|
 *
 | 
						|
 *  When +ndigits+ is non-positive, returns an integer with at least
 | 
						|
 *  <code>ndigits.abs</code> trailing zeros:
 | 
						|
 *
 | 
						|
 *    f = 12345.6789
 | 
						|
 *    f.ceil(0)  # => 12346
 | 
						|
 *    f.ceil(-3) # => 13000
 | 
						|
 *    f = -12345.6789
 | 
						|
 *    f.ceil(0)  # => -12345
 | 
						|
 *    f.ceil(-3) # => -12000
 | 
						|
 *
 | 
						|
 *  Note that the limited precision of floating-point arithmetic
 | 
						|
 *  may lead to surprising results:
 | 
						|
 *
 | 
						|
 *     (2.1 / 0.7).ceil  #=> 4 (!)
 | 
						|
 *
 | 
						|
 *  Related: Float#floor.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_ceil(int argc, VALUE *argv, VALUE num)
 | 
						|
{
 | 
						|
    int ndigits = flo_ndigits(argc, argv);
 | 
						|
    return rb_float_ceil(num, ndigits);
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_float_ceil(VALUE num, int ndigits)
 | 
						|
{
 | 
						|
    double number, f;
 | 
						|
 | 
						|
    number = RFLOAT_VALUE(num);
 | 
						|
    if (number == 0.0) {
 | 
						|
        return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
 | 
						|
    }
 | 
						|
    if (ndigits > 0) {
 | 
						|
        int binexp;
 | 
						|
        frexp(number, &binexp);
 | 
						|
        if (float_round_overflow(ndigits, binexp)) return num;
 | 
						|
        if (number < 0.0 && float_round_underflow(ndigits, binexp))
 | 
						|
            return DBL2NUM(0.0);
 | 
						|
        f = pow(10, ndigits);
 | 
						|
        f = ceil(number * f) / f;
 | 
						|
        return DBL2NUM(f);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        num = dbl2ival(ceil(number));
 | 
						|
        if (ndigits < 0) num = rb_int_ceil(num, ndigits);
 | 
						|
        return num;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
int_round_zero_p(VALUE num, int ndigits)
 | 
						|
{
 | 
						|
    long bytes;
 | 
						|
    /* If 10**N / 2 > num, then return 0 */
 | 
						|
    /* We have log_256(10) > 0.415241 and log_256(1/2) = -0.125, so */
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        bytes = sizeof(long);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        bytes = rb_big_size(num);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        bytes = NUM2LONG(rb_funcall(num, idSize, 0));
 | 
						|
    }
 | 
						|
    return (-0.415241 * ndigits - 0.125 > bytes);
 | 
						|
}
 | 
						|
 | 
						|
static SIGNED_VALUE
 | 
						|
int_round_half_even(SIGNED_VALUE x, SIGNED_VALUE y)
 | 
						|
{
 | 
						|
    SIGNED_VALUE z = +(x + y / 2) / y;
 | 
						|
    if ((z * y - x) * 2 == y) {
 | 
						|
        z &= ~1;
 | 
						|
    }
 | 
						|
    return z * y;
 | 
						|
}
 | 
						|
 | 
						|
static SIGNED_VALUE
 | 
						|
int_round_half_up(SIGNED_VALUE x, SIGNED_VALUE y)
 | 
						|
{
 | 
						|
    return (x + y / 2) / y * y;
 | 
						|
}
 | 
						|
 | 
						|
static SIGNED_VALUE
 | 
						|
int_round_half_down(SIGNED_VALUE x, SIGNED_VALUE y)
 | 
						|
{
 | 
						|
    return (x + y / 2 - 1) / y * y;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
int_half_p_half_even(VALUE num, VALUE n, VALUE f)
 | 
						|
{
 | 
						|
    return (int)rb_int_odd_p(rb_int_idiv(n, f));
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
int_half_p_half_up(VALUE num, VALUE n, VALUE f)
 | 
						|
{
 | 
						|
    return int_pos_p(num);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
int_half_p_half_down(VALUE num, VALUE n, VALUE f)
 | 
						|
{
 | 
						|
    return int_neg_p(num);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Assumes num is an Integer, ndigits <= 0
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode)
 | 
						|
{
 | 
						|
    VALUE n, f, h, r;
 | 
						|
 | 
						|
    if (int_round_zero_p(num, ndigits)) {
 | 
						|
        return INT2FIX(0);
 | 
						|
    }
 | 
						|
 | 
						|
    f = int_pow(10, -ndigits);
 | 
						|
    if (FIXNUM_P(num) && FIXNUM_P(f)) {
 | 
						|
        SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
 | 
						|
        int neg = x < 0;
 | 
						|
        if (neg) x = -x;
 | 
						|
        x = ROUND_CALL(mode, int_round, (x, y));
 | 
						|
        if (neg) x = -x;
 | 
						|
        return LONG2NUM(x);
 | 
						|
    }
 | 
						|
    if (RB_FLOAT_TYPE_P(f)) {
 | 
						|
        /* then int_pow overflow */
 | 
						|
        return INT2FIX(0);
 | 
						|
    }
 | 
						|
    h = rb_int_idiv(f, INT2FIX(2));
 | 
						|
    r = rb_int_modulo(num, f);
 | 
						|
    n = rb_int_minus(num, r);
 | 
						|
    r = rb_int_cmp(r, h);
 | 
						|
    if (FIXNUM_POSITIVE_P(r) ||
 | 
						|
        (FIXNUM_ZERO_P(r) && ROUND_CALL(mode, int_half_p, (num, n, f)))) {
 | 
						|
        n = rb_int_plus(n, f);
 | 
						|
    }
 | 
						|
    return n;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_int_floor(VALUE num, int ndigits)
 | 
						|
{
 | 
						|
    VALUE f;
 | 
						|
 | 
						|
    if (int_round_zero_p(num, ndigits))
 | 
						|
        return INT2FIX(0);
 | 
						|
    f = int_pow(10, -ndigits);
 | 
						|
    if (FIXNUM_P(num) && FIXNUM_P(f)) {
 | 
						|
        SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
 | 
						|
        int neg = x < 0;
 | 
						|
        if (neg) x = -x + y - 1;
 | 
						|
        x = x / y * y;
 | 
						|
        if (neg) x = -x;
 | 
						|
        return LONG2NUM(x);
 | 
						|
    }
 | 
						|
    if (RB_FLOAT_TYPE_P(f)) {
 | 
						|
        /* then int_pow overflow */
 | 
						|
        return INT2FIX(0);
 | 
						|
    }
 | 
						|
    return rb_int_minus(num, rb_int_modulo(num, f));
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_int_ceil(VALUE num, int ndigits)
 | 
						|
{
 | 
						|
    VALUE f;
 | 
						|
 | 
						|
    if (int_round_zero_p(num, ndigits))
 | 
						|
        return INT2FIX(0);
 | 
						|
    f = int_pow(10, -ndigits);
 | 
						|
    if (FIXNUM_P(num) && FIXNUM_P(f)) {
 | 
						|
        SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
 | 
						|
        int neg = x < 0;
 | 
						|
        if (neg) x = -x;
 | 
						|
        else x += y - 1;
 | 
						|
        x = (x / y) * y;
 | 
						|
        if (neg) x = -x;
 | 
						|
        return LONG2NUM(x);
 | 
						|
    }
 | 
						|
    if (RB_FLOAT_TYPE_P(f)) {
 | 
						|
        /* then int_pow overflow */
 | 
						|
        return INT2FIX(0);
 | 
						|
    }
 | 
						|
    return rb_int_plus(num, rb_int_minus(f, rb_int_modulo(num, f)));
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_truncate(VALUE num, int ndigits)
 | 
						|
{
 | 
						|
    VALUE f;
 | 
						|
    VALUE m;
 | 
						|
 | 
						|
    if (int_round_zero_p(num, ndigits))
 | 
						|
        return INT2FIX(0);
 | 
						|
    f = int_pow(10, -ndigits);
 | 
						|
    if (FIXNUM_P(num) && FIXNUM_P(f)) {
 | 
						|
        SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
 | 
						|
        int neg = x < 0;
 | 
						|
        if (neg) x = -x;
 | 
						|
        x = x / y * y;
 | 
						|
        if (neg) x = -x;
 | 
						|
        return LONG2NUM(x);
 | 
						|
    }
 | 
						|
    if (RB_FLOAT_TYPE_P(f)) {
 | 
						|
        /* then int_pow overflow */
 | 
						|
        return INT2FIX(0);
 | 
						|
    }
 | 
						|
    m = rb_int_modulo(num, f);
 | 
						|
    if (int_neg_p(num)) {
 | 
						|
        return rb_int_plus(num, rb_int_minus(f, m));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_int_minus(num, m);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    round(ndigits = 0, half: :up]) -> integer or float
 | 
						|
 *
 | 
						|
 *  Returns +self+ rounded to the nearest value with
 | 
						|
 *  a precision of +ndigits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  When +ndigits+ is non-negative, returns a float with +ndigits+
 | 
						|
 *  after the decimal point (as available):
 | 
						|
 *
 | 
						|
 *    f = 12345.6789
 | 
						|
 *    f.round(1) # => 12345.7
 | 
						|
 *    f.round(3) # => 12345.679
 | 
						|
 *    f = -12345.6789
 | 
						|
 *    f.round(1) # => -12345.7
 | 
						|
 *    f.round(3) # => -12345.679
 | 
						|
 *
 | 
						|
 *  When +ndigits+ is negative, returns an integer
 | 
						|
 *  with at least <tt>ndigits.abs</tt> trailing zeros:
 | 
						|
 *
 | 
						|
 *    f = 12345.6789
 | 
						|
 *    f.round(0)  # => 12346
 | 
						|
 *    f.round(-3) # => 12000
 | 
						|
 *    f = -12345.6789
 | 
						|
 *    f.round(0)  # => -12346
 | 
						|
 *    f.round(-3) # => -12000
 | 
						|
 *
 | 
						|
 *  If keyword argument +half+ is given,
 | 
						|
 *  and +self+ is equidistant from the two candidate values,
 | 
						|
 *  the rounding is according to the given +half+ value:
 | 
						|
 *
 | 
						|
 *  - +:up+ or +nil+: round away from zero:
 | 
						|
 *
 | 
						|
 *      2.5.round(half: :up)      # => 3
 | 
						|
 *      3.5.round(half: :up)      # => 4
 | 
						|
 *      (-2.5).round(half: :up)   # => -3
 | 
						|
 *
 | 
						|
 *  - +:down+: round toward zero:
 | 
						|
 *
 | 
						|
 *      2.5.round(half: :down)    # => 2
 | 
						|
 *      3.5.round(half: :down)    # => 3
 | 
						|
 *      (-2.5).round(half: :down) # => -2
 | 
						|
 *
 | 
						|
 *  - +:even+: round toward the candidate whose last nonzero digit is even:
 | 
						|
 *
 | 
						|
 *      2.5.round(half: :even)    # => 2
 | 
						|
 *      3.5.round(half: :even)    # => 4
 | 
						|
 *      (-2.5).round(half: :even) # => -2
 | 
						|
 *
 | 
						|
 *  Raises and exception if the value for +half+ is invalid.
 | 
						|
 *
 | 
						|
 *  Related: Float#truncate.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_round(int argc, VALUE *argv, VALUE num)
 | 
						|
{
 | 
						|
    double number, f, x;
 | 
						|
    VALUE nd, opt;
 | 
						|
    int ndigits = 0;
 | 
						|
    enum ruby_num_rounding_mode mode;
 | 
						|
 | 
						|
    if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
 | 
						|
        ndigits = NUM2INT(nd);
 | 
						|
    }
 | 
						|
    mode = rb_num_get_rounding_option(opt);
 | 
						|
    number = RFLOAT_VALUE(num);
 | 
						|
    if (number == 0.0) {
 | 
						|
        return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
 | 
						|
    }
 | 
						|
    if (ndigits < 0) {
 | 
						|
        return rb_int_round(flo_to_i(num), ndigits, mode);
 | 
						|
    }
 | 
						|
    if (ndigits == 0) {
 | 
						|
        x = ROUND_CALL(mode, round, (number, 1.0));
 | 
						|
        return dbl2ival(x);
 | 
						|
    }
 | 
						|
    if (isfinite(number)) {
 | 
						|
        int binexp;
 | 
						|
        frexp(number, &binexp);
 | 
						|
        if (float_round_overflow(ndigits, binexp)) return num;
 | 
						|
        if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
 | 
						|
        if (ndigits > 14) {
 | 
						|
            /* In this case, pow(10, ndigits) may not be accurate. */
 | 
						|
            return rb_flo_round_by_rational(argc, argv, num);
 | 
						|
        }
 | 
						|
        f = pow(10, ndigits);
 | 
						|
        x = ROUND_CALL(mode, round, (number, f));
 | 
						|
        return DBL2NUM(x / f);
 | 
						|
    }
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
float_round_overflow(int ndigits, int binexp)
 | 
						|
{
 | 
						|
    enum {float_dig = DBL_DIG+2};
 | 
						|
 | 
						|
/* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
 | 
						|
   i.e. such that  10 ** (exp - 1) <= |number| < 10 ** exp
 | 
						|
   Recall that up to float_dig digits can be needed to represent a double,
 | 
						|
   so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
 | 
						|
   will be an integer and thus the result is the original number.
 | 
						|
   If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
 | 
						|
   if ndigits + exp < 0, the result is 0.
 | 
						|
   We have:
 | 
						|
        2 ** (binexp-1) <= |number| < 2 ** binexp
 | 
						|
        10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
 | 
						|
        If binexp >= 0, and since log_2(10) = 3.322259:
 | 
						|
           10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
 | 
						|
           floor(binexp/4) <= exp <= ceil(binexp/3)
 | 
						|
        If binexp <= 0, swap the /4 and the /3
 | 
						|
        So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
 | 
						|
        If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
 | 
						|
*/
 | 
						|
    if (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1)) {
 | 
						|
        return TRUE;
 | 
						|
    }
 | 
						|
    return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
float_round_underflow(int ndigits, int binexp)
 | 
						|
{
 | 
						|
    if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
 | 
						|
        return TRUE;
 | 
						|
    }
 | 
						|
    return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    to_i -> integer
 | 
						|
 *
 | 
						|
 *  Returns +self+ truncated to an Integer.
 | 
						|
 *
 | 
						|
 *    1.2.to_i    # => 1
 | 
						|
 *    (-1.2).to_i # => -1
 | 
						|
 *
 | 
						|
 *  Note that the limited precision of floating-point arithmetic
 | 
						|
 *  may lead to surprising results:
 | 
						|
 *
 | 
						|
 *    (0.3 / 0.1).to_i  # => 2 (!)
 | 
						|
 *
 | 
						|
 *  Float#to_int is an alias for Float#to_i.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
flo_to_i(VALUE num)
 | 
						|
{
 | 
						|
    double f = RFLOAT_VALUE(num);
 | 
						|
 | 
						|
    if (f > 0.0) f = floor(f);
 | 
						|
    if (f < 0.0) f = ceil(f);
 | 
						|
 | 
						|
    return dbl2ival(f);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    truncate(ndigits = 0) -> float or integer
 | 
						|
 *
 | 
						|
 *  Returns +self+ truncated (toward zero) to
 | 
						|
 *  a precision of +ndigits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  When +ndigits+ is positive, returns a float with +ndigits+ digits
 | 
						|
 *  after the decimal point (as available):
 | 
						|
 *
 | 
						|
 *    f = 12345.6789
 | 
						|
 *    f.truncate(1) # => 12345.6
 | 
						|
 *    f.truncate(3) # => 12345.678
 | 
						|
 *    f = -12345.6789
 | 
						|
 *    f.truncate(1) # => -12345.6
 | 
						|
 *    f.truncate(3) # => -12345.678
 | 
						|
 *
 | 
						|
 *  When +ndigits+ is negative, returns an integer
 | 
						|
 *  with at least <tt>ndigits.abs</tt> trailing zeros:
 | 
						|
 *
 | 
						|
 *    f = 12345.6789
 | 
						|
 *    f.truncate(0)  # => 12345
 | 
						|
 *    f.truncate(-3) # => 12000
 | 
						|
 *    f = -12345.6789
 | 
						|
 *    f.truncate(0)  # => -12345
 | 
						|
 *    f.truncate(-3) # => -12000
 | 
						|
 *
 | 
						|
 *  Note that the limited precision of floating-point arithmetic
 | 
						|
 *  may lead to surprising results:
 | 
						|
 *
 | 
						|
 *     (0.3 / 0.1).truncate  #=> 2 (!)
