1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/yjit_iface.c
Alan Wu 5d834bcf9f YJIT: lazy polymorphic getinstancevariable
Lazily compile out a chain of checks for different known classes and
whether `self` embeds its ivars or not.

* Remove trailing whitespaces

* Get proper addresss in Capstone disassembly

* Lowercase address in Capstone disassembly

Capstone uses lowercase for jump targets in generated listings. Let's
match it.

* Use the same successor in getivar guard chains

Cuts down on duplication

* Address reviews

* Fix copypasta error

* Add a comment
2021-10-20 18:19:31 -04:00

847 lines
25 KiB
C

#include "ruby/ruby.h"
#include "vm_core.h"
#include "insns.inc"
#include "internal.h"
#include "vm_sync.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "internal/compile.h"
#include "internal/class.h"
#include "insns_info.inc"
#include "yjit.h"
#include "yjit_iface.h"
#include "yjit_codegen.h"
#include "yjit_core.h"
#include "yjit_hooks.inc"
#include "darray.h"
#if HAVE_LIBCAPSTONE
#include <capstone/capstone.h>
#endif
static VALUE mYjit;
static VALUE cYjitBlock;
static VALUE cYjitDisasm;
static VALUE cYjitDisasmInsn;
#if RUBY_DEBUG
static int64_t vm_insns_count = 0;
static int64_t exit_op_count[VM_INSTRUCTION_SIZE] = { 0 };
int64_t rb_compiled_iseq_count = 0;
struct rb_yjit_runtime_counters yjit_runtime_counters = { 0 };
#endif
// Machine code blocks (executable memory)
extern codeblock_t *cb;
extern codeblock_t *ocb;
// Hash table of encoded instructions
extern st_table *rb_encoded_insn_data;
struct rb_yjit_options rb_yjit_opts;
static const rb_data_type_t yjit_block_type = {
"YJIT/Block",
{0, 0, 0, },
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
// Write the YJIT entry point pre-call bytes
void
cb_write_pre_call_bytes(codeblock_t* cb)
{
for (size_t i = 0; i < sizeof(yjit_with_ec_pre_call_bytes); ++i)
cb_write_byte(cb, yjit_with_ec_pre_call_bytes[i]);
}
// Write the YJIT exit post-call bytes
void
cb_write_post_call_bytes(codeblock_t* cb)
{
for (size_t i = 0; i < sizeof(yjit_with_ec_post_call_bytes); ++i)
cb_write_byte(cb, yjit_with_ec_post_call_bytes[i]);
}
// Get the PC for a given index in an iseq
VALUE *iseq_pc_at_idx(const rb_iseq_t *iseq, uint32_t insn_idx)
{
RUBY_ASSERT(iseq != NULL);
RUBY_ASSERT(insn_idx < iseq->body->iseq_size);
VALUE *encoded = iseq->body->iseq_encoded;
VALUE *pc = &encoded[insn_idx];
return pc;
}
// Keep track of mapping from instructions to generated code
// See comment for rb_encoded_insn_data in iseq.c
void
map_addr2insn(void *code_ptr, int insn)
{
const void * const *table = rb_vm_get_insns_address_table();
const void * const translated_address = table[insn];
st_data_t encoded_insn_data;
if (st_lookup(rb_encoded_insn_data, (st_data_t)translated_address, &encoded_insn_data)) {
st_insert(rb_encoded_insn_data, (st_data_t)code_ptr, encoded_insn_data);
}
else {
rb_bug("yjit: failed to find info for original instruction while dealing with addr2insn");
}
}
int
opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc)
{
const VALUE at_pc = *pc;
if (FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED)) {
return rb_vm_insn_addr2opcode((const void *)at_pc);
}
else {
return (int)at_pc;
}
}
// Verify that calling with cd on receiver goes to callee
void
check_cfunc_dispatch(VALUE receiver, struct rb_call_data *cd, void *callee, rb_callable_method_entry_t *compile_time_cme)
{
if (METHOD_ENTRY_INVALIDATED(compile_time_cme)) {
rb_bug("yjit: output code uses invalidated cme %p", (void *)compile_time_cme);
}
bool callee_correct = false;
const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(receiver), vm_ci_mid(cd->ci));
if (cme->def->type == VM_METHOD_TYPE_CFUNC) {
const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
if ((void *)cfunc->func == callee) {
callee_correct = true;
}
}
if (!callee_correct) {
rb_bug("yjit: output code calls wrong method cd->cc->klass: %p", (void *)cd->cc->klass);
}
}
MJIT_FUNC_EXPORTED VALUE rb_hash_has_key(VALUE hash, VALUE key);
bool
cfunc_needs_frame(const rb_method_cfunc_t *cfunc)
{
void* fptr = (void*)cfunc->func;
// Leaf C functions do not need a stack frame
// or a stack overflow check
return !(
// Hash#key?
