mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	When the generic_iv_tbl is resized up, rebuild_table performs allocations that can trigger GC. If autocompaction is enabled, then moved objects are removed from and inserted into the generic_iv_tbl. This may cause another call to rebuild_table to resize the generic_iv_tbl. When returning back to the original rebuild_table, some of the data may be stale, causing the generic_iv_tbl to be corrupted. This commit changes rebuild_table to only read data from the st_table after the allocations have completed. Co-Authored-By: Matt Valentine-House <matt@eightbitraptor.com>
		
			
				
	
	
		
			2268 lines
		
	
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2268 lines
		
	
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* This is a public domain general purpose hash table package
 | 
						|
   originally written by Peter Moore @ UCB.
 | 
						|
 | 
						|
   The hash table data structures were redesigned and the package was
 | 
						|
   rewritten by Vladimir Makarov <vmakarov@redhat.com>.  */
 | 
						|
 | 
						|
/* The original package implemented classic bucket-based hash tables
 | 
						|
   with entries doubly linked for an access by their insertion order.
 | 
						|
   To decrease pointer chasing and as a consequence to improve a data
 | 
						|
   locality the current implementation is based on storing entries in
 | 
						|
   an array and using hash tables with open addressing.  The current
 | 
						|
   entries are more compact in comparison with the original ones and
 | 
						|
   this also improves the data locality.
 | 
						|
 | 
						|
   The hash table has two arrays called *bins* and *entries*.
 | 
						|
 | 
						|
     bins:
 | 
						|
    -------
 | 
						|
   |       |                  entries array:
 | 
						|
   |-------|            --------------------------------
 | 
						|
   | index |           |      | entry:  |        |      |
 | 
						|
   |-------|           |      |         |        |      |
 | 
						|
   | ...   |           | ...  | hash    |  ...   | ...  |
 | 
						|
   |-------|           |      | key     |        |      |
 | 
						|
   | empty |           |      | record  |        |      |
 | 
						|
   |-------|            --------------------------------
 | 
						|
   | ...   |                   ^                  ^
 | 
						|
   |-------|                   |_ entries start   |_ entries bound
 | 
						|
   |deleted|
 | 
						|
    -------
 | 
						|
 | 
						|
   o The entry array contains table entries in the same order as they
 | 
						|
     were inserted.
 | 
						|
 | 
						|
     When the first entry is deleted, a variable containing index of
 | 
						|
     the current first entry (*entries start*) is changed.  In all
 | 
						|
     other cases of the deletion, we just mark the entry as deleted by
 | 
						|
     using a reserved hash value.
 | 
						|
 | 
						|
     Such organization of the entry storage makes operations of the
 | 
						|
     table shift and the entries traversal very fast.
 | 
						|
 | 
						|
   o The bins provide access to the entries by their keys.  The
 | 
						|
     key hash is mapped to a bin containing *index* of the
 | 
						|
     corresponding entry in the entry array.
 | 
						|
 | 
						|
     The bin array size is always power of two, it makes mapping very
 | 
						|
     fast by using the corresponding lower bits of the hash.
 | 
						|
     Generally it is not a good idea to ignore some part of the hash.
 | 
						|
     But alternative approach is worse.  For example, we could use a
 | 
						|
     modulo operation for mapping and a prime number for the size of
 | 
						|
     the bin array.  Unfortunately, the modulo operation for big
 | 
						|
     64-bit numbers are extremely slow (it takes more than 100 cycles
 | 
						|
     on modern Intel CPUs).
 | 
						|
 | 
						|
     Still other bits of the hash value are used when the mapping
 | 
						|
     results in a collision.  In this case we use a secondary hash
 | 
						|
     value which is a result of a function of the collision bin
 | 
						|
     index and the original hash value.  The function choice
 | 
						|
     guarantees that we can traverse all bins and finally find the
 | 
						|
     corresponding bin as after several iterations the function
 | 
						|
     becomes a full cycle linear congruential generator because it
 | 
						|
     satisfies requirements of the Hull-Dobell theorem.
 | 
						|
 | 
						|
     When an entry is removed from the table besides marking the
 | 
						|
     hash in the corresponding entry described above, we also mark
 | 
						|
     the bin by a special value in order to find entries which had
 | 
						|
     a collision with the removed entries.
 | 
						|
 | 
						|
     There are two reserved values for the bins.  One denotes an
 | 
						|
     empty bin, another one denotes a bin for a deleted entry.
 | 
						|
 | 
						|
   o The length of the bin array is at least two times more than the
 | 
						|
     entry array length.  This keeps the table load factor healthy.
 | 
						|
     The trigger of rebuilding the table is always a case when we can
 | 
						|
     not insert an entry anymore at the entries bound.  We could
 | 
						|
     change the entries bound too in case of deletion but than we need
 | 
						|
     a special code to count bins with corresponding deleted entries
 | 
						|
     and reset the bin values when there are too many bins
 | 
						|
     corresponding deleted entries
 | 
						|
 | 
						|
     Table rebuilding is done by creation of a new entry array and
 | 
						|
     bins of an appropriate size.  We also try to reuse the arrays
 | 
						|
     in some cases by compacting the array and removing deleted
 | 
						|
     entries.
 | 
						|
 | 
						|
   o To save memory very small tables have no allocated arrays
 | 
						|
     bins.  We use a linear search for an access by a key.
 | 
						|
 | 
						|
   o To save more memory we use 8-, 16-, 32- and 64- bit indexes in
 | 
						|
     bins depending on the current hash table size.
 | 
						|
 | 
						|
   o The implementation takes into account that the table can be
 | 
						|
     rebuilt during hashing or comparison functions.  It can happen if
 | 
						|
     the functions are implemented in Ruby and a thread switch occurs
 | 
						|
     during their execution.
 | 
						|
 | 
						|
   This implementation speeds up the Ruby hash table benchmarks in
 | 
						|
   average by more 40% on Intel Haswell CPU.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
#ifdef NOT_RUBY
 | 
						|
#include "regint.h"
 | 
						|
#include "st.h"
 | 
						|
#else
 | 
						|
#include "internal.h"
 | 
						|
#include "internal/bits.h"
 | 
						|
#include "internal/hash.h"
 | 
						|
#include "internal/sanitizers.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#ifdef HAVE_STDLIB_H
 | 
						|
#include <stdlib.h>
 | 
						|
#endif
 | 
						|
#include <string.h>
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
#ifdef __GNUC__
 | 
						|
#define PREFETCH(addr, write_p) __builtin_prefetch(addr, write_p)
 | 
						|
#define EXPECT(expr, val) __builtin_expect(expr, val)
 | 
						|
#define ATTRIBUTE_UNUSED  __attribute__((unused))
 | 
						|
#else
 | 
						|
#define PREFETCH(addr, write_p)
 | 
						|
#define EXPECT(expr, val) (expr)
 | 
						|
#define ATTRIBUTE_UNUSED
 | 
						|
#endif
 | 
						|
 | 
						|
/* The type of hashes.  */
 | 
						|
typedef st_index_t st_hash_t;
 | 
						|
 | 
						|
struct st_table_entry {
 | 
						|
    st_hash_t hash;
 | 
						|
    st_data_t key;
 | 
						|
    st_data_t record;
 | 
						|
};
 | 
						|
 | 
						|
#define type_numhash st_hashtype_num
 | 
						|
static const struct st_hash_type st_hashtype_num = {
 | 
						|
    st_numcmp,
 | 
						|
    st_numhash,
 | 
						|
};
 | 
						|
 | 
						|
static int st_strcmp(st_data_t, st_data_t);
 | 
						|
static st_index_t strhash(st_data_t);
 | 
						|
static const struct st_hash_type type_strhash = {
 | 
						|
    st_strcmp,
 | 
						|
    strhash,
 | 
						|
};
 | 
						|
 | 
						|
static int st_locale_insensitive_strcasecmp_i(st_data_t lhs, st_data_t rhs);
 | 
						|
static st_index_t strcasehash(st_data_t);
 | 
						|
static const struct st_hash_type type_strcasehash = {
 | 
						|
    st_locale_insensitive_strcasecmp_i,
 | 
						|
    strcasehash,
 | 
						|
};
 | 
						|
 | 
						|
/* Value used to catch uninitialized entries/bins during debugging.
 | 
						|
   There is a possibility for a false alarm, but its probability is
 | 
						|
   extremely small.  */
 | 
						|
#define ST_INIT_VAL 0xafafafafafafafaf
 | 
						|
#define ST_INIT_VAL_BYTE 0xafa
 | 
						|
 | 
						|
#ifdef RUBY
 | 
						|
#undef malloc
 | 
						|
#undef realloc
 | 
						|
#undef calloc
 | 
						|
#undef free
 | 
						|
#define malloc ruby_xmalloc
 | 
						|
#define calloc ruby_xcalloc
 | 
						|
#define realloc ruby_xrealloc
 | 
						|
#define free ruby_xfree
 | 
						|
#endif
 | 
						|
 | 
						|
#define EQUAL(tab,x,y) ((x) == (y) || (*(tab)->type->compare)((x),(y)) == 0)
 | 
						|
#define PTR_EQUAL(tab, ptr, hash_val, key_) \
 | 
						|
    ((ptr)->hash == (hash_val) && EQUAL((tab), (key_), (ptr)->key))
 | 
						|
 | 
						|
/* As PTR_EQUAL only its result is returned in RES.  REBUILT_P is set
 | 
						|
   up to TRUE if the table is rebuilt during the comparison.  */
 | 
						|
#define DO_PTR_EQUAL_CHECK(tab, ptr, hash_val, key, res, rebuilt_p) \
 | 
						|
    do {							    \
 | 
						|
        unsigned int _old_rebuilds_num = (tab)->rebuilds_num;       \
 | 
						|
        res = PTR_EQUAL(tab, ptr, hash_val, key);		    \
 | 
						|
        rebuilt_p = _old_rebuilds_num != (tab)->rebuilds_num;	    \
 | 
						|
    } while (FALSE)
 | 
						|
 | 
						|
/* Features of a table.  */
 | 
						|
struct st_features {
 | 
						|
    /* Power of 2 used for number of allocated entries.  */
 | 
						|
    unsigned char entry_power;
 | 
						|
    /* Power of 2 used for number of allocated bins.  Depending on the
 | 
						|
       table size, the number of bins is 2-4 times more than the
 | 
						|
       number of entries.  */
 | 
						|
    unsigned char bin_power;
 | 
						|
    /* Enumeration of sizes of bins (8-bit, 16-bit etc).  */
 | 
						|
    unsigned char size_ind;
 | 
						|
    /* Bins are packed in words of type st_index_t.  The following is
 | 
						|
       a size of bins counted by words.  */
 | 
						|
    st_index_t bins_words;
 | 
						|
};
 | 
						|
 | 
						|
/* Features of all possible size tables.  */
 | 
						|
#if SIZEOF_ST_INDEX_T == 8
 | 
						|
#define MAX_POWER2 62
 | 
						|
static const struct st_features features[] = {
 | 
						|
    {0, 1, 0, 0x0},
 | 
						|
    {1, 2, 0, 0x1},
 | 
						|
    {2, 3, 0, 0x1},
 | 
						|
    {3, 4, 0, 0x2},
 | 
						|
    {4, 5, 0, 0x4},
 | 
						|
    {5, 6, 0, 0x8},
 | 
						|
    {6, 7, 0, 0x10},
 | 
						|
    {7, 8, 0, 0x20},
 | 
						|
    {8, 9, 1, 0x80},
 | 
						|
    {9, 10, 1, 0x100},
 | 
						|
    {10, 11, 1, 0x200},
 | 
						|
    {11, 12, 1, 0x400},
 | 
						|
    {12, 13, 1, 0x800},
 | 
						|
    {13, 14, 1, 0x1000},
 | 
						|
    {14, 15, 1, 0x2000},
 | 
						|
    {15, 16, 1, 0x4000},
 | 
						|
    {16, 17, 2, 0x10000},
 | 
						|
    {17, 18, 2, 0x20000},
 | 
						|