 | 
						|
 *
 | 
						|
 *  Related: Float#round.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static VALUE
 | 
						|
flo_truncate(int argc, VALUE *argv, VALUE num)
 | 
						|
{
 | 
						|
    if (signbit(RFLOAT_VALUE(num)))
 | 
						|
        return flo_ceil(argc, argv, num);
 | 
						|
    else
 | 
						|
        return flo_floor(argc, argv, num);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    floor(digits = 0) -> integer or float
 | 
						|
 *
 | 
						|
 *  Returns the largest number that is less than or equal to +self+ with
 | 
						|
 *  a precision of +digits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  \Numeric implements this by converting +self+ to a Float and
 | 
						|
 *  invoking Float#floor.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_floor(int argc, VALUE *argv, VALUE num)
 | 
						|
{
 | 
						|
    return flo_floor(argc, argv, rb_Float(num));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    ceil(digits = 0) -> integer or float
 | 
						|
 *
 | 
						|
 *  Returns the smallest number that is greater than or equal to +self+ with
 | 
						|
 *  a precision of +digits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  \Numeric implements this by converting +self+ to a Float and
 | 
						|
 *  invoking Float#ceil.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_ceil(int argc, VALUE *argv, VALUE num)
 | 
						|
{
 | 
						|
    return flo_ceil(argc, argv, rb_Float(num));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    round(digits = 0) -> integer or float
 | 
						|
 *
 | 
						|
 *  Returns +self+ rounded to the nearest value with
 | 
						|
 *  a precision of +digits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  \Numeric implements this by converting +self+ to a Float and
 | 
						|
 *  invoking Float#round.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_round(int argc, VALUE* argv, VALUE num)
 | 
						|
{
 | 
						|
    return flo_round(argc, argv, rb_Float(num));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    truncate(digits = 0) -> integer or float
 | 
						|
 *
 | 
						|
 *  Returns +self+ truncated (toward zero) to
 | 
						|
 *  a precision of +digits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  \Numeric implements this by converting +self+ to a Float and
 | 
						|
 *  invoking Float#truncate.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_truncate(int argc, VALUE *argv, VALUE num)
 | 
						|
{
 | 
						|
    return flo_truncate(argc, argv, rb_Float(num));
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
ruby_float_step_size(double beg, double end, double unit, int excl)
 | 
						|
{
 | 
						|
    const double epsilon = DBL_EPSILON;
 | 
						|
    double d, n, err;
 | 
						|
 | 
						|
    if (unit == 0) {
 | 
						|
        return HUGE_VAL;
 | 
						|
    }
 | 
						|
    if (isinf(unit)) {
 | 
						|
        return unit > 0 ? beg <= end : beg >= end;
 | 
						|
    }
 | 
						|
    n= (end - beg)/unit;
 | 
						|
    err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon;
 | 
						|
    if (err>0.5) err=0.5;
 | 
						|
    if (excl) {
 | 
						|
        if (n<=0) return 0;
 | 
						|
        if (n<1)
 | 
						|
            n = 0;
 | 
						|
        else
 | 
						|
            n = floor(n - err);
 | 
						|
        d = +((n + 1) * unit) + beg;
 | 
						|
        if (beg < end) {
 | 
						|
            if (d < end)
 | 
						|
                n++;
 | 
						|
        }
 | 
						|
        else if (beg > end) {
 | 
						|
            if (d > end)
 | 
						|
                n++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (n<0) return 0;
 | 
						|
        n = floor(n + err);
 | 
						|
        d = +((n + 1) * unit) + beg;
 | 
						|
        if (beg < end) {
 | 
						|
            if (d <= end)
 | 
						|
                n++;
 | 
						|
        }
 | 
						|
        else if (beg > end) {
 | 
						|
            if (d >= end)
 | 
						|
               n++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return n+1;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
ruby_float_step(VALUE from, VALUE to, VALUE step, int excl, int allow_endless)
 | 
						|
{
 | 
						|
    if (RB_FLOAT_TYPE_P(from) || RB_FLOAT_TYPE_P(to) || RB_FLOAT_TYPE_P(step)) {
 | 
						|
        double unit = NUM2DBL(step);
 | 
						|
        double beg = NUM2DBL(from);
 | 
						|
        double end = (allow_endless && NIL_P(to)) ? (unit < 0 ? -1 : 1)*HUGE_VAL : NUM2DBL(to);
 | 
						|
        double n = ruby_float_step_size(beg, end, unit, excl);
 | 
						|
        long i;
 | 
						|
 | 
						|
        if (isinf(unit)) {
 | 
						|
            /* if unit is infinity, i*unit+beg is NaN */
 | 
						|
            if (n) rb_yield(DBL2NUM(beg));
 | 
						|
        }
 | 
						|
        else if (unit == 0) {
 | 
						|
            VALUE val = DBL2NUM(beg);
 | 
						|
            for (;;)
 | 
						|
                rb_yield(val);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            for (i=0; i<n; i++) {
 | 
						|
                double d = i*unit+beg;
 | 
						|
                if (unit >= 0 ? end < d : d < end) d = end;
 | 
						|
                rb_yield(DBL2NUM(d));
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return TRUE;
 | 
						|
    }
 | 
						|
    return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
 | 
						|
        long delta, diff;
 | 
						|
 | 
						|
        diff = FIX2LONG(step);
 | 
						|
        if (diff == 0) {
 | 
						|
            return DBL2NUM(HUGE_VAL);
 | 
						|
        }
 | 
						|
        delta = FIX2LONG(to) - FIX2LONG(from);
 | 
						|
        if (diff < 0) {
 | 
						|
            diff = -diff;
 | 
						|
            delta = -delta;
 | 
						|
        }
 | 
						|
        if (excl) {
 | 
						|
            delta--;
 | 
						|
        }
 | 
						|
        if (delta < 0) {
 | 
						|
            return INT2FIX(0);
 | 
						|
        }
 | 
						|
        return ULONG2NUM(delta / diff + 1UL);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(from) || RB_FLOAT_TYPE_P(to) || RB_FLOAT_TYPE_P(step)) {
 | 
						|
        double n = ruby_float_step_size(NUM2DBL(from), NUM2DBL(to), NUM2DBL(step), excl);
 | 
						|
 | 
						|
        if (isinf(n)) return DBL2NUM(n);
 | 
						|
        if (POSFIXABLE(n)) return LONG2FIX((long)n);
 | 
						|
        return rb_dbl2big(n);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        VALUE result;
 | 
						|
        ID cmp = '>';
 | 
						|
        switch (rb_cmpint(rb_num_coerce_cmp(step, INT2FIX(0), id_cmp), step, INT2FIX(0))) {
 | 
						|
          case 0: return DBL2NUM(HUGE_VAL);
 | 
						|
          case -1: cmp = '<'; break;
 | 
						|
        }
 | 
						|
        if (RTEST(rb_funcall(from, cmp, 1, to))) return INT2FIX(0);
 | 
						|
        result = rb_funcall(rb_funcall(to, '-', 1, from), id_div, 1, step);
 | 
						|
        if (!excl || RTEST(rb_funcall(rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step)), cmp, 1, to))) {
 | 
						|
            result = rb_funcall(result, '+', 1, INT2FIX(1));
 | 
						|
        }
 | 
						|
        return result;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
num_step_negative_p(VALUE num)
 | 
						|
{
 | 
						|
    const ID mid = '<';
 | 
						|
    VALUE zero = INT2FIX(0);
 | 
						|
    VALUE r;
 | 
						|
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        if (method_basic_p(rb_cInteger))
 | 
						|
            return (SIGNED_VALUE)num < 0;
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        if (method_basic_p(rb_cInteger))
 | 
						|
            return BIGNUM_NEGATIVE_P(num);
 | 
						|
    }
 | 
						|
 | 
						|
    r = rb_check_funcall(num, '>', 1, &zero);
 | 
						|
    if (r == Qundef) {
 | 
						|
        coerce_failed(num, INT2FIX(0));
 | 
						|
    }
 | 
						|
    return !RTEST(r);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
num_step_extract_args(int argc, const VALUE *argv, VALUE *to, VALUE *step, VALUE *by)
 | 
						|
{
 | 
						|
    VALUE hash;
 | 
						|
 | 
						|
    argc = rb_scan_args(argc, argv, "02:", to, step, &hash);
 | 
						|
    if (!NIL_P(hash)) {
 | 
						|
        ID keys[2];
 | 
						|
        VALUE values[2];
 | 
						|
        keys[0] = id_to;
 | 
						|
        keys[1] = id_by;
 | 
						|
        rb_get_kwargs(hash, keys, 0, 2, values);
 | 
						|
        if (values[0] != Qundef) {
 | 
						|
            if (argc > 0) rb_raise(rb_eArgError, "to is given twice");
 | 
						|
            *to = values[0];
 | 
						|
        }
 | 
						|
        if (values[1] != Qundef) {
 | 
						|
            if (argc > 1) rb_raise(rb_eArgError, "step is given twice");
 | 
						|
            *by = values[1];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return argc;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
num_step_check_fix_args(int argc, VALUE *to, VALUE *step, VALUE by, int fix_nil, int allow_zero_step)
 | 
						|
{
 | 
						|
    int desc;
 | 
						|
    if (by != Qundef) {
 | 
						|
        *step = by;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* compatibility */
 | 
						|
        if (argc > 1 && NIL_P(*step)) {
 | 
						|
            rb_raise(rb_eTypeError, "step must be numeric");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (!allow_zero_step && rb_equal(*step, INT2FIX(0))) {
 | 
						|
        rb_raise(rb_eArgError, "step can't be 0");
 | 
						|
    }
 | 
						|
    if (NIL_P(*step)) {
 | 
						|
        *step = INT2FIX(1);
 | 
						|
    }
 | 
						|
    desc = num_step_negative_p(*step);
 | 
						|
    if (fix_nil && NIL_P(*to)) {
 | 
						|
        *to = desc ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
 | 
						|
    }
 | 
						|
    return desc;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
num_step_scan_args(int argc, const VALUE *argv, VALUE *to, VALUE *step, int fix_nil, int allow_zero_step)
 | 
						|
{
 | 
						|
    VALUE by = Qundef;
 | 
						|
    argc = num_step_extract_args(argc, argv, to, step, &by);
 | 
						|
    return num_step_check_fix_args(argc, to, step, by, fix_nil, allow_zero_step);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_step_size(VALUE from, VALUE args, VALUE eobj)
 | 
						|
{
 | 
						|
    VALUE to, step;
 | 
						|
    int argc = args ? RARRAY_LENINT(args) : 0;
 | 
						|
    const VALUE *argv = args ? RARRAY_CONST_PTR(args) : 0;
 | 
						|
 | 
						|
    num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
 | 
						|
 | 
						|
    return ruby_num_interval_step_size(from, to, step, FALSE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    step(to = nil, by = 1) {|n| ... } ->  self
 | 
						|
 *    step(to = nil, by = 1)            ->  enumerator
 | 
						|
 *    step(to = nil, by: 1) {|n| ... }  ->  self
 | 
						|
 *    step(to = nil, by: 1)             ->  enumerator
 | 
						|
 *    step(by: 1, to: ) {|n| ... }      ->  self
 | 
						|
 *    step(by: 1, to: )                 ->  enumerator
 | 
						|
 *    step(by: , to: nil) {|n| ... }    ->  self
 | 
						|
 *    step(by: , to: nil)               ->  enumerator
 | 
						|
 *
 | 
						|
 *  Generates a sequence of numbers; with a block given, traverses the sequence.
 | 
						|
 *
 | 
						|
 *  Of the Core and Standard Library classes,
 | 
						|
 *  Integer, Float, and Rational use this implementation.
 | 
						|
 *
 | 
						|
 *  A quick example:
 | 
						|
 *
 | 
						|
 *    squares = []
 | 
						|
 *    1.step(by: 2, to: 10) {|i| squares.push(i*i) }
 | 
						|
 *    squares # => [1, 9, 25, 49, 81]
 | 
						|
 *
 | 
						|
 *  The generated sequence:
 | 
						|
 *
 | 
						|
 *  - Begins with +self+.
 | 
						|
 *  - Continues at intervals of +step+ (which may not be zero).
 | 
						|
 *  - Ends with the last number that is within or equal to +limit+;
 | 
						|
 *    that is, less than or equal to +limit+ if +step+ is positive,
 | 
						|
 *    greater than or equal to +limit+ if +step+ is negative.
 | 
						|
 *    If +limit+ is not given, the sequence is of infinite length.
 | 
						|
 *
 | 
						|
 *  If a block is given, calls the block with each number in the sequence;
 | 
						|
 *  returns +self+.  If no block is given, returns an Enumerator::ArithmeticSequence.
 | 
						|
 *
 | 
						|
 *  <b>Keyword Arguments</b>
 | 
						|
 *
 | 
						|
 *  With keyword arguments +by+ and +to+,
 | 
						|
 *  their values (or defaults) determine the step and limit:
 | 
						|
 *
 | 
						|
 *    # Both keywords given.
 | 
						|
 *    squares = []
 | 
						|
 *    4.step(by: 2, to: 10) {|i| squares.push(i*i) }    # => 4
 | 
						|
 *    squares # => [16, 36, 64, 100]
 | 
						|
 *    cubes = []
 | 
						|
 *    3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
 | 
						|
 *    cubes   # => [27.0, 3.375, 0.0, -3.375, -27.0]
 | 
						|
 *    squares = []
 | 
						|
 *    1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
 | 
						|
 *    squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
 | 
						|
 *
 | 
						|
 *    squares = []
 | 
						|
 *    Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
 | 
						|
 *    squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
 | 
						|
 *
 | 
						|
 *    # Only keyword to given.
 | 
						|
 *    squares = []
 | 
						|
 *    4.step(to: 10) {|i| squares.push(i*i) }           # => 4
 | 
						|
 *    squares # => [16, 25, 36, 49, 64, 81, 100]
 | 
						|
 *    # Only by given.
 | 
						|
 *
 | 
						|
 *    # Only keyword by given
 | 
						|
 *    squares = []
 | 
						|
 *    4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
 | 
						|
 *    squares # => [16, 36, 64, 100, 144]
 | 
						|
 *
 | 
						|
 *    # No block given.
 | 
						|
 *    e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
 | 
						|
 *    e.class                      # => Enumerator::ArithmeticSequence
 | 
						|
 *
 | 
						|
 *  <b>Positional Arguments</b>
 | 
						|
 *
 | 
						|
 *  With optional positional arguments +limit+ and +step+,
 | 
						|
 *  their values (or defaults) determine the step and limit:
 | 
						|
 *
 | 
						|
 *    squares = []
 | 
						|
 *    4.step(10, 2) {|i| squares.push(i*i) }    # => 4
 | 
						|
 *    squares # => [16, 36, 64, 100]
 | 
						|
 *    squares = []
 | 
						|
 *    4.step(10) {|i| squares.push(i*i) }
 | 
						|
 *    squares # => [16, 25, 36, 49, 64, 81, 100]
 | 
						|
 *    squares = []
 | 
						|
 *    4.step {|i| squares.push(i*i); break if i > 10 }  # => nil
 | 
						|
 *    squares # => [16, 25, 36, 49, 64, 81, 100, 121]
 | 
						|
 *
 | 
						|
 * <b>Implementation Notes</b>
 | 
						|
 *
 | 
						|
 *  If all the arguments are integers, the loop operates using an integer
 | 
						|
 *  counter.
 | 
						|
 *
 | 
						|
 *  If any of the arguments are floating point numbers, all are converted
 | 
						|
 *  to floats, and the loop is executed
 | 
						|
 *  <i>floor(n + n*Float::EPSILON) + 1</i> times,
 | 
						|
 *  where <i>n = (limit - self)/step</i>.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_step(int argc, VALUE *argv, VALUE from)
 | 
						|
{
 | 
						|
    VALUE to, step;
 | 
						|
    int desc, inf;
 | 
						|
 | 
						|
    if (!rb_block_given_p()) {
 | 
						|
        VALUE by = Qundef;
 | 
						|
 | 
						|
        num_step_extract_args(argc, argv, &to, &step, &by);
 | 
						|
        if (by != Qundef) {
 | 
						|
            step = by;
 | 
						|
        }
 | 
						|
        if (NIL_P(step)) {
 | 
						|
            step = INT2FIX(1);
 | 
						|
        }
 | 
						|
        else if (rb_equal(step, INT2FIX(0))) {
 | 
						|
            rb_raise(rb_eArgError, "step can't be 0");
 | 
						|
        }
 | 
						|
        if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
 | 
						|
            rb_obj_is_kind_of(step, rb_cNumeric)) {
 | 
						|
            return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
 | 
						|
                                    num_step_size, from, to, step, FALSE);
 | 
						|
        }
 | 
						|
 | 
						|
        return SIZED_ENUMERATOR(from, 2, ((VALUE [2]){to, step}), num_step_size);
 | 
						|
    }
 | 
						|
 | 
						|
    desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
 | 
						|
    if (rb_equal(step, INT2FIX(0))) {
 | 
						|
        inf = 1;
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(to)) {
 | 
						|
        double f = RFLOAT_VALUE(to);
 | 
						|
        inf = isinf(f) && (signbit(f) ? desc : !desc);
 | 
						|
    }
 | 
						|
    else inf = 0;
 | 
						|
 | 
						|
    if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
 | 
						|
        long i = FIX2LONG(from);
 | 
						|
        long diff = FIX2LONG(step);
 | 
						|
 | 
						|
        if (inf) {
 | 
						|
            for (;; i += diff)
 | 
						|
                rb_yield(LONG2FIX(i));
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            long end = FIX2LONG(to);
 | 
						|
 | 
						|
            if (desc) {
 | 
						|
                for (; i >= end; i += diff)
 | 
						|
                    rb_yield(LONG2FIX(i));
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                for (; i <= end; i += diff)
 | 
						|
                    rb_yield(LONG2FIX(i));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
 | 
						|
        VALUE i = from;
 | 
						|
 | 
						|
        if (inf) {
 | 
						|
            for (;; i = rb_funcall(i, '+', 1, step))
 | 
						|
                rb_yield(i);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            ID cmp = desc ? '<' : '>';
 | 
						|
 | 
						|
            for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
 | 
						|
                rb_yield(i);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return from;
 | 
						|
}
 | 
						|
 | 
						|
static char *
 | 
						|
out_of_range_float(char (*pbuf)[24], VALUE val)
 | 
						|
{
 | 
						|
    char *const buf = *pbuf;
 | 
						|
    char *s;
 | 
						|
 | 
						|
    snprintf(buf, sizeof(*pbuf), "%-.10g", RFLOAT_VALUE(val));
 | 
						|
    if ((s = strchr(buf, ' ')) != 0) *s = '\0';
 | 
						|
    return buf;
 | 
						|
}
 | 
						|
 | 
						|
#define FLOAT_OUT_OF_RANGE(val, type) do { \
 | 
						|
    char buf[24]; \
 | 
						|
    rb_raise(rb_eRangeError, "float %s out of range of "type, \
 | 
						|
             out_of_range_float(&buf, (val))); \
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define LONG_MIN_MINUS_ONE ((double)LONG_MIN-1)
 | 
						|
#define LONG_MAX_PLUS_ONE (2*(double)(LONG_MAX/2+1))
 | 
						|
#define ULONG_MAX_PLUS_ONE (2*(double)(ULONG_MAX/2+1))
 | 
						|
#define LONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \
 | 
						|
  (LONG_MIN_MINUS_ONE == (double)LONG_MIN ? \
 | 
						|
   LONG_MIN <= (n): \
 | 
						|
   LONG_MIN_MINUS_ONE < (n))
 | 
						|
 | 
						|
long
 | 
						|
rb_num2long(VALUE val)
 | 
						|
{
 | 
						|
  again:
 | 
						|
    if (NIL_P(val)) {
 | 
						|
        rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
 | 
						|
    }
 | 
						|
 | 
						|
    if (FIXNUM_P(val)) return FIX2LONG(val);
 | 
						|
 | 
						|
    else if (RB_FLOAT_TYPE_P(val)) {
 | 
						|
        if (RFLOAT_VALUE(val) < LONG_MAX_PLUS_ONE
 | 
						|
            && LONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) {
 | 
						|
            return (long)RFLOAT_VALUE(val);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            FLOAT_OUT_OF_RANGE(val, "integer");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(val)) {
 | 
						|