fptr == (void*)rb_hash_has_key
);
}
// GC root for interacting with the GC
struct yjit_root_struct {
int unused; // empty structs are not legal in C99
};
static void
block_array_shuffle_remove(rb_yjit_block_array_t blocks, block_t *to_remove) {
block_t **elem;
rb_darray_foreach(blocks, i, elem) {
if (*elem == to_remove) {
// Remove the current element by moving the last element here then popping.
*elem = rb_darray_get(blocks, rb_darray_size(blocks) - 1);
rb_darray_pop_back(blocks);
break;
}
}
}
// Map cme_or_cc => [block]
static st_table *method_lookup_dependency;
static int
add_lookup_dependency_i(st_data_t *key, st_data_t *value, st_data_t data, int existing)
{
block_t *new_block = (block_t *)data;
rb_yjit_block_array_t blocks = NULL;
if (existing) {
blocks = (rb_yjit_block_array_t)*value;
}
if (!rb_darray_append(&blocks, new_block)) {
rb_bug("yjit: failed to add method lookup dependency"); // TODO: we could bail out of compiling instead
}
*value = (st_data_t)blocks;
return ST_CONTINUE;
}
// Hash table of BOP blocks
static st_table *blocks_assuming_bops;
bool
assume_bop_not_redefined(block_t *block, int redefined_flag, enum ruby_basic_operators bop)
{
if (BASIC_OP_UNREDEFINED_P(bop, redefined_flag)) {
if (blocks_assuming_bops) {
st_insert(blocks_assuming_bops, (st_data_t)block, 0);
}
return true;
}
else {
return false;
}
}
// Remember that the currently compiling block is only valid while cme and cc are valid
void
assume_method_lookup_stable(const struct rb_callcache *cc, const rb_callable_method_entry_t *cme, block_t *block)
{
RUBY_ASSERT(block != NULL);
RUBY_ASSERT(block->dependencies.cc == 0 && block->dependencies.cme == 0);
st_update(method_lookup_dependency, (st_data_t)cme, add_lookup_dependency_i, (st_data_t)block);
block->dependencies.cme = (VALUE)cme;
st_update(method_lookup_dependency, (st_data_t)cc, add_lookup_dependency_i, (st_data_t)block);
block->dependencies.cc = (VALUE)cc;
}
static st_table *blocks_assuming_single_ractor_mode;
// Can raise NoMemoryError.
RBIMPL_ATTR_NODISCARD()
bool
assume_single_ractor_mode(block_t *block) {
if (rb_multi_ractor_p()) return false;
st_insert(blocks_assuming_single_ractor_mode, (st_data_t)block, 1);
return true;
}
static st_table *blocks_assuming_stable_global_constant_state;
// Assume that the global constant state has not changed since call to this function.
// Can raise NoMemoryError.