    {18, 19, 2, 0x40000},
 | 
						|
    {19, 20, 2, 0x80000},
 | 
						|
    {20, 21, 2, 0x100000},
 | 
						|
    {21, 22, 2, 0x200000},
 | 
						|
    {22, 23, 2, 0x400000},
 | 
						|
    {23, 24, 2, 0x800000},
 | 
						|
    {24, 25, 2, 0x1000000},
 | 
						|
    {25, 26, 2, 0x2000000},
 | 
						|
    {26, 27, 2, 0x4000000},
 | 
						|
    {27, 28, 2, 0x8000000},
 | 
						|
    {28, 29, 2, 0x10000000},
 | 
						|
    {29, 30, 2, 0x20000000},
 | 
						|
    {30, 31, 2, 0x40000000},
 | 
						|
    {31, 32, 2, 0x80000000},
 | 
						|
    {32, 33, 3, 0x200000000},
 | 
						|
    {33, 34, 3, 0x400000000},
 | 
						|
    {34, 35, 3, 0x800000000},
 | 
						|
    {35, 36, 3, 0x1000000000},
 | 
						|
    {36, 37, 3, 0x2000000000},
 | 
						|
    {37, 38, 3, 0x4000000000},
 | 
						|
    {38, 39, 3, 0x8000000000},
 | 
						|
    {39, 40, 3, 0x10000000000},
 | 
						|
    {40, 41, 3, 0x20000000000},
 | 
						|
    {41, 42, 3, 0x40000000000},
 | 
						|
    {42, 43, 3, 0x80000000000},
 | 
						|
    {43, 44, 3, 0x100000000000},
 | 
						|
    {44, 45, 3, 0x200000000000},
 | 
						|
    {45, 46, 3, 0x400000000000},
 | 
						|
    {46, 47, 3, 0x800000000000},
 | 
						|
    {47, 48, 3, 0x1000000000000},
 | 
						|
    {48, 49, 3, 0x2000000000000},
 | 
						|
    {49, 50, 3, 0x4000000000000},
 | 
						|
    {50, 51, 3, 0x8000000000000},
 | 
						|
    {51, 52, 3, 0x10000000000000},
 | 
						|
    {52, 53, 3, 0x20000000000000},
 | 
						|
    {53, 54, 3, 0x40000000000000},
 | 
						|
    {54, 55, 3, 0x80000000000000},
 | 
						|
    {55, 56, 3, 0x100000000000000},
 | 
						|
    {56, 57, 3, 0x200000000000000},
 | 
						|
    {57, 58, 3, 0x400000000000000},
 | 
						|
    {58, 59, 3, 0x800000000000000},
 | 
						|
    {59, 60, 3, 0x1000000000000000},
 | 
						|
    {60, 61, 3, 0x2000000000000000},
 | 
						|
    {61, 62, 3, 0x4000000000000000},
 | 
						|
    {62, 63, 3, 0x8000000000000000},
 | 
						|
};
 | 
						|
 | 
						|
#else
 | 
						|
#define MAX_POWER2 30
 | 
						|
 | 
						|
static const struct st_features features[] = {
 | 
						|
    {0, 1, 0, 0x1},
 | 
						|
    {1, 2, 0, 0x1},
 | 
						|
    {2, 3, 0, 0x2},
 | 
						|
    {3, 4, 0, 0x4},
 | 
						|
    {4, 5, 0, 0x8},
 | 
						|
    {5, 6, 0, 0x10},
 | 
						|
    {6, 7, 0, 0x20},
 | 
						|
    {7, 8, 0, 0x40},
 | 
						|
    {8, 9, 1, 0x100},
 | 
						|
    {9, 10, 1, 0x200},
 | 
						|
    {10, 11, 1, 0x400},
 | 
						|
    {11, 12, 1, 0x800},
 | 
						|
    {12, 13, 1, 0x1000},
 | 
						|
    {13, 14, 1, 0x2000},
 | 
						|
    {14, 15, 1, 0x4000},
 | 
						|
    {15, 16, 1, 0x8000},
 | 
						|
    {16, 17, 2, 0x20000},
 | 
						|
    {17, 18, 2, 0x40000},
 | 
						|
    {18, 19, 2, 0x80000},
 | 
						|
    {19, 20, 2, 0x100000},
 | 
						|
    {20, 21, 2, 0x200000},
 | 
						|
    {21, 22, 2, 0x400000},
 | 
						|
    {22, 23, 2, 0x800000},
 | 
						|
    {23, 24, 2, 0x1000000},
 | 
						|
    {24, 25, 2, 0x2000000},
 | 
						|
    {25, 26, 2, 0x4000000},
 | 
						|
    {26, 27, 2, 0x8000000},
 | 
						|
    {27, 28, 2, 0x10000000},
 | 
						|
    {28, 29, 2, 0x20000000},
 | 
						|
    {29, 30, 2, 0x40000000},
 | 
						|
    {30, 31, 2, 0x80000000},
 | 
						|
};
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* The reserved hash value and its substitution.  */
 | 
						|
#define RESERVED_HASH_VAL (~(st_hash_t) 0)
 | 
						|
#define RESERVED_HASH_SUBSTITUTION_VAL ((st_hash_t) 0)
 | 
						|
 | 
						|
/* Return hash value of KEY for table TAB.  */
 | 
						|
static inline st_hash_t
 | 
						|
do_hash(st_data_t key, st_table *tab)
 | 
						|
{
 | 
						|
    st_hash_t hash = (st_hash_t)(tab->type->hash)(key);
 | 
						|
 | 
						|
    /* RESERVED_HASH_VAL is used for a deleted entry.  Map it into
 | 
						|
       another value.  Such mapping should be extremely rare.  */
 | 
						|
    return hash == RESERVED_HASH_VAL ? RESERVED_HASH_SUBSTITUTION_VAL : hash;
 | 
						|
}
 | 
						|
 | 
						|
/* Power of 2 defining the minimal number of allocated entries.  */
 | 
						|
#define MINIMAL_POWER2 2
 | 
						|
 | 
						|
#if MINIMAL_POWER2 < 2
 | 
						|
#error "MINIMAL_POWER2 should be >= 2"
 | 
						|
#endif
 | 
						|
 | 
						|
/* If the power2 of the allocated `entries` is less than the following
 | 
						|
   value, don't allocate bins and use a linear search.  */
 | 
						|
#define MAX_POWER2_FOR_TABLES_WITHOUT_BINS 4
 | 
						|
 | 
						|
/* Return smallest n >= MINIMAL_POWER2 such 2^n > SIZE.  */
 | 
						|
static int
 | 
						|
get_power2(st_index_t size)
 | 
						|
{
 | 
						|
    unsigned int n = ST_INDEX_BITS - nlz_intptr(size);
 | 
						|
    if (n <= MAX_POWER2)
 | 
						|
        return n < MINIMAL_POWER2 ? MINIMAL_POWER2 : n;
 | 
						|
#ifndef NOT_RUBY
 | 
						|
    /* Ran out of the table entries */
 | 
						|
    rb_raise(rb_eRuntimeError, "st_table too big");
 | 
						|
#endif
 | 
						|
    /* should raise exception */
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Return value of N-th bin in array BINS of table with bins size
 | 
						|
   index S.  */
 | 
						|
static inline st_index_t
 | 
						|
get_bin(st_index_t *bins, int s, st_index_t n)
 | 
						|
{
 | 
						|
    return (s == 0 ? ((unsigned char *) bins)[n]
 | 
						|
            : s == 1 ? ((unsigned short *) bins)[n]
 | 
						|
            : s == 2 ? ((unsigned int *) bins)[n]
 | 
						|
            : ((st_index_t *) bins)[n]);
 | 
						|
}
 | 
						|
 | 
						|
/* Set up N-th bin in array BINS of table with bins size index S to
 | 
						|
   value V.  */
 | 
						|
static inline void
 | 
						|
set_bin(st_index_t *bins, int s, st_index_t n, st_index_t v)
 | 
						|
{
 | 
						|
    if (s == 0) ((unsigned char *) bins)[n] = (unsigned char) v;
 | 
						|
    else if (s == 1) ((unsigned short *) bins)[n] = (unsigned short) v;
 | 
						|
    else if (s == 2) ((unsigned int *) bins)[n] = (unsigned int) v;
 | 
						|
    else ((st_index_t *) bins)[n] = v;
 | 
						|
}
 | 
						|
 | 
						|
/* These macros define reserved values for empty table bin and table
 | 
						|
   bin which contains a deleted entry.  We will never use such values
 | 
						|
   for an entry index in bins.  */
 | 
						|
#define EMPTY_BIN    0
 | 
						|
#define DELETED_BIN  1
 | 
						|
/* Base of a real entry index in the bins.  */
 | 
						|
#define ENTRY_BASE 2
 | 
						|
 | 
						|
/* Mark I-th bin of table TAB as empty, in other words not
 | 
						|
   corresponding to any entry.  */
 | 
						|
#define MARK_BIN_EMPTY(tab, i) (set_bin((tab)->bins, get_size_ind(tab), i, EMPTY_BIN))
 | 
						|
 | 
						|
/* Values used for not found entry and bin with given
 | 
						|
   characteristics.  */
 | 
						|
#define UNDEFINED_ENTRY_IND (~(st_index_t) 0)
 | 
						|
#define UNDEFINED_BIN_IND (~(st_index_t) 0)
 | 
						|
 | 
						|
/* Entry and bin values returned when we found a table rebuild during
 | 
						|
   the search.  */
 | 
						|
#define REBUILT_TABLE_ENTRY_IND (~(st_index_t) 1)
 | 
						|
#define REBUILT_TABLE_BIN_IND (~(st_index_t) 1)
 | 
						|
 | 
						|
/* Mark I-th bin of table TAB as corresponding to a deleted table
 | 
						|
   entry.  Update number of entries in the table and number of bins
 | 
						|
   corresponding to deleted entries. */
 | 
						|
#define MARK_BIN_DELETED(tab, i)				\
 | 
						|
    do {                                                        \
 | 
						|
        set_bin((tab)->bins, get_size_ind(tab), i, DELETED_BIN); \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
/* Macros to check that value B is used empty bins and bins
 | 
						|
   corresponding deleted entries.  */
 | 
						|
#define EMPTY_BIN_P(b) ((b) == EMPTY_BIN)
 | 
						|
#define DELETED_BIN_P(b) ((b) == DELETED_BIN)
 | 
						|
#define EMPTY_OR_DELETED_BIN_P(b) ((b) <= DELETED_BIN)
 | 
						|
 | 
						|
/* Macros to check empty bins and bins corresponding to deleted
 | 
						|
   entries.  Bins are given by their index I in table TAB.  */
 | 
						|
#define IND_EMPTY_BIN_P(tab, i) (EMPTY_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))
 | 
						|
#define IND_DELETED_BIN_P(tab, i) (DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))
 | 
						|
#define IND_EMPTY_OR_DELETED_BIN_P(tab, i) (EMPTY_OR_DELETED_BIN_P(get_bin((tab)->bins, get_size_ind(tab), i)))
 | 
						|
 | 
						|
/* Macros for marking and checking deleted entries given by their
 | 
						|
   pointer E_PTR.  */
 | 
						|
#define MARK_ENTRY_DELETED(e_ptr) ((e_ptr)->hash = RESERVED_HASH_VAL)
 | 
						|
#define DELETED_ENTRY_P(e_ptr) ((e_ptr)->hash == RESERVED_HASH_VAL)
 | 
						|
 | 
						|
/* Return bin size index of table TAB.  */
 | 
						|
static inline unsigned int
 | 
						|
get_size_ind(const st_table *tab)
 | 
						|
{
 | 
						|
    return tab->size_ind;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the number of allocated bins of table TAB.  */
 | 
						|
static inline st_index_t
 | 
						|
get_bins_num(const st_table *tab)
 | 
						|
{
 | 
						|
    return ((st_index_t) 1)<<tab->bin_power;
 | 
						|
}
 | 
						|
 | 
						|
/* Return mask for a bin index in table TAB.  */
 | 
						|
static inline st_index_t
 | 
						|
bins_mask(const st_table *tab)
 | 
						|
{
 | 
						|
    return get_bins_num(tab) - 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the index of table TAB bin corresponding to
 | 
						|
   HASH_VALUE.  */
 | 
						|
static inline st_index_t
 | 
						|
hash_bin(st_hash_t hash_value, st_table *tab)
 | 
						|
{
 | 
						|
    return hash_value & bins_mask(tab);
 | 
						|
}
 | 
						|
 | 
						|
/* Return the number of allocated entries of table TAB.  */
 | 
						|
static inline st_index_t
 | 
						|
get_allocated_entries(const st_table *tab)
 | 
						|
{
 | 
						|
    return ((st_index_t) 1)<<tab->entry_power;
 | 
						|
}
 | 
						|
 | 
						|
/* Return size of the allocated bins of table TAB.  */
 | 
						|
static inline st_index_t
 | 
						|
bins_size(const st_table *tab)
 | 
						|
{
 | 
						|
    return features[tab->entry_power].bins_words * sizeof (st_index_t);
 | 
						|
}
 | 
						|
 | 
						|
/* Mark all bins of table TAB as empty.  */
 | 
						|
static void
 | 
						|
initialize_bins(st_table *tab)
 | 
						|
{
 | 
						|
    memset(tab->bins, 0, bins_size(tab));
 | 
						|
}
 | 
						|
 | 
						|
/* Make table TAB empty.  */
 | 
						|
static void
 | 
						|
make_tab_empty(st_table *tab)
 | 
						|
{
 | 
						|
    tab->num_entries = 0;
 | 
						|
    tab->entries_start = tab->entries_bound = 0;
 | 
						|
    if (tab->bins != NULL)
 | 
						|
        initialize_bins(tab);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef HASH_LOG
 | 
						|
#ifdef HAVE_UNISTD_H
 | 
						|
#include <unistd.h>
 | 
						|
#endif
 | 
						|
static struct {
 | 
						|
    int all, total, num, str, strcase;
 | 
						|
}  collision;
 | 
						|
 | 
						|
/* Flag switching off output of package statistics at the end of
 | 
						|
   program.  */
 | 
						|
static int init_st = 0;
 | 
						|
 | 
						|
/* Output overall number of table searches and collisions into a
 | 
						|
   temporary file.  */
 | 
						|
static void
 | 
						|
stat_col(void)
 | 
						|
{
 | 
						|
    char fname[10+sizeof(long)*3];
 | 
						|
    FILE *f;
 | 
						|
    if (!collision.total) return;
 | 
						|
    f = fopen((snprintf(fname, sizeof(fname), "/tmp/col%ld", (long)getpid()), fname), "w");