        return rb_big2long(val);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        val = rb_to_int(val);
 | 
						|
        goto again;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
rb_num2ulong_internal(VALUE val, int *wrap_p)
 | 
						|
{
 | 
						|
  again:
 | 
						|
    if (NIL_P(val)) {
 | 
						|
       rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
 | 
						|
    }
 | 
						|
 | 
						|
    if (FIXNUM_P(val)) {
 | 
						|
        long l = FIX2LONG(val); /* this is FIX2LONG, intended */
 | 
						|
        if (wrap_p)
 | 
						|
            *wrap_p = l < 0;
 | 
						|
        return (unsigned long)l;
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(val)) {
 | 
						|
        double d = RFLOAT_VALUE(val);
 | 
						|
        if (d < ULONG_MAX_PLUS_ONE && LONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
 | 
						|
            if (wrap_p)
 | 
						|
                *wrap_p = d <= -1.0; /* NUM2ULONG(v) uses v.to_int conceptually.  */
 | 
						|
            if (0 <= d)
 | 
						|
                return (unsigned long)d;
 | 
						|
            return (unsigned long)(long)d;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            FLOAT_OUT_OF_RANGE(val, "integer");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(val)) {
 | 
						|
        {
 | 
						|
            unsigned long ul = rb_big2ulong(val);
 | 
						|
            if (wrap_p)
 | 
						|
                *wrap_p = BIGNUM_NEGATIVE_P(val);
 | 
						|
            return ul;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        val = rb_to_int(val);
 | 
						|
        goto again;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
rb_num2ulong(VALUE val)
 | 
						|
{
 | 
						|
    return rb_num2ulong_internal(val, NULL);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
rb_out_of_int(SIGNED_VALUE num)
 | 
						|
{
 | 
						|
    rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'",
 | 
						|
             num, num < 0 ? "small" : "big");
 | 
						|
}
 | 
						|
 | 
						|
#if SIZEOF_INT < SIZEOF_LONG
 | 
						|
static void
 | 
						|
check_int(long num)
 | 
						|
{
 | 
						|
    if ((long)(int)num != num) {
 | 
						|
        rb_out_of_int(num);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
check_uint(unsigned long num, int sign)
 | 
						|
{
 | 
						|
    if (sign) {
 | 
						|
        /* minus */
 | 
						|
        if (num < (unsigned long)INT_MIN)
 | 
						|
            rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned int'", (long)num);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* plus */
 | 
						|
        if (UINT_MAX < num)
 | 
						|
            rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned int'", num);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
long
 | 
						|
rb_num2int(VALUE val)
 | 
						|
{
 | 
						|
    long num = rb_num2long(val);
 | 
						|
 | 
						|
    check_int(num);
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
long
 | 
						|
rb_fix2int(VALUE val)
 | 
						|
{
 | 
						|
    long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
 | 
						|
 | 
						|
    check_int(num);
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
rb_num2uint(VALUE val)
 | 
						|
{
 | 
						|
    int wrap;
 | 
						|
    unsigned long num = rb_num2ulong_internal(val, &wrap);
 | 
						|
 | 
						|
    check_uint(num, wrap);
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
rb_fix2uint(VALUE val)
 | 
						|
{
 | 
						|
    unsigned long num;
 | 
						|
 | 
						|
    if (!FIXNUM_P(val)) {
 | 
						|
        return rb_num2uint(val);
 | 
						|
    }
 | 
						|
    num = FIX2ULONG(val);
 | 
						|
 | 
						|
    check_uint(num, FIXNUM_NEGATIVE_P(val));
 | 
						|
    return num;
 | 
						|
}
 | 
						|
#else
 | 
						|
long
 | 
						|
rb_num2int(VALUE val)
 | 
						|
{
 | 
						|
    return rb_num2long(val);
 | 
						|
}
 | 
						|
 | 
						|
long
 | 
						|
rb_fix2int(VALUE val)
 | 
						|
{
 | 
						|
    return FIX2INT(val);
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
rb_num2uint(VALUE val)
 | 
						|
{
 | 
						|
    return rb_num2ulong(val);
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
rb_fix2uint(VALUE val)
 | 
						|
{
 | 
						|
    return RB_FIX2ULONG(val);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
NORETURN(static void rb_out_of_short(SIGNED_VALUE num));
 | 
						|
static void
 | 
						|
rb_out_of_short(SIGNED_VALUE num)
 | 
						|
{
 | 
						|
    rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `short'",
 | 
						|
             num, num < 0 ? "small" : "big");
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
check_short(long num)
 | 
						|
{
 | 
						|
    if ((long)(short)num != num) {
 | 
						|
        rb_out_of_short(num);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
check_ushort(unsigned long num, int sign)
 | 
						|
{
 | 
						|
    if (sign) {
 | 
						|
        /* minus */
 | 
						|
        if (num < (unsigned long)SHRT_MIN)
 | 
						|
            rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned short'", (long)num);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* plus */
 | 
						|
        if (USHRT_MAX < num)
 | 
						|
            rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned short'", num);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
short
 | 
						|
rb_num2short(VALUE val)
 | 
						|
{
 | 
						|
    long num = rb_num2long(val);
 | 
						|
 | 
						|
    check_short(num);
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
short
 | 
						|
rb_fix2short(VALUE val)
 | 
						|
{
 | 
						|
    long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
 | 
						|
 | 
						|
    check_short(num);
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
unsigned short
 | 
						|
rb_num2ushort(VALUE val)
 | 
						|
{
 | 
						|
    int wrap;
 | 
						|
    unsigned long num = rb_num2ulong_internal(val, &wrap);
 | 
						|
 | 
						|
    check_ushort(num, wrap);
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
unsigned short
 | 
						|
rb_fix2ushort(VALUE val)
 | 
						|
{
 | 
						|
    unsigned long num;
 | 
						|
 | 
						|
    if (!FIXNUM_P(val)) {
 | 
						|
        return rb_num2ushort(val);
 | 
						|
    }
 | 
						|
    num = FIX2ULONG(val);
 | 
						|
 | 
						|
    check_ushort(num, FIXNUM_NEGATIVE_P(val));
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_num2fix(VALUE val)
 | 
						|
{
 | 
						|
    long v;
 | 
						|
 | 
						|
    if (FIXNUM_P(val)) return val;
 | 
						|
 | 
						|
    v = rb_num2long(val);
 | 
						|
    if (!FIXABLE(v))
 | 
						|
        rb_raise(rb_eRangeError, "integer %ld out of range of fixnum", v);
 | 
						|
    return LONG2FIX(v);
 | 
						|
}
 | 
						|
 | 
						|
#if HAVE_LONG_LONG
 | 
						|
 | 
						|
#define LLONG_MIN_MINUS_ONE ((double)LLONG_MIN-1)
 | 
						|
#define LLONG_MAX_PLUS_ONE (2*(double)(LLONG_MAX/2+1))
 | 
						|
#define ULLONG_MAX_PLUS_ONE (2*(double)(ULLONG_MAX/2+1))
 | 
						|
#ifndef ULLONG_MAX
 | 
						|
#define ULLONG_MAX ((unsigned LONG_LONG)LLONG_MAX*2+1)
 | 
						|
#endif
 | 
						|
#define LLONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \
 | 
						|
  (LLONG_MIN_MINUS_ONE == (double)LLONG_MIN ? \
 | 
						|
   LLONG_MIN <= (n): \
 | 
						|
   LLONG_MIN_MINUS_ONE < (n))
 | 
						|
 | 
						|
LONG_LONG
 | 
						|
rb_num2ll(VALUE val)
 | 
						|
{
 | 
						|
    if (NIL_P(val)) {
 | 
						|
        rb_raise(rb_eTypeError, "no implicit conversion from nil");
 | 
						|
    }
 | 
						|
 | 
						|
    if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val);
 | 
						|
 | 
						|
    else if (RB_FLOAT_TYPE_P(val)) {
 | 
						|
        double d = RFLOAT_VALUE(val);
 | 
						|
        if (d < LLONG_MAX_PLUS_ONE && (LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d))) {
 | 
						|
            return (LONG_LONG)d;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            FLOAT_OUT_OF_RANGE(val, "long long");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(val)) {
 | 
						|
        return rb_big2ll(val);
 | 
						|
    }
 | 
						|
    else if (RB_TYPE_P(val, T_STRING)) {
 | 
						|
        rb_raise(rb_eTypeError, "no implicit conversion from string");
 | 
						|
    }
 | 
						|
    else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
 | 
						|
        rb_raise(rb_eTypeError, "no implicit conversion from boolean");
 | 
						|
    }
 | 
						|
 | 
						|
    val = rb_to_int(val);
 | 
						|
    return NUM2LL(val);
 | 
						|
}
 | 
						|
 | 
						|
unsigned LONG_LONG
 | 
						|
rb_num2ull(VALUE val)
 | 
						|
{
 | 
						|
    if (NIL_P(val)) {
 | 
						|
        rb_raise(rb_eTypeError, "no implicit conversion from nil");
 | 
						|
    }
 | 
						|
    else if (FIXNUM_P(val)) {
 | 
						|
        return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, intended */
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(val)) {
 | 
						|
        double d = RFLOAT_VALUE(val);
 | 
						|
        if (d < ULLONG_MAX_PLUS_ONE && LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
 | 
						|
            if (0 <= d)
 | 
						|
                return (unsigned LONG_LONG)d;
 | 
						|
            return (unsigned LONG_LONG)(LONG_LONG)d;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            FLOAT_OUT_OF_RANGE(val, "unsigned long long");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(val)) {
 | 
						|
        return rb_big2ull(val);
 | 
						|
    }
 | 
						|
    else if (RB_TYPE_P(val, T_STRING)) {
 | 
						|
        rb_raise(rb_eTypeError, "no implicit conversion from string");
 | 
						|
    }
 | 
						|
    else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
 | 
						|
        rb_raise(rb_eTypeError, "no implicit conversion from boolean");
 | 
						|
    }
 | 
						|
 | 
						|
    val = rb_to_int(val);
 | 
						|
    return NUM2ULL(val);
 | 
						|
}
 | 
						|
 | 
						|
#endif  /* HAVE_LONG_LONG */
 | 
						|
 | 
						|
/********************************************************************
 | 
						|
 *
 | 
						|
 * Document-class: Integer
 | 
						|
 *
 | 
						|
 * An \Integer object represents an integer value.
 | 
						|
 *
 | 
						|
 * You can create an \Integer object explicitly with:
 | 
						|
 *
 | 
						|
 * - An {integer literal}[rdoc-ref:syntax/literals.rdoc@Integer+Literals].
 | 
						|
 *
 | 
						|
 * You can convert certain objects to Integers with:
 | 
						|
 *
 | 
						|
 * - \Method #Integer.
 | 
						|
 *
 | 
						|
 * An attempt to add a singleton method to an instance of this class
 | 
						|
 * causes an exception to be raised.
 | 
						|
 *
 | 
						|
 * == What's Here
 | 
						|
 *
 | 
						|
 * First, what's elsewhere. \Class \Integer:
 | 
						|
 *
 | 
						|
 * - Inherits from {class Numeric}[rdoc-ref:Numeric@What-27s+Here].
 | 
						|
 *
 | 
						|
 * Here, class \Integer provides methods for:
 | 
						|
 *
 | 
						|
 * - {Querying}[rdoc-ref:Integer@Querying]
 | 
						|
 * - {Comparing}[rdoc-ref:Integer@Comparing]
 | 
						|
 * - {Converting}[rdoc-ref:Integer@Converting]
 | 
						|
 * - {Other}[rdoc-ref:Integer@Other]
 | 
						|
 *
 | 
						|
 * === Querying
 | 
						|
 *
 | 
						|
 * - #allbits?: Returns whether all bits in +self+ are set.
 | 
						|
 * - #anybits?: Returns whether any bits in +self+ are set.
 | 
						|
 * - #nobits?: Returns whether no bits in +self+ are set.
 | 
						|
 *
 | 
						|
 * === Comparing
 | 
						|
 *
 | 
						|
 * - #<: Returns whether +self+ is less than the given value.
 | 
						|
 * - #<=: Returns whether +self+ is less than or equal to the given value.
 | 
						|
 * - #<=>: Returns a number indicating whether +self+ is less than, equal
 | 
						|
 *   to, or greater than the given value.
 | 
						|
 * - #== (aliased as #===): Returns whether +self+ is equal to the given
 | 
						|
 *                           value.
 | 
						|
 * - #>: Returns whether +self+ is greater than the given value.
 | 
						|
 * - #>=: Returns whether +self+ is greater than or equal to the given value.
 | 
						|
 *
 | 
						|
 * === Converting
 | 
						|
 *
 | 
						|
 * - ::sqrt: Returns the integer square root of the given value.
 | 
						|
 * - ::try_convert: Returns the given value converted to an \Integer.
 | 
						|
 * - #% (aliased as #modulo): Returns +self+ modulo the given value.
 | 
						|
 * - #&: Returns the bitwise AND of +self+ and the given value.
 | 
						|
 * - #*: Returns the product of +self+ and the given value.
 | 
						|
 * - #**: Returns the value of +self+ raised to the power of the given value.
 | 
						|
 * - #+: Returns the sum of +self+ and the given value.
 | 
						|
 * - #-: Returns the difference of +self+ and the given value.
 | 
						|
 * - #/: Returns the quotient of +self+ and the given value.
 | 
						|
 * - #<<: Returns the value of +self+ after a leftward bit-shift.
 | 
						|
 * - #>>: Returns the value of +self+ after a rightward bit-shift.
 | 
						|
 * - #[]: Returns a slice of bits from +self+.
 | 
						|
 * - #^: Returns the bitwise EXCLUSIVE OR of +self+ and the given value.
 | 
						|
 * - #ceil: Returns the smallest number greater than or equal to +self+.
 | 
						|
 * - #chr: Returns a 1-character string containing the character
 | 
						|
 *   represented by the value of +self+.
 | 
						|
 * - #digits: Returns an array of integers representing the base-radix digits
 | 
						|
 *   of +self+.
 | 
						|
 * - #div: Returns the integer result of dividing +self+ by the given value.
 | 
						|
 * - #divmod: Returns a 2-element array containing the quotient and remainder
 | 
						|
 *   results of dividing +self+ by the given value.
 | 
						|
 * - #fdiv: Returns the Float result of dividing +self+ by the given value.
 | 
						|
 * - #floor: Returns the greatest number smaller than or equal to +self+.
 | 
						|
 * - #pow: Returns the modular exponentiation of +self+.
 | 
						|
 * - #pred: Returns the integer predecessor of +self+.
 | 
						|
 * - #remainder: Returns the remainder after dividing +self+ by the given value.
 | 
						|
 * - #round: Returns +self+ rounded to the nearest value with the given precision.
 | 
						|
 * - #succ (aliased as #next): Returns the integer successor of +self+.
 | 
						|
 * - #to_f: Returns +self+ converted to a Float.
 | 
						|
 * - #to_s (aliased as #inspect): Returns a string containing the place-value
 | 
						|
 *   representation of +self+ in the given radix.
 | 
						|
 * - #truncate: Returns +self+ truncated to the given precision.
 | 
						|
 * - #|: Returns the bitwise OR of +self+ and the given value.
 | 
						|
 *
 | 
						|
 * === Other
 | 
						|
 *
 | 
						|
 * - #downto: Calls the given block with each integer value from +self+
 | 
						|
 *   down to the given value.
 | 
						|
 * - #times: Calls the given block +self+ times with each integer
 | 
						|
 *   in <tt>(0..self-1)</tt>.
 | 
						|
 * - #upto: Calls the given block with each integer value from +self+
 | 
						|
 *   up to the given value.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_odd_p(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        return RBOOL(num & 2);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        assert(RB_BIGNUM_TYPE_P(num));
 | 
						|
        return rb_big_odd_p(num);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_even_p(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        return RBOOL((num & 2) == 0);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        assert(RB_BIGNUM_TYPE_P(num));
 | 
						|
        return rb_big_even_p(num);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_even_p(VALUE num)
 | 
						|
{
 | 
						|
    return int_even_p(num);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    allbits?(mask) -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if all bits that are set (=1) in +mask+
 | 
						|
 *  are also set in +self+; returns +false+ otherwise.
 | 
						|
 *
 | 
						|
 *  Example values:
 | 
						|
 *
 | 
						|
 *    0b1010101  self
 | 
						|
 *    0b1010100  mask
 | 
						|
 *    0b1010100  self & mask
 | 
						|
 *         true  self.allbits?(mask)
 | 
						|
 *
 | 
						|
 *    0b1010100  self
 | 
						|
 *    0b1010101  mask
 | 
						|
 *    0b1010100  self & mask
 | 
						|
 *        false  self.allbits?(mask)
 | 
						|
 *
 | 
						|
 *  Related: Integer#anybits?, Integer#nobits?.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_allbits_p(VALUE num, VALUE mask)
 | 
						|
{
 | 
						|
    mask = rb_to_int(mask);
 | 
						|
    return rb_int_equal(rb_int_and(num, mask), mask);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    anybits?(mask) -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if any bit that is set (=1) in +mask+
 | 
						|
 *  is also set in +self+; returns +false+ otherwise.
 | 
						|
 *
 | 
						|
 *  Example values:
 | 
						|
 *
 | 
						|
 *    0b10000010  self
 | 
						|
 *    0b11111111  mask
 | 
						|
 *    0b10000010  self & mask
 | 
						|
 *          true  self.anybits?(mask)
 | 
						|
 *
 | 
						|
 *    0b00000000  self
 | 
						|
 *    0b11111111  mask
 | 
						|
 *    0b00000000  self & mask
 | 
						|
 *         false  self.anybits?(mask)
 | 
						|
 *
 | 
						|
 *  Related: Integer#allbits?, Integer#nobits?.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_anybits_p(VALUE num, VALUE mask)
 | 
						|
{
 | 
						|
    mask = rb_to_int(mask);
 | 
						|
    return RBOOL(!int_zero_p(rb_int_and(num, mask)));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    nobits?(mask) -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if no bit that is set (=1) in +mask+
 | 
						|
 *  is also set in +self+; returns +false+ otherwise.
 | 
						|
 *
 | 
						|
 *  Example values:
 | 
						|
 *
 | 
						|
 *    0b11110000  self
 | 
						|
 *    0b00001111  mask
 | 
						|
 *    0b00000000  self & mask
 | 
						|
 *          true  self.nobits?(mask)
 | 
						|
 *
 | 
						|
 *    0b00000001  self
 | 
						|
 *    0b11111111  mask
 | 
						|
 *    0b00000001  self & mask
 | 
						|
 *         false  self.nobits?(mask)
 | 
						|
 *
 | 
						|
 *  Related: Integer#allbits?, Integer#anybits?.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_nobits_p(VALUE num, VALUE mask)
 | 
						|
{
 | 
						|
    mask = rb_to_int(mask);
 | 
						|
    return RBOOL(int_zero_p(rb_int_and(num, mask)));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    succ -> next_integer
 | 
						|
 *
 | 
						|
 *  Returns the successor integer of +self+ (equivalent to <tt>self + 1</tt>):
 | 
						|
 *
 | 
						|
 *    1.succ  #=> 2
 | 
						|
 *    -1.succ #=> 0
 | 
						|
 *
 | 
						|
 *  Integer#next is an alias for Integer#succ.
 | 
						|
 *
 | 
						|
 *  Related: Integer#pred (predecessor value).
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_succ(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        long i = FIX2LONG(num) + 1;
 | 
						|
        return LONG2NUM(i);
 | 
						|
    }
 | 
						|
    if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        return rb_big_plus(num, INT2FIX(1));
 | 
						|
    }
 | 
						|
    return num_funcall1(num, '+', INT2FIX(1));
 | 
						|
}
 | 
						|
 | 
						|
#define int_succ rb_int_succ
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    pred -> next_integer
 | 
						|
 *
 | 
						|
 *  Returns the predecessor of +self+ (equivalent to <tt>self - 1</tt>):
 | 
						|
 *
 | 
						|
 *    1.pred  #=> 0
 | 
						|
 *    -1.pred #=> -2
 | 
						|
 *
 | 
						|
 *  Related: Integer#succ (successor value).