RBIMPL_ATTR_NODISCARD()
bool
assume_stable_global_constant_state(block_t *block) {
st_insert(blocks_assuming_stable_global_constant_state, (st_data_t)block, 1);
return true;
}
static int
yjit_root_mark_i(st_data_t k, st_data_t v, st_data_t ignore)
{
// Lifetime notes: cc and cme get added in pairs into the table. One of
// them should become invalid before dying. When one of them invalidate we
// remove the pair from the table. Blocks remove themself from the table
// when they die.
rb_gc_mark_movable((VALUE)k);
return ST_CONTINUE;
}
static int
method_lookup_dep_table_update_keys(st_data_t *key, st_data_t *value, st_data_t argp, int existing)
{
*key = rb_gc_location(rb_gc_location((VALUE)*key));
return ST_CONTINUE;
}
static int
replace_all(st_data_t key, st_data_t value, st_data_t argp, int error)
{
return ST_REPLACE;
}
// GC callback during compaction
static void
yjit_root_update_references(void *ptr)
{
if (method_lookup_dependency) {
if (st_foreach_with_replace(method_lookup_dependency, replace_all, method_lookup_dep_table_update_keys, 0)) {
RUBY_ASSERT(false);
}
}
yjit_branches_update_references();
}
// GC callback during mark phase
static void
yjit_root_mark(void *ptr)
{
if (method_lookup_dependency) {
st_foreach(method_lookup_dependency, yjit_root_mark_i, 0);
}
}
static void
yjit_root_free(void *ptr)
{
// Do nothing. The root lives as long as the process.
}
static size_t
yjit_root_memsize(const void *ptr)
{
// Count off-gc-heap allocation size of the dependency table
return st_memsize(method_lookup_dependency); // TODO: more accurate accounting
}
// Custom type for interacting with the GC
// TODO: compaction support
// TODO: make this write barrier protected
static const rb_data_type_t yjit_root_type = {
"yjit_root",
{yjit_root_mark, yjit_root_free, yjit_root_memsize, yjit_root_update_references},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
// Callback when cme or cc become invalid
void
rb_yjit_method_lookup_change(VALUE cme_or_cc)
{
if (!method_lookup_dependency)
return;
RB_VM_LOCK_ENTER();
RUBY_ASSERT(IMEMO_TYPE_P(cme_or_cc, imemo_ment) || IMEMO_TYPE_P(cme_or_cc, imemo_callcache));
// Invalidate all regions that depend on the cme or cc
st_data_t key = (st_data_t)cme_or_cc, image;
if (st_delete(method_lookup_dependency, &key, &image)) {
rb_yjit_block_array_t array = (void *)image;
block_t **elem;
rb_darray_foreach(array, i, elem) {
invalidate_block_version(*elem);
}
rb_darray_free(array);
}
RB_VM_LOCK_LEAVE();
}
// Remove a block from the method lookup dependency table
static void
remove_method_lookup_dependency(VALUE cc_or_cme, block_t *block)
{
st_data_t key = (st_data_t)cc_or_cme, image;
if (st_lookup(method_lookup_dependency, key, &image)) {
rb_yjit_block_array_t array = (void *)image;
block_array_shuffle_remove(array, block);
if (rb_darray_size(array) == 0) {
st_delete(method_lookup_dependency, &key, NULL);
rb_darray_free(array);
}
}
}
void
yjit_unlink_method_lookup_dependency(block_t *block)
{
if (block->dependencies.cc) remove_method_lookup_dependency(block->dependencies.cc, block);
if (block->dependencies.cme) remove_method_lookup_dependency(block->dependencies.cme, block);
}
void
yjit_block_assumptions_free(block_t *block)
{
st_data_t as_st_data = (st_data_t)block;