 | 
						|
    if (f == NULL)
 | 
						|
        return;
 | 
						|
    fprintf(f, "collision: %d / %d (%6.2f)\n", collision.all, collision.total,
 | 
						|
            ((double)collision.all / (collision.total)) * 100);
 | 
						|
    fprintf(f, "num: %d, str: %d, strcase: %d\n", collision.num, collision.str, collision.strcase);
 | 
						|
    fclose(f);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Create and return table with TYPE which can hold at least SIZE
 | 
						|
   entries.  The real number of entries which the table can hold is
 | 
						|
   the nearest power of two for SIZE.  */
 | 
						|
st_table *
 | 
						|
st_init_table_with_size(const struct st_hash_type *type, st_index_t size)
 | 
						|
{
 | 
						|
    st_table *tab;
 | 
						|
    int n;
 | 
						|
 | 
						|
#ifdef HASH_LOG
 | 
						|
#if HASH_LOG+0 < 0
 | 
						|
    {
 | 
						|
        const char *e = getenv("ST_HASH_LOG");
 | 
						|
        if (!e || !*e) init_st = 1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    if (init_st == 0) {
 | 
						|
        init_st = 1;
 | 
						|
        atexit(stat_col);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    n = get_power2(size);
 | 
						|
#ifndef RUBY
 | 
						|
    if (n < 0)
 | 
						|
        return NULL;
 | 
						|
#endif
 | 
						|
    tab = (st_table *) malloc(sizeof (st_table));
 | 
						|
#ifndef RUBY
 | 
						|
    if (tab == NULL)
 | 
						|
        return NULL;
 | 
						|
#endif
 | 
						|
    tab->type = type;
 | 
						|
    tab->entry_power = n;
 | 
						|
    tab->bin_power = features[n].bin_power;
 | 
						|
    tab->size_ind = features[n].size_ind;
 | 
						|
    if (n <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
 | 
						|
        tab->bins = NULL;
 | 
						|
    else {
 | 
						|
        tab->bins = (st_index_t *) malloc(bins_size(tab));
 | 
						|
#ifndef RUBY
 | 
						|
        if (tab->bins == NULL) {
 | 
						|
            free(tab);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    tab->entries = (st_table_entry *) malloc(get_allocated_entries(tab)
 | 
						|
                                             * sizeof(st_table_entry));
 | 
						|
#ifndef RUBY
 | 
						|
    if (tab->entries == NULL) {
 | 
						|
        st_free_table(tab);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    make_tab_empty(tab);
 | 
						|
    tab->rebuilds_num = 0;
 | 
						|
    return tab;
 | 
						|
}
 | 
						|
 | 
						|
/* Create and return table with TYPE which can hold a minimal number
 | 
						|
   of entries (see comments for get_power2).  */
 | 
						|
st_table *
 | 
						|
st_init_table(const struct st_hash_type *type)
 | 
						|
{
 | 
						|
    return st_init_table_with_size(type, 0);
 | 
						|
}
 | 
						|
 | 
						|
/* Create and return table which can hold a minimal number of
 | 
						|
   numbers.  */
 | 
						|
st_table *
 | 
						|
st_init_numtable(void)
 | 
						|
{
 | 
						|
    return st_init_table(&type_numhash);
 | 
						|
}
 | 
						|
 | 
						|
/* Create and return table which can hold SIZE numbers.  */
 | 
						|
st_table *
 | 
						|
st_init_numtable_with_size(st_index_t size)
 | 
						|
{
 | 
						|
    return st_init_table_with_size(&type_numhash, size);
 | 
						|
}
 | 
						|
 | 
						|
/* Create and return table which can hold a minimal number of
 | 
						|
   strings.  */
 | 
						|
st_table *
 | 
						|
st_init_strtable(void)
 | 
						|
{
 | 
						|
    return st_init_table(&type_strhash);
 | 
						|
}
 | 
						|
 | 
						|
/* Create and return table which can hold SIZE strings.  */
 | 
						|
st_table *
 | 
						|
st_init_strtable_with_size(st_index_t size)
 | 
						|
{
 | 
						|
    return st_init_table_with_size(&type_strhash, size);
 | 
						|
}
 | 
						|
 | 
						|
/* Create and return table which can hold a minimal number of strings
 | 
						|
   whose character case is ignored.  */
 | 
						|
st_table *
 | 
						|
st_init_strcasetable(void)
 | 
						|
{
 | 
						|
    return st_init_table(&type_strcasehash);
 | 
						|
}
 | 
						|
 | 
						|
/* Create and return table which can hold SIZE strings whose character
 | 
						|
   case is ignored.  */
 | 
						|
st_table *
 | 
						|
st_init_strcasetable_with_size(st_index_t size)
 | 
						|
{
 | 
						|
    return st_init_table_with_size(&type_strcasehash, size);
 | 
						|
}
 | 
						|
 | 
						|
/* Make table TAB empty.  */
 | 
						|
void
 | 
						|
st_clear(st_table *tab)
 | 
						|
{
 | 
						|
    make_tab_empty(tab);
 | 
						|
    tab->rebuilds_num++;
 | 
						|
}
 | 
						|
 | 
						|
/* Free table TAB space.  */
 | 
						|
void
 | 
						|
st_free_table(st_table *tab)
 | 
						|
{
 | 
						|
    if (tab->bins != NULL)
 | 
						|
        free(tab->bins);
 | 
						|
    free(tab->entries);
 | 
						|
    free(tab);
 | 
						|
}
 | 
						|
 | 
						|
/* Return byte size of memory allocated for table TAB.  */
 | 
						|
size_t
 | 
						|
st_memsize(const st_table *tab)
 | 
						|
{
 | 
						|
    return(sizeof(st_table)
 | 
						|
           + (tab->bins == NULL ? 0 : bins_size(tab))
 | 
						|
           + get_allocated_entries(tab) * sizeof(st_table_entry));
 | 
						|
}
 | 
						|
 | 
						|
static st_index_t
 | 
						|
find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key);
 | 
						|
 | 
						|
static st_index_t
 | 
						|
find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key);
 | 
						|
 | 
						|
static st_index_t
 | 
						|
find_table_bin_ind_direct(st_table *table, st_hash_t hash_value, st_data_t key);
 | 
						|
 | 
						|
static st_index_t
 | 
						|
find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value,
 | 
						|
                               st_data_t key, st_index_t *bin_ind);
 | 
						|
 | 
						|
#ifdef HASH_LOG
 | 
						|
static void
 | 
						|
count_collision(const struct st_hash_type *type)
 | 
						|
{
 | 
						|
    collision.all++;
 | 
						|
    if (type == &type_numhash) {
 | 
						|
        collision.num++;
 | 
						|
    }
 | 
						|
    else if (type == &type_strhash) {
 | 
						|
        collision.strcase++;
 | 
						|
    }
 | 
						|
    else if (type == &type_strcasehash) {
 | 
						|
        collision.str++;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define COLLISION (collision_check ? count_collision(tab->type) : (void)0)
 | 
						|
#define FOUND_BIN (collision_check ? collision.total++ : (void)0)
 | 
						|
#define collision_check 0
 | 
						|
#else
 | 
						|
#define COLLISION
 | 
						|
#define FOUND_BIN
 | 
						|
#endif
 | 
						|
 | 
						|
/* If the number of entries in the table is at least REBUILD_THRESHOLD
 | 
						|
   times less than the entry array length, decrease the table
 | 
						|
   size.  */
 | 
						|
#define REBUILD_THRESHOLD 4
 | 
						|
 | 
						|
#if REBUILD_THRESHOLD < 2
 | 
						|
#error "REBUILD_THRESHOLD should be >= 2"
 | 
						|
#endif
 | 
						|
 | 
						|
/* Rebuild table TAB.  Rebuilding removes all deleted bins and entries
 | 
						|
   and can change size of the table entries and bins arrays.
 | 
						|
   Rebuilding is implemented by creation of a new table or by
 | 
						|
   compaction of the existing one.  */
 | 
						|
static void
 | 
						|
rebuild_table(st_table *tab)
 | 
						|
{
 | 
						|
    st_index_t i, ni;
 | 
						|
    unsigned int size_ind;
 | 
						|
    st_table *new_tab;
 | 
						|
    st_table_entry *new_entries;
 | 
						|
    st_table_entry *curr_entry_ptr;
 | 
						|
    st_index_t *bins;
 | 
						|
    st_index_t bin_ind;
 | 
						|
 | 
						|
    if ((2 * tab->num_entries <= get_allocated_entries(tab)
 | 
						|
         && REBUILD_THRESHOLD * tab->num_entries > get_allocated_entries(tab))
 | 
						|
        || tab->num_entries < (1 << MINIMAL_POWER2)) {
 | 
						|
        /* Compaction: */
 | 
						|
        tab->num_entries = 0;
 | 
						|
        if (tab->bins != NULL)
 | 
						|
            initialize_bins(tab);
 | 
						|
        new_tab = tab;
 | 
						|
        new_entries = tab->entries;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* This allocation could trigger GC and compaction. If tab is the
 | 
						|
         * gen_iv_tbl, then tab could have changed in size due to objects being
 | 
						|
         * freed and/or moved. Do not store attributes of tab before this line. */
 | 
						|
        new_tab = st_init_table_with_size(tab->type,
 | 
						|
                                          2 * tab->num_entries - 1);
 | 
						|
        new_entries = new_tab->entries;
 | 
						|
    }
 | 
						|
 | 
						|
    ni = 0;
 | 
						|
    bins = new_tab->bins;
 | 
						|
    size_ind = get_size_ind(new_tab);
 | 
						|
    st_index_t bound = tab->entries_bound;
 | 
						|
    st_table_entry *entries = tab->entries;
 | 
						|
 | 
						|
    for (i = tab->entries_start; i < bound; i++) {
 | 
						|
        curr_entry_ptr = &entries[i];
 | 
						|
        PREFETCH(entries + i + 1, 0);
 | 
						|
        if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0))
 | 
						|
            continue;
 | 
						|
        if (&new_entries[ni] != curr_entry_ptr)
 | 
						|
            new_entries[ni] = *curr_entry_ptr;
 | 
						|
        if (EXPECT(bins != NULL, 1)) {
 | 
						|
            bin_ind = find_table_bin_ind_direct(new_tab, curr_entry_ptr->hash,
 | 
						|
                                                curr_entry_ptr->key);
 | 
						|
            set_bin(bins, size_ind, bin_ind, ni + ENTRY_BASE);
 | 
						|
        }
 | 
						|
        new_tab->num_entries++;
 | 
						|
        ni++;
 | 
						|
    }
 | 
						|
    if (new_tab != tab) {
 | 
						|
        tab->entry_power = new_tab->entry_power;
 | 
						|
        tab->bin_power = new_tab->bin_power;
 | 
						|
        tab->size_ind = new_tab->size_ind;
 | 
						|
        if (tab->bins != NULL)
 | 
						|
            free(tab->bins);
 | 
						|
        tab->bins = new_tab->bins;
 | 
						|
        free(tab->entries);
 | 
						|
        tab->entries = new_tab->entries;
 | 
						|
        free(new_tab);
 | 
						|
    }
 | 
						|
    tab->entries_start = 0;
 | 
						|
    tab->entries_bound = tab->num_entries;
 | 
						|
    tab->rebuilds_num++;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the next secondary hash index for table TAB using previous
 | 
						|
   index IND and PERTERB.  Finally modulo of the function becomes a
 | 
						|
   full *cycle linear congruential generator*, in other words it
 | 
						|
   guarantees traversing all table bins in extreme case.
 | 
						|
 | 
						|
   According the Hull-Dobell theorem a generator
 | 
						|
   "Xnext = (a*Xprev + c) mod m" is a full cycle generator if and only if
 | 
						|
     o m and c are relatively prime
 | 
						|
     o a-1 is divisible by all prime factors of m
 | 
						|
     o a-1 is divisible by 4 if m is divisible by 4.
 | 
						|
 | 
						|
   For our case a is 5, c is 1, and m is a power of two.  */
 | 
						|
static inline st_index_t
 | 
						|
secondary_hash(st_index_t ind, st_table *tab, st_index_t *perterb)
 | 
						|
{
 | 
						|
    *perterb >>= 11;
 | 
						|
    ind = (ind << 2) + ind + *perterb + 1;
 | 
						|
    return hash_bin(ind, tab);
 | 
						|
}
 | 
						|
 | 
						|
/* Find an entry with HASH_VALUE and KEY in TABLE using a linear
 | 
						|
   search.  Return the index of the found entry in array `entries`.