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_int_pred(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        long i = FIX2LONG(num) - 1;
 | 
						|
        return LONG2NUM(i);
 | 
						|
    }
 | 
						|
    if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        return rb_big_minus(num, INT2FIX(1));
 | 
						|
    }
 | 
						|
    return num_funcall1(num, '-', INT2FIX(1));
 | 
						|
}
 | 
						|
 | 
						|
#define int_pred rb_int_pred
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_enc_uint_chr(unsigned int code, rb_encoding *enc)
 | 
						|
{
 | 
						|
    int n;
 | 
						|
    VALUE str;
 | 
						|
    switch (n = rb_enc_codelen(code, enc)) {
 | 
						|
      case ONIGERR_INVALID_CODE_POINT_VALUE:
 | 
						|
        rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
 | 
						|
        break;
 | 
						|
      case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE:
 | 
						|
      case 0:
 | 
						|
        rb_raise(rb_eRangeError, "%u out of char range", code);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    str = rb_enc_str_new(0, n, enc);
 | 
						|
    rb_enc_mbcput(code, RSTRING_PTR(str), enc);
 | 
						|
    if (rb_enc_precise_mbclen(RSTRING_PTR(str), RSTRING_END(str), enc) != n) {
 | 
						|
        rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
 | 
						|
    }
 | 
						|
    return str;
 | 
						|
}
 | 
						|
 | 
						|
/*  call-seq:
 | 
						|
 *   chr           -> string
 | 
						|
 *   chr(encoding) -> string
 | 
						|
 *
 | 
						|
 *  Returns a 1-character string containing the character
 | 
						|
 *  represented by the value of +self+, according to the given +encoding+.
 | 
						|
 *
 | 
						|
 *    65.chr                   # => "A"
 | 
						|
 *    0.chr                    # => "\x00"
 | 
						|
 *    255.chr                  # => "\xFF"
 | 
						|
 *    string = 255.chr(Encoding::UTF_8)
 | 
						|
 *    string.encoding          # => Encoding::UTF_8
 | 
						|
 *
 | 
						|
 *  Raises an exception if +self+ is negative.
 | 
						|
 *
 | 
						|
 *  Related: Integer#ord.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_chr(int argc, VALUE *argv, VALUE num)
 | 
						|
{
 | 
						|
    char c;
 | 
						|
    unsigned int i;
 | 
						|
    rb_encoding *enc;
 | 
						|
 | 
						|
    if (rb_num_to_uint(num, &i) == 0) {
 | 
						|
    }
 | 
						|
    else if (FIXNUM_P(num)) {
 | 
						|
        rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        rb_raise(rb_eRangeError, "bignum out of char range");
 | 
						|
    }
 | 
						|
 | 
						|
    switch (argc) {
 | 
						|
      case 0:
 | 
						|
        if (0xff < i) {
 | 
						|
            enc = rb_default_internal_encoding();
 | 
						|
            if (!enc) {
 | 
						|
                rb_raise(rb_eRangeError, "%u out of char range", i);
 | 
						|
            }
 | 
						|
            goto decode;
 | 
						|
        }
 | 
						|
        c = (char)i;
 | 
						|
        if (i < 0x80) {
 | 
						|
            return rb_usascii_str_new(&c, 1);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            return rb_str_new(&c, 1);
 | 
						|
        }
 | 
						|
      case 1:
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        rb_error_arity(argc, 0, 1);
 | 
						|
    }
 | 
						|
    enc = rb_to_encoding(argv[0]);
 | 
						|
    if (!enc) enc = rb_ascii8bit_encoding();
 | 
						|
  decode:
 | 
						|
    return rb_enc_uint_chr(i, enc);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Fixnum
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_uminus(VALUE num)
 | 
						|
{
 | 
						|
    return LONG2NUM(-FIX2LONG(num));
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_uminus(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        return fix_uminus(num);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        assert(RB_BIGNUM_TYPE_P(num));
 | 
						|
        return rb_big_uminus(num);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_fix2str(VALUE x, int base)
 | 
						|
{
 | 
						|
    char buf[SIZEOF_VALUE*CHAR_BIT + 1], *const e = buf + sizeof buf, *b = e;
 | 
						|
    long val = FIX2LONG(x);
 | 
						|
    unsigned long u;
 | 
						|
    int neg = 0;
 | 
						|
 | 
						|
    if (base < 2 || 36 < base) {
 | 
						|
        rb_raise(rb_eArgError, "invalid radix %d", base);
 | 
						|
    }
 | 
						|
#if SIZEOF_LONG < SIZEOF_VOIDP
 | 
						|
# if SIZEOF_VOIDP == SIZEOF_LONG_LONG
 | 
						|
    if ((val >= 0 && (x & 0xFFFFFFFF00000000ull)) ||
 | 
						|
        (val < 0 && (x & 0xFFFFFFFF00000000ull) != 0xFFFFFFFF00000000ull)) {
 | 
						|
        rb_bug("Unnormalized Fixnum value %p", (void *)x);
 | 
						|
    }
 | 
						|
# else
 | 
						|
    /* should do something like above code, but currently ruby does not know */
 | 
						|
    /* such platforms */
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
    if (val == 0) {
 | 
						|
        return rb_usascii_str_new2("0");
 | 
						|
    }
 | 
						|
    if (val < 0) {
 | 
						|
        u = 1 + (unsigned long)(-(val + 1)); /* u = -val avoiding overflow */
 | 
						|
        neg = 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        u = val;
 | 
						|
    }
 | 
						|
    do {
 | 
						|
        *--b = ruby_digitmap[(int)(u % base)];
 | 
						|
    } while (u /= base);
 | 
						|
    if (neg) {
 | 
						|
        *--b = '-';
 | 
						|
    }
 | 
						|
 | 
						|
    return rb_usascii_str_new(b, e - b);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE rb_fix_to_s_static[10];
 | 
						|
 | 
						|
MJIT_FUNC_EXPORTED VALUE
 | 
						|
rb_fix_to_s(VALUE x)
 | 
						|
{
 | 
						|
    long i = FIX2LONG(x);
 | 
						|
    if (i >= 0 && i < 10) {
 | 
						|
        return rb_fix_to_s_static[i];
 | 
						|
    }
 | 
						|
    return rb_fix2str(x, 10);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    to_s(base = 10)  ->  string
 | 
						|
 *
 | 
						|
 *  Returns a string containing the place-value representation of +self+
 | 
						|
 *  in radix +base+ (in 2..36).
 | 
						|
 *
 | 
						|
 *    12345.to_s               # => "12345"
 | 
						|
 *    12345.to_s(2)            # => "11000000111001"
 | 
						|
 *    12345.to_s(8)            # => "30071"
 | 
						|
 *    12345.to_s(10)           # => "12345"
 | 
						|
 *    12345.to_s(16)           # => "3039"
 | 
						|
 *    12345.to_s(36)           # => "9ix"
 | 
						|
 *    78546939656932.to_s(36)  # => "rubyrules"
 | 
						|
 *
 | 
						|
 *  Raises an exception if +base+ is out of range.
 | 
						|
 *
 | 
						|
 *  Integer#inspect is an alias for Integer#to_s.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
MJIT_FUNC_EXPORTED VALUE
 | 
						|
rb_int_to_s(int argc, VALUE *argv, VALUE x)
 | 
						|
{
 | 
						|
    int base;
 | 
						|
 | 
						|
    if (rb_check_arity(argc, 0, 1))
 | 
						|
        base = NUM2INT(argv[0]);
 | 
						|
    else
 | 
						|
        base = 10;
 | 
						|
    return rb_int2str(x, base);
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int2str(VALUE x, int base)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return rb_fix2str(x, base);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big2str(x, base);
 | 
						|
    }
 | 
						|
 | 
						|
    return rb_any_to_s(x);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_plus(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        return rb_fix_plus_fix(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return rb_big_plus(y, x);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y));
 | 
						|
    }
 | 
						|
    else if (RB_TYPE_P(y, T_COMPLEX)) {
 | 
						|
        return rb_complex_plus(y, x);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, '+');
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_fix_plus(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    return fix_plus(x, y);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self + numeric -> numeric_result
 | 
						|
 *
 | 
						|
 *  Performs addition:
 | 
						|
 *
 | 
						|
 *    2 + 2              # => 4
 | 
						|
 *    -2 + 2             # => 0
 | 
						|
 *    -2 + -2            # => -4
 | 
						|
 *    2 + 2.0            # => 4.0
 | 
						|
 *    2 + Rational(2, 1) # => (4/1)
 | 
						|
 *    2 + Complex(2, 0)  # => (4+0i)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_plus(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_plus(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_plus(x, y);
 | 
						|
    }
 | 
						|
    return rb_num_coerce_bin(x, y, '+');
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_minus(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        return rb_fix_minus_fix(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        x = rb_int2big(FIX2LONG(x));
 | 
						|
        return rb_big_minus(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, '-');
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self - numeric -> numeric_result
 | 
						|
 *
 | 
						|
 *  Performs subtraction:
 | 
						|
 *
 | 
						|
 *    4 - 2              # => 2
 | 
						|
 *    -4 - 2             # => -6
 | 
						|
 *    -4 - -2            # => -2
 | 
						|
 *    4 - 2.0            # => 2.0
 | 
						|
 *    4 - Rational(2, 1) # => (2/1)
 | 
						|
 *    4 - Complex(2, 0)  # => (2+0i)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_minus(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_minus(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_minus(x, y);
 | 
						|
    }
 | 
						|
    return rb_num_coerce_bin(x, y, '-');
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define SQRT_LONG_MAX HALF_LONG_MSB
 | 
						|
/*tests if N*N would overflow*/
 | 
						|
#define FIT_SQRT_LONG(n) (((n)<SQRT_LONG_MAX)&&((n)>=-SQRT_LONG_MAX))
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_mul(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        return rb_fix_mul_fix(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        switch (x) {
 | 
						|
          case INT2FIX(0): return x;
 | 
						|
          case INT2FIX(1): return y;
 | 
						|
        }
 | 
						|
        return rb_big_mul(y, x);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y));
 | 
						|
    }
 | 
						|
    else if (RB_TYPE_P(y, T_COMPLEX)) {
 | 
						|
        return rb_complex_mul(y, x);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, '*');
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self * numeric -> numeric_result
 | 
						|
 *
 | 
						|
 *  Performs multiplication:
 | 
						|
 *
 | 
						|
 *    4 * 2              # => 8
 | 
						|
 *    4 * -2             # => -8
 | 
						|
 *    -4 * 2             # => -8
 | 
						|
 *    4 * 2.0            # => 8.0
 | 
						|
 *    4 * Rational(1, 3) # => (4/3)
 | 
						|
 *    4 * Complex(2, 0)  # => (8+0i)
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_mul(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_mul(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_mul(x, y);
 | 
						|
    }
 | 
						|
    return rb_num_coerce_bin(x, y, '*');
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
fix_fdiv_double(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        return double_div_double(FIX2LONG(x), FIX2LONG(y));
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return rb_big_fdiv_double(rb_int2big(FIX2LONG(x)), y);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return double_div_double(FIX2LONG(x), RFLOAT_VALUE(y));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return NUM2DBL(rb_num_coerce_bin(x, y, idFdiv));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
rb_int_fdiv_double(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (RB_INTEGER_TYPE_P(y) && !FIXNUM_ZERO_P(y)) {
 | 
						|
        VALUE gcd = rb_gcd(x, y);
 | 
						|
        if (!FIXNUM_ZERO_P(gcd)) {
 | 
						|
            x = rb_int_idiv(x, gcd);
 | 
						|
            y = rb_int_idiv(y, gcd);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_fdiv_double(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_fdiv_double(x, y);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return nan("");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    fdiv(numeric) -> float
 | 
						|
 *
 | 
						|
 *  Returns the Float result of dividing +self+ by +numeric+:
 | 
						|
 *
 | 
						|
 *    4.fdiv(2)      # => 2.0
 | 
						|
 *    4.fdiv(-2)      # => -2.0
 | 
						|
 *    -4.fdiv(2)      # => -2.0
 | 
						|
 *    4.fdiv(2.0)      # => 2.0
 | 
						|
 *    4.fdiv(Rational(3, 4))      # => 5.333333333333333
 | 
						|
 *
 | 
						|
 *  Raises an exception if +numeric+ cannot be converted to a Float.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_fdiv(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (RB_INTEGER_TYPE_P(x)) {
 | 
						|
        return DBL2NUM(rb_int_fdiv_double(x, y));
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_divide(VALUE x, VALUE y, ID op)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
 | 
						|
        return rb_fix_div_fix(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        x = rb_int2big(FIX2LONG(x));
 | 
						|
        return rb_big_div(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
            if (op == '/') {
 | 
						|
                double d = FIX2LONG(x);
 | 
						|
                return rb_flo_div_flo(DBL2NUM(d), y);
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                VALUE v;
 | 
						|
                if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv();
 | 
						|
                v = fix_divide(x, y, '/');
 | 
						|
                return flo_floor(0, 0, v);
 | 
						|
            }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (RB_TYPE_P(y, T_RATIONAL) &&
 | 
						|
            op == '/' && FIX2LONG(x) == 1)
 | 
						|
            return rb_rational_reciprocal(y);
 | 
						|
        return rb_num_coerce_bin(x, y, op);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_div(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    return fix_divide(x, y, '/');
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *   self / numeric -> numeric_result
 | 
						|
 *
 | 
						|
 * Performs division; for integer +numeric+, truncates the result to an integer:
 | 
						|
 *
 | 
						|
 *   4 / 3              # => 1
 | 
						|
 *   4 / -3             # => -2
 | 
						|
 *   -4 / 3             # => -2
 | 
						|
 *   -4 / -3            # => 1
 | 
						|
 *
 | 
						|
 *  For other +numeric+, returns non-integer result:
 | 
						|
 *
 | 
						|
 *   4 / 3.0            # => 1.3333333333333333
 | 
						|
 *   4 / Rational(3, 1) # => (4/3)
 | 
						|
 *   4 / Complex(3, 0)  # => ((4/3)+0i)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_div(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_div(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_div(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_idiv(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    return fix_divide(x, y, id_div);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    div(numeric)  -> integer
 | 
						|
 *
 | 
						|
 * Performs integer division; returns the integer result of dividing +self+
 | 
						|
 * by +numeric+:
 | 
						|
 *
 | 
						|
 *    4.div(3)      # => 1
 | 
						|
 *    4.div(-3)      # => -2
 | 
						|
 *    -4.div(3)      # => -2
 | 
						|
 *    -4.div(-3)      # => 1
 | 
						|
 *    4.div(3.0)      # => 1
 | 
						|
 *    4.div(Rational(3, 1))      # => 1
 | 
						|
 *
 | 
						|
 *  Raises an exception if +numeric+ does not have method +div+.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_idiv(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_idiv(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_idiv(x, y);
 | 
						|
    }
 | 
						|
    return num_div(x, y);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_mod(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
 | 
						|
        return rb_fix_mod_fix(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        x = rb_int2big(FIX2LONG(x));
 | 
						|
        return rb_big_modulo(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y)));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, '%');
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self % other -> real_number
 | 
						|
 *
 | 
						|
 *  Returns +self+ modulo +other+ as a real number.
 | 
						|
 *
 | 
						|
 *  For integer +n+ and real number +r+, these expressions are equivalent:
 | 
						|
 *
 | 
						|
 *    n % r
 | 
						|
 *    n-r*(n/r).floor
 | 
						|
 *    n.divmod(r)[1]
 | 
						|
 *
 | 
						|
 *  See Numeric#divmod.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    10 % 2              # => 0
 | 
						|
 *    10 % 3              # => 1
 | 
						|
 *    10 % 4              # => 2
 | 
						|
 *
 | 
						|
 *    10 % -2             # => 0
 | 
						|
 *    10 % -3             # => -2
 | 
						|
 *    10 % -4             # => -2
 | 
						|
 *
 | 
						|
 *    10 % 3.0            # => 1.0
 | 
						|
 *    10 % Rational(3, 1) # => (1/1)
 | 
						|
 *
 | 
						|
 *  Integer#modulo is an alias for Integer#%.
