mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 e7a660a3cf
			
		
	
	
		e7a660a3cf
		
	
	
	
	
		
			
			git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@17164 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			68 lines
		
	
	
	
		
			2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
	
		
			2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* lgamma_r.c  - public domain implementation of function lgamma_r(3m)
 | |
| 
 | |
| lgamma_r() is based on gamma().  modified by Tanaka Akira.
 | |
| 
 | |
| reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
 | |
|             (New Algorithm handbook in C language) (Gijyutsu hyouron
 | |
|             sha, Tokyo, 1991) [in Japanese]
 | |
|             http://oku.edu.mie-u.ac.jp/~okumura/algo/
 | |
| */
 | |
| 
 | |
| /***********************************************************
 | |
|     gamma.c -- Gamma function
 | |
| ***********************************************************/
 | |
| #include <math.h>
 | |
| #include <errno.h>
 | |
| #define PI      3.14159265358979324  /* $\pi$ */
 | |
| #define LOG_2PI 1.83787706640934548  /* $\log 2\pi$ */
 | |
| #define LOG_PI  1.14472988584940017  /* $\log_e \pi$ */
 | |
| #define N       8
 | |
| 
 | |
| #define B0  1                 /* Bernoulli numbers */
 | |
| #define B1  (-1.0 / 2.0)
 | |
| #define B2  ( 1.0 / 6.0)
 | |
| #define B4  (-1.0 / 30.0)
 | |
| #define B6  ( 1.0 / 42.0)
 | |
| #define B8  (-1.0 / 30.0)
 | |
| #define B10 ( 5.0 / 66.0)
 | |
| #define B12 (-691.0 / 2730.0)
 | |
| #define B14 ( 7.0 / 6.0)
 | |
| #define B16 (-3617.0 / 510.0)
 | |
| 
 | |
| static double
 | |
| loggamma(double x)  /* the natural logarithm of the Gamma function. */
 | |
| {
 | |
|     double v, w;
 | |
| 
 | |
|     if (x == 1.0 || x == 2.0) return 0.0;
 | |
| 
 | |
|     v = 1;
 | |
|     while (x < N) {  v *= x;  x++;  }
 | |
|     w = 1 / (x * x);
 | |
|     return ((((((((B16 / (16 * 15))  * w + (B14 / (14 * 13))) * w
 | |
|                 + (B12 / (12 * 11))) * w + (B10 / (10 *  9))) * w
 | |
|                 + (B8  / ( 8 *  7))) * w + (B6  / ( 6 *  5))) * w
 | |
|                 + (B4  / ( 4 *  3))) * w + (B2  / ( 2 *  1))) / x
 | |
|                 + 0.5 * LOG_2PI - log(v) - x + (x - 0.5) * log(x);
 | |
| }
 | |
| 
 | |
| /* the natural logarithm of the absolute value of the Gamma function */
 | |
| double
 | |
| lgamma_r(double x, int *signp)
 | |
| {
 | |
|     if (x <= 0) {
 | |
|         double i, f, s;
 | |
|         f = modf(-x, &i);
 | |
|         if (f == 0.0) { /* pole error */
 | |
|             *signp = 1;
 | |
|             errno = ERANGE;
 | |
|             return HUGE_VAL;
 | |
|         }
 | |
|         *signp = (fmod(i, 2.0) != 0.0) ? 1 : -1;
 | |
|         s = sin(PI * f);
 | |
|         if (s < 0) s = -s;
 | |
|         return LOG_PI - log(s) - loggamma(1 - x);
 | |
|     }
 | |
|     *signp = 1;
 | |
|     return loggamma(x);
 | |
| }
 |