 | 
						|
   If it is not found, return UNDEFINED_ENTRY_IND.  If the table was
 | 
						|
   rebuilt during the search, return REBUILT_TABLE_ENTRY_IND.  */
 | 
						|
static inline st_index_t
 | 
						|
find_entry(st_table *tab, st_hash_t hash_value, st_data_t key)
 | 
						|
{
 | 
						|
    int eq_p, rebuilt_p;
 | 
						|
    st_index_t i, bound;
 | 
						|
    st_table_entry *entries;
 | 
						|
 | 
						|
    bound = tab->entries_bound;
 | 
						|
    entries = tab->entries;
 | 
						|
    for (i = tab->entries_start; i < bound; i++) {
 | 
						|
        DO_PTR_EQUAL_CHECK(tab, &entries[i], hash_value, key, eq_p, rebuilt_p);
 | 
						|
        if (EXPECT(rebuilt_p, 0))
 | 
						|
            return REBUILT_TABLE_ENTRY_IND;
 | 
						|
        if (eq_p)
 | 
						|
            return i;
 | 
						|
    }
 | 
						|
    return UNDEFINED_ENTRY_IND;
 | 
						|
}
 | 
						|
 | 
						|
/* Use the quadratic probing.  The method has a better data locality
 | 
						|
   but more collisions than the current approach.  In average it
 | 
						|
   results in a bit slower search.  */
 | 
						|
/*#define QUADRATIC_PROBE*/
 | 
						|
 | 
						|
/* Return index of entry with HASH_VALUE and KEY in table TAB.  If
 | 
						|
   there is no such entry, return UNDEFINED_ENTRY_IND.  If the table
 | 
						|
   was rebuilt during the search, return REBUILT_TABLE_ENTRY_IND.  */
 | 
						|
static st_index_t
 | 
						|
find_table_entry_ind(st_table *tab, st_hash_t hash_value, st_data_t key)
 | 
						|
{
 | 
						|
    int eq_p, rebuilt_p;
 | 
						|
    st_index_t ind;
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
    st_index_t d;
 | 
						|
#else
 | 
						|
    st_index_t peterb;
 | 
						|
#endif
 | 
						|
    st_index_t bin;
 | 
						|
    st_table_entry *entries = tab->entries;
 | 
						|
 | 
						|
    ind = hash_bin(hash_value, tab);
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
    d = 1;
 | 
						|
#else
 | 
						|
    peterb = hash_value;
 | 
						|
#endif
 | 
						|
    FOUND_BIN;
 | 
						|
    for (;;) {
 | 
						|
        bin = get_bin(tab->bins, get_size_ind(tab), ind);
 | 
						|
        if (! EMPTY_OR_DELETED_BIN_P(bin)) {
 | 
						|
            DO_PTR_EQUAL_CHECK(tab, &entries[bin - ENTRY_BASE], hash_value, key, eq_p, rebuilt_p);
 | 
						|
            if (EXPECT(rebuilt_p, 0))
 | 
						|
                return REBUILT_TABLE_ENTRY_IND;
 | 
						|
            if (eq_p)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        else if (EMPTY_BIN_P(bin))
 | 
						|
            return UNDEFINED_ENTRY_IND;
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
        ind = hash_bin(ind + d, tab);
 | 
						|
        d++;
 | 
						|
#else
 | 
						|
        ind = secondary_hash(ind, tab, &peterb);
 | 
						|
#endif
 | 
						|
        COLLISION;
 | 
						|
    }
 | 
						|
    return bin;
 | 
						|
}
 | 
						|
 | 
						|
/* Find and return index of table TAB bin corresponding to an entry
 | 
						|
   with HASH_VALUE and KEY.  If there is no such bin, return
 | 
						|
   UNDEFINED_BIN_IND.  If the table was rebuilt during the search,
 | 
						|
   return REBUILT_TABLE_BIN_IND.  */
 | 
						|
static st_index_t
 | 
						|
find_table_bin_ind(st_table *tab, st_hash_t hash_value, st_data_t key)
 | 
						|
{
 | 
						|
    int eq_p, rebuilt_p;
 | 
						|
    st_index_t ind;
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
    st_index_t d;
 | 
						|
#else
 | 
						|
    st_index_t peterb;
 | 
						|
#endif
 | 
						|
    st_index_t bin;
 | 
						|
    st_table_entry *entries = tab->entries;
 | 
						|
 | 
						|
    ind = hash_bin(hash_value, tab);
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
    d = 1;
 | 
						|
#else
 | 
						|
    peterb = hash_value;
 | 
						|
#endif
 | 
						|
    FOUND_BIN;
 | 
						|
    for (;;) {
 | 
						|
        bin = get_bin(tab->bins, get_size_ind(tab), ind);
 | 
						|
        if (! EMPTY_OR_DELETED_BIN_P(bin)) {
 | 
						|
            DO_PTR_EQUAL_CHECK(tab, &entries[bin - ENTRY_BASE], hash_value, key, eq_p, rebuilt_p);
 | 
						|
            if (EXPECT(rebuilt_p, 0))
 | 
						|
                return REBUILT_TABLE_BIN_IND;
 | 
						|
            if (eq_p)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        else if (EMPTY_BIN_P(bin))
 | 
						|
            return UNDEFINED_BIN_IND;
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
        ind = hash_bin(ind + d, tab);
 | 
						|
        d++;
 | 
						|
#else
 | 
						|
        ind = secondary_hash(ind, tab, &peterb);
 | 
						|
#endif
 | 
						|
        COLLISION;
 | 
						|
    }
 | 
						|
    return ind;
 | 
						|
}
 | 
						|
 | 
						|
/* Find and return index of table TAB bin corresponding to an entry
 | 
						|
   with HASH_VALUE and KEY.  The entry should be in the table
 | 
						|
   already.  */
 | 
						|
static st_index_t
 | 
						|
find_table_bin_ind_direct(st_table *tab, st_hash_t hash_value, st_data_t key)
 | 
						|
{
 | 
						|
    st_index_t ind;
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
    st_index_t d;
 | 
						|
#else
 | 
						|
    st_index_t peterb;
 | 
						|
#endif
 | 
						|
    st_index_t bin;
 | 
						|
 | 
						|
    ind = hash_bin(hash_value, tab);
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
    d = 1;
 | 
						|
#else
 | 
						|
    peterb = hash_value;
 | 
						|
#endif
 | 
						|
    FOUND_BIN;
 | 
						|
    for (;;) {
 | 
						|
        bin = get_bin(tab->bins, get_size_ind(tab), ind);
 | 
						|
        if (EMPTY_OR_DELETED_BIN_P(bin))
 | 
						|
            return ind;
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
        ind = hash_bin(ind + d, tab);
 | 
						|
        d++;
 | 
						|
#else
 | 
						|
        ind = secondary_hash(ind, tab, &peterb);
 | 
						|
#endif
 | 
						|
        COLLISION;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Return index of table TAB bin for HASH_VALUE and KEY through
 | 
						|
   BIN_IND and the pointed value as the function result.  Reserve the
 | 
						|
   bin for inclusion of the corresponding entry into the table if it
 | 
						|
   is not there yet.  We always find such bin as bins array length is
 | 
						|
   bigger entries array.  Although we can reuse a deleted bin, the
 | 
						|
   result bin value is always empty if the table has no entry with
 | 
						|
   KEY.  Return the entries array index of the found entry or
 | 
						|
   UNDEFINED_ENTRY_IND if it is not found.  If the table was rebuilt
 | 
						|
   during the search, return REBUILT_TABLE_ENTRY_IND.  */
 | 
						|
static st_index_t
 | 
						|
find_table_bin_ptr_and_reserve(st_table *tab, st_hash_t *hash_value,
 | 
						|
                               st_data_t key, st_index_t *bin_ind)
 | 
						|
{
 | 
						|
    int eq_p, rebuilt_p;
 | 
						|
    st_index_t ind;
 | 
						|
    st_hash_t curr_hash_value = *hash_value;
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
    st_index_t d;
 | 
						|
#else
 | 
						|
    st_index_t peterb;
 | 
						|
#endif
 | 
						|
    st_index_t entry_index;
 | 
						|
    st_index_t first_deleted_bin_ind;
 | 
						|
    st_table_entry *entries;
 | 
						|
 | 
						|
    ind = hash_bin(curr_hash_value, tab);
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
    d = 1;
 | 
						|
#else
 | 
						|
    peterb = curr_hash_value;
 | 
						|
#endif
 | 
						|
    FOUND_BIN;
 | 
						|
    first_deleted_bin_ind = UNDEFINED_BIN_IND;
 | 
						|
    entries = tab->entries;
 | 
						|
    for (;;) {
 | 
						|
        entry_index = get_bin(tab->bins, get_size_ind(tab), ind);
 | 
						|
        if (EMPTY_BIN_P(entry_index)) {
 | 
						|
            tab->num_entries++;
 | 
						|
            entry_index = UNDEFINED_ENTRY_IND;
 | 
						|
            if (first_deleted_bin_ind != UNDEFINED_BIN_IND) {
 | 
						|
                /* We can reuse bin of a deleted entry.  */
 | 
						|
                ind = first_deleted_bin_ind;
 | 
						|
                MARK_BIN_EMPTY(tab, ind);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        else if (! DELETED_BIN_P(entry_index)) {
 | 
						|
            DO_PTR_EQUAL_CHECK(tab, &entries[entry_index - ENTRY_BASE], curr_hash_value, key, eq_p, rebuilt_p);
 | 
						|
            if (EXPECT(rebuilt_p, 0))
 | 
						|
                return REBUILT_TABLE_ENTRY_IND;
 | 
						|
            if (eq_p)
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        else if (first_deleted_bin_ind == UNDEFINED_BIN_IND)
 | 
						|
            first_deleted_bin_ind = ind;
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
        ind = hash_bin(ind + d, tab);
 | 
						|
        d++;
 | 
						|
#else
 | 
						|
        ind = secondary_hash(ind, tab, &peterb);
 | 
						|
#endif
 | 
						|
        COLLISION;
 | 
						|
    }
 | 
						|
    *bin_ind = ind;
 | 
						|
    return entry_index;
 | 
						|
}
 | 
						|
 | 
						|
/* Find an entry with KEY in table TAB.  Return non-zero if we found
 | 
						|
   it.  Set up *RECORD to the found entry record.  */
 | 
						|
int
 | 
						|
st_lookup(st_table *tab, st_data_t key, st_data_t *value)
 | 
						|
{
 | 
						|
    st_index_t bin;
 | 
						|
    st_hash_t hash = do_hash(key, tab);
 | 
						|
 | 
						|
 retry:
 | 
						|
    if (tab->bins == NULL) {
 | 
						|
        bin = find_entry(tab, hash, key);
 | 
						|
        if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        if (bin == UNDEFINED_ENTRY_IND)
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        bin = find_table_entry_ind(tab, hash, key);
 | 
						|
        if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        if (bin == UNDEFINED_ENTRY_IND)
 | 
						|
            return 0;
 | 
						|
        bin -= ENTRY_BASE;
 | 
						|
    }
 | 
						|
    if (value != 0)
 | 
						|
        *value = tab->entries[bin].record;
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Find an entry with KEY in table TAB.  Return non-zero if we found
 | 
						|
   it.  Set up *RESULT to the found table entry key.  */
 | 
						|
int
 | 
						|
st_get_key(st_table *tab, st_data_t key, st_data_t *result)
 | 
						|
{
 | 
						|
    st_index_t bin;
 | 
						|
    st_hash_t hash = do_hash(key, tab);
 | 
						|
 | 
						|
 retry:
 | 
						|
    if (tab->bins == NULL) {
 | 
						|
        bin = find_entry(tab, hash, key);
 | 
						|
        if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        if (bin == UNDEFINED_ENTRY_IND)
 | 
						|
            return 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        bin = find_table_entry_ind(tab, hash, key);
 | 
						|
        if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        if (bin == UNDEFINED_ENTRY_IND)
 | 
						|
            return 0;
 | 
						|
        bin -= ENTRY_BASE;
 | 
						|
    }
 | 
						|
    if (result != 0)
 | 
						|
        *result = tab->entries[bin].key;
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Check the table and rebuild it if it is necessary.  */
 | 
						|
static inline void
 | 
						|
rebuild_table_if_necessary (st_table *tab)
 | 
						|
{
 | 
						|
    st_index_t bound = tab->entries_bound;
 | 
						|
 | 
						|
    if (bound == get_allocated_entries(tab))
 | 
						|
        rebuild_table(tab);
 | 
						|
}
 | 
						|
 | 
						|
/* Insert (KEY, VALUE) into table TAB and return zero.  If there is
 | 
						|
   already entry with KEY in the table, return nonzero and update
 | 
						|
   the value of the found entry.  */
 | 
						|
int
 | 
						|
st_insert(st_table *tab, st_data_t key, st_data_t value)
 | 
						|
{
 | 
						|
    st_table_entry *entry;
 | 
						|
    st_index_t bin;
 | 
						|
    st_index_t ind;
 | 
						|
    st_hash_t hash_value;
 | 
						|
    st_index_t bin_ind;
 | 
						|
    int new_p;
 | 
						|
 | 
						|
    hash_value = do_hash(key, tab);
 | 
						|
 retry:
 | 
						|
    rebuild_table_if_necessary(tab);
 | 
						|
    if (tab->bins == NULL) {
 | 
						|
        bin = find_entry(tab, hash_value, key);
 | 
						|
        if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        new_p = bin == UNDEFINED_ENTRY_IND;
 | 
						|
        if (new_p)
 | 
						|
            tab->num_entries++;
 | 
						|
        bin_ind = UNDEFINED_BIN_IND;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        bin = find_table_bin_ptr_and_reserve(tab, &hash_value,
 | 
						|
                                             key, &bin_ind);
 | 
						|
        if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        new_p = bin == UNDEFINED_ENTRY_IND;
 | 
						|
        bin -= ENTRY_BASE;
 | 
						|
    }
 | 
						|
    if (new_p) {
 | 
						|
        ind = tab->entries_bound++;
 | 
						|
        entry = &tab->entries[ind];
 | 
						|
        entry->hash = hash_value;
 | 
						|
        entry->key = key;
 | 
						|
        entry->record = value;
 | 
						|
        if (bin_ind != UNDEFINED_BIN_IND)
 | 
						|
            set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    tab->entries[bin].record = value;
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Insert (KEY, VALUE, HASH) into table TAB.  The table should not have
 | 
						|
   entry with KEY before the insertion.  */
 | 
						|
static inline void
 | 
						|
st_add_direct_with_hash(st_table *tab,
 | 
						|
                        st_data_t key, st_data_t value, st_hash_t hash)
 | 
						|
{
 | 
						|
    st_table_entry *entry;
 | 
						|
    st_index_t ind;