 | 
						|
 *
 | 
						|
 */
 | 
						|
VALUE
 | 
						|
rb_int_modulo(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_mod(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_modulo(x, y);
 | 
						|
    }
 | 
						|
    return num_modulo(x, y);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    remainder(other) -> real_number
 | 
						|
 *
 | 
						|
 *  Returns the remainder after dividing +self+ by +other+.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    11.remainder(4)              # => 3
 | 
						|
 *    11.remainder(-4)             # => 3
 | 
						|
 *    -11.remainder(4)             # => -3
 | 
						|
 *    -11.remainder(-4)            # => -3
 | 
						|
 *
 | 
						|
 *    12.remainder(4)              # => 0
 | 
						|
 *    12.remainder(-4)             # => 0
 | 
						|
 *    -12.remainder(4)             # => 0
 | 
						|
 *    -12.remainder(-4)            # => 0
 | 
						|
 *
 | 
						|
 *    13.remainder(4.0)            # => 1.0
 | 
						|
 *    13.remainder(Rational(4, 1)) # => (1/1)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_remainder(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return num_remainder(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_remainder(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_divmod(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        VALUE div, mod;
 | 
						|
        if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
 | 
						|
        rb_fix_divmod_fix(x, y, &div, &mod);
 | 
						|
        return rb_assoc_new(div, mod);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        x = rb_int2big(FIX2LONG(x));
 | 
						|
        return rb_big_divmod(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        {
 | 
						|
            double div, mod;
 | 
						|
            volatile VALUE a, b;
 | 
						|
 | 
						|
            flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod);
 | 
						|
            a = dbl2ival(div);
 | 
						|
            b = DBL2NUM(mod);
 | 
						|
            return rb_assoc_new(a, b);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, id_divmod);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    divmod(other) -> array
 | 
						|
 *
 | 
						|
 *  Returns a 2-element array <tt>[q, r]</tt>, where
 | 
						|
 *
 | 
						|
 *    q = (self/other).floor    # Quotient
 | 
						|
 *    r = self % other          # Remainder
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    11.divmod(4)              # => [2, 3]
 | 
						|
 *    11.divmod(-4)             # => [-3, -1]
 | 
						|
 *    -11.divmod(4)             # => [-3, 1]
 | 
						|
 *    -11.divmod(-4)            # => [2, -3]
 | 
						|
 *
 | 
						|
 *    12.divmod(4)              # => [3, 0]
 | 
						|
 *    12.divmod(-4)             # => [-3, 0]
 | 
						|
 *    -12.divmod(4)             # => [-3, 0]
 | 
						|
 *    -12.divmod(-4)            # => [3, 0]
 | 
						|
 *
 | 
						|
 *    13.divmod(4.0)            # => [3, 1.0]
 | 
						|
 *    13.divmod(Rational(4, 1)) # => [3, (1/1)]
 | 
						|
 *
 | 
						|
 */
 | 
						|
VALUE
 | 
						|
rb_int_divmod(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_divmod(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_divmod(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self ** numeric -> numeric_result
 | 
						|
 *
 | 
						|
 *  Raises +self+ to the power of +numeric+:
 | 
						|
 *
 | 
						|
 *    2 ** 3              # => 8
 | 
						|
 *    2 ** -3             # => (1/8)
 | 
						|
 *    -2 ** 3             # => -8
 | 
						|
 *    -2 ** -3            # => (-1/8)
 | 
						|
 *    2 ** 3.3            # => 9.849155306759329
 | 
						|
 *    2 ** Rational(3, 1) # => (8/1)
 | 
						|
 *    2 ** Complex(3, 0)  # => (8+0i)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_pow(long x, unsigned long y)
 | 
						|
{
 | 
						|
    int neg = x < 0;
 | 
						|
    long z = 1;
 | 
						|
 | 
						|
    if (y == 0) return INT2FIX(1);
 | 
						|
    if (y == 1) return LONG2NUM(x);
 | 
						|
    if (neg) x = -x;
 | 
						|
    if (y & 1)
 | 
						|
        z = x;
 | 
						|
    else
 | 
						|
        neg = 0;
 | 
						|
    y &= ~1;
 | 
						|
    do {
 | 
						|
        while (y % 2 == 0) {
 | 
						|
            if (!FIT_SQRT_LONG(x)) {
 | 
						|
                goto bignum;
 | 
						|
            }
 | 
						|
            x = x * x;
 | 
						|
            y >>= 1;
 | 
						|
        }
 | 
						|
        {
 | 
						|
            if (MUL_OVERFLOW_FIXNUM_P(x, z)) {
 | 
						|
                goto bignum;
 | 
						|
            }
 | 
						|
            z = x * z;
 | 
						|
        }
 | 
						|
    } while (--y);
 | 
						|
    if (neg) z = -z;
 | 
						|
    return LONG2NUM(z);
 | 
						|
 | 
						|
    VALUE v;
 | 
						|
  bignum:
 | 
						|
    v = rb_big_pow(rb_int2big(x), LONG2NUM(y));
 | 
						|
    if (RB_FLOAT_TYPE_P(v)) /* infinity due to overflow */
 | 
						|
        return v;
 | 
						|
    if (z != 1) v = rb_big_mul(rb_int2big(neg ? -z : z), v);
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_positive_pow(long x, unsigned long y)
 | 
						|
{
 | 
						|
    return int_pow(x, y);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_pow_inverted(VALUE x, VALUE minusb)
 | 
						|
{
 | 
						|
    if (x == INT2FIX(0)) {
 | 
						|
        rb_num_zerodiv();
 | 
						|
        UNREACHABLE_RETURN(Qundef);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        VALUE y = rb_int_pow(x, minusb);
 | 
						|
 | 
						|
        if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
            double d = pow((double)FIX2LONG(x), RFLOAT_VALUE(y));
 | 
						|
            return DBL2NUM(1.0 / d);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            return rb_rational_raw(INT2FIX(1), y);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_pow(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    long a = FIX2LONG(x);
 | 
						|
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        long b = FIX2LONG(y);
 | 
						|
 | 
						|
        if (a == 1) return INT2FIX(1);
 | 
						|
        if (a == -1) return INT2FIX(b % 2 ? -1 : 1);
 | 
						|
        if (b <  0) return fix_pow_inverted(x, fix_uminus(y));
 | 
						|
        if (b == 0) return INT2FIX(1);
 | 
						|
        if (b == 1) return x;
 | 
						|
        if (a == 0) return INT2FIX(0);
 | 
						|
        return int_pow(a, b);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        if (a == 1) return INT2FIX(1);
 | 
						|
        if (a == -1) return INT2FIX(int_even_p(y) ? 1 : -1);
 | 
						|
        if (BIGNUM_NEGATIVE_P(y)) return fix_pow_inverted(x, rb_big_uminus(y));
 | 
						|
        if (a == 0) return INT2FIX(0);
 | 
						|
        x = rb_int2big(FIX2LONG(x));
 | 
						|
        return rb_big_pow(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        double dy = RFLOAT_VALUE(y);
 | 
						|
        if (dy == 0.0) return DBL2NUM(1.0);
 | 
						|
        if (a == 0) {
 | 
						|
            return DBL2NUM(dy < 0 ? HUGE_VAL : 0.0);
 | 
						|
        }
 | 
						|
        if (a == 1) return DBL2NUM(1.0);
 | 
						|
        if (a < 0 && dy != round(dy))
 | 
						|
            return rb_dbl_complex_new_polar_pi(pow(-(double)a, dy), dy);
 | 
						|
        return DBL2NUM(pow((double)a, dy));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_bin(x, y, idPow);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self ** numeric -> numeric_result
 | 
						|
 *
 | 
						|
 *  Raises +self+ to the power of +numeric+:
 | 
						|
 *
 | 
						|
 *    2 ** 3              # => 8
 | 
						|
 *    2 ** -3             # => (1/8)
 | 
						|
 *    -2 ** 3             # => -8
 | 
						|
 *    -2 ** -3            # => (-1/8)
 | 
						|
 *    2 ** 3.3            # => 9.849155306759329
 | 
						|
 *    2 ** Rational(3, 1) # => (8/1)
 | 
						|
 *    2 ** Complex(3, 0)  # => (8+0i)
 | 
						|
 *
 | 
						|
 */
 | 
						|
VALUE
 | 
						|
rb_int_pow(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_pow(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_pow(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_num_pow(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    VALUE z = rb_int_pow(x, y);
 | 
						|
    if (!NIL_P(z)) return z;
 | 
						|
    if (RB_FLOAT_TYPE_P(x)) return rb_float_pow(x, y);
 | 
						|
    if (SPECIAL_CONST_P(x)) return Qnil;
 | 
						|
    switch (BUILTIN_TYPE(x)) {
 | 
						|
      case T_COMPLEX:
 | 
						|
        return rb_complex_pow(x, y);
 | 
						|
      case T_RATIONAL:
 | 
						|
        return rb_rational_pow(x, y);
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_equal(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (x == y) return Qtrue;
 | 
						|
    if (FIXNUM_P(y)) return Qfalse;
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return rb_big_eq(y, x);
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return rb_integer_float_eq(x, y);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return num_equal(x, y);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self == other -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if +self+ is numerically equal to +other+; +false+ otherwise.
 | 
						|
 *
 | 
						|
 *    1 == 2     #=> false
 | 
						|
 *    1 == 1.0   #=> true
 | 
						|
 *
 | 
						|
 *  Related: Integer#eql? (requires +other+ to be an \Integer).
 | 
						|
 *
 | 
						|
 *  Integer#=== is an alias for Integer#==.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_equal(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_equal(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_eq(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_cmp(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (x == y) return INT2FIX(0);
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
 | 
						|
        return INT2FIX(-1);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        VALUE cmp = rb_big_cmp(y, x);
 | 
						|
        switch (cmp) {
 | 
						|
          case INT2FIX(+1): return INT2FIX(-1);
 | 
						|
          case INT2FIX(-1): return INT2FIX(+1);
 | 
						|
        }
 | 
						|
        return cmp;
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return rb_integer_float_cmp(x, y);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_cmp(x, y, id_cmp);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self <=> other  ->  -1, 0, +1, or nil
 | 
						|
 *
 | 
						|
 *  Returns:
 | 
						|
 *
 | 
						|
 *  - -1, if +self+ is less than +other+.
 | 
						|
 *  - 0, if +self+ is equal to +other+.
 | 
						|
 *  - 1, if +self+ is greater then +other+.
 | 
						|
 *  - +nil+, if +self+ and +other+ are incomparable.
 | 
						|
 *
 | 
						|
 *  Examples:
 | 
						|
 *
 | 
						|
 *    1 <=> 2              # => -1
 | 
						|
 *    1 <=> 1              # => 0
 | 
						|
 *    1 <=> 0              # => 1
 | 
						|
 *    1 <=> 'foo'          # => nil
 | 
						|
 *
 | 
						|
 *    1 <=> 1.0            # => 0
 | 
						|
 *    1 <=> Rational(1, 1) # => 0
 | 
						|
 *    1 <=> Complex(1, 0)  # => 0
 | 
						|
 *
 | 
						|
 *  This method is the basis for comparisons in module Comparable.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_cmp(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_cmp(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_cmp(x, y);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_gt(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        return RBOOL(FIX2LONG(x) > FIX2LONG(y));
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return RBOOL(rb_big_cmp(y, x) == INT2FIX(-1));
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return RBOOL(rb_integer_float_cmp(x, y) == INT2FIX(1));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_relop(x, y, '>');
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self > other -> true or false
 | 
						|
 *
 | 
						|
 * Returns +true+ if the value of +self+ is greater than that of +other+:
 | 
						|
 *
 | 
						|
 *    1 > 0              # => true
 | 
						|
 *    1 > 1              # => false
 | 
						|
 *    1 > 2              # => false
 | 
						|
 *    1 > 0.5            # => true
 | 
						|
 *    1 > Rational(1, 2) # => true
 | 
						|
 *
 | 
						|
 *  Raises an exception if the comparison cannot be made.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_gt(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_gt(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_gt(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_ge(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        return RBOOL(FIX2LONG(x) >= FIX2LONG(y));
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return RBOOL(rb_big_cmp(y, x) != INT2FIX(+1));
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        VALUE rel = rb_integer_float_cmp(x, y);
 | 
						|
        return RBOOL(rel == INT2FIX(1) || rel == INT2FIX(0));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_relop(x, y, idGE);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self >= real -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if the value of +self+ is greater than or equal to
 | 
						|
 *  that of +other+:
 | 
						|
 *
 | 
						|
 *    1 >= 0              # => true
 | 
						|
 *    1 >= 1              # => true
 | 
						|
 *    1 >= 2              # => false
 | 
						|
 *    1 >= 0.5            # => true
 | 
						|
 *    1 >= Rational(1, 2) # => true
 | 
						|
 *
 | 
						|
 *  Raises an exception if the comparison cannot be made.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_ge(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_ge(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_ge(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_lt(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        return RBOOL(FIX2LONG(x) < FIX2LONG(y));
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return RBOOL(rb_big_cmp(y, x) == INT2FIX(+1));
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        return RBOOL(rb_integer_float_cmp(x, y) == INT2FIX(-1));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_relop(x, y, '<');
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *    self < other -> true or false
 | 
						|
 *
 | 
						|
 * Returns +true+ if the value of +self+ is less than that of +other+:
 | 
						|
 *
 | 
						|
 *    1 < 0              # => false
 | 
						|
 *    1 < 1              # => false
 | 
						|
 *    1 < 2              # => true
 | 
						|
 *    1 < 0.5            # => false
 | 
						|
 *    1 < Rational(1, 2) # => false
 | 
						|
 *
 | 
						|
 *  Raises an exception if the comparison cannot be made.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_lt(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_lt(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_lt(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_le(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        return RBOOL(FIX2LONG(x) <= FIX2LONG(y));
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return RBOOL(rb_big_cmp(y, x) != INT2FIX(-1));
 | 
						|
    }
 | 
						|
    else if (RB_FLOAT_TYPE_P(y)) {
 | 
						|
        VALUE rel = rb_integer_float_cmp(x, y);
 | 
						|
        return RBOOL(rel == INT2FIX(-1) || rel == INT2FIX(0));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return rb_num_coerce_relop(x, y, idLE);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * call-seq:
 | 
						|
 *    self <= real -> true or false
 | 
						|
 *
 | 
						|
 *  Returns +true+ if the value of +self+ is less than or equal to
 | 
						|
 *  that of +other+:
 | 
						|
 *
 | 
						|
 *    1 <= 0              # => false
 | 
						|
 *    1 <= 1              # => true
 | 
						|
 *    1 <= 2              # => true
 | 
						|
 *    1 <= 0.5            # => false
 | 
						|
 *    1 <= Rational(1, 2) # => false
 | 
						|
 *
 | 
						|
 *  Raises an exception if the comparison cannot be made.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_le(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_le(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_le(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_comp(VALUE num)
 | 
						|
{
 | 
						|
    return ~num | FIXNUM_FLAG;
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_comp(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        return fix_comp(num);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        return rb_big_comp(num);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
num_funcall_bit_1(VALUE y, VALUE arg, int recursive)
 | 
						|
{
 | 
						|
    ID func = (ID)((VALUE *)arg)[0];
 | 
						|
    VALUE x = ((VALUE *)arg)[1];
 | 
						|
    if (recursive) {
 | 
						|
        num_funcall_op_1_recursion(x, func, y);
 | 
						|
    }
 | 
						|
    return rb_check_funcall(x, func, 1, &y);
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_num_coerce_bit(VALUE x, VALUE y, ID func)
 | 
						|
{
 | 
						|
    VALUE ret, args[3];
 | 
						|
 | 
						|
    args[0] = (VALUE)func;
 | 
						|
    args[1] = x;
 | 
						|
    args[2] = y;
 | 
						|
    do_coerce(&args[1], &args[2], TRUE);
 | 
						|
    ret = rb_exec_recursive_paired(num_funcall_bit_1,
 | 
						|
                                   args[2], args[1], (VALUE)args);
 | 
						|
    if (ret == Qundef) {
 | 
						|
        /* show the original object, not coerced object */
 | 
						|
        coerce_failed(x, y);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_and(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        long val = FIX2LONG(x) & FIX2LONG(y);
 | 
						|
        return LONG2NUM(val);
 | 
						|
    }
 | 
						|
 | 
						|
    if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return rb_big_and(y, x);
 | 
						|
    }
 | 
						|
 | 
						|
    return rb_num_coerce_bit(x, y, '&');
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self & other ->  integer
 | 
						|
 *
 | 
						|
 *  Bitwise AND; each bit in the result is 1 if both corresponding bits
 | 
						|
 *  in +self+ and +other+ are 1, 0 otherwise:
 | 
						|
 *
 | 
						|
 *    "%04b" % (0b0101 & 0b0110) # => "0100"
 | 
						|
 *
 | 
						|
 *  Raises an exception if +other+ is not an \Integer.
 | 
						|
 *
 | 
						|
 *  Related: Integer#| (bitwise OR), Integer#^ (bitwise EXCLUSIVE OR).
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_and(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_and(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_and(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_or(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        long val = FIX2LONG(x) | FIX2LONG(y);
 | 
						|
        return LONG2NUM(val);
 | 
						|
    }
 | 
						|
 | 
						|
    if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return rb_big_or(y, x);
 | 
						|
    }
 | 
						|
 | 
						|
    return rb_num_coerce_bit(x, y, '|');
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *   self | other -> integer
 | 
						|
 *
 | 
						|
 *  Bitwise OR; each bit in the result is 1 if either corresponding bit
 | 
						|
 *  in +self+ or +other+ is 1, 0 otherwise:
 | 
						|
 *
 | 
						|
 *    "%04b" % (0b0101 | 0b0110) # => "0111"
 | 
						|
 *
 | 
						|
 *  Raises an exception if +other+ is not an \Integer.
 | 
						|
 *
 | 
						|
 *  Related: Integer#& (bitwise AND), Integer#^ (bitwise EXCLUSIVE OR).
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_or(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_or(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_or(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_xor(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(y)) {
 | 
						|
        long val = FIX2LONG(x) ^ FIX2LONG(y);
 | 
						|
        return LONG2NUM(val);
 | 
						|
    }
 | 
						|
 | 
						|
    if (RB_BIGNUM_TYPE_P(y)) {
 | 
						|
        return rb_big_xor(y, x);
 | 
						|
    }
 | 
						|
 | 
						|
    return rb_num_coerce_bit(x, y, '^');
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self ^ other -> integer
 | 
						|
 *
 | 
						|
 *  Bitwise EXCLUSIVE OR; each bit in the result is 1 if the corresponding bits
 | 
						|
 *  in +self+ and +other+ are different, 0 otherwise:
 | 
						|
 *
 | 
						|
 *    "%04b" % (0b0101 ^ 0b0110) # => "0011"
 | 
						|
 *
 | 
						|
 *  Raises an exception if +other+ is not an \Integer.
 | 
						|
 *
 | 
						|
 *  Related: Integer#& (bitwise AND), Integer#| (bitwise OR).