if (blocks_assuming_stable_global_constant_state) {
st_delete(blocks_assuming_stable_global_constant_state, &as_st_data, NULL);
}
if (blocks_assuming_single_ractor_mode) {
st_delete(blocks_assuming_single_ractor_mode, &as_st_data, NULL);
}
if (blocks_assuming_bops) {
st_delete(blocks_assuming_bops, &as_st_data, NULL);
}
}
void
rb_yjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec)
{
#if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE
RB_VM_LOCK_ENTER();
VALUE *encoded = (VALUE *)iseq->body->iseq_encoded;
// Compile a block version starting at the first instruction
uint8_t* code_ptr = gen_entry_point(iseq, 0, ec);
if (code_ptr)
{
// Map the code address to the corresponding opcode
int first_opcode = opcode_at_pc(iseq, &encoded[0]);
map_addr2insn(code_ptr, first_opcode);
encoded[0] = (VALUE)code_ptr;
}
RB_VM_LOCK_LEAVE();
#endif
}
struct yjit_block_itr {
const rb_iseq_t *iseq;
VALUE list;
};
/* Get a list of the YJIT blocks associated with `rb_iseq` */
static VALUE
yjit_blocks_for(VALUE mod, VALUE rb_iseq)
{
if (CLASS_OF(rb_iseq) != rb_cISeq) {
return rb_ary_new();
}
const rb_iseq_t *iseq = rb_iseqw_to_iseq(rb_iseq);
VALUE all_versions = rb_ary_new();
rb_darray_for(iseq->body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t versions = rb_darray_get(iseq->body->yjit_blocks, version_array_idx);
rb_darray_for(versions, block_idx) {
block_t *block = rb_darray_get(versions, block_idx);
VALUE rb_block = TypedData_Wrap_Struct(cYjitBlock, &yjit_block_type, block);
rb_ary_push(all_versions, rb_block);
}
}
return all_versions;
}
/* Get the address of the the code associated with a YJIT::Block */
static VALUE
block_address(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
uint8_t* code_addr = cb_get_ptr(cb, block->start_pos);
return LONG2NUM((intptr_t)code_addr);
}
/* Get the machine code for YJIT::Block as a binary string */
static VALUE
block_code(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
return (VALUE)rb_str_new(
(const char*)cb->mem_block + block->start_pos,
block->end_pos - block->start_pos
);
}
/* Get the start index in the Instruction Sequence that corresponds to this
* YJIT::Block */
static VALUE
iseq_start_index(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
return INT2NUM(block->blockid.idx);
}
/* Get the end index in the Instruction Sequence that corresponds to this
* YJIT::Block */
static VALUE
iseq_end_index(VALUE self)
{
block_t * block;
TypedData_Get_Struct(self, block_t, &yjit_block_type, block);
return INT2NUM(block->end_idx);
}
static int
block_invalidation_iterator(st_data_t key, st_data_t value, st_data_t data) {
block_t *block = (block_t *)key;
invalidate_block_version(block); // Thankfully, st_table supports deleteing while iterating
return ST_CONTINUE;
}
/* Called when a basic operation is redefined */
void
rb_yjit_bop_redefined(VALUE klass, const rb_method_entry_t *me, enum ruby_basic_operators bop)
{
if (blocks_assuming_bops) {
st_foreach(blocks_assuming_bops, block_invalidation_iterator, 0);
}
}
/* Called when the constant state changes */
void
rb_yjit_constant_state_changed(void)
{
if (blocks_assuming_stable_global_constant_state) {
st_foreach(blocks_assuming_stable_global_constant_state, block_invalidation_iterator, 0);
}
}
void
rb_yjit_before_ractor_spawn(void)
{
if (blocks_assuming_single_ractor_mode) {
st_foreach(blocks_assuming_single_ractor_mode, block_invalidation_iterator, 0);
}
}
#if HAVE_LIBCAPSTONE
static const rb_data_type_t yjit_disasm_type = {
"YJIT/Disasm",
{0, (void(*)(void *))cs_close, 0, },
0, 0, RUBY_TYPED_FREE_IMMEDIATELY
};
static VALUE
yjit_disasm_init(VALUE klass)
{
csh * handle;
VALUE disasm = TypedData_Make_Struct(klass, csh, &yjit_disasm_type, handle);
if (cs_open(CS_ARCH_X86, CS_MODE_64, handle) != CS_ERR_OK) {
rb_raise(rb_eRuntimeError, "failed to make Capstone handle");
}
return disasm;
}
static VALUE
yjit_disasm(VALUE self, VALUE code, VALUE from)
{
size_t count;
csh * handle;
cs_insn *insns;
TypedData_Get_Struct(self, csh, &yjit_disasm_type, handle);
count = cs_disasm(*handle, (uint8_t*)StringValuePtr(code), RSTRING_LEN(code), NUM2ULL(from), 0, &insns);
VALUE insn_list = rb_ary_new_capa(count);
for (size_t i = 0; i < count; i++) {
VALUE vals = rb_ary_new_from_args(3, LONG2NUM(insns[i].address),
rb_str_new2(insns[i].mnemonic),
rb_str_new2(insns[i].op_str));
rb_ary_push(insn_list, rb_struct_alloc(cYjitDisasmInsn, vals));
}
cs_free(insns, count);
return insn_list;
}
#endif
static VALUE
at_exit_print_stats(RB_BLOCK_CALL_FUNC_ARGLIST(yieldarg, data))
{
// Defined in yjit.rb
rb_funcall(mYjit, rb_intern("_print_stats"), 0);
return Qnil;
}
// Primitive called in yjit.rb. Export all runtime counters as a Ruby hash.
static VALUE
get_stat_counters(rb_execution_context_t *ec, VALUE self)
{
#if RUBY_DEBUG
if (!rb_yjit_opts.gen_stats) return Qnil;
VALUE hash = rb_hash_new();
RB_VM_LOCK_ENTER();
{
int64_t *counter_reader = (int64_t *)&yjit_runtime_counters;
int64_t *counter_reader_end = &yjit_runtime_counters.last_member;
// Iterate through comma separated counter name list
char *name_reader = yjit_counter_names;
char *counter_name_end = yjit_counter_names + sizeof(yjit_counter_names);
while (name_reader < counter_name_end && counter_reader < counter_reader_end) {
if (*name_reader == ',' || *name_reader == ' ') {
name_reader++;
continue;
}
// Compute name of counter name
int name_len;
char *name_end;
{
name_end = strchr(name_reader, ',');
if (name_end == NULL) break;
name_len = (int)(name_end - name_reader);
}
// Put counter into hash
VALUE key = ID2SYM(rb_intern2(name_reader, name_len));
VALUE value = LL2NUM((long long)*counter_reader);
rb_hash_aset(hash, key, value);
counter_reader++;
name_reader = name_end;
}
}
RB_VM_LOCK_LEAVE();
return hash;
#else
return Qnil;
#endif // if RUBY_DEBUG
}
// Primitive called in yjit.rb. Zero out all the counters.
static VALUE
reset_stats_bang(rb_execution_context_t *ec, VALUE self)
{
#if RUBY_DEBUG
vm_insns_count = 0;
rb_compiled_iseq_count = 0;
memset(&exit_op_count, 0, sizeof(exit_op_count));
memset(&yjit_runtime_counters, 0, sizeof(yjit_runtime_counters));
#endif // if RUBY_DEBUG
return Qnil;
}
#include "yjit.rbinc"
#if RUBY_DEBUG
// implementation for --yjit-stats
void
rb_yjit_collect_vm_usage_insn(int insn)
{
vm_insns_count++;
}
const VALUE *
rb_yjit_count_side_exit_op(const VALUE *exit_pc)
{
int insn = rb_vm_insn_addr2opcode((const void *)*exit_pc);
exit_op_count[insn]++;
return exit_pc; // This function must return exit_pc!
}
struct insn_count {
int64_t insn;
int64_t count;
};
static int
insn_count_sort_comp(const void *a, const void *b)
{
const struct insn_count *count_a = a;
const struct insn_count *count_b = b;
if (count_a->count > count_b->count) {
return -1;
}
else if (count_a->count < count_b->count) {
return 1;
}
return 0;
}
static struct insn_count insn_sorting_buffer[VM_INSTRUCTION_SIZE];
static const struct insn_count *
sort_insn_count_array(int64_t *array)
{
for (int i = 0; i < VM_INSTRUCTION_SIZE; i++) {
insn_sorting_buffer[i] = (struct insn_count) { i, array[i] };
}
qsort(insn_sorting_buffer, VM_INSTRUCTION_SIZE, sizeof(insn_sorting_buffer[0]), &insn_count_sort_comp);
return insn_sorting_buffer;
}
static void
print_insn_count_buffer(const struct insn_count *buffer, int how_many, int left_pad)
{
size_t longest_insn_len = 0;
size_t total_exit_count = 0;
for (int i = 0; i < how_many; i++) {
const char *instruction_name = insn_name(buffer[i].insn);
size_t len = strlen(instruction_name);
if (len > longest_insn_len) {
longest_insn_len = len;
}
total_exit_count += buffer[i].count;
}
// Average length of instruction sequences executed by YJIT
double avg_len_in_yjit = (double)yjit_runtime_counters.exec_instruction / total_exit_count;
fprintf(stderr, "avg_len_in_yjit: %10.1f\n", avg_len_in_yjit);
fprintf(stderr, "total_exit_count: %10ld\n", total_exit_count);
fprintf(stderr, "most frequent exit op:\n");
for (int i = 0; i < how_many; i++) {
const char *instruction_name = insn_name(buffer[i].insn);
size_t padding = left_pad + longest_insn_len - strlen(instruction_name);
for (size_t j = 0; j < padding; j++) {
fputc(' ', stderr);
}
double percent = 100 * buffer[i].count / (double)total_exit_count;
fprintf(stderr, "%s: %10" PRId64 " (%.1f%%)\n", instruction_name, buffer[i].count, percent);
}
}
__attribute__((destructor))
static void
print_yjit_stats(void)
{
if (!rb_yjit_opts.gen_stats) return;
const struct insn_count *sorted_exit_ops = sort_insn_count_array(exit_op_count);
double total_insns_count = vm_insns_count + yjit_runtime_counters.exec_instruction;
double ratio = yjit_runtime_counters.exec_instruction / total_insns_count;
fprintf(stderr, "compiled_iseq_count: %10" PRId64 "\n", rb_compiled_iseq_count);
fprintf(stderr, "main_block_code_size: %6.1f MiB\n", ((double)cb->write_pos) / 1048576.0);
fprintf(stderr, "side_block_code_size: %6.1f MiB\n", ((double)ocb->write_pos) / 1048576.0);
fprintf(stderr, "vm_insns_count: %10" PRId64 "\n", vm_insns_count);
fprintf(stderr, "yjit_exec_insns_count: %10" PRId64 "\n", yjit_runtime_counters.exec_instruction);
fprintf(stderr, "ratio_in_yjit: %9.1f%%\n", ratio * 100);
print_insn_count_buffer(sorted_exit_ops, 10, 4);
}
#endif // if RUBY_DEBUG
void
rb_yjit_iseq_mark(const struct rb_iseq_constant_body *body)
{
rb_darray_for(body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
rb_darray_for(version_array, block_idx) {
block_t *block = rb_darray_get(version_array, block_idx);
rb_gc_mark_movable((VALUE)block->blockid.iseq);
rb_gc_mark_movable(block->dependencies.cc);
rb_gc_mark_movable(block->dependencies.cme);
// Walk over references to objects in generated code.
uint32_t *offset_element;
rb_darray_foreach(block->gc_object_offsets, offset_idx, offset_element) {
uint32_t offset_to_value = *offset_element;
uint8_t *value_address = cb_get_ptr(cb, offset_to_value);
VALUE object;
memcpy(&object, value_address, SIZEOF_VALUE);
rb_gc_mark_movable(object);
}
}
}
}
void
rb_yjit_iseq_update_references(const struct rb_iseq_constant_body *body)
{
rb_darray_for(body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
rb_darray_for(version_array, block_idx) {
block_t *block = rb_darray_get(version_array, block_idx);
block->blockid.iseq = (const rb_iseq_t *)rb_gc_location((VALUE)block->blockid.iseq);
block->dependencies.cc = rb_gc_location(block->dependencies.cc);
block->dependencies.cme = rb_gc_location(block->dependencies.cme);
// Walk over references to objects in generated code.
uint32_t *offset_element;
rb_darray_foreach(block->gc_object_offsets, offset_idx, offset_element) {
uint32_t offset_to_value = *offset_element;
uint8_t *value_address = cb_get_ptr(cb, offset_to_value);
VALUE object;
memcpy(&object, value_address, SIZEOF_VALUE);
VALUE possibly_moved = rb_gc_location(object);
// Only write when the VALUE moves, to be CoW friendly.
if (possibly_moved != object) {
memcpy(value_address, &possibly_moved, SIZEOF_VALUE);
}
}
}
}
}
// Free the yjit resources associated with an iseq
void
rb_yjit_iseq_free(const struct rb_iseq_constant_body *body)
{
rb_darray_for(body->yjit_blocks, version_array_idx) {
rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx);
rb_darray_for(version_array, block_idx) {
block_t *block = rb_darray_get(version_array, block_idx);
yjit_free_block(block);
}
rb_darray_free(version_array);
}
rb_darray_free(body->yjit_blocks);
}
bool rb_yjit_enabled_p(void)
{
return rb_yjit_opts.yjit_enabled;
}
unsigned rb_yjit_call_threshold(void)
{
return rb_yjit_opts.call_threshold;
}
void
rb_yjit_init(struct rb_yjit_options *options)
{
if (!yjit_scrape_successful || !PLATFORM_SUPPORTED_P)
{
return;
}
rb_yjit_opts = *options;
rb_yjit_opts.yjit_enabled = true;
// Normalize command-line options
if (rb_yjit_opts.call_threshold < 1) {
rb_yjit_opts.call_threshold = 2;
}
blocks_assuming_stable_global_constant_state = st_init_numtable();
blocks_assuming_single_ractor_mode = st_init_numtable();
blocks_assuming_bops = st_init_numtable();
yjit_init_core();
yjit_init_codegen();
// YJIT Ruby module
mYjit = rb_define_module("YJIT");
rb_define_module_function(mYjit, "blocks_for", yjit_blocks_for, 1);
// YJIT::Block (block version, code block)
cYjitBlock = rb_define_class_under(mYjit, "Block", rb_cObject);
rb_define_method(cYjitBlock, "address", block_address, 0);
rb_define_method(cYjitBlock, "code", block_code, 0);
rb_define_method(cYjitBlock, "iseq_start_index", iseq_start_index, 0);
rb_define_method(cYjitBlock, "iseq_end_index", iseq_end_index, 0);
// YJIT disassembler interface
#if HAVE_LIBCAPSTONE
cYjitDisasm = rb_define_class_under(mYjit, "Disasm", rb_cObject);
rb_define_alloc_func(cYjitDisasm, yjit_disasm_init);
rb_define_method(cYjitDisasm, "disasm", yjit_disasm, 2);
cYjitDisasmInsn = rb_struct_define_under(cYjitDisasm, "Insn", "address", "mnemonic", "op_str", NULL);
#endif
if (RUBY_DEBUG && rb_yjit_opts.gen_stats) {
// Setup at_exit callback for printing out counters
rb_block_call(rb_mKernel, rb_intern("at_exit"), 0, NULL, at_exit_print_stats, Qfalse);
}
// Initialize the GC hooks
method_lookup_dependency = st_init_numtable();
struct yjit_root_struct *root;
VALUE yjit_root = TypedData_Make_Struct(0, struct yjit_root_struct, &yjit_root_type, root);
rb_gc_register_mark_object(yjit_root);
}