 | 
						|
    st_index_t bin_ind;
 | 
						|
 | 
						|
    rebuild_table_if_necessary(tab);
 | 
						|
    ind = tab->entries_bound++;
 | 
						|
    entry = &tab->entries[ind];
 | 
						|
    entry->hash = hash;
 | 
						|
    entry->key = key;
 | 
						|
    entry->record = value;
 | 
						|
    tab->num_entries++;
 | 
						|
    if (tab->bins != NULL) {
 | 
						|
        bin_ind = find_table_bin_ind_direct(tab, hash, key);
 | 
						|
        set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Insert (KEY, VALUE) into table TAB.  The table should not have
 | 
						|
   entry with KEY before the insertion.  */
 | 
						|
void
 | 
						|
st_add_direct(st_table *tab, st_data_t key, st_data_t value)
 | 
						|
{
 | 
						|
    st_hash_t hash_value;
 | 
						|
 | 
						|
    hash_value = do_hash(key, tab);
 | 
						|
    st_add_direct_with_hash(tab, key, value, hash_value);
 | 
						|
}
 | 
						|
 | 
						|
/* Insert (FUNC(KEY), VALUE) into table TAB and return zero.  If
 | 
						|
   there is already entry with KEY in the table, return nonzero and
 | 
						|
   update the value of the found entry.  */
 | 
						|
int
 | 
						|
st_insert2(st_table *tab, st_data_t key, st_data_t value,
 | 
						|
           st_data_t (*func)(st_data_t))
 | 
						|
{
 | 
						|
    st_table_entry *entry;
 | 
						|
    st_index_t bin;
 | 
						|
    st_index_t ind;
 | 
						|
    st_hash_t hash_value;
 | 
						|
    st_index_t bin_ind;
 | 
						|
    int new_p;
 | 
						|
 | 
						|
    hash_value = do_hash(key, tab);
 | 
						|
 retry:
 | 
						|
    rebuild_table_if_necessary (tab);
 | 
						|
    if (tab->bins == NULL) {
 | 
						|
        bin = find_entry(tab, hash_value, key);
 | 
						|
        if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        new_p = bin == UNDEFINED_ENTRY_IND;
 | 
						|
        if (new_p)
 | 
						|
            tab->num_entries++;
 | 
						|
        bin_ind = UNDEFINED_BIN_IND;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        bin = find_table_bin_ptr_and_reserve(tab, &hash_value,
 | 
						|
                                             key, &bin_ind);
 | 
						|
        if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        new_p = bin == UNDEFINED_ENTRY_IND;
 | 
						|
        bin -= ENTRY_BASE;
 | 
						|
    }
 | 
						|
    if (new_p) {
 | 
						|
        key = (*func)(key);
 | 
						|
        ind = tab->entries_bound++;
 | 
						|
        entry = &tab->entries[ind];
 | 
						|
        entry->hash = hash_value;
 | 
						|
        entry->key = key;
 | 
						|
        entry->record = value;
 | 
						|
        if (bin_ind != UNDEFINED_BIN_IND)
 | 
						|
            set_bin(tab->bins, get_size_ind(tab), bin_ind, ind + ENTRY_BASE);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    tab->entries[bin].record = value;
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Create and return a copy of table OLD_TAB.  */
 | 
						|
st_table *
 | 
						|
st_copy(st_table *old_tab)
 | 
						|
{
 | 
						|
    st_table *new_tab;
 | 
						|
 | 
						|
    new_tab = (st_table *) malloc(sizeof(st_table));
 | 
						|
#ifndef RUBY
 | 
						|
    if (new_tab == NULL)
 | 
						|
        return NULL;
 | 
						|
#endif
 | 
						|
    *new_tab = *old_tab;
 | 
						|
    if (old_tab->bins == NULL)
 | 
						|
        new_tab->bins = NULL;
 | 
						|
    else {
 | 
						|
        new_tab->bins = (st_index_t *) malloc(bins_size(old_tab));
 | 
						|
#ifndef RUBY
 | 
						|
        if (new_tab->bins == NULL) {
 | 
						|
            free(new_tab);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    new_tab->entries = (st_table_entry *) malloc(get_allocated_entries(old_tab)
 | 
						|
                                                 * sizeof(st_table_entry));
 | 
						|
#ifndef RUBY
 | 
						|
    if (new_tab->entries == NULL) {
 | 
						|
        st_free_table(new_tab);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    MEMCPY(new_tab->entries, old_tab->entries, st_table_entry,
 | 
						|
           get_allocated_entries(old_tab));
 | 
						|
    if (old_tab->bins != NULL)
 | 
						|
        MEMCPY(new_tab->bins, old_tab->bins, char, bins_size(old_tab));
 | 
						|
    return new_tab;
 | 
						|
}
 | 
						|
 | 
						|
/* Update the entries start of table TAB after removing an entry
 | 
						|
   with index N in the array entries.  */
 | 
						|
static inline void
 | 
						|
update_range_for_deleted(st_table *tab, st_index_t n)
 | 
						|
{
 | 
						|
    /* Do not update entries_bound here.  Otherwise, we can fill all
 | 
						|
       bins by deleted entry value before rebuilding the table.  */
 | 
						|
    if (tab->entries_start == n) {
 | 
						|
        st_index_t start = n + 1;
 | 
						|
        st_index_t bound = tab->entries_bound;
 | 
						|
        st_table_entry *entries = tab->entries;
 | 
						|
        while (start < bound && DELETED_ENTRY_P(&entries[start])) start++;
 | 
						|
        tab->entries_start = start;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Delete entry with KEY from table TAB, set up *VALUE (unless
 | 
						|
   VALUE is zero) from deleted table entry, and return non-zero.  If
 | 
						|
   there is no entry with KEY in the table, clear *VALUE (unless VALUE
 | 
						|
   is zero), and return zero.  */
 | 
						|
static int
 | 
						|
st_general_delete(st_table *tab, st_data_t *key, st_data_t *value)
 | 
						|
{
 | 
						|
    st_table_entry *entry;
 | 
						|
    st_index_t bin;
 | 
						|
    st_index_t bin_ind;
 | 
						|
    st_hash_t hash;
 | 
						|
 | 
						|
    hash = do_hash(*key, tab);
 | 
						|
 retry:
 | 
						|
    if (tab->bins == NULL) {
 | 
						|
        bin = find_entry(tab, hash, *key);
 | 
						|
        if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        if (bin == UNDEFINED_ENTRY_IND) {
 | 
						|
            if (value != 0) *value = 0;
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        bin_ind = find_table_bin_ind(tab, hash, *key);
 | 
						|
        if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        if (bin_ind == UNDEFINED_BIN_IND) {
 | 
						|
            if (value != 0) *value = 0;
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
 | 
						|
        MARK_BIN_DELETED(tab, bin_ind);
 | 
						|
    }
 | 
						|
    entry = &tab->entries[bin];
 | 
						|
    *key = entry->key;
 | 
						|
    if (value != 0) *value = entry->record;
 | 
						|
    MARK_ENTRY_DELETED(entry);
 | 
						|
    tab->num_entries--;
 | 
						|
    update_range_for_deleted(tab, bin);
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
st_delete(st_table *tab, st_data_t *key, st_data_t *value)
 | 
						|
{
 | 
						|
    return st_general_delete(tab, key, value);
 | 
						|
}
 | 
						|
 | 
						|
/* The function and other functions with suffix '_safe' or '_check'
 | 
						|
   are originated from the previous implementation of the hash tables.
 | 
						|
   It was necessary for correct deleting entries during traversing
 | 
						|
   tables.  The current implementation permits deletion during
 | 
						|
   traversing without a specific way to do this.  */
 | 
						|
int
 | 
						|
st_delete_safe(st_table *tab, st_data_t *key, st_data_t *value,
 | 
						|
               st_data_t never ATTRIBUTE_UNUSED)
 | 
						|
{
 | 
						|
    return st_general_delete(tab, key, value);
 | 
						|
}
 | 
						|
 | 
						|
/* If table TAB is empty, clear *VALUE (unless VALUE is zero), and
 | 
						|
   return zero.  Otherwise, remove the first entry in the table.
 | 
						|
   Return its key through KEY and its record through VALUE (unless
 | 
						|
   VALUE is zero).  */
 | 
						|
int
 | 
						|
st_shift(st_table *tab, st_data_t *key, st_data_t *value)
 | 
						|
{
 | 
						|
    st_index_t i, bound;
 | 
						|
    st_index_t bin;
 | 
						|
    st_table_entry *entries, *curr_entry_ptr;
 | 
						|
    st_index_t bin_ind;
 | 
						|
 | 
						|
    entries = tab->entries;
 | 
						|
    bound = tab->entries_bound;
 | 
						|
    for (i = tab->entries_start; i < bound; i++) {
 | 
						|
        curr_entry_ptr = &entries[i];
 | 
						|
        if (! DELETED_ENTRY_P(curr_entry_ptr)) {
 | 
						|
            st_hash_t entry_hash = curr_entry_ptr->hash;
 | 
						|
            st_data_t entry_key = curr_entry_ptr->key;
 | 
						|
 | 
						|
            if (value != 0) *value = curr_entry_ptr->record;
 | 
						|
            *key = entry_key;
 | 
						|
        retry:
 | 
						|
            if (tab->bins == NULL) {
 | 
						|
                bin = find_entry(tab, entry_hash, entry_key);
 | 
						|
                if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0)) {
 | 
						|
                    entries = tab->entries;
 | 
						|
                    goto retry;
 | 
						|
                }
 | 
						|
                curr_entry_ptr = &entries[bin];
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                bin_ind = find_table_bin_ind(tab, entry_hash, entry_key);
 | 
						|
                if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0)) {
 | 
						|
                    entries = tab->entries;
 | 
						|
                    goto retry;
 | 
						|
                }
 | 
						|
                curr_entry_ptr = &entries[get_bin(tab->bins, get_size_ind(tab), bin_ind)
 | 
						|
                                          - ENTRY_BASE];
 | 
						|
                MARK_BIN_DELETED(tab, bin_ind);
 | 
						|
            }
 | 
						|
            MARK_ENTRY_DELETED(curr_entry_ptr);
 | 
						|
            tab->num_entries--;
 | 
						|
            update_range_for_deleted(tab, i);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (value != 0) *value = 0;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* See comments for function st_delete_safe.  */
 | 
						|
void
 | 
						|
st_cleanup_safe(st_table *tab ATTRIBUTE_UNUSED,
 | 
						|
                st_data_t never ATTRIBUTE_UNUSED)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
/* Find entry with KEY in table TAB, call FUNC with pointers to copies
 | 
						|
   of the key and the value of the found entry, and non-zero as the
 | 
						|
   3rd argument.  If the entry is not found, call FUNC with a pointer
 | 
						|
   to KEY, a pointer to zero, and a zero argument.  If the call
 | 
						|
   returns ST_CONTINUE, the table will have an entry with key and
 | 
						|
   value returned by FUNC through the 1st and 2nd parameters.  If the
 | 
						|
   call of FUNC returns ST_DELETE, the table will not have entry with
 | 
						|
   KEY.  The function returns flag of that the entry with KEY was in
 | 
						|
   the table before the call.  */
 | 
						|
int
 | 
						|
st_update(st_table *tab, st_data_t key,
 | 
						|
          st_update_callback_func *func, st_data_t arg)
 | 
						|
{
 | 
						|
    st_table_entry *entry = NULL; /* to avoid uninitialized value warning */
 | 
						|
    st_index_t bin = 0; /* Ditto */
 | 
						|
    st_table_entry *entries;
 | 
						|
    st_index_t bin_ind;
 | 
						|
    st_data_t value = 0, old_key;
 | 
						|
    int retval, existing;
 | 
						|
    st_hash_t hash = do_hash(key, tab);
 | 
						|
 | 
						|
 retry:
 | 
						|
    entries = tab->entries;
 | 
						|
    if (tab->bins == NULL) {
 | 
						|
        bin = find_entry(tab, hash, key);
 | 
						|
        if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        existing = bin != UNDEFINED_ENTRY_IND;
 | 
						|
        entry = &entries[bin];
 | 
						|
        bin_ind = UNDEFINED_BIN_IND;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        bin_ind = find_table_bin_ind(tab, hash, key);
 | 
						|
        if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0))
 | 
						|
            goto retry;
 | 
						|
        existing = bin_ind != UNDEFINED_BIN_IND;
 | 
						|
        if (existing) {
 | 
						|
            bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
 | 
						|
            entry = &entries[bin];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (existing) {
 | 
						|
        key = entry->key;
 | 
						|
        value = entry->record;
 | 
						|
    }
 | 
						|
    old_key = key;
 | 
						|
    retval = (*func)(&key, &value, arg, existing);
 | 
						|
    switch (retval) {
 | 
						|
      case ST_CONTINUE:
 | 
						|
        if (! existing) {
 | 
						|
            st_add_direct_with_hash(tab, key, value, hash);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if (old_key != key) {
 | 
						|
            entry->key = key;
 | 
						|
        }
 | 
						|
        entry->record = value;
 | 
						|
        break;
 | 
						|
      case ST_DELETE:
 | 
						|
        if (existing) {
 | 
						|
            if (bin_ind != UNDEFINED_BIN_IND)
 | 
						|
                MARK_BIN_DELETED(tab, bin_ind);
 | 
						|
            MARK_ENTRY_DELETED(entry);
 | 
						|
            tab->num_entries--;
 | 
						|
            update_range_for_deleted(tab, bin);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    return existing;
 | 
						|
}
 | 
						|
 | 
						|
/* Traverse all entries in table TAB calling FUNC with current entry
 | 
						|
   key and value and zero.  If the call returns ST_STOP, stop
 | 
						|
   traversing.  If the call returns ST_DELETE, delete the current
 | 
						|
   entry from the table.  In case of ST_CHECK or ST_CONTINUE, continue
 | 
						|
   traversing.  The function returns zero unless an error is found.