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_xor(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return fix_xor(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_xor(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_fix_lshift(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    long val, width;
 | 
						|
 | 
						|
    val = NUM2LONG(x);
 | 
						|
    if (!val) return (rb_to_int(y), INT2FIX(0));
 | 
						|
    if (!FIXNUM_P(y))
 | 
						|
        return rb_big_lshift(rb_int2big(val), y);
 | 
						|
    width = FIX2LONG(y);
 | 
						|
    if (width < 0)
 | 
						|
        return fix_rshift(val, (unsigned long)-width);
 | 
						|
    return fix_lshift(val, width);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_lshift(long val, unsigned long width)
 | 
						|
{
 | 
						|
    if (width > (SIZEOF_LONG*CHAR_BIT-1)
 | 
						|
        || ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) {
 | 
						|
        return rb_big_lshift(rb_int2big(val), ULONG2NUM(width));
 | 
						|
    }
 | 
						|
    val = val << width;
 | 
						|
    return LONG2NUM(val);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self << count -> integer
 | 
						|
 *
 | 
						|
 *  Returns +self+ with bits shifted +count+ positions to the left,
 | 
						|
 *  or to the right if +count+ is negative:
 | 
						|
 *
 | 
						|
 *    n = 0b11110000
 | 
						|
 *    "%08b" % (n << 1)  # => "111100000"
 | 
						|
 *    "%08b" % (n << 3)  # => "11110000000"
 | 
						|
 *    "%08b" % (n << -1) # => "01111000"
 | 
						|
 *    "%08b" % (n << -3) # => "00011110"
 | 
						|
 *
 | 
						|
 *  Related: Integer#>>.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_lshift(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return rb_fix_lshift(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_lshift(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_fix_rshift(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    long i, val;
 | 
						|
 | 
						|
    val = FIX2LONG(x);
 | 
						|
    if (!val) return (rb_to_int(y), INT2FIX(0));
 | 
						|
    if (!FIXNUM_P(y))
 | 
						|
        return rb_big_rshift(rb_int2big(val), y);
 | 
						|
    i = FIX2LONG(y);
 | 
						|
    if (i == 0) return x;
 | 
						|
    if (i < 0)
 | 
						|
        return fix_lshift(val, (unsigned long)-i);
 | 
						|
    return fix_rshift(val, i);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_rshift(long val, unsigned long i)
 | 
						|
{
 | 
						|
    if (i >= sizeof(long)*CHAR_BIT-1) {
 | 
						|
        if (val < 0) return INT2FIX(-1);
 | 
						|
        return INT2FIX(0);
 | 
						|
    }
 | 
						|
    val = RSHIFT(val, i);
 | 
						|
    return LONG2FIX(val);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    self >> count -> integer
 | 
						|
 *
 | 
						|
 *  Returns +self+ with bits shifted +count+ positions to the right,
 | 
						|
 *  or to the left if +count+ is negative:
 | 
						|
 *
 | 
						|
 *    n = 0b11110000
 | 
						|
 *    "%08b" % (n >> 1)  # => "01111000"
 | 
						|
 *    "%08b" % (n >> 3)  # => "00011110"
 | 
						|
 *    "%08b" % (n >> -1) # => "111100000"
 | 
						|
 *    "%08b" % (n >> -3) # => "11110000000"
 | 
						|
 *
 | 
						|
 *  Related: Integer#<<.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_int_rshift(VALUE x, VALUE y)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(x)) {
 | 
						|
        return rb_fix_rshift(x, y);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(x)) {
 | 
						|
        return rb_big_rshift(x, y);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
MJIT_FUNC_EXPORTED VALUE
 | 
						|
rb_fix_aref(VALUE fix, VALUE idx)
 | 
						|
{
 | 
						|
    long val = FIX2LONG(fix);
 | 
						|
    long i;
 | 
						|
 | 
						|
    idx = rb_to_int(idx);
 | 
						|
    if (!FIXNUM_P(idx)) {
 | 
						|
        idx = rb_big_norm(idx);
 | 
						|
        if (!FIXNUM_P(idx)) {
 | 
						|
            if (!BIGNUM_SIGN(idx) || val >= 0)
 | 
						|
                return INT2FIX(0);
 | 
						|
            return INT2FIX(1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    i = FIX2LONG(idx);
 | 
						|
 | 
						|
    if (i < 0) return INT2FIX(0);
 | 
						|
    if (SIZEOF_LONG*CHAR_BIT-1 <= i) {
 | 
						|
        if (val < 0) return INT2FIX(1);
 | 
						|
        return INT2FIX(0);
 | 
						|
    }
 | 
						|
    if (val & (1L<<i))
 | 
						|
        return INT2FIX(1);
 | 
						|
    return INT2FIX(0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* copied from "r_less" in range.c */
 | 
						|
/* compares _a_ and _b_ and returns:
 | 
						|
 * < 0: a < b
 | 
						|
 * = 0: a = b
 | 
						|
 * > 0: a > b or non-comparable
 | 
						|
 */
 | 
						|
static int
 | 
						|
compare_indexes(VALUE a, VALUE b)
 | 
						|
{
 | 
						|
    VALUE r = rb_funcall(a, id_cmp, 1, b);
 | 
						|
 | 
						|
    if (NIL_P(r))
 | 
						|
        return INT_MAX;
 | 
						|
    return rb_cmpint(r, a, b);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
generate_mask(VALUE len)
 | 
						|
{
 | 
						|
    return rb_int_minus(rb_int_lshift(INT2FIX(1), len), INT2FIX(1));
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_aref1(VALUE num, VALUE arg)
 | 
						|
{
 | 
						|
    VALUE orig_num = num, beg, end;
 | 
						|
    int excl;
 | 
						|
 | 
						|
    if (rb_range_values(arg, &beg, &end, &excl)) {
 | 
						|
        if (NIL_P(beg)) {
 | 
						|
            /* beginless range */
 | 
						|
            if (!RTEST(num_negative_p(end))) {
 | 
						|
                if (!excl) end = rb_int_plus(end, INT2FIX(1));
 | 
						|
                VALUE mask = generate_mask(end);
 | 
						|
                if (int_zero_p(rb_int_and(num, mask))) {
 | 
						|
                    return INT2FIX(0);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    rb_raise(rb_eArgError, "The beginless range for Integer#[] results in infinity");
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                return INT2FIX(0);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        num = rb_int_rshift(num, beg);
 | 
						|
 | 
						|
        int cmp = compare_indexes(beg, end);
 | 
						|
        if (!NIL_P(end) && cmp < 0) {
 | 
						|
            VALUE len = rb_int_minus(end, beg);
 | 
						|
            if (!excl) len = rb_int_plus(len, INT2FIX(1));
 | 
						|
            VALUE mask = generate_mask(len);
 | 
						|
            num = rb_int_and(num, mask);
 | 
						|
        }
 | 
						|
        else if (cmp == 0) {
 | 
						|
            if (excl) return INT2FIX(0);
 | 
						|
            num = orig_num;
 | 
						|
            arg = beg;
 | 
						|
            goto one_bit;
 | 
						|
        }
 | 
						|
        return num;
 | 
						|
    }
 | 
						|
 | 
						|
one_bit:
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        return rb_fix_aref(num, arg);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        return rb_big_aref(num, arg);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_aref2(VALUE num, VALUE beg, VALUE len)
 | 
						|
{
 | 
						|
    num = rb_int_rshift(num, beg);
 | 
						|
    VALUE mask = generate_mask(len);
 | 
						|
    num = rb_int_and(num, mask);
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *     self[offset]    -> 0 or 1
 | 
						|
 *     self[offset, size] -> integer
 | 
						|
 *     self[range] -> integer
 | 
						|
 *
 | 
						|
 *  Returns a slice of bits from +self+.
 | 
						|
 *
 | 
						|
 *  With argument +offset+, returns the bit at the given offset,
 | 
						|
 *  where offset 0 refers to the least significant bit:
 | 
						|
 *
 | 
						|
 *    n = 0b10 # => 2
 | 
						|
 *    n[0]     # => 0
 | 
						|
 *    n[1]     # => 1
 | 
						|
 *    n[2]     # => 0
 | 
						|
 *    n[3]     # => 0
 | 
						|
 *
 | 
						|
 *  In principle, <code>n[i]</code> is equivalent to <code>(n >> i) & 1</code>.
 | 
						|
 *  Thus, negative index always returns zero:
 | 
						|
 *
 | 
						|
 *     255[-1] # => 0
 | 
						|
 *
 | 
						|
 *  With arguments +offset+ and +size+, returns +size+ bits from +self+,
 | 
						|
 *  beginning at +offset+ and including bits of greater significance:
 | 
						|
 *
 | 
						|
 *    n = 0b111000       # => 56
 | 
						|
 *    "%010b" % n[0, 10] # => "0000111000"
 | 
						|
 *    "%010b" % n[4, 10] # => "0000000011"
 | 
						|
 *
 | 
						|
 *  With argument +range+, returns <tt>range.size</tt> bits from +self+,
 | 
						|
 *  beginning at <tt>range.begin</tt> and including bits of greater significance:
 | 
						|
 *
 | 
						|
 *    n = 0b111000      # => 56
 | 
						|
 *    "%010b" % n[0..9] # => "0000111000"
 | 
						|
 *    "%010b" % n[4..9] # => "0000000011"
 | 
						|
 *
 | 
						|
 *  Raises an exception if the slice cannot be constructed.
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_aref(int const argc, VALUE * const argv, VALUE const num)
 | 
						|
{
 | 
						|
    rb_check_arity(argc, 1, 2);
 | 
						|
    if (argc == 2) {
 | 
						|
        return int_aref2(num, argv[0], argv[1]);
 | 
						|
    }
 | 
						|
    return int_aref1(num, argv[0]);
 | 
						|
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    to_f -> float
 | 
						|
 *
 | 
						|
 *  Converts +self+ to a Float:
 | 
						|
 *
 | 
						|
 *    1.to_f  # => 1.0
 | 
						|
 *    -1.to_f # => -1.0
 | 
						|
 *
 | 
						|
 *  If the value of +self+ does not fit in a \Float,
 | 
						|
 *  the result is infinity:
 | 
						|
 *
 | 
						|
 *    (10**400).to_f  # => Infinity
 | 
						|
 *    (-10**400).to_f # => -Infinity
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_to_f(VALUE num)
 | 
						|
{
 | 
						|
    double val;
 | 
						|
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        val = (double)FIX2LONG(num);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        val = rb_big2dbl(num);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
 | 
						|
    }
 | 
						|
 | 
						|
    return DBL2NUM(val);
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_abs(VALUE fix)
 | 
						|
{
 | 
						|
    long i = FIX2LONG(fix);
 | 
						|
 | 
						|
    if (i < 0) i = -i;
 | 
						|
 | 
						|
    return LONG2NUM(i);
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_abs(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        return fix_abs(num);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        return rb_big_abs(num);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
fix_size(VALUE fix)
 | 
						|
{
 | 
						|
    return INT2FIX(sizeof(long));
 | 
						|
}
 | 
						|
 | 
						|
MJIT_FUNC_EXPORTED VALUE
 | 
						|
rb_int_size(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        return fix_size(num);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        return rb_big_size_m(num);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_fix_bit_length(VALUE fix)
 | 
						|
{
 | 
						|
    long v = FIX2LONG(fix);
 | 
						|
    if (v < 0)
 | 
						|
        v = ~v;
 | 
						|
    return LONG2FIX(bit_length(v));
 | 
						|
}
 | 
						|
 | 
						|
VALUE
 | 
						|
rb_int_bit_length(VALUE num)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        return rb_fix_bit_length(num);
 | 
						|
    }
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num)) {
 | 
						|
        return rb_big_bit_length(num);
 | 
						|
    }
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_fix_digits(VALUE fix, long base)
 | 
						|
{
 | 
						|
    VALUE digits;
 | 
						|
    long x = FIX2LONG(fix);
 | 
						|
 | 
						|
    assert(x >= 0);
 | 
						|
 | 
						|
    if (base < 2)
 | 
						|
        rb_raise(rb_eArgError, "invalid radix %ld", base);
 | 
						|
 | 
						|
    if (x == 0)
 | 
						|
        return rb_ary_new_from_args(1, INT2FIX(0));
 | 
						|
 | 
						|
    digits = rb_ary_new();
 | 
						|
    while (x > 0) {
 | 
						|
        long q = x % base;
 | 
						|
        rb_ary_push(digits, LONG2NUM(q));
 | 
						|
        x /= base;
 | 
						|
    }
 | 
						|
 | 
						|
    return digits;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_int_digits_bigbase(VALUE num, VALUE base)
 | 
						|
{
 | 
						|
    VALUE digits, bases;
 | 
						|
 | 
						|
    assert(!rb_num_negative_p(num));
 | 
						|
 | 
						|
    if (RB_BIGNUM_TYPE_P(base))
 | 
						|
        base = rb_big_norm(base);
 | 
						|
 | 
						|
    if (FIXNUM_P(base) && FIX2LONG(base) < 2)
 | 
						|
        rb_raise(rb_eArgError, "invalid radix %ld", FIX2LONG(base));
 | 
						|
    else if (RB_BIGNUM_TYPE_P(base) && BIGNUM_NEGATIVE_P(base))
 | 
						|
        rb_raise(rb_eArgError, "negative radix");
 | 
						|
 | 
						|
    if (FIXNUM_P(base) && FIXNUM_P(num))
 | 
						|
        return rb_fix_digits(num, FIX2LONG(base));
 | 
						|
 | 
						|
    if (FIXNUM_P(num))
 | 
						|
        return rb_ary_new_from_args(1, num);
 | 
						|
 | 
						|
    if (int_lt(rb_int_div(rb_int_bit_length(num), rb_int_bit_length(base)), INT2FIX(50))) {
 | 
						|
        digits = rb_ary_new();
 | 
						|
        while (!FIXNUM_P(num) || FIX2LONG(num) > 0) {
 | 
						|
            VALUE qr = rb_int_divmod(num, base);
 | 
						|
            rb_ary_push(digits, RARRAY_AREF(qr, 1));
 | 
						|
            num = RARRAY_AREF(qr, 0);
 | 
						|
        }
 | 
						|
        return digits;
 | 
						|
    }
 | 
						|
 | 
						|
    bases = rb_ary_new();
 | 
						|
    for (VALUE b = base; int_lt(b, num) == Qtrue; b = rb_int_mul(b, b)) {
 | 
						|
        rb_ary_push(bases, b);
 | 
						|
    }
 | 
						|
    digits = rb_ary_new_from_args(1, num);
 | 
						|
    while (RARRAY_LEN(bases)) {
 | 
						|
        VALUE b = rb_ary_pop(bases);
 | 
						|
        long i, last_idx = RARRAY_LEN(digits) - 1;
 | 
						|
        for(i = last_idx; i >= 0; i--) {
 | 
						|
            VALUE n = RARRAY_AREF(digits, i);
 | 
						|
            VALUE divmod = rb_int_divmod(n, b);
 | 
						|
            VALUE div = RARRAY_AREF(divmod, 0);
 | 
						|
            VALUE mod = RARRAY_AREF(divmod, 1);
 | 
						|
            if (i != last_idx || div != INT2FIX(0)) rb_ary_store(digits, 2 * i + 1,  div);
 | 
						|
            rb_ary_store(digits, 2 * i, mod);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return digits;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    digits(base = 10) -> array_of_integers
 | 
						|
 *
 | 
						|
 *  Returns an array of integers representing the +base+-radix
 | 
						|
 *  digits of +self+;
 | 
						|
 *  the first element of the array represents the least significant digit:
 | 
						|
 *
 | 
						|
 *    12345.digits      # => [5, 4, 3, 2, 1]
 | 
						|
 *    12345.digits(7)   # => [4, 6, 6, 0, 5]
 | 
						|
 *    12345.digits(100) # => [45, 23, 1]
 | 
						|
 *
 | 
						|
 *  Raises an exception if +self+ is negative or +base+ is less than 2.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_int_digits(int argc, VALUE *argv, VALUE num)
 | 
						|
{
 | 
						|
    VALUE base_value;
 | 
						|
    long base;
 | 
						|
 | 
						|
    if (rb_num_negative_p(num))
 | 
						|
        rb_raise(rb_eMathDomainError, "out of domain");
 | 
						|
 | 
						|
    if (rb_check_arity(argc, 0, 1)) {
 | 
						|
        base_value = rb_to_int(argv[0]);
 | 
						|
        if (!RB_INTEGER_TYPE_P(base_value))
 | 
						|
            rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
 | 
						|
                     rb_obj_classname(argv[0]));
 | 
						|
        if (RB_BIGNUM_TYPE_P(base_value))
 | 
						|
            return rb_int_digits_bigbase(num, base_value);
 | 
						|
 | 
						|
        base = FIX2LONG(base_value);
 | 
						|
        if (base < 0)
 | 
						|
            rb_raise(rb_eArgError, "negative radix");
 | 
						|
        else if (base < 2)
 | 
						|
            rb_raise(rb_eArgError, "invalid radix %ld", base);
 | 
						|
    }
 | 
						|
    else
 | 
						|
        base = 10;
 | 
						|
 | 
						|
    if (FIXNUM_P(num))
 | 
						|
        return rb_fix_digits(num, base);
 | 
						|
    else if (RB_BIGNUM_TYPE_P(num))
 | 
						|
        return rb_int_digits_bigbase(num, LONG2FIX(base));
 | 
						|
 | 
						|
    return Qnil;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_upto_size(VALUE from, VALUE args, VALUE eobj)
 | 
						|
{
 | 
						|
    return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(1), FALSE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    upto(limit) {|i| ... } -> self
 | 
						|
 *    upto(limit)            ->  enumerator
 | 
						|
 *
 | 
						|
 *  Calls the given block with each integer value from +self+ up to +limit+;
 | 
						|
 *  returns +self+:
 | 
						|
 *
 | 
						|
 *    a = []
 | 
						|
 *    5.upto(10) {|i| a << i }              # => 5
 | 
						|
 *    a                                     # => [5, 6, 7, 8, 9, 10]
 | 
						|
 *    a = []
 | 
						|
 *    -5.upto(0) {|i| a << i }              # => -5
 | 
						|
 *    a                                     # => [-5, -4, -3, -2, -1, 0]
 | 
						|
 *    5.upto(4) {|i| fail 'Cannot happen' } # => 5
 | 
						|
 *
 | 
						|
 *  With no block given, returns an Enumerator.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_upto(VALUE from, VALUE to)
 | 
						|
{
 | 
						|
    RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
 | 
						|
    if (FIXNUM_P(from) && FIXNUM_P(to)) {
 | 
						|
        long i, end;
 | 
						|
 | 
						|
        end = FIX2LONG(to);
 | 
						|
        for (i = FIX2LONG(from); i <= end; i++) {
 | 
						|
            rb_yield(LONG2FIX(i));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        VALUE i = from, c;
 | 
						|
 | 
						|
        while (!(c = rb_funcall(i, '>', 1, to))) {
 | 
						|
            rb_yield(i);
 | 
						|
            i = rb_funcall(i, '+', 1, INT2FIX(1));
 | 
						|
        }
 | 
						|
        ensure_cmp(c, i, to);
 | 
						|
    }
 | 
						|
    return from;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_downto_size(VALUE from, VALUE args, VALUE eobj)
 | 
						|
{
 | 
						|
    return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(-1), FALSE);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    downto(limit) {|i| ... } -> self
 | 
						|
 *    downto(limit)            ->  enumerator
 | 
						|
 *
 | 
						|
 *  Calls the given block with each integer value from +self+ down to +limit+;
 | 
						|
 *  returns +self+:
 | 
						|
 *
 | 
						|
 *    a = []
 | 
						|
 *    10.downto(5) {|i| a << i }              # => 10
 | 
						|
 *    a                                       # => [10, 9, 8, 7, 6, 5]
 | 
						|
 *    a = []
 | 
						|
 *    0.downto(-5) {|i| a << i }              # => 0
 | 
						|
 *    a                                       # => [0, -1, -2, -3, -4, -5]
 | 
						|
 *    4.downto(5) {|i| fail 'Cannot happen' } # => 4
 | 
						|
 *
 | 
						|
 *  With no block given, returns an Enumerator.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_downto(VALUE from, VALUE to)
 | 
						|
{
 | 
						|
    RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
 | 
						|
    if (FIXNUM_P(from) && FIXNUM_P(to)) {
 | 
						|
        long i, end;
 | 
						|
 | 
						|
        end = FIX2LONG(to);
 | 
						|
        for (i=FIX2LONG(from); i >= end; i--) {
 | 
						|
            rb_yield(LONG2FIX(i));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        VALUE i = from, c;
 | 
						|
 | 
						|
        while (!(c = rb_funcall(i, '<', 1, to))) {
 | 
						|
            rb_yield(i);
 | 
						|
            i = rb_funcall(i, '-', 1, INT2FIX(1));
 | 
						|
        }
 | 
						|
        if (NIL_P(c)) rb_cmperr(i, to);
 | 
						|
    }
 | 
						|
    return from;
 | 
						|
}
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_dotimes_size(VALUE num, VALUE args, VALUE eobj)
 | 
						|
{
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        if (NUM2LONG(num) <= 0) return INT2FIX(0);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) return INT2FIX(0);
 | 
						|
    }
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    times {|i| ... } -> self
 | 
						|
 *    times            -> enumerator
 | 
						|
 *
 | 
						|
 *  Calls the given block +self+ times with each integer in <tt>(0..self-1)</tt>:
 | 
						|
 *
 | 
						|
 *    a = []
 | 
						|
 *    5.times {|i| a.push(i) } # => 5
 | 
						|
 *    a                        # => [0, 1, 2, 3, 4]
 | 
						|
 *
 | 
						|
 *  With no block given, returns an Enumerator.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_dotimes(VALUE num)
 | 
						|
{
 | 
						|
    RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
 | 
						|
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        long i, end;
 | 
						|
 | 
						|
        end = FIX2LONG(num);
 | 
						|
        for (i=0; i<end; i++) {
 | 
						|
            rb_yield_1(LONG2FIX(i));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        VALUE i = INT2FIX(0);
 | 
						|
 | 
						|
        for (;;) {
 | 
						|
            if (!RTEST(int_le(i, num))) break;
 | 
						|
            rb_yield(i);
 | 
						|
            i = rb_int_plus(i, INT2FIX(1));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    round(ndigits= 0, half: :up) -> integer
 | 
						|
 *
 | 
						|
 *  Returns +self+ rounded to the nearest value with
 | 
						|
 *  a precision of +ndigits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  When +ndigits+ is negative, the returned value
 | 
						|
 *  has at least <tt>ndigits.abs</tt> trailing zeros:
 | 
						|
 *
 | 
						|
 *    555.round(-1)      # => 560
 | 
						|
 *    555.round(-2)      # => 600
 | 
						|
 *    555.round(-3)      # => 1000
 | 
						|
 *    -555.round(-2)     # => -600
 | 
						|
 *    555.round(-4)      # => 0
 | 
						|
 *
 | 
						|
 *  Returns +self+ when +ndigits+ is zero or positive.
