mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
ffd0820ab3
This removes the related tests, and puts the related specs behind version guards. This affects all code in lib, including some libraries that may want to support older versions of Ruby.
2802 lines
64 KiB
C
2802 lines
64 KiB
C
/*
|
|
rational.c: Coded by Tadayoshi Funaba 2008-2012
|
|
|
|
This implementation is based on Keiju Ishitsuka's Rational library
|
|
which is written in ruby.
|
|
*/
|
|
|
|
#include "internal.h"
|
|
#include "id.h"
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
#ifdef HAVE_IEEEFP_H
|
|
#include <ieeefp.h>
|
|
#endif
|
|
|
|
#define NDEBUG
|
|
#include "ruby_assert.h"
|
|
|
|
#if defined(HAVE_LIBGMP) && defined(HAVE_GMP_H)
|
|
#define USE_GMP
|
|
#include <gmp.h>
|
|
#endif
|
|
|
|
#define ZERO INT2FIX(0)
|
|
#define ONE INT2FIX(1)
|
|
#define TWO INT2FIX(2)
|
|
|
|
#define GMP_GCD_DIGITS 1
|
|
|
|
#define INT_POSITIVE_P(x) (FIXNUM_P(x) ? FIXNUM_POSITIVE_P(x) : BIGNUM_POSITIVE_P(x))
|
|
#define INT_ZERO_P(x) (FIXNUM_P(x) ? FIXNUM_ZERO_P(x) : rb_bigzero_p(x))
|
|
|
|
VALUE rb_cRational;
|
|
|
|
static ID id_abs, id_integer_p,
|
|
id_i_num, id_i_den;
|
|
|
|
#define id_idiv idDiv
|
|
#define id_to_i idTo_i
|
|
|
|
#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
|
|
#define f_inspect rb_inspect
|
|
#define f_to_s rb_obj_as_string
|
|
|
|
static VALUE nurat_to_f(VALUE self);
|
|
|
|
inline static VALUE
|
|
f_add(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_ZERO_P(y))
|
|
return x;
|
|
if (FIXNUM_ZERO_P(x))
|
|
return y;
|
|
return rb_funcall(x, '+', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_div(VALUE x, VALUE y)
|
|
{
|
|
if (y == ONE)
|
|
return x;
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_div(x, y);
|
|
return rb_funcall(x, '/', 1, y);
|
|
}
|
|
|
|
inline static int
|
|
f_lt_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return (SIGNED_VALUE)x < (SIGNED_VALUE)y;
|
|
return RTEST(rb_funcall(x, '<', 1, y));
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/* f_mod is used only in f_gcd defined when NDEBUG is not defined */
|
|
inline static VALUE
|
|
f_mod(VALUE x, VALUE y)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_modulo(x, y);
|
|
return rb_funcall(x, '%', 1, y);
|
|
}
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_mul(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_ZERO_P(y) && RB_INTEGER_TYPE_P(x))
|
|
return ZERO;
|
|
if (y == ONE) return x;
|
|
if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y))
|
|
return ZERO;
|
|
if (x == ONE) return y;
|
|
else if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_mul(x, y);
|
|
return rb_funcall(x, '*', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_sub(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(y) && FIXNUM_ZERO_P(y))
|
|
return x;
|
|
return rb_funcall(x, '-', 1, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_abs(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_abs(x);
|
|
return rb_funcall(x, id_abs, 0);
|
|
}
|
|
|
|
|
|
inline static VALUE
|
|
f_integer_p(VALUE x)
|
|
{
|
|
return RB_INTEGER_TYPE_P(x);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_to_i(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_STRING))
|
|
return rb_str_to_inum(x, 10, 0);
|
|
return rb_funcall(x, id_to_i, 0);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_eqeq_p(VALUE x, VALUE y)
|
|
{
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return x == y;
|
|
return (int)rb_equal(x, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_idiv(VALUE x, VALUE y)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_idiv(x, y);
|
|
return rb_funcall(x, id_idiv, 1, y);
|
|
}
|
|
|
|
#define f_expt10(x) rb_int_pow(INT2FIX(10), x)
|
|
|
|
inline static int
|
|
f_zero_p(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
return FIXNUM_ZERO_P(x);
|
|
}
|
|
else if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
VALUE num = RRATIONAL(x)->num;
|
|
|
|
return FIXNUM_ZERO_P(num);
|
|
}
|
|
return (int)rb_equal(x, ZERO);
|
|
}
|
|
|
|
#define f_nonzero_p(x) (!f_zero_p(x))
|
|
|
|
inline static int
|
|
f_one_p(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
return x == LONG2FIX(1);
|
|
}
|
|
else if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
VALUE num = RRATIONAL(x)->num;
|
|
VALUE den = RRATIONAL(x)->den;
|
|
|
|
return num == LONG2FIX(1) && den == LONG2FIX(1);
|
|
}
|
|
return (int)rb_equal(x, ONE);
|
|
}
|
|
|
|
inline static int
|
|
f_minus_one_p(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x)) {
|
|
return x == LONG2FIX(-1);
|
|
}
|
|
else if (RB_TYPE_P(x, T_BIGNUM)) {
|
|
return Qfalse;
|
|
}
|
|
else if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
VALUE num = RRATIONAL(x)->num;
|
|
VALUE den = RRATIONAL(x)->den;
|
|
|
|
return num == LONG2FIX(-1) && den == LONG2FIX(1);
|
|
}
|
|
return (int)rb_equal(x, INT2FIX(-1));
|
|
}
|
|
|
|
inline static int
|
|
f_kind_of_p(VALUE x, VALUE c)
|
|
{
|
|
return (int)rb_obj_is_kind_of(x, c);
|
|
}
|
|
|
|
inline static int
|
|
k_numeric_p(VALUE x)
|
|
{
|
|
return f_kind_of_p(x, rb_cNumeric);
|
|
}
|
|
|
|
inline static int
|
|
k_integer_p(VALUE x)
|
|
{
|
|
return RB_INTEGER_TYPE_P(x);
|
|
}
|
|
|
|
inline static int
|
|
k_float_p(VALUE x)
|
|
{
|
|
return RB_FLOAT_TYPE_P(x);
|
|
}
|
|
|
|
inline static int
|
|
k_rational_p(VALUE x)
|
|
{
|
|
return RB_TYPE_P(x, T_RATIONAL);
|
|
}
|
|
|
|
#define k_exact_p(x) (!k_float_p(x))
|
|
#define k_inexact_p(x) k_float_p(x)
|
|
|
|
#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
|
|
#define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x))
|
|
|
|
#ifdef USE_GMP
|
|
VALUE
|
|
rb_gcd_gmp(VALUE x, VALUE y)
|
|
{
|
|
const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
|
|
mpz_t mx, my, mz;
|
|
size_t count;
|
|
VALUE z;
|
|
long zn;
|
|
|
|
mpz_init(mx);
|
|
mpz_init(my);
|
|
mpz_init(mz);
|
|
mpz_import(mx, BIGNUM_LEN(x), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(x));
|
|
mpz_import(my, BIGNUM_LEN(y), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(y));
|
|
|
|
mpz_gcd(mz, mx, my);
|
|
|
|
mpz_clear(mx);
|
|
mpz_clear(my);
|
|
|
|
zn = (mpz_sizeinbase(mz, 16) + SIZEOF_BDIGIT*2 - 1) / (SIZEOF_BDIGIT*2);
|
|
z = rb_big_new(zn, 1);
|
|
mpz_export(BIGNUM_DIGITS(z), &count, -1, sizeof(BDIGIT), 0, nails, mz);
|
|
|
|
mpz_clear(mz);
|
|
|
|
return rb_big_norm(z);
|
|
}
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
#define f_gcd f_gcd_orig
|
|
#endif
|
|
|
|
inline static long
|
|
i_gcd(long x, long y)
|
|
{
|
|
unsigned long u, v, t;
|
|
int shift;
|
|
|
|
if (x < 0)
|
|
x = -x;
|
|
if (y < 0)
|
|
y = -y;
|
|
|
|
if (x == 0)
|
|
return y;
|
|
if (y == 0)
|
|
return x;
|
|
|
|
u = (unsigned long)x;
|
|
v = (unsigned long)y;
|
|
for (shift = 0; ((u | v) & 1) == 0; ++shift) {
|
|
u >>= 1;
|
|
v >>= 1;
|
|
}
|
|
|
|
while ((u & 1) == 0)
|
|
u >>= 1;
|
|
|
|
do {
|
|
while ((v & 1) == 0)
|
|
v >>= 1;
|
|
|
|
if (u > v) {
|
|
t = v;
|
|
v = u;
|
|
u = t;
|
|
}
|
|
v = v - u;
|
|
} while (v != 0);
|
|
|
|
return (long)(u << shift);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_gcd_normal(VALUE x, VALUE y)
|
|
{
|
|
VALUE z;
|
|
|
|
if (FIXNUM_P(x) && FIXNUM_P(y))
|
|
return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
|
|
|
|
if (INT_NEGATIVE_P(x))
|
|
x = rb_int_uminus(x);
|
|
if (INT_NEGATIVE_P(y))
|
|
y = rb_int_uminus(y);
|
|
|
|
if (INT_ZERO_P(x))
|
|
return y;
|
|
if (INT_ZERO_P(y))
|
|
return x;
|
|
|
|
for (;;) {
|
|
if (FIXNUM_P(x)) {
|
|
if (FIXNUM_ZERO_P(x))
|
|
return y;
|
|
if (FIXNUM_P(y))
|
|
return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
|
|
}
|
|
z = x;
|
|
x = rb_int_modulo(y, x);
|
|
y = z;
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
VALUE
|
|
rb_gcd_normal(VALUE x, VALUE y)
|
|
{
|
|
return f_gcd_normal(x, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_gcd(VALUE x, VALUE y)
|
|
{
|
|
#ifdef USE_GMP
|
|
if (RB_TYPE_P(x, T_BIGNUM) && RB_TYPE_P(y, T_BIGNUM)) {
|
|
size_t xn = BIGNUM_LEN(x);
|
|
size_t yn = BIGNUM_LEN(y);
|
|
if (GMP_GCD_DIGITS <= xn || GMP_GCD_DIGITS <= yn)
|
|
return rb_gcd_gmp(x, y);
|
|
}
|
|
#endif
|
|
return f_gcd_normal(x, y);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
#undef f_gcd
|
|
|
|
inline static VALUE
|
|
f_gcd(VALUE x, VALUE y)
|
|
{
|
|
VALUE r = f_gcd_orig(x, y);
|
|
if (f_nonzero_p(r)) {
|
|
assert(f_zero_p(f_mod(x, r)));
|
|
assert(f_zero_p(f_mod(y, r)));
|
|
}
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_lcm(VALUE x, VALUE y)
|
|
{
|
|
if (INT_ZERO_P(x) || INT_ZERO_P(y))
|
|