 | 
						|
   CHECK_P is flag of st_foreach_check call.  The behavior is a bit
 | 
						|
   different for ST_CHECK and when the current element is removed
 | 
						|
   during traversing.  */
 | 
						|
static inline int
 | 
						|
st_general_foreach(st_table *tab, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg,
 | 
						|
                   int check_p)
 | 
						|
{
 | 
						|
    st_index_t bin;
 | 
						|
    st_index_t bin_ind;
 | 
						|
    st_table_entry *entries, *curr_entry_ptr;
 | 
						|
    enum st_retval retval;
 | 
						|
    st_index_t i, rebuilds_num;
 | 
						|
    st_hash_t hash;
 | 
						|
    st_data_t key;
 | 
						|
    int error_p, packed_p = tab->bins == NULL;
 | 
						|
 | 
						|
    entries = tab->entries;
 | 
						|
    /* The bound can change inside the loop even without rebuilding
 | 
						|
       the table, e.g. by an entry insertion.  */
 | 
						|
    for (i = tab->entries_start; i < tab->entries_bound; i++) {
 | 
						|
        curr_entry_ptr = &entries[i];
 | 
						|
        if (EXPECT(DELETED_ENTRY_P(curr_entry_ptr), 0))
 | 
						|
            continue;
 | 
						|
        key = curr_entry_ptr->key;
 | 
						|
        rebuilds_num = tab->rebuilds_num;
 | 
						|
        hash = curr_entry_ptr->hash;
 | 
						|
        retval = (*func)(key, curr_entry_ptr->record, arg, 0);
 | 
						|
 | 
						|
        if (retval == ST_REPLACE && replace) {
 | 
						|
            st_data_t value;
 | 
						|
            value = curr_entry_ptr->record;
 | 
						|
            retval = (*replace)(&key, &value, arg, TRUE);
 | 
						|
            curr_entry_ptr->key = key;
 | 
						|
            curr_entry_ptr->record = value;
 | 
						|
        }
 | 
						|
 | 
						|
        if (rebuilds_num != tab->rebuilds_num) {
 | 
						|
        retry:
 | 
						|
            entries = tab->entries;
 | 
						|
            packed_p = tab->bins == NULL;
 | 
						|
            if (packed_p) {
 | 
						|
                i = find_entry(tab, hash, key);
 | 
						|
                if (EXPECT(i == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
                    goto retry;
 | 
						|
                error_p = i == UNDEFINED_ENTRY_IND;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                i = find_table_entry_ind(tab, hash, key);
 | 
						|
                if (EXPECT(i == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
                    goto retry;
 | 
						|
                error_p = i == UNDEFINED_ENTRY_IND;
 | 
						|
                i -= ENTRY_BASE;
 | 
						|
            }
 | 
						|
            if (error_p && check_p) {
 | 
						|
                /* call func with error notice */
 | 
						|
                retval = (*func)(0, 0, arg, 1);
 | 
						|
                return 1;
 | 
						|
            }
 | 
						|
            curr_entry_ptr = &entries[i];
 | 
						|
        }
 | 
						|
        switch (retval) {
 | 
						|
          case ST_REPLACE:
 | 
						|
            break;
 | 
						|
          case ST_CONTINUE:
 | 
						|
            break;
 | 
						|
          case ST_CHECK:
 | 
						|
            if (check_p)
 | 
						|
                break;
 | 
						|
          case ST_STOP:
 | 
						|
            return 0;
 | 
						|
          case ST_DELETE: {
 | 
						|
            st_data_t key = curr_entry_ptr->key;
 | 
						|
 | 
						|
              again:
 | 
						|
            if (packed_p) {
 | 
						|
                bin = find_entry(tab, hash, key);
 | 
						|
                if (EXPECT(bin == REBUILT_TABLE_ENTRY_IND, 0))
 | 
						|
                    goto again;
 | 
						|
                if (bin == UNDEFINED_ENTRY_IND)
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                bin_ind = find_table_bin_ind(tab, hash, key);
 | 
						|
                if (EXPECT(bin_ind == REBUILT_TABLE_BIN_IND, 0))
 | 
						|
                    goto again;
 | 
						|
                if (bin_ind == UNDEFINED_BIN_IND)
 | 
						|
                    break;
 | 
						|
                bin = get_bin(tab->bins, get_size_ind(tab), bin_ind) - ENTRY_BASE;
 | 
						|
                MARK_BIN_DELETED(tab, bin_ind);
 | 
						|
            }
 | 
						|
            curr_entry_ptr = &entries[bin];
 | 
						|
            MARK_ENTRY_DELETED(curr_entry_ptr);
 | 
						|
            tab->num_entries--;
 | 
						|
            update_range_for_deleted(tab, bin);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
st_foreach_with_replace(st_table *tab, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg)
 | 
						|
{
 | 
						|
    return st_general_foreach(tab, func, replace, arg, TRUE);
 | 
						|
}
 | 
						|
 | 
						|
struct functor {
 | 
						|
    st_foreach_callback_func *func;
 | 
						|
    st_data_t arg;
 | 
						|
};
 | 
						|
 | 
						|
static int
 | 
						|
apply_functor(st_data_t k, st_data_t v, st_data_t d, int _)
 | 
						|
{
 | 
						|
    const struct functor *f = (void *)d;
 | 
						|
    return f->func(k, v, f->arg);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
st_foreach(st_table *tab, st_foreach_callback_func *func, st_data_t arg)
 | 
						|
{
 | 
						|
    const struct functor f = { func, arg };
 | 
						|
    return st_general_foreach(tab, apply_functor, 0, (st_data_t)&f, FALSE);
 | 
						|
}
 | 
						|
 | 
						|
/* See comments for function st_delete_safe.  */
 | 
						|
int
 | 
						|
st_foreach_check(st_table *tab, st_foreach_check_callback_func *func, st_data_t arg,
 | 
						|
                 st_data_t never ATTRIBUTE_UNUSED)
 | 
						|
{
 | 
						|
    return st_general_foreach(tab, func, 0, arg, TRUE);
 | 
						|
}
 | 
						|
 | 
						|
/* Set up array KEYS by at most SIZE keys of head table TAB entries.
 | 
						|
   Return the number of keys set up in array KEYS.  */
 | 
						|
static inline st_index_t
 | 
						|
st_general_keys(st_table *tab, st_data_t *keys, st_index_t size)
 | 
						|
{
 | 
						|
    st_index_t i, bound;
 | 
						|
    st_data_t key, *keys_start, *keys_end;
 | 
						|
    st_table_entry *curr_entry_ptr, *entries = tab->entries;
 | 
						|
 | 
						|
    bound = tab->entries_bound;
 | 
						|
    keys_start = keys;
 | 
						|
    keys_end = keys + size;
 | 
						|
    for (i = tab->entries_start; i < bound; i++) {
 | 
						|
        if (keys == keys_end)
 | 
						|
            break;
 | 
						|
        curr_entry_ptr = &entries[i];
 | 
						|
        key = curr_entry_ptr->key;
 | 
						|
        if (! DELETED_ENTRY_P(curr_entry_ptr))
 | 
						|
            *keys++ = key;
 | 
						|
    }
 | 
						|
 | 
						|
    return keys - keys_start;
 | 
						|
}
 | 
						|
 | 
						|
st_index_t
 | 
						|
st_keys(st_table *tab, st_data_t *keys, st_index_t size)
 | 
						|
{
 | 
						|
    return st_general_keys(tab, keys, size);
 | 
						|
}
 | 
						|
 | 
						|
/* See comments for function st_delete_safe.  */
 | 
						|
st_index_t
 | 
						|
st_keys_check(st_table *tab, st_data_t *keys, st_index_t size,
 | 
						|
              st_data_t never ATTRIBUTE_UNUSED)
 | 
						|
{
 | 
						|
    return st_general_keys(tab, keys, size);
 | 
						|
}
 | 
						|
 | 
						|
/* Set up array VALUES by at most SIZE values of head table TAB
 | 
						|
   entries.  Return the number of values set up in array VALUES.  */
 | 
						|
static inline st_index_t
 | 
						|
st_general_values(st_table *tab, st_data_t *values, st_index_t size)
 | 
						|
{
 | 
						|
    st_index_t i, bound;
 | 
						|
    st_data_t *values_start, *values_end;
 | 
						|
    st_table_entry *curr_entry_ptr, *entries = tab->entries;
 | 
						|
 | 
						|
    values_start = values;
 | 
						|
    values_end = values + size;
 | 
						|
    bound = tab->entries_bound;
 | 
						|
    for (i = tab->entries_start; i < bound; i++) {
 | 
						|
        if (values == values_end)
 | 
						|
            break;
 | 
						|
        curr_entry_ptr = &entries[i];
 | 
						|
        if (! DELETED_ENTRY_P(curr_entry_ptr))
 | 
						|
            *values++ = curr_entry_ptr->record;
 | 
						|
    }
 | 
						|
 | 
						|
    return values - values_start;
 | 
						|
}
 | 
						|
 | 
						|
st_index_t
 | 
						|
st_values(st_table *tab, st_data_t *values, st_index_t size)
 | 
						|
{
 | 
						|
    return st_general_values(tab, values, size);
 | 
						|
}
 | 
						|
 | 
						|
/* See comments for function st_delete_safe.  */
 | 
						|
st_index_t
 | 
						|
st_values_check(st_table *tab, st_data_t *values, st_index_t size,
 | 
						|
                st_data_t never ATTRIBUTE_UNUSED)
 | 
						|
{
 | 
						|
    return st_general_values(tab, values, size);
 | 
						|
}
 | 
						|
 | 
						|
#define FNV1_32A_INIT 0x811c9dc5
 | 
						|
 | 
						|
/*
 | 
						|
 * 32 bit magic FNV-1a prime
 | 
						|
 */
 | 
						|
#define FNV_32_PRIME 0x01000193
 | 
						|
 | 
						|
#ifndef UNALIGNED_WORD_ACCESS
 | 
						|
# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
 | 
						|
     defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || \
 | 
						|
     defined(__powerpc64__) || defined(__aarch64__) || \
 | 
						|
     defined(__mc68020__)
 | 
						|
#   define UNALIGNED_WORD_ACCESS 1
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
#ifndef UNALIGNED_WORD_ACCESS
 | 
						|
# define UNALIGNED_WORD_ACCESS 0
 | 
						|
#endif
 | 
						|
 | 
						|
/* This hash function is quite simplified MurmurHash3
 | 
						|
 * Simplification is legal, cause most of magic still happens in finalizator.