 | 
						|
 *
 | 
						|
 *    555.round     # => 555
 | 
						|
 *    555.round(1)  # => 555
 | 
						|
 *    555.round(50) # => 555
 | 
						|
 *
 | 
						|
 *  If keyword argument +half+ is given,
 | 
						|
 *  and +self+ is equidistant from the two candidate  values,
 | 
						|
 *  the rounding is according to the given +half+ value:
 | 
						|
 *
 | 
						|
 *  - +:up+ or +nil+: round away from zero:
 | 
						|
 *
 | 
						|
 *      25.round(-1, half: :up)      # => 30
 | 
						|
 *      (-25).round(-1, half: :up)   # => -30
 | 
						|
 *
 | 
						|
 *  - +:down+: round toward zero:
 | 
						|
 *
 | 
						|
 *      25.round(-1, half: :down)    # => 20
 | 
						|
 *      (-25).round(-1, half: :down) # => -20
 | 
						|
 *
 | 
						|
 *
 | 
						|
 *  - +:even+: round toward the candidate whose last nonzero digit is even:
 | 
						|
 *
 | 
						|
 *      25.round(-1, half: :even)    # => 20
 | 
						|
 *      15.round(-1, half: :even)    # => 20
 | 
						|
 *      (-25).round(-1, half: :even) # => -20
 | 
						|
 *
 | 
						|
 *  Raises and exception if the value for +half+ is invalid.
 | 
						|
 *
 | 
						|
 *  Related: Integer#truncate.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_round(int argc, VALUE* argv, VALUE num)
 | 
						|
{
 | 
						|
    int ndigits;
 | 
						|
    int mode;
 | 
						|
    VALUE nd, opt;
 | 
						|
 | 
						|
    if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
 | 
						|
    ndigits = NUM2INT(nd);
 | 
						|
    mode = rb_num_get_rounding_option(opt);
 | 
						|
    if (ndigits >= 0) {
 | 
						|
        return num;
 | 
						|
    }
 | 
						|
    return rb_int_round(num, ndigits, mode);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    floor(ndigits = 0) -> integer
 | 
						|
 *
 | 
						|
 *  Returns the largest number less than or equal to +self+ with
 | 
						|
 *  a precision of +ndigits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  When +ndigits+ is negative, the returned value
 | 
						|
 *  has at least <tt>ndigits.abs</tt> trailing zeros:
 | 
						|
 *
 | 
						|
 *    555.floor(-1)  # => 550
 | 
						|
 *    555.floor(-2)  # => 500
 | 
						|
 *    -555.floor(-2) # => -600
 | 
						|
 *    555.floor(-3)  # => 0
 | 
						|
 *
 | 
						|
 *  Returns +self+ when +ndigits+ is zero or positive.
 | 
						|
 *
 | 
						|
 *    555.floor     # => 555
 | 
						|
 *    555.floor(50) # => 555
 | 
						|
 *
 | 
						|
 *  Related: Integer#ceil.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_floor(int argc, VALUE* argv, VALUE num)
 | 
						|
{
 | 
						|
    int ndigits;
 | 
						|
 | 
						|
    if (!rb_check_arity(argc, 0, 1)) return num;
 | 
						|
    ndigits = NUM2INT(argv[0]);
 | 
						|
    if (ndigits >= 0) {
 | 
						|
        return num;
 | 
						|
    }
 | 
						|
    return rb_int_floor(num, ndigits);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    ceil(ndigits = 0) -> integer
 | 
						|
 *
 | 
						|
 *  Returns the smallest number greater than or equal to +self+ with
 | 
						|
 *  a precision of +ndigits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  When the precision is negative, the returned value is an integer
 | 
						|
 *  with at least <code>ndigits.abs</code> trailing zeros:
 | 
						|
 *
 | 
						|
 *    555.ceil(-1)  # => 560
 | 
						|
 *    555.ceil(-2)  # => 600
 | 
						|
 *    -555.ceil(-2) # => -500
 | 
						|
 *    555.ceil(-3)  # => 1000
 | 
						|
 *
 | 
						|
 *  Returns +self+ when +ndigits+ is zero or positive.
 | 
						|
 *
 | 
						|
 *     555.ceil     # => 555
 | 
						|
 *     555.ceil(50) # => 555
 | 
						|
 *
 | 
						|
 *  Related: Integer#floor.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_ceil(int argc, VALUE* argv, VALUE num)
 | 
						|
{
 | 
						|
    int ndigits;
 | 
						|
 | 
						|
    if (!rb_check_arity(argc, 0, 1)) return num;
 | 
						|
    ndigits = NUM2INT(argv[0]);
 | 
						|
    if (ndigits >= 0) {
 | 
						|
        return num;
 | 
						|
    }
 | 
						|
    return rb_int_ceil(num, ndigits);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    truncate(ndigits = 0) -> integer
 | 
						|
 *
 | 
						|
 *  Returns +self+ truncated (toward zero) to
 | 
						|
 *  a precision of +ndigits+ decimal digits.
 | 
						|
 *
 | 
						|
 *  When +ndigits+ is negative, the returned value
 | 
						|
 *  has at least <tt>ndigits.abs</tt> trailing zeros:
 | 
						|
 *
 | 
						|
 *    555.truncate(-1)  # => 550
 | 
						|
 *    555.truncate(-2)  # => 500
 | 
						|
 *    -555.truncate(-2) # => -500
 | 
						|
 *
 | 
						|
 *  Returns +self+ when +ndigits+ is zero or positive.
 | 
						|
 *
 | 
						|
 *    555.truncate     # => 555
 | 
						|
 *    555.truncate(50) # => 555
 | 
						|
 *
 | 
						|
 *  Related: Integer#round.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
int_truncate(int argc, VALUE* argv, VALUE num)
 | 
						|
{
 | 
						|
    int ndigits;
 | 
						|
 | 
						|
    if (!rb_check_arity(argc, 0, 1)) return num;
 | 
						|
    ndigits = NUM2INT(argv[0]);
 | 
						|
    if (ndigits >= 0) {
 | 
						|
        return num;
 | 
						|
    }
 | 
						|
    return rb_int_truncate(num, ndigits);
 | 
						|
}
 | 
						|
 | 
						|
#define DEFINE_INT_SQRT(rettype, prefix, argtype) \
 | 
						|
rettype \
 | 
						|
prefix##_isqrt(argtype n) \
 | 
						|
{ \
 | 
						|
    if (!argtype##_IN_DOUBLE_P(n)) { \
 | 
						|
        unsigned int b = bit_length(n); \
 | 
						|
        argtype t; \
 | 
						|
        rettype x = (rettype)(n >> (b/2+1)); \
 | 
						|
        x |= ((rettype)1LU << (b-1)/2); \
 | 
						|
        while ((t = n/x) < (argtype)x) x = (rettype)((x + t) >> 1); \
 | 
						|
        return x; \
 | 
						|
    } \
 | 
						|
    return (rettype)sqrt(argtype##_TO_DOUBLE(n)); \
 | 
						|
}
 | 
						|
 | 
						|
#if SIZEOF_LONG*CHAR_BIT > DBL_MANT_DIG
 | 
						|
# define RB_ULONG_IN_DOUBLE_P(n) ((n) < (1UL << DBL_MANT_DIG))
 | 
						|
#else
 | 
						|
# define RB_ULONG_IN_DOUBLE_P(n) 1
 | 
						|
#endif
 | 
						|
#define RB_ULONG_TO_DOUBLE(n) (double)(n)
 | 
						|
#define RB_ULONG unsigned long
 | 
						|
DEFINE_INT_SQRT(unsigned long, rb_ulong, RB_ULONG)
 | 
						|
 | 
						|
#if 2*SIZEOF_BDIGIT > SIZEOF_LONG
 | 
						|
# if 2*SIZEOF_BDIGIT*CHAR_BIT > DBL_MANT_DIG
 | 
						|
#   define BDIGIT_DBL_IN_DOUBLE_P(n) ((n) < ((BDIGIT_DBL)1UL << DBL_MANT_DIG))
 | 
						|
# else
 | 
						|
#   define BDIGIT_DBL_IN_DOUBLE_P(n) 1
 | 
						|
# endif
 | 
						|
# ifdef ULL_TO_DOUBLE
 | 
						|
#   define BDIGIT_DBL_TO_DOUBLE(n) ULL_TO_DOUBLE(n)
 | 
						|
# else
 | 
						|
#   define BDIGIT_DBL_TO_DOUBLE(n) (double)(n)
 | 
						|
# endif
 | 
						|
DEFINE_INT_SQRT(BDIGIT, rb_bdigit_dbl, BDIGIT_DBL)
 | 
						|
#endif
 | 
						|
 | 
						|
#define domain_error(msg) \
 | 
						|
    rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg)
 | 
						|
 | 
						|
/*
 | 
						|
 *  call-seq:
 | 
						|
 *    Integer.sqrt(numeric) -> integer
 | 
						|
 *
 | 
						|
 *  Returns the integer square root of the non-negative integer +n+,
 | 
						|
 *  which is the largest non-negative integer less than or equal to the
 | 
						|
 *  square root of +numeric+.
 | 
						|
 *
 | 
						|
 *    Integer.sqrt(0)       # => 0
 | 
						|
 *    Integer.sqrt(1)       # => 1
 | 
						|
 *    Integer.sqrt(24)      # => 4
 | 
						|
 *    Integer.sqrt(25)      # => 5
 | 
						|
 *    Integer.sqrt(10**400) # => 10**200
 | 
						|
 *
 | 
						|
 *  If +numeric+ is not an \Integer, it is converted to an \Integer:
 | 
						|
 *
 | 
						|
 *    Integer.sqrt(Complex(4, 0))  # => 2
 | 
						|
 *    Integer.sqrt(Rational(4, 1)) # => 2
 | 
						|
 *    Integer.sqrt(4.0)            # => 2
 | 
						|
 *    Integer.sqrt(3.14159)        # => 1
 | 
						|
 *
 | 
						|
 *  This method is equivalent to <tt>Math.sqrt(numeric).floor</tt>,
 | 
						|
 *  except that the result of the latter code may differ from the true value
 | 
						|
 *  due to the limited precision of floating point arithmetic.
 | 
						|
 *
 | 
						|
 *    Integer.sqrt(10**46)    # => 100000000000000000000000
 | 
						|
 *    Math.sqrt(10**46).floor # => 99999999999999991611392
 | 
						|
 *
 | 
						|
 *  Raises an exception if +numeric+ is negative.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
static VALUE
 | 
						|
rb_int_s_isqrt(VALUE self, VALUE num)
 | 
						|
{
 | 
						|
    unsigned long n, sq;
 | 
						|
    num = rb_to_int(num);
 | 
						|
    if (FIXNUM_P(num)) {
 | 
						|
        if (FIXNUM_NEGATIVE_P(num)) {
 | 
						|
            domain_error("isqrt");
 | 
						|
        }
 | 
						|
        n = FIX2ULONG(num);
 | 
						|
        sq = rb_ulong_isqrt(n);
 | 
						|
        return LONG2FIX(sq);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        size_t biglen;
 | 
						|
        if (RBIGNUM_NEGATIVE_P(num)) {
 | 
						|
            domain_error("isqrt");
 | 
						|
        }
 | 
						|
        biglen = BIGNUM_LEN(num);
 | 
						|
        if (biglen == 0) return INT2FIX(0);
 | 
						|
#if SIZEOF_BDIGIT <= SIZEOF_LONG
 | 
						|
        /* short-circuit */
 | 
						|
        if (biglen == 1) {
 | 
						|
            n = BIGNUM_DIGITS(num)[0];
 | 
						|
            sq = rb_ulong_isqrt(n);
 | 
						|
            return ULONG2NUM(sq);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        return rb_big_isqrt(num);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* :nodoc: */
 | 
						|
static VALUE
 | 
						|
int_s_try_convert(VALUE self, VALUE num)
 | 
						|
{
 | 
						|
    return rb_check_integer_type(num);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Document-class: ZeroDivisionError
 | 
						|
 *
 | 
						|
 *  Raised when attempting to divide an integer by 0.
 | 
						|
 *
 | 
						|
 *     42 / 0   #=> ZeroDivisionError: divided by 0
 | 
						|
 *
 | 
						|
 *  Note that only division by an exact 0 will raise the exception:
 | 
						|
 *
 | 
						|
 *     42 /  0.0   #=> Float::INFINITY
 | 
						|
 *     42 / -0.0   #=> -Float::INFINITY
 | 
						|
 *     0  /  0.0   #=> NaN
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 *  Document-class: FloatDomainError
 | 
						|
 *
 | 
						|
 *  Raised when attempting to convert special float values (in particular
 | 
						|
 *  +Infinity+ or +NaN+) to numerical classes which don't support them.
 | 
						|
 *
 | 
						|
 *     Float::INFINITY.to_r   #=> FloatDomainError: Infinity
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Document-class: Numeric
 | 
						|
 *
 | 
						|
 * Numeric is the class from which all higher-level numeric classes should inherit.
 | 
						|
 *
 | 
						|
 * Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as
 | 
						|
 * Integer are implemented as immediates, which means that each Integer is a single immutable
 | 
						|
 * object which is always passed by value.
 | 
						|
 *
 | 
						|
 *   a = 1
 | 
						|
 *   1.object_id == a.object_id   #=> true
 | 
						|
 *
 | 
						|
 * There can only ever be one instance of the integer +1+, for example. Ruby ensures this
 | 
						|
 * by preventing instantiation. If duplication is attempted, the same instance is returned.
 | 
						|
 *
 | 
						|
 *   Integer.new(1)                   #=> NoMethodError: undefined method `new' for Integer:Class
 | 
						|
 *   1.dup                            #=> 1
 | 
						|
 *   1.object_id == 1.dup.object_id   #=> true
 | 
						|
 *
 | 
						|
 * For this reason, Numeric should be used when defining other numeric classes.
 | 
						|
 *
 | 
						|
 * Classes which inherit from Numeric must implement +coerce+, which returns a two-member
 | 
						|
 * Array containing an object that has been coerced into an instance of the new class
 | 
						|
 * and +self+ (see #coerce).
 | 
						|
 *
 | 
						|
 * Inheriting classes should also implement arithmetic operator methods (<code>+</code>,
 | 
						|
 * <code>-</code>, <code>*</code> and <code>/</code>) and the <code><=></code> operator (see
 | 
						|
 * Comparable). These methods may rely on +coerce+ to ensure interoperability with
 | 
						|
 * instances of other numeric classes.
 | 
						|
 *
 | 
						|
 *   class Tally < Numeric
 | 
						|
 *     def initialize(string)
 | 
						|
 *       @string = string
 | 
						|
 *     end
 | 
						|
 *
 | 
						|
 *     def to_s
 | 
						|
 *       @string
 | 
						|
 *     end
 | 
						|
 *
 | 
						|
 *     def to_i
 | 
						|
 *       @string.size
 | 
						|
 *     end
 | 
						|
 *
 | 
						|
 *     def coerce(other)
 | 
						|
 *       [self.class.new('|' * other.to_i), self]
 | 
						|
 *     end
 | 
						|
 *
 | 
						|
 *     def <=>(other)
 | 
						|
 *       to_i <=> other.to_i
 | 
						|
 *     end
 | 
						|
 *
 | 
						|
 *     def +(other)
 | 
						|
 *       self.class.new('|' * (to_i + other.to_i))
 | 
						|
 *     end
 | 
						|
 *
 | 
						|
 *     def -(other)
 | 
						|
 *       self.class.new('|' * (to_i - other.to_i))
 | 
						|
 *     end
 | 
						|
 *
 | 
						|
 *     def *(other)
 | 
						|
 *       self.class.new('|' * (to_i * other.to_i))
 | 
						|
 *     end
 | 
						|
 *
 | 
						|
 *     def /(other)
 | 
						|
 *       self.class.new('|' * (to_i / other.to_i))
 | 
						|
 *     end
 | 
						|
 *   end
 | 
						|
 *
 | 
						|
 *   tally = Tally.new('||')
 | 
						|
 *   puts tally * 2            #=> "||||"
 | 
						|
 *   puts tally > 1            #=> true
 | 
						|
 *
 | 
						|
 * == What's Here
 | 
						|
 *
 | 
						|
 * First, what's elsewhere. \Class \Numeric:
 | 
						|
 *
 | 
						|
 * - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here].
 | 
						|
 * - Includes {module Comparable}[rdoc-ref:Comparable@What-27s+Here].
 | 
						|
 *
 | 
						|
 * Here, class \Numeric provides methods for:
 | 
						|
 *
 | 
						|
 * - {Querying}[rdoc-ref:Numeric@Querying]
 | 
						|
 * - {Comparing}[rdoc-ref:Numeric@Comparing]
 | 
						|
 * - {Converting}[rdoc-ref:Numeric@Converting]
 | 
						|
 * - {Other}[rdoc-ref:Numeric@Other]
 | 
						|
 *
 | 
						|
 * === Querying
 | 
						|
 *
 | 
						|
 * - #finite?: Returns true unless +self+ is infinite or not a number.
 | 
						|
 * - #infinite?: Returns -1, +nil+ or +1, depending on whether +self+
 | 
						|
 *   is <tt>-Infinity<tt>, finite, or <tt>+Infinity</tt>.
 | 
						|
 * - #integer?: Returns whether +self+ is an integer.
 | 
						|
 * - #negative?: Returns whether +self+ is negative.
 | 
						|
 * - #nonzero?: Returns whether +self+ is not zero.
 | 
						|
 * - #positive?: Returns whether +self+ is positive.
 | 
						|
 * - #real?: Returns whether +self+ is a real value.
 | 
						|
 * - #zero?: Returns whether +self+ is zero.
 | 
						|
 *
 | 
						|
 * === Comparing
 | 
						|
 *
 | 
						|
 * - #<=>: Returns:
 | 
						|
 *
 | 
						|
 *   - -1 if  +self+ is less than the given value.
 | 
						|
 *   - 0 if +self+ is equal to the given value.
 | 
						|
 *   - 1 if +self+ is greater than the given value.
 | 
						|
 *   - +nil+ if +self+ and the given value are not comparable.
 | 
						|
 *
 | 
						|
 * - #eql?: Returns whether +self+ and the given value have the same value and type.
 | 
						|
 *
 | 
						|
 * === Converting
 | 
						|
 *
 | 
						|
 * - #% (aliased as #modulo): Returns the remainder of +self+ divided by the given value.
 | 
						|
 * - #-@: Returns the value of +self+, negated.
 | 
						|
 * - #abs (aliased as #magnitude): Returns the absolute value of +self+.
 | 
						|
 * - #abs2: Returns the square of +self+.