return ZERO;
|
|
return f_abs(f_mul(f_div(x, f_gcd(x, y)), y));
|
|
}
|
|
|
|
#define get_dat1(x) \
|
|
struct RRational *dat = RRATIONAL(x)
|
|
|
|
#define get_dat2(x,y) \
|
|
struct RRational *adat = RRATIONAL(x), *bdat = RRATIONAL(y)
|
|
|
|
inline static VALUE
|
|
nurat_s_new_internal(VALUE klass, VALUE num, VALUE den)
|
|
{
|
|
NEWOBJ_OF(obj, struct RRational, klass, T_RATIONAL | (RGENGC_WB_PROTECTED_RATIONAL ? FL_WB_PROTECTED : 0));
|
|
|
|
RRATIONAL_SET_NUM(obj, num);
|
|
RRATIONAL_SET_DEN(obj, den);
|
|
OBJ_FREEZE_RAW(obj);
|
|
|
|
return (VALUE)obj;
|
|
}
|
|
|
|
static VALUE
|
|
nurat_s_alloc(VALUE klass)
|
|
{
|
|
return nurat_s_new_internal(klass, ZERO, ONE);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_rational_new_bang1(VALUE klass, VALUE x)
|
|
{
|
|
return nurat_s_new_internal(klass, x, ONE);
|
|
}
|
|
|
|
#ifdef CANONICALIZATION_FOR_MATHN
|
|
static int canonicalization = 0;
|
|
|
|
RUBY_FUNC_EXPORTED void
|
|
nurat_canonicalization(int f)
|
|
{
|
|
canonicalization = f;
|
|
}
|
|
#else
|
|
# define canonicalization 0
|
|
#endif
|
|
|
|
inline static void
|
|
nurat_int_check(VALUE num)
|
|
{
|
|
if (!RB_INTEGER_TYPE_P(num)) {
|
|
if (!k_numeric_p(num) || !f_integer_p(num))
|
|
rb_raise(rb_eTypeError, "not an integer");
|
|
}
|
|
}
|
|
|
|
inline static VALUE
|
|
nurat_int_value(VALUE num)
|
|
{
|
|
nurat_int_check(num);
|
|
if (!k_integer_p(num))
|
|
num = f_to_i(num);
|
|
return num;
|
|
}
|
|
|
|
static void
|
|
nurat_canonicalize(VALUE *num, VALUE *den)
|
|
{
|
|
assert(num); assert(RB_INTEGER_TYPE_P(*num));
|
|
assert(den); assert(RB_INTEGER_TYPE_P(*den));
|
|
if (INT_NEGATIVE_P(*den)) {
|
|
*num = rb_int_uminus(*num);
|
|
*den = rb_int_uminus(*den);
|
|
}
|
|
else if (INT_ZERO_P(*den)) {
|
|
rb_num_zerodiv();
|
|
}
|
|
}
|
|
|
|
static void
|
|
nurat_reduce(VALUE *x, VALUE *y)
|
|
{
|
|
VALUE gcd;
|
|
if (*x == ONE || *y == ONE) return;
|
|
gcd = f_gcd(*x, *y);
|
|
*x = f_idiv(*x, gcd);
|
|
*y = f_idiv(*y, gcd);
|
|
}
|
|
|
|
inline static VALUE
|
|
nurat_s_canonicalize_internal(VALUE klass, VALUE num, VALUE den)
|
|
{
|
|
nurat_canonicalize(&num, &den);
|
|
nurat_reduce(&num, &den);
|
|
|
|
if (canonicalization && f_one_p(den))
|
|
return num;
|
|
return nurat_s_new_internal(klass, num, den);
|
|
}
|
|
|
|
inline static VALUE
|
|
nurat_s_canonicalize_internal_no_reduce(VALUE klass, VALUE num, VALUE den)
|
|
{
|
|
nurat_canonicalize(&num, &den);
|
|
|
|
if (canonicalization && f_one_p(den))
|
|
return num;
|
|
return nurat_s_new_internal(klass, num, den);
|
|
}
|
|
|
|
static VALUE
|
|
nurat_s_new(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE num, den;
|
|
|
|
switch (rb_scan_args(argc, argv, "11", &num, &den)) {
|
|
case 1:
|
|
num = nurat_int_value(num);
|
|
den = ONE;
|
|
break;
|
|
default:
|
|
num = nurat_int_value(num);
|
|
den = nurat_int_value(den);
|
|
break;
|
|
}
|
|
|
|
return nurat_s_canonicalize_internal(klass, num, den);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_rational_new2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_rational_p(x));
|
|
assert(!k_rational_p(y));
|
|
return nurat_s_canonicalize_internal(klass, x, y);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y)
|
|
{
|
|
assert(!k_rational_p(x));
|
|
assert(!k_rational_p(y));
|
|
return nurat_s_canonicalize_internal_no_reduce(klass, x, y);
|
|
}
|
|
|
|
static VALUE nurat_convert(VALUE klass, VALUE numv, VALUE denv, int raise);
|
|
static VALUE nurat_s_convert(int argc, VALUE *argv, VALUE klass);
|
|
|
|
/*
|
|
* call-seq:
|
|
* Rational(x, y, exception: true) -> rational or nil
|
|
* Rational(arg, exception: true) -> rational or nil
|
|
*
|
|
* Returns +x/y+ or +arg+ as a Rational.
|
|
*
|
|
* Rational(2, 3) #=> (2/3)
|
|
* Rational(5) #=> (5/1)
|
|
* Rational(0.5) #=> (1/2)
|
|
* Rational(0.3) #=> (5404319552844595/18014398509481984)
|
|
*
|
|
* Rational("2/3") #=> (2/3)
|
|
* Rational("0.3") #=> (3/10)
|
|
*
|
|
* Rational("10 cents") #=> ArgumentError
|
|
* Rational(nil) #=> TypeError
|
|
* Rational(1, nil) #=> TypeError
|
|
*
|
|
* Rational("10 cents", exception: false) #=> nil
|
|
*
|
|
* Syntax of the string form:
|
|
*
|
|
* string form = extra spaces , rational , extra spaces ;
|
|
* rational = [ sign ] , unsigned rational ;
|
|
* unsigned rational = numerator | numerator , "/" , denominator ;
|
|
* numerator = integer part | fractional part | integer part , fractional part ;
|
|
* denominator = digits ;
|
|
* integer part = digits ;
|
|
* fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
|
|
* sign = "-" | "+" ;
|
|
* digits = digit , { digit | "_" , digit } ;
|
|
* digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
|
|
* extra spaces = ? \s* ? ;
|
|
*
|
|
* See also String#to_r.
|
|
*/
|
|
static VALUE
|
|
nurat_f_rational(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE a1, a2, opts = Qnil;
|
|
int raise = TRUE;
|
|
|
|
if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) {
|
|
a2 = Qundef;
|
|
}
|
|
if (!NIL_P(opts)) {
|
|
raise = rb_opts_exception_p(opts, raise);
|
|
}
|
|
return nurat_convert(rb_cRational, a1, a2, raise);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.numerator -> integer
|
|
*
|
|
* Returns the numerator.
|
|
*
|
|
* Rational(7).numerator #=> 7
|
|
* Rational(7, 1).numerator #=> 7
|
|
* Rational(9, -4).numerator #=> -9
|
|
* Rational(-2, -10).numerator #=> 1
|
|
*/
|
|
static VALUE
|
|
nurat_numerator(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->num;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.denominator -> integer
|
|
*
|
|
* Returns the denominator (always positive).
|
|
*
|
|
* Rational(7).denominator #=> 1
|
|
* Rational(7, 1).denominator #=> 1
|
|
* Rational(9, -4).denominator #=> 4
|
|
* Rational(-2, -10).denominator #=> 5
|
|
*/
|
|
static VALUE
|
|
nurat_denominator(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return dat->den;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* -rat -> rational
|
|
*
|
|
* Negates +rat+.
|
|
*/
|
|
VALUE
|
|
rb_rational_uminus(VALUE self)
|
|
{
|
|
const int unused = (assert(RB_TYPE_P(self, T_RATIONAL)), 0);
|
|
get_dat1(self);
|
|
(void)unused;
|
|
return f_rational_new2(CLASS_OF(self), rb_int_uminus(dat->num), dat->den);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
#define f_imul f_imul_orig
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_imul(long a, long b)
|
|
{
|
|
VALUE r;
|
|
|
|
if (a == 0 || b == 0)
|
|
return ZERO;
|
|
else if (a == 1)
|
|
return LONG2NUM(b);
|
|
else if (b == 1)
|
|
return LONG2NUM(a);
|
|
|
|
if (MUL_OVERFLOW_LONG_P(a, b))
|
|
r = rb_big_mul(rb_int2big(a), rb_int2big(b));
|
|
else
|
|
r = LONG2NUM(a * b);
|
|
return r;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
#undef f_imul
|
|
|
|
inline static VALUE
|
|
f_imul(long x, long y)
|
|
{
|
|
VALUE r = f_imul_orig(x, y);
|
|
assert(f_eqeq_p(r, f_mul(LONG2NUM(x), LONG2NUM(y))));
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
inline static VALUE
|
|
f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
|
|
{
|
|
VALUE num, den;
|
|
|
|
if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
|
|
FIXNUM_P(bnum) && FIXNUM_P(bden)) {
|
|
long an = FIX2LONG(anum);
|
|
long ad = FIX2LONG(aden);
|
|
long bn = FIX2LONG(bnum);
|
|
long bd = FIX2LONG(bden);
|
|
long ig = i_gcd(ad, bd);
|
|
|
|
VALUE g = LONG2NUM(ig);
|
|
VALUE a = f_imul(an, bd / ig);
|
|
VALUE b = f_imul(bn, ad / ig);
|
|
VALUE c;
|
|
|
|
if (k == '+')
|
|
c = rb_int_plus(a, b);
|
|
else
|
|
c = rb_int_minus(a, b);
|
|
|
|
b = rb_int_idiv(aden, g);
|
|
g = f_gcd(c, g);
|
|
num = rb_int_idiv(c, g);
|
|
a = rb_int_idiv(bden, g);
|
|
den = rb_int_mul(a, b);
|
|
}
|
|
else if (RB_INTEGER_TYPE_P(anum) && RB_INTEGER_TYPE_P(aden) &&
|
|
RB_INTEGER_TYPE_P(bnum) && RB_INTEGER_TYPE_P(bden)) {
|
|
VALUE g = f_gcd(aden, bden);
|
|
VALUE a = rb_int_mul(anum, rb_int_idiv(bden, g));
|
|
VALUE b = rb_int_mul(bnum, rb_int_idiv(aden, g));
|
|
VALUE c;
|
|
|
|
if (k == '+')
|
|
c = rb_int_plus(a, b);
|
|
else
|
|
c = rb_int_minus(a, b);
|
|
|
|
b = rb_int_idiv(aden, g);
|
|
g = f_gcd(c, g);
|
|
num = rb_int_idiv(c, g);
|
|
a = rb_int_idiv(bden, g);
|
|
den = rb_int_mul(a, b);
|
|
}
|
|
else {
|
|
double a = NUM2DBL(anum) / NUM2DBL(aden);
|
|
double b = NUM2DBL(bnum) / NUM2DBL(bden);
|
|
double c = k == '+' ? a + b : a - b;
|
|
return DBL2NUM(c);
|
|
}
|
|
return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
|
|
}
|
|
|
|
static double nurat_to_double(VALUE self);
|
|
/*
|
|
* call-seq:
|
|
* rat + numeric -> numeric
|
|
*
|
|
* Performs addition.
|
|
*
|
|
* Rational(2, 3) + Rational(2, 3) #=> (4/3)
|
|
* Rational(900) + Rational(1) #=> (901/1)
|
|
* Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
|
|
* Rational(9, 8) + 4 #=> (41/8)
|
|
* Rational(20, 9) + 9.8 #=> 12.022222222222222
|
|
*/
|
|
VALUE
|
|
rb_rational_plus(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_rational_new_no_reduce2(CLASS_OF(self),
|
|
rb_int_plus(dat->num, rb_int_mul(other, dat->den)),
|
|
dat->den);
|
|
}
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
return DBL2NUM(nurat_to_double(self) + RFLOAT_VALUE(other));
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
return f_addsub(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '+');
|
|
}
|
|
}
|
|
else {
|
|
return rb_num_coerce_bin(self, other, '+');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat - numeric -> numeric
|
|
*
|
|
* Performs subtraction.
|
|
*
|
|
* Rational(2, 3) - Rational(2, 3) #=> (0/1)
|
|
* Rational(900) - Rational(1) #=> (899/1)
|
|
* Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
|
|
* Rational(9, 8) - 4 #=> (-23/8)
|
|
* Rational(20, 9) - 9.8 #=> -7.577777777777778
|
|
*/
|
|
static VALUE
|
|
nurat_sub(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_rational_new_no_reduce2(CLASS_OF(self),
|
|
rb_int_minus(dat->num, rb_int_mul(other, dat->den)),
|
|
dat->den);
|
|
}
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
return DBL2NUM(nurat_to_double(self) - RFLOAT_VALUE(other));
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
return f_addsub(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '-');
|
|
}
|
|
}
|
|
else {
|
|
return rb_num_coerce_bin(self, other, '-');
|
|
}
|
|
}
|
|
|
|
inline static VALUE
|
|
f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
|
|
{
|
|
VALUE num, den;
|
|
|
|
assert(RB_TYPE_P(self, T_RATIONAL));
|
|
|
|
/* Integer#** can return Rational with Float right now */
|
|
if (RB_FLOAT_TYPE_P(anum) || RB_FLOAT_TYPE_P(aden) ||
|
|
RB_FLOAT_TYPE_P(bnum) || RB_FLOAT_TYPE_P(bden)) {
|
|
double an = NUM2DBL(anum), ad = NUM2DBL(aden);
|
|
double bn = NUM2DBL(bnum), bd = NUM2DBL(bden);
|
|
double x = (an * bn) / (ad * bd);
|
|
return DBL2NUM(x);
|
|
}
|
|
|
|
assert(RB_INTEGER_TYPE_P(anum));
|
|
assert(RB_INTEGER_TYPE_P(aden));
|
|
assert(RB_INTEGER_TYPE_P(bnum));
|
|
assert(RB_INTEGER_TYPE_P(bden));
|
|
|
|
if (k == '/') {
|
|
VALUE t;
|
|
|
|
if (INT_NEGATIVE_P(bnum)) {
|
|
anum = rb_int_uminus(anum);
|
|
bnum = rb_int_uminus(bnum);
|
|
}
|
|
t = bnum;
|
|
bnum = bden;
|
|
bden = t;
|
|
}
|
|
|
|
if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
|
|
FIXNUM_P(bnum) && FIXNUM_P(bden)) {
|
|
long an = FIX2LONG(anum);
|
|
long ad = FIX2LONG(aden);
|
|
long bn = FIX2LONG(bnum);
|
|
long bd = FIX2LONG(bden);
|
|
long g1 = i_gcd(an, bd);
|
|
long g2 = i_gcd(ad, bn);
|
|
|
|
num = f_imul(an / g1, bn / g2);
|
|
den = f_imul(ad / g2, bd / g1);
|
|
}
|
|
else {
|
|
VALUE g1 = f_gcd(anum, bden);
|
|
VALUE g2 = f_gcd(aden, bnum);
|
|
|
|
num = rb_int_mul(rb_int_idiv(anum, g1), rb_int_idiv(bnum, g2));
|
|
den = rb_int_mul(rb_int_idiv(aden, g2), rb_int_idiv(bden, g1));
|
|
}
|
|
return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat * numeric -> numeric
|
|
*
|
|
* Performs multiplication.
|
|
*
|
|
* Rational(2, 3) * Rational(2, 3) #=> (4/9)
|
|
* Rational(900) * Rational(1) #=> (900/1)
|
|
* Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
|
|
* Rational(9, 8) * 4 #=> (9/2)
|
|
* Rational(20, 9) * 9.8 #=> 21.77777777777778
|
|
*/
|
|
VALUE
|
|
rb_rational_mul(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_muldiv(self,
|
|
dat->num, dat->den,
|
|
other, ONE, '*');
|
|
}
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
return DBL2NUM(nurat_to_double(self) * RFLOAT_VALUE(other));
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
return f_muldiv(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '*');
|
|
}
|
|
}
|
|
else {
|
|
return rb_num_coerce_bin(self, other, '*');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat / numeric -> numeric
|
|
* rat.quo(numeric) -> numeric
|
|
*
|
|
* Performs division.
|
|
*
|
|
* Rational(2, 3) / Rational(2, 3) #=> (1/1)
|
|
* Rational(900) / Rational(1) #=> (900/1)
|
|
* Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
|
|
* Rational(9, 8) / 4 #=> (9/32)
|
|
* Rational(20, 9) / 9.8 #=> 0.22675736961451246
|
|
*/
|
|
static VALUE
|
|
nurat_div(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
if (f_zero_p(other))
|
|
rb_num_zerodiv();
|
|
{
|
|
get_dat1(self);
|
|
|
|
return f_muldiv(self,
|
|
dat->num, dat->den,
|
|
other, ONE, '/');
|
|
}
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
VALUE v = nurat_to_f(self);
|
|
return rb_flo_div_flo(v, other);
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
if (f_zero_p(other))
|
|
rb_num_zerodiv();
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
if (f_one_p(self))
|
|
return f_rational_new_no_reduce2(CLASS_OF(self),
|
|
bdat->den, bdat->num);
|
|
|
|
return f_muldiv(self,
|
|
adat->num, adat->den,
|
|
bdat->num, bdat->den, '/');
|
|
}
|
|
}
|
|
else {
|
|
return rb_num_coerce_bin(self, other, '/');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.fdiv(numeric) -> float
|
|
*
|
|
* Performs division and returns the value as a Float.
|
|
*
|
|
* Rational(2, 3).fdiv(1) #=> 0.6666666666666666
|
|
* Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
|
|
* Rational(2).fdiv(3) #=> 0.6666666666666666
|
|
*/
|
|
static VALUE
|
|
nurat_fdiv(VALUE self, VALUE other)
|
|
{
|
|
VALUE div;
|
|
if (f_zero_p(other))
|
|
return nurat_div(self, rb_float_new(0.0));
|
|
if (FIXNUM_P(other) && other == LONG2FIX(1))
|
|
return nurat_to_f(self);
|
|
div = nurat_div(self, other);
|
|
if (RB_TYPE_P(div, T_RATIONAL))
|
|
return nurat_to_f(div);
|
|
if (RB_FLOAT_TYPE_P(div))
|
|
return div;
|
|
return rb_funcall(div, idTo_f, 0);
|
|
}
|
|
|
|
inline static VALUE
|
|
f_odd_p(VALUE integer)
|
|
{
|
|
if (rb_funcall(integer, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
|
|
return Qtrue;
|
|
}
|
|
return Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat ** numeric -> numeric
|
|
*
|
|
* Performs exponentiation.
|
|
*
|
|
* Rational(2) ** Rational(3) #=> (8/1)
|
|
* Rational(10) ** -2 #=> (1/100)
|
|
* Rational(10) ** -2.0 #=> 0.01
|
|
* Rational(-4) ** Rational(1, 2) #=> (0.0+2.0i)
|
|
* Rational(1, 2) ** 0 #=> (1/1)
|
|
* Rational(1, 2) ** 0.0 #=> 1.0
|
|
*/
|
|
VALUE
|
|
rb_rational_pow(VALUE self, VALUE other)
|
|
{
|
|
if (k_numeric_p(other) && k_exact_zero_p(other))
|
|
return f_rational_new_bang1(CLASS_OF(self), ONE);
|
|
|
|
if (k_rational_p(other)) {
|
|
get_dat1(other);
|
|
|
|
if (f_one_p(dat->den))
|
|
other = dat->num; /* c14n */
|
|
}
|
|
|
|
/* Deal with special cases of 0**n and 1**n */
|
|
if (k_numeric_p(other) && k_exact_p(other)) {
|
|
get_dat1(self);
|
|
if (f_one_p(dat->den)) {
|
|
if (f_one_p(dat->num)) {
|
|
return f_rational_new_bang1(CLASS_OF(self), ONE);
|
|
}
|
|
else if (f_minus_one_p(dat->num) && RB_INTEGER_TYPE_P(other)) {
|
|
return f_rational_new_bang1(CLASS_OF(self), INT2FIX(f_odd_p(other) ? -1 : 1));
|
|
}
|
|
else if (INT_ZERO_P(dat->num)) {
|
|
if (rb_num_negative_p(other)) {
|
|
rb_num_zerodiv();
|
|
}
|
|
else {
|
|
return f_rational_new_bang1(CLASS_OF(self), ZERO);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* General case */
|
|
if (FIXNUM_P(other)) {
|
|
{
|
|
VALUE num, den;
|
|
|
|
get_dat1(self);
|
|
|
|
if (INT_POSITIVE_P(other)) {
|
|
num = rb_int_pow(dat->num, other);
|
|
den = rb_int_pow(dat->den, other);
|
|
}
|
|
else if (INT_NEGATIVE_P(other)) {
|
|
num = rb_int_pow(dat->den, rb_int_uminus(other));
|
|
den = rb_int_pow(dat->num, rb_int_uminus(other));
|
|
}
|
|
else {
|
|
num = ONE;
|
|
den = ONE;
|
|
}
|
|
if (RB_FLOAT_TYPE_P(num)) { /* infinity due to overflow */
|
|
if (RB_FLOAT_TYPE_P(den))
|
|
return DBL2NUM(nan(""));
|
|
return num;
|
|
}
|
|
if (RB_FLOAT_TYPE_P(den)) { /* infinity due to overflow */
|
|
num = ZERO;
|
|
den = ONE;
|
|
}
|
|
return f_rational_new2(CLASS_OF(self), num, den);
|
|
}
|
|
}
|
|
else if (RB_TYPE_P(other, T_BIGNUM)) {
|
|
rb_warn("in a**b, b may be too big");
|
|
return rb_float_pow(nurat_to_f(self), other);
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other) || RB_TYPE_P(other, T_RATIONAL)) {
|
|
return rb_float_pow(nurat_to_f(self), other);
|
|
}
|
|
else {
|
|
return rb_num_coerce_bin(self, other, rb_intern("**"));
|
|
}
|
|
}
|
|
#define nurat_expt rb_rational_pow
|
|
|
|
/*
|
|
* call-seq:
|
|
* rational <=> numeric -> -1, 0, +1, or nil
|
|
*
|
|
* Returns -1, 0, or +1 depending on whether +rational+ is
|
|
* less than, equal to, or greater than +numeric+.
|
|
*
|
|
* +nil+ is returned if the two values are incomparable.
|
|
*
|
|
* Rational(2, 3) <=> Rational(2, 3) #=> 0
|
|
* Rational(5) <=> 5 #=> 0
|
|
* Rational(2, 3) <=> Rational(1, 3) #=> 1
|
|
* Rational(1, 3) <=> 1 #=> -1
|
|
* Rational(1, 3) <=> 0.3 #=> 1
|
|
*
|
|
* Rational(1, 3) <=> "0.3" #=> nil
|
|
*/
|
|
VALUE
|
|
rb_rational_cmp(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
{
|
|
get_dat1(self);
|
|
|
|
if (dat->den == LONG2FIX(1))
|
|
return rb_int_cmp(dat->num, other); /* c14n */
|
|
other = f_rational_new_bang1(CLASS_OF(self), other);
|
|
goto other_is_rational;
|
|
}
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
return rb_dbl_cmp(nurat_to_double(self), RFLOAT_VALUE(other));
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
other_is_rational:
|
|
{
|
|
VALUE num1, num2;
|
|
|
|
get_dat2(self, other);
|
|
|
|
if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
|
|
FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
|
|
num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
|
|
num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
|
|
}
|
|
else {
|
|
num1 = rb_int_mul(adat->num, bdat->den);
|
|
num2 = rb_int_mul(bdat->num, adat->den);
|
|
}
|
|
return rb_int_cmp(rb_int_minus(num1, num2), ZERO);
|
|
}
|
|
}
|
|
else {
|
|
return rb_num_coerce_cmp(self, other, rb_intern("<=>"));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat == object -> true or false
|
|
*
|
|
* Returns +true+ if +rat+ equals +object+ numerically.
|
|
*
|
|
* Rational(2, 3) == Rational(2, 3) #=> true
|
|
* Rational(5) == 5 #=> true
|
|
* Rational(0) == 0.0 #=> true
|
|
* Rational('1/3') == 0.33 #=> false
|
|
* Rational('1/2') == '1/2' #=> false
|
|
*/
|
|
static VALUE
|
|
nurat_eqeq_p(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
get_dat1(self);
|
|
|
|
if (RB_INTEGER_TYPE_P(dat->num) && RB_INTEGER_TYPE_P(dat->den)) {
|
|
if (INT_ZERO_P(dat->num) && INT_ZERO_P(other))
|
|
return Qtrue;
|
|
|
|
if (!FIXNUM_P(dat->den))
|
|
return Qfalse;
|
|
if (FIX2LONG(dat->den) != 1)
|
|
return Qfalse;
|
|
return rb_int_equal(dat->num, other);
|
|
}
|
|
else {
|
|
const double d = nurat_to_double(self);
|
|
return f_boolcast(FIXNUM_ZERO_P(rb_dbl_cmp(d, NUM2DBL(other))));
|
|
}
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
const double d = nurat_to_double(self);
|
|
return f_boolcast(FIXNUM_ZERO_P(rb_dbl_cmp(d, RFLOAT_VALUE(other))));
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
{
|
|
get_dat2(self, other);
|
|
|
|
if (INT_ZERO_P(adat->num) && INT_ZERO_P(bdat->num))
|
|
return Qtrue;
|
|
|
|
return f_boolcast(rb_int_equal(adat->num, bdat->num) &&
|
|
rb_int_equal(adat->den, bdat->den));
|
|
}
|
|
}
|
|
else {
|
|
return rb_equal(other, self);
|
|
}
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_coerce(VALUE self, VALUE other)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(other)) {
|
|
return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
|
|
}
|
|
else if (RB_FLOAT_TYPE_P(other)) {
|
|
return rb_assoc_new(other, nurat_to_f(self));
|
|
}
|
|
else if (RB_TYPE_P(other, T_RATIONAL)) {
|
|
return rb_assoc_new(other, self);
|
|
}
|
|
else if (RB_TYPE_P(other, T_COMPLEX)) {
|
|
if (k_exact_zero_p(RCOMPLEX(other)->imag))
|
|
return rb_assoc_new(f_rational_new_bang1
|
|
(CLASS_OF(self), RCOMPLEX(other)->real), self);
|
|
else
|
|
return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
|
|
}
|
|
|
|
rb_raise(rb_eTypeError, "%s can't be coerced into %s",
|
|
rb_obj_classname(other), rb_obj_classname(self));
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.positive? -> true or false
|
|
*
|
|
* Returns +true+ if +rat+ is greater than 0.
|
|
*/
|
|
static VALUE
|
|
nurat_positive_p(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_boolcast(INT_POSITIVE_P(dat->num));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.negative? -> true or false
|
|
*
|
|
* Returns +true+ if +rat+ is less than 0.
|
|
*/
|
|
static VALUE
|
|
nurat_negative_p(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return f_boolcast(INT_NEGATIVE_P(dat->num));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.abs -> rational
|
|
* rat.magnitude -> rational
|
|
*
|
|
* Returns the absolute value of +rat+.
|
|
*
|
|
* (1/2r).abs #=> (1/2)
|
|
* (-1/2r).abs #=> (1/2)
|
|
*
|
|
* Rational#magnitude is an alias for Rational#abs.
|
|
*/
|
|
|
|
VALUE
|
|
rb_rational_abs(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
if (INT_NEGATIVE_P(dat->num)) {
|
|
VALUE num = rb_int_abs(dat->num);
|
|
return nurat_s_canonicalize_internal_no_reduce(CLASS_OF(self), num, dat->den);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
static VALUE
|
|
nurat_floor(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_int_idiv(dat->num, dat->den);
|
|
}
|
|
|
|
static VALUE
|
|
nurat_ceil(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_i -> integer
|
|
*
|
|
* Returns the truncated value as an integer.
|
|
*
|
|
* Equivalent to Rational#truncate.
|
|
*
|
|
* Rational(2, 3).to_i #=> 0
|
|
* Rational(3).to_i #=> 3
|
|
* Rational(300.6).to_i #=> 300
|
|
* Rational(98, 71).to_i #=> 1
|
|
* Rational(-31, 2).to_i #=> -15
|
|
*/
|
|
static VALUE
|
|
nurat_truncate(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
if (INT_NEGATIVE_P(dat->num))
|
|
return rb_int_uminus(rb_int_idiv(rb_int_uminus(dat->num), dat->den));
|
|
return rb_int_idiv(dat->num, dat->den);
|
|
}
|
|
|
|
static VALUE
|
|
nurat_round_half_up(VALUE self)
|
|
{
|
|
VALUE num, den, neg;
|
|
|
|
get_dat1(self);
|
|
|
|
num = dat->num;
|
|
den = dat->den;
|
|
neg = INT_NEGATIVE_P(num);
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
num = rb_int_plus(rb_int_mul(num, TWO), den);
|
|
den = rb_int_mul(den, TWO);
|
|
num = rb_int_idiv(num, den);
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
nurat_round_half_down(VALUE self)
|
|
{
|
|
VALUE num, den, neg;
|
|
|
|
get_dat1(self);
|
|
|
|
num = dat->num;
|
|
den = dat->den;
|
|
neg = INT_NEGATIVE_P(num);
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
num = rb_int_plus(rb_int_mul(num, TWO), den);
|
|
num = rb_int_minus(num, ONE);
|
|
den = rb_int_mul(den, TWO);
|
|
num = rb_int_idiv(num, den);
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
nurat_round_half_even(VALUE self)
|
|
{
|
|
VALUE num, den, neg, qr;
|
|
|
|
get_dat1(self);
|
|
|
|
num = dat->num;
|
|
den = dat->den;
|
|
neg = INT_NEGATIVE_P(num);
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
num = rb_int_plus(rb_int_mul(num, TWO), den);
|
|
den = rb_int_mul(den, TWO);
|
|
qr = rb_int_divmod(num, den);
|
|
num = RARRAY_AREF(qr, 0);
|
|
if (INT_ZERO_P(RARRAY_AREF(qr, 1)))
|
|
num = rb_int_and(num, LONG2FIX(((int)~1)));
|
|
|
|
if (neg)
|
|
num = rb_int_uminus(num);
|
|
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
f_round_common(int argc, VALUE *argv, VALUE self, VALUE (*func)(VALUE))
|
|
{
|
|
VALUE n, b, s;
|
|
|
|
if (rb_check_arity(argc, 0, 1) == 0)
|
|
return (*func)(self);
|
|
|
|
n = argv[0];
|
|
|
|
if (!k_integer_p(n))
|
|
rb_raise(rb_eTypeError, "not an integer");
|
|
|
|
b = f_expt10(n);
|
|
s = rb_rational_mul(self, b);
|
|
|
|
if (k_float_p(s)) {
|
|
if (INT_NEGATIVE_P(n))
|
|
return ZERO;
|
|
return self;
|
|
}
|
|
|
|
if (!k_rational_p(s)) {
|
|
s = f_rational_new_bang1(CLASS_OF(self), s);
|
|
}
|
|
|
|
s = (*func)(s);
|
|
|
|
s = nurat_div(f_rational_new_bang1(CLASS_OF(self), s), b);
|
|
|
|
if (RB_TYPE_P(s, T_RATIONAL) && FIX2INT(rb_int_cmp(n, ONE)) < 0)
|
|
s = nurat_truncate(s);
|
|
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.floor([ndigits]) -> integer or rational
|
|
*
|
|
* Returns the largest number less than or equal to +rat+ with
|
|
* a precision of +ndigits+ decimal digits (default: 0).
|
|
*
|
|
* When the precision is negative, the returned value is an integer
|
|
* with at least <code>ndigits.abs</code> trailing zeros.
|
|
*
|
|
* Returns a rational when +ndigits+ is positive,
|
|
* otherwise returns an integer.
|
|
*
|
|
* Rational(3).floor #=> 3
|
|
* Rational(2, 3).floor #=> 0
|
|
* Rational(-3, 2).floor #=> -2
|
|
*
|
|
* # decimal - 1 2 3 . 4 5 6
|
|
* # ^ ^ ^ ^ ^ ^
|
|
* # precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* Rational('-123.456').floor(+1).to_f #=> -123.5
|
|
* Rational('-123.456').floor(-1) #=> -130
|
|
*/
|
|
static VALUE
|
|
nurat_floor_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return f_round_common(argc, argv, self, nurat_floor);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.ceil([ndigits]) -> integer or rational
|
|
*
|
|
* Returns the smallest number greater than or equal to +rat+ with
|
|
* a precision of +ndigits+ decimal digits (default: 0).
|
|
*
|
|
* When the precision is negative, the returned value is an integer
|
|
* with at least <code>ndigits.abs</code> trailing zeros.
|
|
*
|
|
* Returns a rational when +ndigits+ is positive,
|
|
* otherwise returns an integer.
|
|
*
|
|
* Rational(3).ceil #=> 3
|
|
* Rational(2, 3).ceil #=> 1
|
|
* Rational(-3, 2).ceil #=> -1
|
|
*
|
|
* # decimal - 1 2 3 . 4 5 6
|
|
* # ^ ^ ^ ^ ^ ^
|
|
* # precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* Rational('-123.456').ceil(+1).to_f #=> -123.4
|
|
* Rational('-123.456').ceil(-1) #=> -120
|
|
*/
|
|
static VALUE
|
|
nurat_ceil_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return f_round_common(argc, argv, self, nurat_ceil);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.truncate([ndigits]) -> integer or rational
|
|
*
|
|
* Returns +rat+ truncated (toward zero) to
|
|
* a precision of +ndigits+ decimal digits (default: 0).
|
|
*
|
|
* When the precision is negative, the returned value is an integer
|
|
* with at least <code>ndigits.abs</code> trailing zeros.
|
|
*
|
|
* Returns a rational when +ndigits+ is positive,
|
|
* otherwise returns an integer.
|
|
*
|
|
* Rational(3).truncate #=> 3
|
|
* Rational(2, 3).truncate #=> 0
|
|
* Rational(-3, 2).truncate #=> -1
|
|
*
|
|
* # decimal - 1 2 3 . 4 5 6
|
|
* # ^ ^ ^ ^ ^ ^
|
|
* # precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* Rational('-123.456').truncate(+1).to_f #=> -123.4
|
|
* Rational('-123.456').truncate(-1) #=> -120
|
|
*/
|
|
static VALUE
|
|
nurat_truncate_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
return f_round_common(argc, argv, self, nurat_truncate);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.round([ndigits] [, half: mode]) -> integer or rational
|
|
*
|
|
* Returns +rat+ rounded to the nearest value with
|
|
* a precision of +ndigits+ decimal digits (default: 0).
|
|
*
|
|
* When the precision is negative, the returned value is an integer
|
|
* with at least <code>ndigits.abs</code> trailing zeros.
|
|
*
|
|
* Returns a rational when +ndigits+ is positive,
|
|
* otherwise returns an integer.
|
|
*
|
|
* Rational(3).round #=> 3
|
|
* Rational(2, 3).round #=> 1
|
|
* Rational(-3, 2).round #=> -2
|
|
*
|
|
* # decimal - 1 2 3 . 4 5 6
|
|
* # ^ ^ ^ ^ ^ ^
|
|
* # precision -3 -2 -1 0 +1 +2
|
|
*
|
|
* Rational('-123.456').round(+1).to_f #=> -123.5
|
|
* Rational('-123.456').round(-1) #=> -120
|
|
*
|
|
* The optional +half+ keyword argument is available
|
|
* similar to Float#round.
|
|
*
|
|
* Rational(25, 100).round(1, half: :up) #=> (3/10)
|
|
* Rational(25, 100).round(1, half: :down) #=> (1/5)
|
|
* Rational(25, 100).round(1, half: :even) #=> (1/5)
|
|
* Rational(35, 100).round(1, half: :up) #=> (2/5)
|
|
* Rational(35, 100).round(1, half: :down) #=> (3/10)
|
|
* Rational(35, 100).round(1, half: :even) #=> (2/5)
|
|
* Rational(-25, 100).round(1, half: :up) #=> (-3/10)
|
|
* Rational(-25, 100).round(1, half: :down) #=> (-1/5)
|
|
* Rational(-25, 100).round(1, half: :even) #=> (-1/5)
|
|
*/
|
|
static VALUE
|
|
nurat_round_n(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE opt;
|
|
enum ruby_num_rounding_mode mode = (
|
|
argc = rb_scan_args(argc, argv, "*:", NULL, &opt),
|
|
rb_num_get_rounding_option(opt));
|
|
VALUE (*round_func)(VALUE) = ROUND_FUNC(mode, nurat_round);
|
|
return f_round_common(argc, argv, self, round_func);
|
|
}
|
|
|
|
static double
|
|
nurat_to_double(VALUE self)
|
|
{
|
|
get_dat1(self);
|
|
if (!RB_INTEGER_TYPE_P(dat->num) || !RB_INTEGER_TYPE_P(dat->den)) {
|
|
return NUM2DBL(dat->num) / NUM2DBL(dat->den);
|
|
}
|
|
return rb_int_fdiv_double(dat->num, dat->den);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_f -> float
|
|
*
|
|
* Returns the value as a Float.
|
|
*
|
|
* Rational(2).to_f #=> 2.0
|
|
* Rational(9, 4).to_f #=> 2.25
|
|
* Rational(-3, 4).to_f #=> -0.75
|
|
* Rational(20, 3).to_f #=> 6.666666666666667
|
|
*/
|
|
static VALUE
|
|
nurat_to_f(VALUE self)
|
|
{
|
|
return DBL2NUM(nurat_to_double(self));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_r -> self
|
|
*
|
|
* Returns self.
|
|
*
|
|
* Rational(2).to_r #=> (2/1)
|
|
* Rational(-8, 6).to_r #=> (-4/3)
|
|
*/
|
|
static VALUE
|
|
nurat_to_r(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
#define id_ceil rb_intern("ceil")
|
|
static VALUE
|
|
f_ceil(VALUE x)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return x;
|
|
if (RB_FLOAT_TYPE_P(x))
|
|
return rb_float_ceil(x, 0);
|
|
|
|
return rb_funcall(x, id_ceil, 0);
|
|
}
|
|
|
|
#define id_quo idQuo
|
|
static VALUE
|
|
f_quo(VALUE x, VALUE y)
|
|
{
|
|
if (RB_INTEGER_TYPE_P(x))
|
|
return rb_int_div(x, y);
|
|
if (RB_FLOAT_TYPE_P(x))
|
|
return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
|
|
|
|
return rb_funcallv(x, id_quo, 1, &y);
|
|
}
|
|
|
|
#define f_reciprocal(x) f_quo(ONE, (x))
|
|
|
|
/*
|
|
The algorithm here is the method described in CLISP. Bruno Haible has
|
|
graciously given permission to use this algorithm. He says, "You can use
|
|
it, if you present the following explanation of the algorithm."
|
|
|
|
Algorithm (recursively presented):
|
|
If x is a rational number, return x.
|
|
If x = 0.0, return 0.
|
|
If x < 0.0, return (- (rationalize (- x))).
|
|
If x > 0.0:
|
|
Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
|
|
exponent, sign).
|
|
If m = 0 or e >= 0: return x = m*2^e.
|
|
Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
|
|
with smallest possible numerator and denominator.
|
|
Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
|
|
But in this case the result will be x itself anyway, regardless of
|
|
the choice of a. Therefore we can simply ignore this case.
|
|
Note 2: At first, we need to consider the closed interval [a,b].
|
|
but since a and b have the denominator 2^(|e|+1) whereas x itself
|
|
has a denominator <= 2^|e|, we can restrict the search to the open
|
|
interval (a,b).
|
|
So, for given a and b (0 < a < b) we are searching a rational number
|
|
y with a <= y <= b.
|
|
Recursive algorithm fraction_between(a,b):
|
|
c := (ceiling a)
|
|
if c < b
|
|
then return c ; because a <= c < b, c integer
|
|
else
|
|
; a is not integer (otherwise we would have had c = a < b)
|
|
k := c-1 ; k = floor(a), k < a < b <= k+1
|
|
return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
|
|
; note 1 <= 1/(b-k) < 1/(a-k)
|
|
|
|
You can see that we are actually computing a continued fraction expansion.
|
|
|
|
Algorithm (iterative):
|
|
If x is rational, return x.
|
|
Call (integer-decode-float x). It returns a m,e,s (mantissa,
|
|
exponent, sign).
|
|
If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
|
|
Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
|
|
(positive and already in lowest terms because the denominator is a
|
|
power of two and the numerator is odd).
|
|
Start a continued fraction expansion
|
|
p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
|
|
Loop
|
|
c := (ceiling a)
|
|
if c >= b
|
|
then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
|
|
goto Loop
|
|
finally partial_quotient(c).
|
|
Here partial_quotient(c) denotes the iteration
|
|
i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
|
|
At the end, return s * (p[i]/q[i]).
|
|
This rational number is already in lowest terms because
|
|
p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
|
|
*/
|
|
|
|
static void
|
|
nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q)
|
|
{
|
|
VALUE c, k, t, p0, p1, p2, q0, q1, q2;
|
|
|
|
p0 = ZERO;
|
|
p1 = ONE;
|
|
q0 = ONE;
|
|
q1 = ZERO;
|
|
|
|
while (1) {
|
|
c = f_ceil(a);
|
|
if (f_lt_p(c, b))
|
|
break;
|
|
k = f_sub(c, ONE);
|
|
p2 = f_add(f_mul(k, p1), p0);
|
|
q2 = f_add(f_mul(k, q1), q0);
|
|
t = f_reciprocal(f_sub(b, k));
|
|
b = f_reciprocal(f_sub(a, k));
|
|
a = t;
|
|
p0 = p1;
|
|
q0 = q1;
|
|
p1 = p2;
|
|
q1 = q2;
|
|
}
|
|
*p = f_add(f_mul(c, p1), p0);
|
|
*q = f_add(f_mul(c, q1), q0);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.rationalize -> self
|
|
* rat.rationalize(eps) -> rational
|
|
*
|
|
* Returns a simpler approximation of the value if the optional
|
|
* argument +eps+ is given (rat-|eps| <= result <= rat+|eps|),
|
|
* self otherwise.
|
|
*
|
|
* r = Rational(5033165, 16777216)
|
|
* r.rationalize #=> (5033165/16777216)
|
|
* r.rationalize(Rational('0.01')) #=> (3/10)
|
|
* r.rationalize(Rational('0.1')) #=> (1/3)
|
|
*/
|
|
static VALUE
|
|
nurat_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE e, a, b, p, q;
|
|
|
|
if (rb_check_arity(argc, 0, 1) == 0)
|
|
return self;
|
|
|
|
if (nurat_negative_p(self))
|
|
return rb_rational_uminus(nurat_rationalize(argc, argv, rb_rational_uminus(self)));
|
|
|
|
e = f_abs(argv[0]);
|
|
a = f_sub(self, e);
|
|
b = f_add(self, e);
|
|
|
|
if (f_eqeq_p(a, b))
|
|
return self;
|
|
|
|
nurat_rationalize_internal(a, b, &p, &q);
|
|
return f_rational_new2(CLASS_OF(self), p, q);
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_hash(VALUE self)
|
|
{
|
|
st_index_t v, h[2];
|
|
VALUE n;
|
|
|
|
get_dat1(self);
|
|
n = rb_hash(dat->num);
|
|
h[0] = NUM2LONG(n);
|
|
n = rb_hash(dat->den);
|
|
h[1] = NUM2LONG(n);
|
|
v = rb_memhash(h, sizeof(h));
|
|
return ST2FIX(v);
|
|
}
|
|
|
|
static VALUE
|
|
f_format(VALUE self, VALUE (*func)(VALUE))
|
|
{
|
|
VALUE s;
|
|
get_dat1(self);
|
|
|
|
s = (*func)(dat->num);
|
|
rb_str_cat2(s, "/");
|
|
rb_str_concat(s, (*func)(dat->den));
|
|
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.to_s -> string
|
|
*
|
|
* Returns the value as a string.
|
|
*
|
|
* Rational(2).to_s #=> "2/1"
|
|
* Rational(-8, 6).to_s #=> "-4/3"
|
|
* Rational('1/2').to_s #=> "1/2"
|
|
*/
|
|
static VALUE
|
|
nurat_to_s(VALUE self)
|
|
{
|
|
return f_format(self, f_to_s);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* rat.inspect -> string
|
|
*
|
|
* Returns the value as a string for inspection.
|
|
*
|
|
* Rational(2).inspect #=> "(2/1)"
|
|
* Rational(-8, 6).inspect #=> "(-4/3)"
|
|
* Rational('1/2').inspect #=> "(1/2)"
|
|
*/
|
|
static VALUE
|
|
nurat_inspect(VALUE self)
|
|
{
|
|
VALUE s;
|
|
|
|
s = rb_usascii_str_new2("(");
|
|
rb_str_concat(s, f_format(self, f_inspect));
|
|
rb_str_cat2(s, ")");
|
|
|
|
return s;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_dumper(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_loader(VALUE self, VALUE a)
|
|
{
|
|
VALUE num, den;
|
|
|
|
get_dat1(self);
|
|
num = rb_ivar_get(a, id_i_num);
|
|
den = rb_ivar_get(a, id_i_den);
|
|
nurat_int_check(num);
|
|
nurat_int_check(den);
|
|
nurat_canonicalize(&num, &den);
|
|
RRATIONAL_SET_NUM(dat, num);
|
|
RRATIONAL_SET_DEN(dat, den);
|
|
OBJ_FREEZE_RAW(self);
|
|
|
|
return self;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_marshal_dump(VALUE self)
|
|
{
|
|
VALUE a;
|
|
get_dat1(self);
|
|
|
|
a = rb_assoc_new(dat->num, dat->den);
|
|
rb_copy_generic_ivar(a, self);
|
|
return a;
|
|
}
|
|
|
|
/* :nodoc: */
|
|
static VALUE
|
|
nurat_marshal_load(VALUE self, VALUE a)
|
|
{
|
|
VALUE num, den;
|
|
|
|
rb_check_frozen(self);
|
|
|
|
Check_Type(a, T_ARRAY);
|
|
if (RARRAY_LEN(a) != 2)
|
|
rb_raise(rb_eArgError, "marshaled rational must have an array whose length is 2 but %ld", RARRAY_LEN(a));
|
|
|
|
num = RARRAY_AREF(a, 0);
|
|
den = RARRAY_AREF(a, 1);
|
|
nurat_int_check(num);
|
|
nurat_int_check(den);
|
|
nurat_canonicalize(&num, &den);
|
|
rb_ivar_set(self, id_i_num, num);
|
|
rb_ivar_set(self, id_i_den, den);
|
|
|
|
return self;
|
|
}
|
|
|
|
/* --- */
|
|
|
|
VALUE
|
|
rb_rational_reciprocal(VALUE x)
|
|
{
|
|
get_dat1(x);
|
|
return f_rational_new_no_reduce2(CLASS_OF(x), dat->den, dat->num);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.gcd(other_int) -> integer
|
|
*
|
|
* Returns the greatest common divisor of the two integers.
|
|
* The result is always positive. 0.gcd(x) and x.gcd(0) return x.abs.
|
|
*
|
|
* 36.gcd(60) #=> 12
|
|
* 2.gcd(2) #=> 2
|
|
* 3.gcd(-7) #=> 1
|
|
* ((1<<31)-1).gcd((1<<61)-1) #=> 1
|
|
*/
|
|
VALUE
|
|
rb_gcd(VALUE self, VALUE other)
|
|
{
|
|
other = nurat_int_value(other);
|
|
return f_gcd(self, other);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.lcm(other_int) -> integer
|
|
*
|
|
* Returns the least common multiple of the two integers.
|
|
* The result is always positive. 0.lcm(x) and x.lcm(0) return zero.
|
|
*
|
|
* 36.lcm(60) #=> 180
|
|
* 2.lcm(2) #=> 2
|
|
* 3.lcm(-7) #=> 21
|
|
* ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
|
|
*/
|
|
VALUE
|
|
rb_lcm(VALUE self, VALUE other)
|
|
{
|
|
other = nurat_int_value(other);
|
|
return f_lcm(self, other);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.gcdlcm(other_int) -> array
|
|
*
|
|
* Returns an array with the greatest common divisor and
|
|
* the least common multiple of the two integers, [gcd, lcm].
|
|
*
|
|
* 36.gcdlcm(60) #=> [12, 180]
|
|
* 2.gcdlcm(2) #=> [2, 2]
|
|
* 3.gcdlcm(-7) #=> [1, 21]
|
|
* ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
|
|
*/
|
|
VALUE
|
|
rb_gcdlcm(VALUE self, VALUE other)
|
|
{
|
|
other = nurat_int_value(other);
|
|
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_raw(VALUE x, VALUE y)
|
|
{
|
|
return nurat_s_new_internal(rb_cRational, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_new(VALUE x, VALUE y)
|
|
{
|
|
return nurat_s_canonicalize_internal(rb_cRational, x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_Rational(VALUE x, VALUE y)
|
|
{
|
|
VALUE a[2];
|
|
a[0] = x;
|
|
a[1] = y;
|
|
return nurat_s_convert(2, a, rb_cRational);
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_num(VALUE rat)
|
|
{
|
|
return nurat_numerator(rat);
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_den(VALUE rat)
|
|
{
|
|
return nurat_denominator(rat);
|
|
}
|
|
|
|
#define id_numerator rb_intern("numerator")
|
|
#define f_numerator(x) rb_funcall((x), id_numerator, 0)
|
|
|
|
#define id_denominator rb_intern("denominator")
|
|
#define f_denominator(x) rb_funcall((x), id_denominator, 0)
|
|
|
|
#define id_to_r idTo_r
|
|
#define f_to_r(x) rb_funcall((x), id_to_r, 0)
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.numerator -> integer
|
|
*
|
|
* Returns the numerator.
|
|
*/
|
|
static VALUE
|
|
numeric_numerator(VALUE self)
|
|
{
|
|
return f_numerator(f_to_r(self));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.denominator -> integer
|
|
*
|
|
* Returns the denominator (always positive).
|
|
*/
|
|
static VALUE
|
|
numeric_denominator(VALUE self)
|
|
{
|
|
return f_denominator(f_to_r(self));
|
|
}
|
|
|
|
|
|
/*
|
|
* call-seq:
|
|
* num.quo(int_or_rat) -> rat
|
|
* num.quo(flo) -> flo
|
|
*
|
|
* Returns the most exact division (rational for integers, float for floats).
|
|
*/
|
|
|
|
VALUE
|
|
rb_numeric_quo(VALUE x, VALUE y)
|
|
{
|
|
if (RB_TYPE_P(x, T_COMPLEX)) {
|
|
return rb_complex_div(x, y);
|
|
}
|
|
|
|
if (RB_FLOAT_TYPE_P(y)) {
|
|
return rb_funcallv(x, idFdiv, 1, &y);
|
|
}
|
|
|
|
if (canonicalization) {
|
|
x = rb_rational_raw1(x);
|
|
}
|
|
else {
|
|
x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
|
|
}
|
|
return nurat_div(x, y);
|
|
}
|
|
|
|
VALUE
|
|
rb_rational_canonicalize(VALUE x)
|
|
{
|
|
if (RB_TYPE_P(x, T_RATIONAL)) {
|
|
get_dat1(x);
|
|
if (f_one_p(dat->den)) return dat->num;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.numerator -> self
|
|
*
|
|
* Returns self.
|
|
*/
|
|
static VALUE
|
|
integer_numerator(VALUE self)
|
|
{
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.denominator -> 1
|
|
*
|
|
* Returns 1.
|
|
*/
|
|
static VALUE
|
|
integer_denominator(VALUE self)
|
|
{
|
|
return INT2FIX(1);
|
|
}
|
|
|
|
static VALUE float_to_r(VALUE self);
|
|
/*
|
|
* call-seq:
|
|
* flo.numerator -> integer
|
|
*
|
|
* Returns the numerator. The result is machine dependent.
|
|
*
|
|
* n = 0.3.numerator #=> 5404319552844595
|
|
* d = 0.3.denominator #=> 18014398509481984
|
|
* n.fdiv(d) #=> 0.3
|
|
*
|
|
* See also Float#denominator.
|
|
*/
|
|
VALUE
|
|
rb_float_numerator(VALUE self)
|
|
{
|
|
double d = RFLOAT_VALUE(self);
|
|
VALUE r;
|
|
if (isinf(d) || isnan(d))
|
|
return self;
|
|
r = float_to_r(self);
|
|
if (canonicalization && k_integer_p(r)) {
|
|
return r;
|
|
}
|
|
return nurat_numerator(r);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flo.denominator -> integer
|
|
*
|
|
* Returns the denominator (always positive). The result is machine
|
|
* dependent.
|
|
*
|
|
* See also Float#numerator.
|
|
*/
|
|
VALUE
|
|
rb_float_denominator(VALUE self)
|
|
{
|
|
double d = RFLOAT_VALUE(self);
|
|
VALUE r;
|
|
if (isinf(d) || isnan(d))
|
|
return INT2FIX(1);
|
|
r = float_to_r(self);
|
|
if (canonicalization && k_integer_p(r)) {
|
|
return ONE;
|
|
}
|
|
return nurat_denominator(r);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* nil.to_r -> (0/1)
|
|
*
|
|
* Returns zero as a rational.
|
|
*/
|
|
static VALUE
|
|
nilclass_to_r(VALUE self)
|
|
{
|
|
return rb_rational_new1(INT2FIX(0));
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* nil.rationalize([eps]) -> (0/1)
|
|
*
|
|
* Returns zero as a rational. The optional argument +eps+ is always
|
|
* ignored.
|
|
*/
|
|
static VALUE
|
|
nilclass_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_check_arity(argc, 0, 1);
|
|
return nilclass_to_r(self);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.to_r -> rational
|
|
*
|
|
* Returns the value as a rational.
|
|
*
|
|
* 1.to_r #=> (1/1)
|
|
* (1<<64).to_r #=> (18446744073709551616/1)
|
|
*/
|
|
static VALUE
|
|
integer_to_r(VALUE self)
|
|
{
|
|
return rb_rational_new1(self);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* int.rationalize([eps]) -> rational
|
|
*
|
|
* Returns the value as a rational. The optional argument +eps+ is
|
|
* always ignored.
|
|
*/
|
|
static VALUE
|
|
integer_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_check_arity(argc, 0, 1);
|
|
return integer_to_r(self);
|
|
}
|
|
|
|
static void
|
|
float_decode_internal(VALUE self, VALUE *rf, int *n)
|
|
{
|
|
double f;
|
|
|
|
f = frexp(RFLOAT_VALUE(self), n);
|
|
f = ldexp(f, DBL_MANT_DIG);
|
|
*n -= DBL_MANT_DIG;
|
|
*rf = rb_dbl2big(f);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flt.to_r -> rational
|
|
*
|
|
* Returns the value as a rational.
|
|
*
|
|
* 2.0.to_r #=> (2/1)
|
|
* 2.5.to_r #=> (5/2)
|
|
* -0.75.to_r #=> (-3/4)
|
|
* 0.0.to_r #=> (0/1)
|
|
* 0.3.to_r #=> (5404319552844595/18014398509481984)
|
|
*
|
|
* NOTE: 0.3.to_r isn't the same as "0.3".to_r. The latter is
|
|
* equivalent to "3/10".to_r, but the former isn't so.
|
|
*
|
|
* 0.3.to_r == 3/10r #=> false
|
|
* "0.3".to_r == 3/10r #=> true
|
|
*
|
|
* See also Float#rationalize.
|
|
*/
|
|
static VALUE
|
|
float_to_r(VALUE self)
|
|
{
|
|
VALUE f;
|
|
int n;
|
|
|
|
float_decode_internal(self, &f, &n);
|
|
#if FLT_RADIX == 2
|
|
if (n == 0)
|
|
return rb_rational_new1(f);
|
|
if (n > 0)
|
|
return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));
|
|
n = -n;
|
|
return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n)));
|
|
#else
|
|
f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));
|
|
if (RB_TYPE_P(f, T_RATIONAL))
|
|
return f;
|
|
return rb_rational_new1(f);
|
|
#endif
|
|
}
|
|
|
|
VALUE
|
|
rb_flt_rationalize_with_prec(VALUE flt, VALUE prec)
|
|
{
|
|
VALUE e, a, b, p, q;
|
|
|
|
e = f_abs(prec);
|
|
a = f_sub(flt, e);
|
|
b = f_add(flt, e);
|
|
|
|
if (f_eqeq_p(a, b))
|
|
return float_to_r(flt);
|
|
|
|
nurat_rationalize_internal(a, b, &p, &q);
|
|
return rb_rational_new2(p, q);
|
|
}
|
|
|
|
VALUE
|
|
rb_flt_rationalize(VALUE flt)
|
|
{
|
|
VALUE a, b, f, p, q;
|
|
int n;
|
|
|
|
float_decode_internal(flt, &f, &n);
|
|
if (INT_ZERO_P(f) || n >= 0)
|
|
return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));
|
|
|
|
{
|
|
VALUE radix_times_f, den;
|
|
|
|
radix_times_f = rb_int_mul(INT2FIX(FLT_RADIX), f);
|
|
#if FLT_RADIX == 2 && 0
|
|
den = rb_int_lshift(ONE, INT2FIX(1-n));
|
|
#else
|
|
den = rb_int_positive_pow(FLT_RADIX, 1-n);
|
|
#endif
|
|
|
|
a = rb_rational_new2(rb_int_minus(radix_times_f, INT2FIX(FLT_RADIX - 1)), den);
|
|
b = rb_rational_new2(rb_int_plus(radix_times_f, INT2FIX(FLT_RADIX - 1)), den);
|
|
}
|
|
|
|
if (nurat_eqeq_p(a, b))
|
|
return float_to_r(flt);
|
|
|
|
nurat_rationalize_internal(a, b, &p, &q);
|
|
return rb_rational_new2(p, q);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* flt.rationalize([eps]) -> rational
|
|
*
|
|
* Returns a simpler approximation of the value (flt-|eps| <= result
|
|
* <= flt+|eps|). If the optional argument +eps+ is not given,
|
|
* it will be chosen automatically.
|
|
*
|
|
* 0.3.rationalize #=> (3/10)
|
|
* 1.333.rationalize #=> (1333/1000)
|
|
* 1.333.rationalize(0.01) #=> (4/3)
|
|
*
|
|
* See also Float#to_r.
|
|
*/
|
|
static VALUE
|
|
float_rationalize(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
double d = RFLOAT_VALUE(self);
|
|
|
|
if (d < 0.0)
|
|
return rb_rational_uminus(float_rationalize(argc, argv, DBL2NUM(-d)));
|
|
|
|
if (rb_check_arity(argc, 0, 1)) {
|
|
return rb_flt_rationalize_with_prec(self, argv[0]);
|
|
}
|
|
else {
|
|
return rb_flt_rationalize(self);
|
|
}
|
|
}
|
|
|
|
#include <ctype.h>
|
|
|
|
inline static int
|
|
issign(int c)
|
|
{
|
|
return (c == '-' || c == '+');
|
|
}
|
|
|
|
static int
|
|
read_sign(const char **s, const char *const e)
|
|
{
|
|
int sign = '?';
|
|
|
|
if (*s < e && issign(**s)) {
|
|
sign = **s;
|
|
(*s)++;
|
|
}
|
|
return sign;
|
|
}
|
|
|
|
inline static int
|
|
islettere(int c)
|
|
{
|
|
return (c == 'e' || c == 'E');
|
|
}
|
|
|
|
static VALUE
|
|
negate_num(VALUE num)
|
|
{
|
|
if (FIXNUM_P(num)) {
|
|
return rb_int_uminus(num);
|
|
}
|
|
else {
|
|
BIGNUM_NEGATE(num);
|
|
return rb_big_norm(num);
|
|
}
|
|
}
|
|
|
|
static int
|
|
read_num(const char **s, const char *const end, VALUE *num, VALUE *nexp)
|
|
{
|
|
VALUE fp = ONE, exp, fn = ZERO, n = ZERO;
|
|
int expsign = 0, ok = 0;
|
|
char *e;
|
|
|
|
*nexp = ZERO;
|
|
*num = ZERO;
|
|
if (*s < end && **s != '.') {
|
|
n = rb_int_parse_cstr(*s, end-*s, &e, NULL,
|
|
10, RB_INT_PARSE_UNDERSCORE);
|
|
if (NIL_P(n))
|
|
return 0;
|
|
*s = e;
|
|
*num = n;
|
|
ok = 1;
|
|
}
|
|
|
|
if (*s < end && **s == '.') {
|
|
size_t count = 0;
|
|
|
|
(*s)++;
|
|
fp = rb_int_parse_cstr(*s, end-*s, &e, &count,
|
|
10, RB_INT_PARSE_UNDERSCORE);
|
|
if (NIL_P(fp))
|
|
return 1;
|
|
*s = e;
|
|
{
|
|
VALUE l = f_expt10(*nexp = SIZET2NUM(count));
|
|
n = n == ZERO ? fp : rb_int_plus(rb_int_mul(*num, l), fp);
|
|
*num = n;
|
|
fn = SIZET2NUM(count);
|
|
}
|
|
ok = 1;
|
|
}
|
|
|
|
if (ok && *s + 1 < end && islettere(**s)) {
|
|
(*s)++;
|
|
expsign = read_sign(s, end);
|
|
exp = rb_int_parse_cstr(*s, end-*s, &e, NULL,
|
|
10, RB_INT_PARSE_UNDERSCORE);
|
|
if (NIL_P(exp))
|
|
return 1;
|
|
*s = e;
|
|
if (exp != ZERO) {
|
|
if (expsign == '-') {
|
|
if (fn != ZERO) exp = rb_int_plus(exp, fn);
|
|
}
|
|
else {
|
|
if (fn != ZERO) exp = rb_int_minus(exp, fn);
|
|
exp = negate_num(exp);
|
|
}
|
|
*nexp = exp;
|
|
}
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
inline static const char *
|
|
skip_ws(const char *s, const char *e)
|
|
{
|
|
while (s < e && isspace((unsigned char)*s))
|
|
++s;
|
|
return s;
|
|
}
|
|
|
|
static VALUE
|
|
parse_rat(const char *s, const char *const e, int strict, int raise)
|
|
{
|
|
int sign;
|
|
VALUE num, den, nexp, dexp;
|
|
|
|
s = skip_ws(s, e);
|
|
sign = read_sign(&s, e);
|
|
|
|
if (!read_num(&s, e, &num, &nexp)) {
|
|
if (strict) return Qnil;
|
|
return canonicalization ? ZERO : nurat_s_alloc(rb_cRational);
|
|
}
|
|
den = ONE;
|
|
if (s < e && *s == '/') {
|
|
s++;
|
|
if (!read_num(&s, e, &den, &dexp)) {
|
|
if (strict) return Qnil;
|
|
den = ONE;
|
|
}
|
|
else if (den == ZERO) {
|
|
if (!raise) return Qnil;
|
|
rb_num_zerodiv();
|
|
}
|
|
else if (strict && skip_ws(s, e) != e) {
|
|
return Qnil;
|
|
}
|
|
else {
|
|
nexp = rb_int_minus(nexp, dexp);
|
|
nurat_reduce(&num, &den);
|
|
}
|
|
}
|
|
else if (strict && skip_ws(s, e) != e) {
|
|
return Qnil;
|
|
}
|
|
|
|
if (nexp != ZERO) {
|
|
if (INT_NEGATIVE_P(nexp)) {
|
|
VALUE mul;
|
|
if (!FIXNUM_P(nexp)) {
|
|
overflow:
|
|
return sign == '-' ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
|
|
}
|
|
mul = f_expt10(LONG2NUM(-FIX2LONG(nexp)));
|
|
if (RB_FLOAT_TYPE_P(mul)) goto overflow;
|
|
num = rb_int_mul(num, mul);
|
|
}
|
|
else {
|
|
VALUE div;
|
|
if (!FIXNUM_P(nexp)) {
|
|
underflow:
|
|
return sign == '-' ? DBL2NUM(-0.0) : DBL2NUM(+0.0);
|
|
}
|
|
div = f_expt10(nexp);
|
|
if (RB_FLOAT_TYPE_P(div)) goto underflow;
|
|
den = rb_int_mul(den, div);
|
|
}
|
|
nurat_reduce(&num, &den);
|
|
}
|
|
|
|
if (sign == '-') {
|
|
num = negate_num(num);
|
|
}
|
|
|
|
if (!canonicalization || den != ONE)
|
|
num = rb_rational_raw(num, den);
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
string_to_r_strict(VALUE self, int raise)
|
|
{
|
|
VALUE num;
|
|
|
|
rb_must_asciicompat(self);
|
|
|
|
num = parse_rat(RSTRING_PTR(self), RSTRING_END(self), 1, raise);
|
|
if (NIL_P(num)) {
|
|
if (!raise) return Qnil;
|
|
rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE,
|
|
self);
|
|
}
|
|
|
|
if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num)) {
|
|
if (!raise) return Qnil;
|
|
rb_raise(rb_eFloatDomainError, "Infinity");
|
|
}
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* str.to_r -> rational
|
|
*
|
|
* Returns the result of interpreting leading characters in +str+
|
|
* as a rational. Leading whitespace and extraneous characters
|
|
* past the end of a valid number are ignored.
|
|
* Digit sequences can be separated by an underscore.
|
|
* If there is not a valid number at the start of +str+,
|
|
* zero is returned. This method never raises an exception.
|
|
*
|
|
* ' 2 '.to_r #=> (2/1)
|
|
* '300/2'.to_r #=> (150/1)
|
|
* '-9.2'.to_r #=> (-46/5)
|
|
* '-9.2e2'.to_r #=> (-920/1)
|
|
* '1_234_567'.to_r #=> (1234567/1)
|
|
* '21 June 09'.to_r #=> (21/1)
|
|
* '21/06/09'.to_r #=> (7/2)
|
|
* 'BWV 1079'.to_r #=> (0/1)
|
|
*
|
|
* NOTE: "0.3".to_r isn't the same as 0.3.to_r. The former is
|
|
* equivalent to "3/10".to_r, but the latter isn't so.
|
|
*
|
|
* "0.3".to_r == 3/10r #=> true
|
|
* 0.3.to_r == 3/10r #=> false
|
|
*
|
|
* See also Kernel#Rational.
|
|
*/
|
|
static VALUE
|
|
string_to_r(VALUE self)
|
|
{
|
|
VALUE num;
|
|
|
|
rb_must_asciicompat(self);
|
|
|
|
num = parse_rat(RSTRING_PTR(self), RSTRING_END(self), 0, TRUE);
|
|
|
|
if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num))
|
|
rb_raise(rb_eFloatDomainError, "Infinity");
|
|
return num;
|
|
}
|
|
|
|
VALUE
|
|
rb_cstr_to_rat(const char *s, int strict) /* for complex's internal */
|
|
{
|
|
VALUE num;
|
|
|
|
num = parse_rat(s, s + strlen(s), strict, TRUE);
|
|
|
|
if (RB_FLOAT_TYPE_P(num) && !FLOAT_ZERO_P(num))
|
|
rb_raise(rb_eFloatDomainError, "Infinity");
|
|
return num;
|
|
}
|
|
|
|
static VALUE
|
|
to_rational(VALUE val)
|
|
{
|
|
return rb_convert_type_with_id(val, T_RATIONAL, "Rational", idTo_r);
|
|
}
|
|
|
|
static VALUE
|
|
nurat_convert(VALUE klass, VALUE numv, VALUE denv, int raise)
|
|
{
|
|
VALUE a1 = numv, a2 = denv;
|
|
int state;
|
|
|
|
if (NIL_P(a1) || NIL_P(a2)) {
|
|
if (!raise) return Qnil;
|
|
rb_raise(rb_eTypeError, "can't convert nil into Rational");
|
|
}
|
|
|
|
if (RB_TYPE_P(a1, T_COMPLEX)) {
|
|
if (k_exact_zero_p(RCOMPLEX(a1)->imag))
|
|
a1 = RCOMPLEX(a1)->real;
|
|
}
|
|
|
|
if (RB_TYPE_P(a2, T_COMPLEX)) {
|
|
if (k_exact_zero_p(RCOMPLEX(a2)->imag))
|
|
a2 = RCOMPLEX(a2)->real;
|
|
}
|
|
|
|
if (RB_FLOAT_TYPE_P(a1)) {
|
|
a1 = float_to_r(a1);
|
|
}
|
|
else if (RB_TYPE_P(a1, T_STRING)) {
|
|
a1 = string_to_r_strict(a1, raise);
|
|
if (!raise && NIL_P(a1)) return Qnil;
|
|
}
|
|
|
|
if (RB_FLOAT_TYPE_P(a2)) {
|
|
a2 = float_to_r(a2);
|
|
}
|
|
else if (RB_TYPE_P(a2, T_STRING)) {
|
|
a2 = string_to_r_strict(a2, raise);
|
|
if (!raise && NIL_P(a2)) return Qnil;
|
|
}
|
|
|
|
if (RB_TYPE_P(a1, T_RATIONAL)) {
|
|
if (a2 == Qundef || (k_exact_one_p(a2)))
|
|
return a1;
|
|
}
|
|
|
|
if (a2 == Qundef) {
|
|
if (!k_integer_p(a1)) {
|
|
if (!raise) {
|
|
VALUE result = rb_protect(to_rational, a1, NULL);
|
|
rb_set_errinfo(Qnil);
|
|
return result;
|
|
}
|
|
return to_rational(a1);
|
|
}
|
|
}
|
|
else {
|
|
if (!k_numeric_p(a1)) {
|
|
if (!raise) {
|
|
a1 = rb_protect(to_rational, a1, &state);
|
|
if (state) {
|
|
rb_set_errinfo(Qnil);
|
|
return Qnil;
|
|
}
|
|
}
|
|
else {
|
|
a1 = rb_check_convert_type_with_id(a1, T_RATIONAL, "Rational", idTo_r);
|
|
}
|
|
}
|
|
if (!k_numeric_p(a2)) {
|
|
if (!raise) {
|
|
a2 = rb_protect(to_rational, a2, &state);
|
|
if (state) {
|
|
rb_set_errinfo(Qnil);
|
|
return Qnil;
|
|
}
|
|
}
|
|
else {
|
|
a2 = rb_check_convert_type_with_id(a2, T_RATIONAL, "Rational", idTo_r);
|
|
}
|
|
}
|
|
if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
|
|
(!f_integer_p(a1) || !f_integer_p(a2)))
|
|
return f_div(a1, a2);
|
|
}
|
|
|
|
{
|
|
int argc;
|
|
VALUE argv2[2];
|
|
argv2[0] = a1;
|
|
if (a2 == Qundef) {
|
|
argv2[1] = Qnil;
|
|
argc = 1;
|
|
}
|
|
else {
|
|
if (!k_integer_p(a2) && !raise) return Qnil;
|
|
argv2[1] = a2;
|
|
argc = 2;
|
|
}
|
|
return nurat_s_new(argc, argv2, klass);
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
nurat_s_convert(int argc, VALUE *argv, VALUE klass)
|
|
{
|
|
VALUE a1, a2;
|
|
|
|
if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) {
|
|
a2 = Qundef;
|
|
}
|
|
|
|
return nurat_convert(klass, a1, a2, TRUE);
|
|
}
|
|
|
|
/*
|
|
* A rational number can be represented as a pair of integer numbers:
|
|
* a/b (b>0), where a is the numerator and b is the denominator.
|
|
* Integer a equals rational a/1 mathematically.
|
|
*
|
|
* In Ruby, you can create rational objects with the Kernel#Rational,
|
|
* to_r, or rationalize methods or by suffixing +r+ to a literal.
|
|
* The return values will be irreducible fractions.
|
|
*
|
|
* Rational(1) #=> (1/1)
|
|
* Rational(2, 3) #=> (2/3)
|
|
* Rational(4, -6) #=> (-2/3)
|
|
* 3.to_r #=> (3/1)
|
|
* 2/3r #=> (2/3)
|
|
*
|
|
* You can also create rational objects from floating-point numbers or
|
|
* strings.
|
|
*
|
|
* Rational(0.3) #=> (5404319552844595/18014398509481984)
|
|
* Rational('0.3') #=> (3/10)
|
|
* Rational('2/3') #=> (2/3)
|
|
*
|
|
* 0.3.to_r #=> (5404319552844595/18014398509481984)
|
|
* '0.3'.to_r #=> (3/10)
|
|
* '2/3'.to_r #=> (2/3)
|
|
* 0.3.rationalize #=> (3/10)
|
|
*
|
|
* A rational object is an exact number, which helps you to write
|
|
* programs without any rounding errors.
|
|
*
|
|
* 10.times.inject(0) {|t| t + 0.1 } #=> 0.9999999999999999
|
|
* 10.times.inject(0) {|t| t + Rational('0.1') } #=> (1/1)
|
|
*
|
|
* However, when an expression includes an inexact component (numerical value
|
|
* or operation), it will produce an inexact result.
|
|
*
|
|
* Rational(10) / 3 #=> (10/3)
|
|
* Rational(10) / 3.0 #=> 3.3333333333333335
|
|
*
|
|
* Rational(-8) ** Rational(1, 3)
|
|
* #=> (1.0000000000000002+1.7320508075688772i)
|
|
*/
|
|
void
|
|
Init_Rational(void)
|
|
{
|
|
VALUE compat;
|
|
#undef rb_intern
|
|
#define rb_intern(str) rb_intern_const(str)
|
|
|
|
id_abs = rb_intern("abs");
|
|
id_integer_p = rb_intern("integer?");
|
|
id_i_num = rb_intern("@numerator");
|
|
id_i_den = rb_intern("@denominator");
|
|
|
|
rb_cRational = rb_define_class("Rational", rb_cNumeric);
|
|
|
|
rb_define_alloc_func(rb_cRational, nurat_s_alloc);
|
|
rb_undef_method(CLASS_OF(rb_cRational), "allocate");
|
|
|
|
rb_undef_method(CLASS_OF(rb_cRational), "new");
|
|
|
|
rb_define_global_function("Rational", nurat_f_rational, -1);
|
|
|
|
rb_define_method(rb_cRational, "numerator", nurat_numerator, 0);
|
|
rb_define_method(rb_cRational, "denominator", nurat_denominator, 0);
|
|
|
|
rb_define_method(rb_cRational, "-@", rb_rational_uminus, 0);
|
|
rb_define_method(rb_cRational, "+", rb_rational_plus, 1);
|
|
rb_define_method(rb_cRational, "-", nurat_sub, 1);
|
|
rb_define_method(rb_cRational, "*", rb_rational_mul, 1);
|
|
rb_define_method(rb_cRational, "/", nurat_div, 1);
|
|
rb_define_method(rb_cRational, "quo", nurat_div, 1);
|
|
rb_define_method(rb_cRational, "fdiv", nurat_fdiv, 1);
|
|
rb_define_method(rb_cRational, "**", nurat_expt, 1);
|
|
|
|
rb_define_method(rb_cRational, "<=>", rb_rational_cmp, 1);
|
|
rb_define_method(rb_cRational, "==", nurat_eqeq_p, 1);
|
|
rb_define_method(rb_cRational, "coerce", nurat_coerce, 1);
|
|
|
|
rb_define_method(rb_cRational, "positive?", nurat_positive_p, 0);
|
|
rb_define_method(rb_cRational, "negative?", nurat_negative_p, 0);
|
|
rb_define_method(rb_cRational, "abs", rb_rational_abs, 0);
|
|
rb_define_method(rb_cRational, "magnitude", rb_rational_abs, 0);
|
|
|
|
rb_define_method(rb_cRational, "floor", nurat_floor_n, -1);
|
|
rb_define_method(rb_cRational, "ceil", nurat_ceil_n, -1);
|
|
rb_define_method(rb_cRational, "truncate", nurat_truncate_n, -1);
|
|
rb_define_method(rb_cRational, "round", nurat_round_n, -1);
|
|
|
|
rb_define_method(rb_cRational, "to_i", nurat_truncate, 0);
|
|
rb_define_method(rb_cRational, "to_f", nurat_to_f, 0);
|
|
rb_define_method(rb_cRational, "to_r", nurat_to_r, 0);
|
|
rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1);
|
|
|
|
rb_define_method(rb_cRational, "hash", nurat_hash, 0);
|
|
|
|
rb_define_method(rb_cRational, "to_s", nurat_to_s, 0);
|
|
rb_define_method(rb_cRational, "inspect", nurat_inspect, 0);
|
|
|
|
rb_define_private_method(rb_cRational, "marshal_dump", nurat_marshal_dump, 0);
|
|
/* :nodoc: */
|
|
compat = rb_define_class_under(rb_cRational, "compatible", rb_cObject);
|
|
rb_define_private_method(compat, "marshal_load", nurat_marshal_load, 1);
|
|
rb_marshal_define_compat(rb_cRational, compat, nurat_dumper, nurat_loader);
|
|
|
|
/* --- */
|
|
|
|
rb_define_method(rb_cInteger, "gcd", rb_gcd, 1);
|
|
rb_define_method(rb_cInteger, "lcm", rb_lcm, 1);
|
|
rb_define_method(rb_cInteger, "gcdlcm", rb_gcdlcm, 1);
|
|
|
|
rb_define_method(rb_cNumeric, "numerator", numeric_numerator, 0);
|
|
rb_define_method(rb_cNumeric, "denominator", numeric_denominator, 0);
|
|
rb_define_method(rb_cNumeric, "quo", rb_numeric_quo, 1);
|
|
|
|
rb_define_method(rb_cInteger, "numerator", integer_numerator, 0);
|
|
rb_define_method(rb_cInteger, "denominator", integer_denominator, 0);
|
|
|
|
rb_define_method(rb_cFloat, "numerator", rb_float_numerator, 0);
|
|
rb_define_method(rb_cFloat, "denominator", rb_float_denominator, 0);
|
|
|
|
rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0);
|
|
rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1);
|
|
rb_define_method(rb_cInteger, "to_r", integer_to_r, 0);
|
|
rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1);
|
|
rb_define_method(rb_cFloat, "to_r", float_to_r, 0);
|
|
rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1);
|
|
|
|
rb_define_method(rb_cString, "to_r", string_to_r, 0);
|
|
|
|
rb_define_private_method(CLASS_OF(rb_cRational), "convert", nurat_s_convert, -1);
|
|
|
|
rb_provide("rational.so"); /* for backward compatibility */
|
|
}
|