 | 
						|
 * And finalizator is almost the same as in MurmurHash3 */
 | 
						|
#define BIG_CONSTANT(x,y) ((st_index_t)(x)<<32|(st_index_t)(y))
 | 
						|
#define ROTL(x,n) ((x)<<(n)|(x)>>(SIZEOF_ST_INDEX_T*CHAR_BIT-(n)))
 | 
						|
 | 
						|
#if ST_INDEX_BITS <= 32
 | 
						|
#define C1 (st_index_t)0xcc9e2d51
 | 
						|
#define C2 (st_index_t)0x1b873593
 | 
						|
#else
 | 
						|
#define C1 BIG_CONSTANT(0x87c37b91,0x114253d5);
 | 
						|
#define C2 BIG_CONSTANT(0x4cf5ad43,0x2745937f);
 | 
						|
#endif
 | 
						|
NO_SANITIZE("unsigned-integer-overflow", static inline st_index_t murmur_step(st_index_t h, st_index_t k));
 | 
						|
NO_SANITIZE("unsigned-integer-overflow", static inline st_index_t murmur_finish(st_index_t h));
 | 
						|
NO_SANITIZE("unsigned-integer-overflow", extern st_index_t st_hash(const void *ptr, size_t len, st_index_t h));
 | 
						|
 | 
						|
static inline st_index_t
 | 
						|
murmur_step(st_index_t h, st_index_t k)
 | 
						|
{
 | 
						|
#if ST_INDEX_BITS <= 32
 | 
						|
#define r1 (17)
 | 
						|
#define r2 (11)
 | 
						|
#else
 | 
						|
#define r1 (33)
 | 
						|
#define r2 (24)
 | 
						|
#endif
 | 
						|
    k *= C1;
 | 
						|
    h ^= ROTL(k, r1);
 | 
						|
    h *= C2;
 | 
						|
    h = ROTL(h, r2);
 | 
						|
    return h;
 | 
						|
}
 | 
						|
#undef r1
 | 
						|
#undef r2
 | 
						|
 | 
						|
static inline st_index_t
 | 
						|
murmur_finish(st_index_t h)
 | 
						|
{
 | 
						|
#if ST_INDEX_BITS <= 32
 | 
						|
#define r1 (16)
 | 
						|
#define r2 (13)
 | 
						|
#define r3 (16)
 | 
						|
    const st_index_t c1 = 0x85ebca6b;
 | 
						|
    const st_index_t c2 = 0xc2b2ae35;
 | 
						|
#else
 | 
						|
/* values are taken from Mix13 on http://zimbry.blogspot.ru/2011/09/better-bit-mixing-improving-on.html */
 | 
						|
#define r1 (30)
 | 
						|
#define r2 (27)
 | 
						|
#define r3 (31)
 | 
						|
    const st_index_t c1 = BIG_CONSTANT(0xbf58476d,0x1ce4e5b9);
 | 
						|
    const st_index_t c2 = BIG_CONSTANT(0x94d049bb,0x133111eb);
 | 
						|
#endif
 | 
						|
#if ST_INDEX_BITS > 64
 | 
						|
    h ^= h >> 64;
 | 
						|
    h *= c2;
 | 
						|
    h ^= h >> 65;
 | 
						|
#endif
 | 
						|
    h ^= h >> r1;
 | 
						|
    h *= c1;
 | 
						|
    h ^= h >> r2;
 | 
						|
    h *= c2;
 | 
						|
    h ^= h >> r3;
 | 
						|
    return h;
 | 
						|
}
 | 
						|
#undef r1
 | 
						|
#undef r2
 | 
						|
#undef r3
 | 
						|
 | 
						|
st_index_t
 | 
						|
st_hash(const void *ptr, size_t len, st_index_t h)
 | 
						|
{
 | 
						|
    const char *data = ptr;
 | 
						|
    st_index_t t = 0;
 | 
						|
    size_t l = len;
 | 
						|
 | 
						|
#define data_at(n) (st_index_t)((unsigned char)data[(n)])
 | 
						|
#define UNALIGNED_ADD_4 UNALIGNED_ADD(2); UNALIGNED_ADD(1); UNALIGNED_ADD(0)
 | 
						|
#if SIZEOF_ST_INDEX_T > 4
 | 
						|
#define UNALIGNED_ADD_8 UNALIGNED_ADD(6); UNALIGNED_ADD(5); UNALIGNED_ADD(4); UNALIGNED_ADD(3); UNALIGNED_ADD_4
 | 
						|
#if SIZEOF_ST_INDEX_T > 8
 | 
						|
#define UNALIGNED_ADD_16 UNALIGNED_ADD(14); UNALIGNED_ADD(13); UNALIGNED_ADD(12); UNALIGNED_ADD(11); \
 | 
						|
    UNALIGNED_ADD(10); UNALIGNED_ADD(9); UNALIGNED_ADD(8); UNALIGNED_ADD(7); UNALIGNED_ADD_8
 | 
						|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_16
 | 
						|
#endif
 | 
						|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_8
 | 
						|
#else
 | 
						|
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_4
 | 
						|
#endif
 | 
						|
#undef SKIP_TAIL
 | 
						|
    if (len >= sizeof(st_index_t)) {
 | 
						|
#if !UNALIGNED_WORD_ACCESS
 | 
						|
        int align = (int)((st_data_t)data % sizeof(st_index_t));
 | 
						|
        if (align) {
 | 
						|
            st_index_t d = 0;
 | 
						|
            int sl, sr, pack;
 | 
						|
 | 
						|
            switch (align) {
 | 
						|
#ifdef WORDS_BIGENDIAN
 | 
						|
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \
 | 
						|
                t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 2)
 | 
						|
#else
 | 
						|
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1:	\
 | 
						|
                t |= data_at(n) << CHAR_BIT*(n)
 | 
						|
#endif
 | 
						|
                UNALIGNED_ADD_ALL;
 | 
						|
#undef UNALIGNED_ADD
 | 
						|
            }
 | 
						|
 | 
						|
#ifdef WORDS_BIGENDIAN
 | 
						|
            t >>= (CHAR_BIT * align) - CHAR_BIT;
 | 
						|
#else
 | 
						|
            t <<= (CHAR_BIT * align);
 | 
						|
#endif
 | 
						|
 | 
						|
            data += sizeof(st_index_t)-align;
 | 
						|
            len -= sizeof(st_index_t)-align;
 | 
						|
 | 
						|
            sl = CHAR_BIT * (SIZEOF_ST_INDEX_T-align);
 | 
						|
            sr = CHAR_BIT * align;
 | 
						|
 | 
						|
            while (len >= sizeof(st_index_t)) {
 | 
						|
                d = *(st_index_t *)data;
 | 
						|
#ifdef WORDS_BIGENDIAN
 | 
						|
                t = (t << sr) | (d >> sl);
 | 
						|
#else
 | 
						|
                t = (t >> sr) | (d << sl);
 | 
						|
#endif
 | 
						|
                h = murmur_step(h, t);
 | 
						|
                t = d;
 | 
						|
                data += sizeof(st_index_t);
 | 
						|
                len -= sizeof(st_index_t);
 | 
						|
            }
 | 
						|
 | 
						|
            pack = len < (size_t)align ? (int)len : align;
 | 
						|
            d = 0;
 | 
						|
            switch (pack) {
 | 
						|
#ifdef WORDS_BIGENDIAN
 | 
						|
# define UNALIGNED_ADD(n) case (n) + 1: \
 | 
						|
                d |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
 | 
						|
#else
 | 
						|
# define UNALIGNED_ADD(n) case (n) + 1: \
 | 
						|
                d |= data_at(n) << CHAR_BIT*(n)
 | 
						|
#endif
 | 
						|
                UNALIGNED_ADD_ALL;
 | 
						|
#undef UNALIGNED_ADD
 | 
						|
            }
 | 
						|
#ifdef WORDS_BIGENDIAN
 | 
						|
            t = (t << sr) | (d >> sl);
 | 
						|
#else
 | 
						|
            t = (t >> sr) | (d << sl);
 | 
						|
#endif
 | 
						|
 | 
						|
            if (len < (size_t)align) goto skip_tail;
 | 
						|
# define SKIP_TAIL 1
 | 
						|
            h = murmur_step(h, t);
 | 
						|
            data += pack;
 | 
						|
            len -= pack;
 | 
						|
        }
 | 
						|
        else
 | 
						|
#endif
 | 
						|
#ifdef HAVE_BUILTIN___BUILTIN_ASSUME_ALIGNED
 | 
						|
#define aligned_data __builtin_assume_aligned(data, sizeof(st_index_t))
 | 
						|
#else
 | 
						|
#define aligned_data data
 | 
						|
#endif
 | 
						|
        {
 | 
						|
            do {
 | 
						|
                h = murmur_step(h, *(st_index_t *)aligned_data);
 | 
						|
                data += sizeof(st_index_t);
 | 
						|
                len -= sizeof(st_index_t);
 | 
						|
            } while (len >= sizeof(st_index_t));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    t = 0;
 | 
						|
    switch (len) {
 | 
						|
#if UNALIGNED_WORD_ACCESS && SIZEOF_ST_INDEX_T <= 8 && CHAR_BIT == 8
 | 
						|
    /* in this case byteorder doesn't really matter */
 | 
						|
#if SIZEOF_ST_INDEX_T > 4
 | 
						|
      case 7: t |= data_at(6) << 48;
 | 
						|
      case 6: t |= data_at(5) << 40;
 | 
						|
      case 5: t |= data_at(4) << 32;
 | 
						|
      case 4:
 | 
						|
        t |= (st_index_t)*(uint32_t*)aligned_data;
 | 
						|
        goto skip_tail;
 | 
						|
# define SKIP_TAIL 1
 | 
						|
#endif
 | 
						|
      case 3: t |= data_at(2) << 16;
 | 
						|
      case 2: t |= data_at(1) << 8;
 | 
						|
      case 1: t |= data_at(0);
 | 
						|
#else
 | 
						|
#ifdef WORDS_BIGENDIAN
 | 
						|
# define UNALIGNED_ADD(n) case (n) + 1: \
 | 
						|
        t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
 | 
						|
#else
 | 
						|
# define UNALIGNED_ADD(n) case (n) + 1: \
 | 
						|
        t |= data_at(n) << CHAR_BIT*(n)
 | 
						|
#endif
 | 
						|
        UNALIGNED_ADD_ALL;
 | 
						|
#undef UNALIGNED_ADD
 | 
						|
#endif
 | 
						|
#ifdef SKIP_TAIL
 | 
						|
      skip_tail:
 | 
						|
#endif
 | 
						|
        h ^= t; h -= ROTL(t, 7);
 | 
						|
        h *= C2;
 | 
						|
    }
 | 
						|
    h ^= l;
 | 
						|
#undef aligned_data
 | 
						|
 | 
						|
    return murmur_finish(h);
 | 
						|
}
 | 
						|
 | 
						|
st_index_t
 | 
						|
st_hash_uint32(st_index_t h, uint32_t i)
 | 
						|
{
 | 
						|
    return murmur_step(h, i);
 | 
						|
}
 | 
						|
 | 
						|
NO_SANITIZE("unsigned-integer-overflow", extern st_index_t st_hash_uint(st_index_t h, st_index_t i));
 | 
						|
st_index_t
 | 
						|
st_hash_uint(st_index_t h, st_index_t i)
 | 
						|
{
 | 
						|
    i += h;
 | 
						|
/* no matter if it is BigEndian or LittleEndian,
 | 
						|
 * we hash just integers */
 | 
						|
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8
 | 
						|
    h = murmur_step(h, i >> 8*8);
 | 
						|
#endif
 | 
						|
    h = murmur_step(h, i);
 | 
						|
    return h;
 | 
						|
}
 | 
						|
 | 
						|
st_index_t
 | 
						|
st_hash_end(st_index_t h)
 | 
						|
{
 | 
						|
    h = murmur_finish(h);
 | 
						|
    return h;
 | 
						|
}
 | 
						|
 | 
						|
#undef st_hash_start
 | 
						|
st_index_t
 | 
						|
rb_st_hash_start(st_index_t h)
 | 
						|
{
 | 
						|
    return h;
 | 
						|
}
 | 
						|
 | 
						|
static st_index_t
 | 
						|
strhash(st_data_t arg)
 | 
						|
{
 | 
						|
    register const char *string = (const char *)arg;
 | 
						|
    return st_hash(string, strlen(string), FNV1_32A_INIT);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
st_locale_insensitive_strcasecmp(const char *s1, const char *s2)
 | 
						|
{
 | 
						|
    char c1, c2;
 | 
						|
 | 
						|
    while (1) {
 | 
						|
        c1 = *s1++;
 | 
						|
        c2 = *s2++;
 | 
						|
        if (c1 == '\0' || c2 == '\0') {
 | 
						|
            if (c1 != '\0') return 1;
 | 
						|
            if (c2 != '\0') return -1;
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        if (('A' <= c1) && (c1 <= 'Z')) c1 += 'a' - 'A';
 | 
						|
        if (('A' <= c2) && (c2 <= 'Z')) c2 += 'a' - 'A';
 | 
						|
        if (c1 != c2) {
 | 
						|
            if (c1 > c2)
 | 
						|
                return 1;
 | 
						|
            else
 | 
						|
                return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
st_locale_insensitive_strncasecmp(const char *s1, const char *s2, size_t n)
 | 
						|
{
 | 
						|
    char c1, c2;
 | 
						|
    size_t i;
 | 
						|
 | 
						|
    for (i = 0; i < n; i++) {
 | 
						|
        c1 = *s1++;
 | 
						|
        c2 = *s2++;
 | 
						|
        if (c1 == '\0' || c2 == '\0') {
 | 
						|
            if (c1 != '\0') return 1;
 | 
						|
            if (c2 != '\0') return -1;
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        if (('A' <= c1) && (c1 <= 'Z')) c1 += 'a' - 'A';
 | 
						|
        if (('A' <= c2) && (c2 <= 'Z')) c2 += 'a' - 'A';
 | 
						|
        if (c1 != c2) {
 | 
						|
            if (c1 > c2)
 | 
						|
                return 1;
 | 
						|
            else
 | 
						|
                return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
st_strcmp(st_data_t lhs, st_data_t rhs)
 | 
						|
{
 | 
						|
    const char *s1 = (char *)lhs;
 | 
						|
    const char *s2 = (char *)rhs;
 | 
						|
    return strcmp(s1, s2);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
st_locale_insensitive_strcasecmp_i(st_data_t lhs, st_data_t rhs)
 | 
						|
{
 | 
						|
    const char *s1 = (char *)lhs;
 | 
						|
    const char *s2 = (char *)rhs;
 | 
						|
    return st_locale_insensitive_strcasecmp(s1, s2);
 | 
						|
}
 | 
						|
 | 
						|
NO_SANITIZE("unsigned-integer-overflow", PUREFUNC(static st_index_t strcasehash(st_data_t)));
 | 
						|
static st_index_t
 | 
						|
strcasehash(st_data_t arg)
 | 
						|
{
 | 
						|
    register const char *string = (const char *)arg;
 | 
						|
    register st_index_t hval = FNV1_32A_INIT;
 | 
						|
 | 
						|
    /*
 | 
						|
     * FNV-1a hash each octet in the buffer
 | 
						|
     */
 | 
						|
    while (*string) {
 | 
						|
        unsigned int c = (unsigned char)*string++;
 | 
						|
        if ((unsigned int)(c - 'A') <= ('Z' - 'A')) c += 'a' - 'A';
 | 
						|
        hval ^= c;
 | 
						|
 | 
						|
        /* multiply by the 32 bit FNV magic prime mod 2^32 */
 | 
						|
        hval *= FNV_32_PRIME;
 | 
						|
    }
 | 
						|
    return hval;
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
st_numcmp(st_data_t x, st_data_t y)
 | 
						|
{
 | 
						|
    return x != y;
 | 
						|
}
 | 
						|
 | 
						|
st_index_t
 | 
						|
st_numhash(st_data_t n)
 | 
						|
{
 | 
						|
    enum {s1 = 11, s2 = 3};
 | 
						|
    return (st_index_t)((n>>s1|(n<<s2)) ^ (n>>s2));
 | 
						|
}
 | 
						|
 | 
						|
/* Expand TAB to be suitable for holding SIZ entries in total.