 | 
						|
 * - #angle (aliased as #arg and #phase): Returns 0 if +self+ is positive,
 | 
						|
 *   Math::PI otherwise.
 | 
						|
 * - #ceil: Returns the smallest number greater than or equal to +self+,
 | 
						|
 *   to a given precision.
 | 
						|
 * - #coerce: Returns array <tt>[coerced_self, coerced_other]</tt>
 | 
						|
 *   for the given other value.
 | 
						|
 * - #conj (aliased as #conjugate): Returns the complex conjugate of +self+.
 | 
						|
 * - #denominator: Returns the denominator (always positive)
 | 
						|
 *   of the Rational representation of +self+.
 | 
						|
 * - #div: Returns the value of +self+ divided by the given value
 | 
						|
 *   and converted to an integer.
 | 
						|
 * - #divmod: Returns array <tt>[quotient, modulus]</tt> resulting
 | 
						|
 *   from dividing +self+ the given divisor.
 | 
						|
 * - #fdiv: Returns the Float result of dividing +self+ by the given divisor.
 | 
						|
 * - #floor: Returns the largest number less than or equal to +self+,
 | 
						|
 *   to a given precision.
 | 
						|
 * - #i: Returns the Complex object <tt>Complex(0, self)</tt>.
 | 
						|
 *   the given value.
 | 
						|
 * - #imaginary (aliased as #imag): Returns the imaginary part of the +self+.
 | 
						|
 * - #numerator: Returns the numerator of the Rational representation of +self+;
 | 
						|
 *   has the same sign as +self+.
 | 
						|
 * - #polar: Returns the array <tt>[self.abs, self.arg]</tt>.
 | 
						|
 * - #quo: Returns the value of +self+ divided by the given value.
 | 
						|
 * - #real: Returns the real part of +self+.
 | 
						|
 * - #rect (aliased as #rectangular): Returns the array <tt>[self, 0]</tt>.
 | 
						|
 * - #remainder: Returns <tt>self-arg*(self/arg).truncate</tt> for the given +arg+.
 | 
						|
 * - #round: Returns the value of +self+ rounded to the nearest value
 | 
						|
 *   for the given a precision.
 | 
						|
 * - #to_c: Returns the Complex representation of +self+.
 | 
						|
 * - #to_int: Returns the Integer representation of +self+, truncating if necessary.
 | 
						|
 * - #truncate: Returns +self+ truncated (toward zero) to a given precision.
 | 
						|
 *
 | 
						|
 * === Other
 | 
						|
 *
 | 
						|
 * - #clone: Returns +self+; does not allow freezing.
 | 
						|
 * - #dup (aliased as #+@): Returns +self+.
 | 
						|
 * - #step: Invokes the given block with the sequence of specified numbers.
 | 
						|
 *
 | 
						|
 */
 | 
						|
void
 | 
						|
Init_Numeric(void)
 | 
						|
{
 | 
						|
#ifdef _UNICOSMP
 | 
						|
    /* Turn off floating point exceptions for divide by zero, etc. */
 | 
						|
    _set_Creg(0, 0);
 | 
						|
#endif
 | 
						|
    id_coerce = rb_intern_const("coerce");
 | 
						|
    id_to = rb_intern_const("to");
 | 
						|
    id_by = rb_intern_const("by");
 | 
						|
 | 
						|
    rb_eZeroDivError = rb_define_class("ZeroDivisionError", rb_eStandardError);
 | 
						|
    rb_eFloatDomainError = rb_define_class("FloatDomainError", rb_eRangeError);
 | 
						|
    rb_cNumeric = rb_define_class("Numeric", rb_cObject);
 | 
						|
 | 
						|
    rb_define_method(rb_cNumeric, "singleton_method_added", num_sadded, 1);
 | 
						|
    rb_include_module(rb_cNumeric, rb_mComparable);
 | 
						|
    rb_define_method(rb_cNumeric, "coerce", num_coerce, 1);
 | 
						|
    rb_define_method(rb_cNumeric, "clone", num_clone, -1);
 | 
						|
    rb_define_method(rb_cNumeric, "dup", num_dup, 0);
 | 
						|
 | 
						|
    rb_define_method(rb_cNumeric, "i", num_imaginary, 0);
 | 
						|
    rb_define_method(rb_cNumeric, "+@", num_uplus, 0);
 | 
						|
    rb_define_method(rb_cNumeric, "-@", num_uminus, 0);
 | 
						|
    rb_define_method(rb_cNumeric, "<=>", num_cmp, 1);
 | 
						|
    rb_define_method(rb_cNumeric, "eql?", num_eql, 1);
 | 
						|
    rb_define_method(rb_cNumeric, "fdiv", num_fdiv, 1);
 | 
						|
    rb_define_method(rb_cNumeric, "div", num_div, 1);
 | 
						|
    rb_define_method(rb_cNumeric, "divmod", num_divmod, 1);
 | 
						|
    rb_define_method(rb_cNumeric, "%", num_modulo, 1);
 | 
						|
    rb_define_method(rb_cNumeric, "modulo", num_modulo, 1);
 | 
						|
    rb_define_method(rb_cNumeric, "remainder", num_remainder, 1);
 | 
						|
    rb_define_method(rb_cNumeric, "abs", num_abs, 0);
 | 
						|
    rb_define_method(rb_cNumeric, "magnitude", num_abs, 0);
 | 
						|
    rb_define_method(rb_cNumeric, "to_int", num_to_int, 0);
 | 
						|
 | 
						|
    rb_define_method(rb_cNumeric, "zero?", num_zero_p, 0);
 | 
						|
    rb_define_method(rb_cNumeric, "nonzero?", num_nonzero_p, 0);
 | 
						|
 | 
						|
    rb_define_method(rb_cNumeric, "floor", num_floor, -1);
 | 
						|
    rb_define_method(rb_cNumeric, "ceil", num_ceil, -1);
 | 
						|
    rb_define_method(rb_cNumeric, "round", num_round, -1);
 | 
						|
    rb_define_method(rb_cNumeric, "truncate", num_truncate, -1);
 | 
						|
    rb_define_method(rb_cNumeric, "step", num_step, -1);
 | 
						|
    rb_define_method(rb_cNumeric, "positive?", num_positive_p, 0);
 | 
						|
    rb_define_method(rb_cNumeric, "negative?", num_negative_p, 0);
 | 
						|
 | 
						|
    rb_cInteger = rb_define_class("Integer", rb_cNumeric);
 | 
						|
    rb_undef_alloc_func(rb_cInteger);
 | 
						|
    rb_undef_method(CLASS_OF(rb_cInteger), "new");
 | 
						|
    rb_define_singleton_method(rb_cInteger, "sqrt", rb_int_s_isqrt, 1);
 | 
						|
    rb_define_singleton_method(rb_cInteger, "try_convert", int_s_try_convert, 1);
 | 
						|
 | 
						|
    rb_define_method(rb_cInteger, "to_s", rb_int_to_s, -1);
 | 
						|
    rb_define_alias(rb_cInteger, "inspect", "to_s");
 | 
						|
    rb_define_method(rb_cInteger, "allbits?", int_allbits_p, 1);
 | 
						|
    rb_define_method(rb_cInteger, "anybits?", int_anybits_p, 1);
 | 
						|
    rb_define_method(rb_cInteger, "nobits?", int_nobits_p, 1);
 | 
						|
    rb_define_method(rb_cInteger, "upto", int_upto, 1);
 | 
						|
    rb_define_method(rb_cInteger, "downto", int_downto, 1);
 | 
						|
    rb_define_method(rb_cInteger, "times", int_dotimes, 0);
 | 
						|
    rb_define_method(rb_cInteger, "succ", int_succ, 0);
 | 
						|
    rb_define_method(rb_cInteger, "next", int_succ, 0);
 | 
						|
    rb_define_method(rb_cInteger, "pred", int_pred, 0);
 | 
						|
    rb_define_method(rb_cInteger, "chr", int_chr, -1);
 | 
						|
    rb_define_method(rb_cInteger, "to_f", int_to_f, 0);
 | 
						|
    rb_define_method(rb_cInteger, "floor", int_floor, -1);
 | 
						|
    rb_define_method(rb_cInteger, "ceil", int_ceil, -1);
 | 
						|
    rb_define_method(rb_cInteger, "truncate", int_truncate, -1);
 | 
						|
    rb_define_method(rb_cInteger, "round", int_round, -1);
 | 
						|
    rb_define_method(rb_cInteger, "<=>", rb_int_cmp, 1);
 | 
						|
 | 
						|
    rb_define_method(rb_cInteger, "+", rb_int_plus, 1);
 | 
						|
    rb_define_method(rb_cInteger, "-", rb_int_minus, 1);
 | 
						|
    rb_define_method(rb_cInteger, "*", rb_int_mul, 1);
 | 
						|
    rb_define_method(rb_cInteger, "/", rb_int_div, 1);
 | 
						|
    rb_define_method(rb_cInteger, "div", rb_int_idiv, 1);
 | 
						|
    rb_define_method(rb_cInteger, "%", rb_int_modulo, 1);
 | 
						|
    rb_define_method(rb_cInteger, "modulo", rb_int_modulo, 1);
 | 
						|
    rb_define_method(rb_cInteger, "remainder", int_remainder, 1);
 | 
						|
    rb_define_method(rb_cInteger, "divmod", rb_int_divmod, 1);
 | 
						|
    rb_define_method(rb_cInteger, "fdiv", rb_int_fdiv, 1);
 | 
						|
    rb_define_method(rb_cInteger, "**", rb_int_pow, 1);
 | 
						|
 | 
						|
    rb_define_method(rb_cInteger, "pow", rb_int_powm, -1); /* in bignum.c */
 | 
						|
 | 
						|
    rb_define_method(rb_cInteger, "===", rb_int_equal, 1);
 | 
						|
    rb_define_method(rb_cInteger, "==", rb_int_equal, 1);
 | 
						|
    rb_define_method(rb_cInteger, ">", rb_int_gt, 1);
 | 
						|
    rb_define_method(rb_cInteger, ">=", rb_int_ge, 1);
 | 
						|
    rb_define_method(rb_cInteger, "<", int_lt, 1);
 | 
						|
    rb_define_method(rb_cInteger, "<=", int_le, 1);
 | 
						|
 | 
						|
    rb_define_method(rb_cInteger, "&", rb_int_and, 1);
 | 
						|
    rb_define_method(rb_cInteger, "|", int_or,  1);
 | 
						|
    rb_define_method(rb_cInteger, "^", int_xor, 1);
 | 
						|
    rb_define_method(rb_cInteger, "[]", int_aref, -1);
 | 
						|
 | 
						|
    rb_define_method(rb_cInteger, "<<", rb_int_lshift, 1);
 | 
						|
    rb_define_method(rb_cInteger, ">>", rb_int_rshift, 1);
 | 
						|
 | 
						|
    rb_define_method(rb_cInteger, "digits", rb_int_digits, -1);
 | 
						|
 | 
						|
    rb_fix_to_s_static[0] = rb_fstring_literal("0");
 | 
						|
    rb_fix_to_s_static[1] = rb_fstring_literal("1");
 | 
						|
    rb_fix_to_s_static[2] = rb_fstring_literal("2");
 | 
						|
    rb_fix_to_s_static[3] = rb_fstring_literal("3");
 | 
						|
    rb_fix_to_s_static[4] = rb_fstring_literal("4");
 | 
						|
    rb_fix_to_s_static[5] = rb_fstring_literal("5");
 | 
						|
    rb_fix_to_s_static[6] = rb_fstring_literal("6");
 | 
						|
    rb_fix_to_s_static[7] = rb_fstring_literal("7");
 | 
						|
    rb_fix_to_s_static[8] = rb_fstring_literal("8");
 | 
						|
    rb_fix_to_s_static[9] = rb_fstring_literal("9");
 | 
						|
    for(int i = 0; i < 10; i++) {
 | 
						|
        rb_gc_register_mark_object(rb_fix_to_s_static[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    rb_cFloat  = rb_define_class("Float", rb_cNumeric);
 | 
						|
 | 
						|
    rb_undef_alloc_func(rb_cFloat);
 | 
						|
    rb_undef_method(CLASS_OF(rb_cFloat), "new");
 | 
						|
 | 
						|
    /*
 | 
						|
     *	The base of the floating point, or number of unique digits used to
 | 
						|
     *	represent the number.
 | 
						|
     *
 | 
						|
     *  Usually defaults to 2 on most systems, which would represent a base-10 decimal.
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "RADIX", INT2FIX(FLT_RADIX));
 | 
						|
    /*
 | 
						|
     * The number of base digits for the +double+ data type.
 | 
						|
     *
 | 
						|
     * Usually defaults to 53.
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "MANT_DIG", INT2FIX(DBL_MANT_DIG));
 | 
						|
    /*
 | 
						|
     *	The minimum number of significant decimal digits in a double-precision
 | 
						|
     *	floating point.
 | 
						|
     *
 | 
						|
     *	Usually defaults to 15.
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "DIG", INT2FIX(DBL_DIG));
 | 
						|
    /*
 | 
						|
     *	The smallest possible exponent value in a double-precision floating
 | 
						|
     *	point.
 | 
						|
     *
 | 
						|
     *	Usually defaults to -1021.
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "MIN_EXP", INT2FIX(DBL_MIN_EXP));
 | 
						|
    /*
 | 
						|
     *	The largest possible exponent value in a double-precision floating
 | 
						|
     *	point.
 | 
						|
     *
 | 
						|
     *	Usually defaults to 1024.
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "MAX_EXP", INT2FIX(DBL_MAX_EXP));
 | 
						|
    /*
 | 
						|
     *	The smallest negative exponent in a double-precision floating point
 | 
						|
     *	where 10 raised to this power minus 1.
 | 
						|
     *
 | 
						|
     *	Usually defaults to -307.
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP));
 | 
						|
    /*
 | 
						|
     *	The largest positive exponent in a double-precision floating point where
 | 
						|
     *	10 raised to this power minus 1.
 | 
						|
     *
 | 
						|
     *	Usually defaults to 308.
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP));
 | 
						|
    /*
 | 
						|
     *	The smallest positive normalized number in a double-precision floating point.
 | 
						|
     *
 | 
						|
     *	Usually defaults to 2.2250738585072014e-308.
 | 
						|
     *
 | 
						|
     *	If the platform supports denormalized numbers,
 | 
						|
     *	there are numbers between zero and Float::MIN.
 | 
						|
     *	0.0.next_float returns the smallest positive floating point number
 | 
						|
     *	including denormalized numbers.
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "MIN", DBL2NUM(DBL_MIN));
 | 
						|
    /*
 | 
						|
     *	The largest possible integer in a double-precision floating point number.
 | 
						|
     *
 | 
						|
     *	Usually defaults to 1.7976931348623157e+308.
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "MAX", DBL2NUM(DBL_MAX));
 | 
						|
    /*
 | 
						|
     *	The difference between 1 and the smallest double-precision floating
 | 
						|
     *	point number greater than 1.
 | 
						|
     *
 | 
						|
     *	Usually defaults to 2.2204460492503131e-16.
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "EPSILON", DBL2NUM(DBL_EPSILON));
 | 
						|
    /*
 | 
						|
     *	An expression representing positive infinity.
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "INFINITY", DBL2NUM(HUGE_VAL));
 | 
						|
    /*
 | 
						|
     *	An expression representing a value which is "not a number".
 | 
						|
     */
 | 
						|
    rb_define_const(rb_cFloat, "NAN", DBL2NUM(nan("")));
 | 
						|
 | 
						|
    rb_define_method(rb_cFloat, "to_s", flo_to_s, 0);
 | 
						|
    rb_define_alias(rb_cFloat, "inspect", "to_s");
 | 
						|
    rb_define_method(rb_cFloat, "coerce", flo_coerce, 1);
 | 
						|
    rb_define_method(rb_cFloat, "+", rb_float_plus, 1);
 | 
						|
    rb_define_method(rb_cFloat, "-", rb_float_minus, 1);
 | 
						|
    rb_define_method(rb_cFloat, "*", rb_float_mul, 1);
 | 
						|
    rb_define_method(rb_cFloat, "/", rb_float_div, 1);
 | 
						|
    rb_define_method(rb_cFloat, "quo", flo_quo, 1);
 | 
						|
    rb_define_method(rb_cFloat, "fdiv", flo_quo, 1);
 | 
						|
    rb_define_method(rb_cFloat, "%", flo_mod, 1);
 | 
						|
    rb_define_method(rb_cFloat, "modulo", flo_mod, 1);
 | 
						|
    rb_define_method(rb_cFloat, "divmod", flo_divmod, 1);
 | 
						|
    rb_define_method(rb_cFloat, "**", rb_float_pow, 1);
 | 
						|
    rb_define_method(rb_cFloat, "==", flo_eq, 1);
 | 
						|
    rb_define_method(rb_cFloat, "===", flo_eq, 1);
 | 
						|
    rb_define_method(rb_cFloat, "<=>", flo_cmp, 1);
 | 
						|
    rb_define_method(rb_cFloat, ">",  rb_float_gt, 1);
 | 
						|
    rb_define_method(rb_cFloat, ">=", flo_ge, 1);
 | 
						|
    rb_define_method(rb_cFloat, "<",  flo_lt, 1);
 | 
						|
    rb_define_method(rb_cFloat, "<=", flo_le, 1);
 | 
						|
    rb_define_method(rb_cFloat, "eql?", flo_eql, 1);
 | 
						|
    rb_define_method(rb_cFloat, "hash", flo_hash, 0);
 | 
						|
 | 
						|
    rb_define_method(rb_cFloat, "to_i", flo_to_i, 0);
 | 
						|
    rb_define_method(rb_cFloat, "to_int", flo_to_i, 0);
 | 
						|
    rb_define_method(rb_cFloat, "floor", flo_floor, -1);
 | 
						|
    rb_define_method(rb_cFloat, "ceil", flo_ceil, -1);
 | 
						|
    rb_define_method(rb_cFloat, "round", flo_round, -1);
 | 
						|
    rb_define_method(rb_cFloat, "truncate", flo_truncate, -1);
 | 
						|
 | 
						|
    rb_define_method(rb_cFloat, "nan?",      flo_is_nan_p, 0);
 | 
						|
    rb_define_method(rb_cFloat, "infinite?", rb_flo_is_infinite_p, 0);
 | 
						|
    rb_define_method(rb_cFloat, "finite?",   rb_flo_is_finite_p, 0);
 | 
						|
    rb_define_method(rb_cFloat, "next_float", flo_next_float, 0);
 | 
						|
    rb_define_method(rb_cFloat, "prev_float", flo_prev_float, 0);
 | 
						|
}
 | 
						|
 | 
						|
#undef rb_float_value
 | 
						|
double
 | 
						|
rb_float_value(VALUE v)
 | 
						|
{
 | 
						|
    return rb_float_value_inline(v);
 | 
						|
}
 | 
						|
 | 
						|
#undef rb_float_new
 | 
						|
VALUE
 | 
						|
rb_float_new(double d)
 | 
						|
{
 | 
						|
    return rb_float_new_inline(d);
 | 
						|
}
 | 
						|
 | 
						|
#include "numeric.rbinc"
 |