 | 
						|
   Pre-existing entries remain not deleted inside of TAB, but its bins
 | 
						|
   are cleared to expect future reconstruction. See rehash below. */
 | 
						|
static void
 | 
						|
st_expand_table(st_table *tab, st_index_t siz)
 | 
						|
{
 | 
						|
    st_table *tmp;
 | 
						|
    st_index_t n;
 | 
						|
 | 
						|
    if (siz <= get_allocated_entries(tab))
 | 
						|
        return; /* enough room already */
 | 
						|
 | 
						|
    tmp = st_init_table_with_size(tab->type, siz);
 | 
						|
    n = get_allocated_entries(tab);
 | 
						|
    MEMCPY(tmp->entries, tab->entries, st_table_entry, n);
 | 
						|
    free(tab->entries);
 | 
						|
    if (tab->bins != NULL)
 | 
						|
        free(tab->bins);
 | 
						|
    if (tmp->bins != NULL)
 | 
						|
        free(tmp->bins);
 | 
						|
    tab->entry_power = tmp->entry_power;
 | 
						|
    tab->bin_power = tmp->bin_power;
 | 
						|
    tab->size_ind = tmp->size_ind;
 | 
						|
    tab->entries = tmp->entries;
 | 
						|
    tab->bins = NULL;
 | 
						|
    tab->rebuilds_num++;
 | 
						|
    free(tmp);
 | 
						|
}
 | 
						|
 | 
						|
/* Rehash using linear search.  Return TRUE if we found that the table
 | 
						|
   was rebuilt.  */
 | 
						|
static int
 | 
						|
st_rehash_linear(st_table *tab)
 | 
						|
{
 | 
						|
    int eq_p, rebuilt_p;
 | 
						|
    st_index_t i, j;
 | 
						|
    st_table_entry *p, *q;
 | 
						|
    if (tab->bins) {
 | 
						|
        free(tab->bins);
 | 
						|
        tab->bins = NULL;
 | 
						|
    }
 | 
						|
    for (i = tab->entries_start; i < tab->entries_bound; i++) {
 | 
						|
        p = &tab->entries[i];
 | 
						|
        if (DELETED_ENTRY_P(p))
 | 
						|
            continue;
 | 
						|
        for (j = i + 1; j < tab->entries_bound; j++) {
 | 
						|
            q = &tab->entries[j];
 | 
						|
            if (DELETED_ENTRY_P(q))
 | 
						|
                continue;
 | 
						|
            DO_PTR_EQUAL_CHECK(tab, p, q->hash, q->key, eq_p, rebuilt_p);
 | 
						|
            if (EXPECT(rebuilt_p, 0))
 | 
						|
                return TRUE;
 | 
						|
            if (eq_p) {
 | 
						|
                *p = *q;
 | 
						|
                MARK_ENTRY_DELETED(q);
 | 
						|
                tab->num_entries--;
 | 
						|
                update_range_for_deleted(tab, j);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
/* Rehash using index.  Return TRUE if we found that the table was
 | 
						|
   rebuilt.  */
 | 
						|
static int
 | 
						|
st_rehash_indexed(st_table *tab)
 | 
						|
{
 | 
						|
    int eq_p, rebuilt_p;
 | 
						|
    st_index_t i;
 | 
						|
    st_index_t const n = bins_size(tab);
 | 
						|
    unsigned int const size_ind = get_size_ind(tab);
 | 
						|
    st_index_t *bins = realloc(tab->bins, n);
 | 
						|
    tab->bins = bins;
 | 
						|
    initialize_bins(tab);
 | 
						|
    for (i = tab->entries_start; i < tab->entries_bound; i++) {
 | 
						|
        st_table_entry *p = &tab->entries[i];
 | 
						|
        st_index_t ind;
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
        st_index_t d = 1;
 | 
						|
#else
 | 
						|
        st_index_t peterb = p->hash;
 | 
						|
#endif
 | 
						|
 | 
						|
        if (DELETED_ENTRY_P(p))
 | 
						|
            continue;
 | 
						|
 | 
						|
        ind = hash_bin(p->hash, tab);
 | 
						|
        for (;;) {
 | 
						|
            st_index_t bin = get_bin(bins, size_ind, ind);
 | 
						|
            if (EMPTY_OR_DELETED_BIN_P(bin)) {
 | 
						|
                /* ok, new room */
 | 
						|
                set_bin(bins, size_ind, ind, i + ENTRY_BASE);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                st_table_entry *q = &tab->entries[bin - ENTRY_BASE];
 | 
						|
                DO_PTR_EQUAL_CHECK(tab, q, p->hash, p->key, eq_p, rebuilt_p);
 | 
						|
                if (EXPECT(rebuilt_p, 0))
 | 
						|
                    return TRUE;
 | 
						|
                if (eq_p) {
 | 
						|
                    /* duplicated key; delete it */
 | 
						|
                    q->record = p->record;
 | 
						|
                    MARK_ENTRY_DELETED(p);
 | 
						|
                    tab->num_entries--;
 | 
						|
                    update_range_for_deleted(tab, bin);
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    /* hash collision; skip it */
 | 
						|
#ifdef QUADRATIC_PROBE
 | 
						|
                    ind = hash_bin(ind + d, tab);
 | 
						|
                    d++;
 | 
						|
#else
 | 
						|
                    ind = secondary_hash(ind, tab, &peterb);
 | 
						|
#endif
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return FALSE;
 | 
						|
}
 | 
						|
 | 
						|
/* Reconstruct TAB's bins according to TAB's entries. This function
 | 
						|
   permits conflicting keys inside of entries.  No errors are reported
 | 
						|
   then.  All but one of them are discarded silently. */
 | 
						|
static void
 | 
						|
st_rehash(st_table *tab)
 | 
						|
{
 | 
						|
    int rebuilt_p;
 | 
						|
 | 
						|
    do {
 | 
						|
        if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
 | 
						|
            rebuilt_p = st_rehash_linear(tab);
 | 
						|
        else
 | 
						|
            rebuilt_p = st_rehash_indexed(tab);
 | 
						|
    } while (rebuilt_p);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef RUBY
 | 
						|
static st_data_t
 | 
						|
st_stringify(VALUE key)
 | 
						|
{
 | 
						|
    return (rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) ?
 | 
						|
        rb_hash_key_str(key) : key;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
st_insert_single(st_table *tab, VALUE hash, VALUE key, VALUE val)
 | 
						|
{
 | 
						|
    st_data_t k = st_stringify(key);
 | 
						|
    st_table_entry e;
 | 
						|
    e.hash = do_hash(k, tab);
 | 
						|
    e.key = k;
 | 
						|
    e.record = val;
 | 
						|
 | 
						|
    tab->entries[tab->entries_bound++] = e;
 | 
						|
    tab->num_entries++;
 | 
						|
    RB_OBJ_WRITTEN(hash, Qundef, k);
 | 
						|
    RB_OBJ_WRITTEN(hash, Qundef, val);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
st_insert_linear(st_table *tab, long argc, const VALUE *argv, VALUE hash)
 | 
						|
{
 | 
						|
    long i;
 | 
						|
 | 
						|
    for (i = 0; i < argc; /* */) {
 | 
						|
        st_data_t k = st_stringify(argv[i++]);
 | 
						|
        st_data_t v = argv[i++];
 | 
						|
        st_insert(tab, k, v);
 | 
						|
        RB_OBJ_WRITTEN(hash, Qundef, k);
 | 
						|
        RB_OBJ_WRITTEN(hash, Qundef, v);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
st_insert_generic(st_table *tab, long argc, const VALUE *argv, VALUE hash)
 | 
						|
{
 | 
						|
    long i;
 | 
						|
 | 
						|
    /* push elems */
 | 
						|
    for (i = 0; i < argc; /* */) {
 | 
						|
        VALUE key = argv[i++];
 | 
						|
        VALUE val = argv[i++];
 | 
						|
        st_insert_single(tab, hash, key, val);
 | 
						|
    }
 | 
						|
 | 
						|
    /* reindex */
 | 
						|
    st_rehash(tab);
 | 
						|
}
 | 
						|
 | 
						|
/* Mimics ruby's { foo => bar } syntax. This function is subpart
 | 
						|
   of rb_hash_bulk_insert. */
 | 
						|
void
 | 
						|
rb_hash_bulk_insert_into_st_table(long argc, const VALUE *argv, VALUE hash)
 | 
						|
{
 | 
						|
    st_index_t n, size = argc / 2;
 | 
						|
    st_table *tab = RHASH_ST_TABLE(hash);
 | 
						|
 | 
						|
    tab = RHASH_TBL_RAW(hash);
 | 
						|
    n = tab->entries_bound + size;
 | 
						|
    st_expand_table(tab, n);
 | 
						|
    if (UNLIKELY(tab->num_entries))
 | 
						|
        st_insert_generic(tab, argc, argv, hash);
 | 
						|
    else if (argc <= 2)
 | 
						|
        st_insert_single(tab, hash, argv[0], argv[1]);
 | 
						|
    else if (tab->bin_power <= MAX_POWER2_FOR_TABLES_WITHOUT_BINS)
 | 
						|
        st_insert_linear(tab, argc, argv, hash);
 | 
						|
    else
 | 
						|
        st_insert_generic(tab, argc, argv, hash);
 | 
						|
}
 | 
						|
 | 
						|
// to iterate iv_index_tbl
 | 
						|
st_data_t
 | 
						|
rb_st_nth_key(st_table *tab, st_index_t index)
 | 
						|
{
 | 
						|
    if (LIKELY(tab->entries_start == 0 &&
 | 
						|
               tab->num_entries == tab->entries_bound &&
 | 
						|
               index < tab->num_entries)) {
 | 
						|
        return tab->entries[index].key;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        rb_bug("unreachable");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |