1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/eval_thread.c
ko1 a3e1b1ce7e * Merge YARV
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@11439 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2006-12-31 15:02:22 +00:00

683 lines
15 KiB
C

/*
* Thread from eval.c
*/
#include "eval_intern.h"
#ifdef __ia64__
#if defined(__FreeBSD__)
/*
* FreeBSD/ia64 currently does not have a way for a process to get the
* base address for the RSE backing store, so hardcode it.
*/
#define __libc_ia64_register_backing_store_base (4ULL<<61)
#else
#if defined(HAVE_UNWIND_H) && defined(HAVE__UNW_CREATECONTEXTFORSELF)
#include <unwind.h>
#else
#pragma weak __libc_ia64_register_backing_store_base
extern unsigned long __libc_ia64_register_backing_store_base;
#endif
#endif
#endif
/* Windows SEH refers data on the stack. */
#undef SAVE_WIN32_EXCEPTION_LIST
#if defined _WIN32 || defined __CYGWIN__
#if defined __CYGWIN__
typedef unsigned long DWORD;
#endif
static inline DWORD
win32_get_exception_list()
{
DWORD p;
# if defined _MSC_VER
# ifdef _M_IX86
# define SAVE_WIN32_EXCEPTION_LIST
# if _MSC_VER >= 1310
/* warning: unsafe assignment to fs:0 ... this is ok */
# pragma warning(disable: 4733)
# endif
__asm mov eax, fs:[0];
__asm mov p, eax;
# endif
# elif defined __GNUC__
# ifdef __i386__
# define SAVE_WIN32_EXCEPTION_LIST
__asm__("movl %%fs:0,%0":"=r"(p));
# endif
# elif defined __BORLANDC__
# define SAVE_WIN32_EXCEPTION_LIST
__emit__(0x64, 0xA1, 0, 0, 0, 0); /* mov eax, fs:[0] */
p = _EAX;
# endif
return p;
}
static inline void
win32_set_exception_list(p)
DWORD p;
{
# if defined _MSC_VER
# ifdef _M_IX86
__asm mov eax, p;
__asm mov fs:[0], eax;
# endif
# elif defined __GNUC__
# ifdef __i386__
__asm__("movl %0,%%fs:0"::"r"(p));
# endif
# elif defined __BORLANDC__
_EAX = p;
__emit__(0x64, 0xA3, 0, 0, 0, 0); /* mov fs:[0], eax */
# endif
}
#if !defined SAVE_WIN32_EXCEPTION_LIST && !defined _WIN32_WCE
# error unsupported platform
#endif
#endif
int rb_thread_pending = 0;
VALUE rb_cThread;
extern VALUE rb_last_status;
#define WAIT_FD (1<<0)
#define WAIT_SELECT (1<<1)
#define WAIT_TIME (1<<2)
#define WAIT_JOIN (1<<3)
#define WAIT_PID (1<<4)
/* +infty, for this purpose */
#define DELAY_INFTY 1E30
#ifdef NFDBITS
void
rb_fd_init(fds)
volatile rb_fdset_t *fds;
{
fds->maxfd = 0;
fds->fdset = ALLOC(fd_set);
FD_ZERO(fds->fdset);
}
void
rb_fd_term(fds)
rb_fdset_t *fds;
{
if (fds->fdset)
free(fds->fdset);
fds->maxfd = 0;
fds->fdset = 0;
}
void
rb_fd_zero(fds)
rb_fdset_t *fds;
{
if (fds->fdset) {
MEMZERO(fds->fdset, fd_mask, howmany(fds->maxfd, NFDBITS));
FD_ZERO(fds->fdset);
}
}
static void
rb_fd_resize(n, fds)
int n;
rb_fdset_t *fds;
{
int m = howmany(n + 1, NFDBITS) * sizeof(fd_mask);
int o = howmany(fds->maxfd, NFDBITS) * sizeof(fd_mask);
if (m < sizeof(fd_set))
m = sizeof(fd_set);
if (o < sizeof(fd_set))
o = sizeof(fd_set);
if (m > o) {
fds->fdset = realloc(fds->fdset, m);
memset((char *)fds->fdset + o, 0, m - o);
}
if (n >= fds->maxfd)
fds->maxfd = n + 1;
}
void
rb_fd_set(n, fds)
int n;
rb_fdset_t *fds;
{
rb_fd_resize(n, fds);
FD_SET(n, fds->fdset);
}
void
rb_fd_clr(n, fds)
int n;
rb_fdset_t *fds;
{
if (n >= fds->maxfd)
return;
FD_CLR(n, fds->fdset);
}
int
rb_fd_isset(n, fds)
int n;
const rb_fdset_t *fds;
{
if (n >= fds->maxfd)
return 0;
return FD_ISSET(n, fds->fdset);
}
void
rb_fd_copy(dst, src, max)
rb_fdset_t *dst;
const fd_set *src;
int max;
{
int size = howmany(max, NFDBITS) * sizeof(fd_mask);
if (size < sizeof(fd_set))
size = sizeof(fd_set);
dst->maxfd = max;
dst->fdset = realloc(dst->fdset, size);
memcpy(dst->fdset, src, size);
}
int
rb_fd_select(n, readfds, writefds, exceptfds, timeout)
int n;
rb_fdset_t *readfds, *writefds, *exceptfds;
struct timeval *timeout;
{
rb_fd_resize(n - 1, readfds);
rb_fd_resize(n - 1, writefds);
rb_fd_resize(n - 1, exceptfds);
return select(n, rb_fd_ptr(readfds), rb_fd_ptr(writefds),
rb_fd_ptr(exceptfds), timeout);
}
#undef FD_ZERO
#undef FD_SET
#undef FD_CLR
#undef FD_ISSET
#define FD_ZERO(f) rb_fd_zero(f)
#define FD_SET(i, f) rb_fd_set(i, f)
#define FD_CLR(i, f) rb_fd_clr(i, f)
#define FD_ISSET(i, f) rb_fd_isset(i, f)
#endif
/* typedef struct thread * rb_thread_t; */
struct thread {
/* obsolete */
struct thread *next, *prev;
rb_jmpbuf_t context;
#ifdef SAVE_WIN32_EXCEPTION_LIST
DWORD win32_exception_list;
#endif
VALUE result;
long stk_len;
long stk_max;
VALUE *stk_ptr;
VALUE *stk_pos;
#ifdef __ia64__
VALUE *bstr_ptr;
long bstr_len;
#endif
struct FRAME *frame;
struct SCOPE *scope;
struct RVarmap *dyna_vars;
struct BLOCK *block;
struct iter *iter;
struct tag *tag;
VALUE klass;
VALUE wrapper;
NODE *cref;
struct ruby_env *anchor;
int flags; /* misc. states (vmode/rb_trap_immediate/raised) */
NODE *node;
int tracing;
VALUE errinfo;
VALUE last_status;
VALUE last_line;
VALUE last_match;
int safe;
enum yarv_thread_status status;
int wait_for;
int fd;
rb_fdset_t readfds;
rb_fdset_t writefds;
rb_fdset_t exceptfds;
int select_value;
double delay;
rb_thread_t join;
int abort;
int priority;
VALUE thgroup;
st_table *locals;
VALUE thread;
};
#define THREAD_RAISED 0x200 /* temporary flag */
#define THREAD_TERMINATING 0x400 /* persistent flag */
#define THREAD_FLAGS_MASK 0x400 /* mask for persistent flags */
#define FOREACH_THREAD_FROM(f,x) x = f; do { x = x->next;
#define END_FOREACH_FROM(f,x) } while (x != f)
#define FOREACH_THREAD(x) FOREACH_THREAD_FROM(curr_thread,x)
#define END_FOREACH(x) END_FOREACH_FROM(curr_thread,x)
struct thread_status_t {
NODE *node;
int tracing;
VALUE errinfo;
VALUE last_status;
VALUE last_line;
VALUE last_match;
int safe;
enum yarv_thread_status status;
int wait_for;
int fd;
rb_fdset_t readfds;
rb_fdset_t writefds;
rb_fdset_t exceptfds;
int select_value;
double delay;
rb_thread_t join;
};
#define THREAD_COPY_STATUS(src, dst) (void)( \
(dst)->node = (src)->node, \
\
(dst)->tracing = (src)->tracing, \
(dst)->errinfo = (src)->errinfo, \
(dst)->last_status = (src)->last_status, \
(dst)->last_line = (src)->last_line, \
(dst)->last_match = (src)->last_match, \
\
(dst)->safe = (src)->safe, \
\
(dst)->status = (src)->status, \
(dst)->wait_for = (src)->wait_for, \
(dst)->fd = (src)->fd, \
(dst)->readfds = (src)->readfds, \
(dst)->writefds = (src)->writefds, \
(dst)->exceptfds = (src)->exceptfds, \
rb_fd_init(&(src)->readfds), \
rb_fd_init(&(src)->writefds), \
rb_fd_init(&(src)->exceptfds), \
(dst)->select_value = (src)->select_value, \
(dst)->delay = (src)->delay, \
(dst)->join = (src)->join, \
0)
int
thread_set_raised(yarv_thread_t *th)
{
if (th->raised_flag) {
return 1;
}
th->raised_flag = 1;
return 0;
}
int
thread_reset_raised(yarv_thread_t *th)
{
if (th->raised_flag == 0) {
return 0;
}
th->raised_flag = 0;
return 1;
}
void
rb_thread_fd_close(fd)
int fd;
{
// TODO: fix me
}
VALUE
rb_thread_current()
{
return GET_THREAD()->self;
}
static rb_thread_t
rb_thread_alloc(klass)
VALUE klass;
{
UNSUPPORTED(rb_thread_alloc);
return 0;
}
static VALUE
rb_thread_start_0(fn, arg, th)
VALUE (*fn) ();
void *arg;
rb_thread_t th;
{
rb_bug("unsupported: rb_thread_start_0");
return 0; /* not reached */
}
VALUE
rb_thread_create(VALUE (*fn) (), void *arg)
{
Init_stack((VALUE *)&arg);
return rb_thread_start_0(fn, arg, rb_thread_alloc(rb_cThread));
}
/*
* call-seq:
* Thread.new([arg]*) {|args| block } => thread
*
* Creates and runs a new thread to execute the instructions given in
* <i>block</i>. Any arguments passed to <code>Thread::new</code> are passed
* into the block.
*
* x = Thread.new { sleep 0.1; print "x"; print "y"; print "z" }
* a = Thread.new { print "a"; print "b"; sleep 0.2; print "c" }
* x.join # Let the threads finish before
* a.join # main thread exits...
*
* <em>produces:</em>
*
* abxyzc
*/
/*
* call-seq:
* Thread.new([arg]*) {|args| block } => thread
*
* Creates and runs a new thread to execute the instructions given in
* <i>block</i>. Any arguments passed to <code>Thread::new</code> are passed
* into the block.
*
* x = Thread.new { sleep 0.1; print "x"; print "y"; print "z" }
* a = Thread.new { print "a"; print "b"; sleep 0.2; print "c" }
* x.join # Let the threads finish before
* a.join # main thread exits...
*
* <em>produces:</em>
*
* abxyzc
*/
/*
* call-seq:
* Thread.start([args]*) {|args| block } => thread
* Thread.fork([args]*) {|args| block } => thread
*
* Basically the same as <code>Thread::new</code>. However, if class
* <code>Thread</code> is subclassed, then calling <code>start</code> in that
* subclass will not invoke the subclass's <code>initialize</code> method.
*/
int rb_thread_critical;
/*
* call-seq:
* Thread.critical => true or false
*
* Returns the status of the global ``thread critical'' condition.
*/
/*
* call-seq:
* Thread.critical= boolean => true or false
*
* Sets the status of the global ``thread critical'' condition and returns
* it. When set to <code>true</code>, prohibits scheduling of any existing
* thread. Does not block new threads from being created and run. Certain
* thread operations (such as stopping or killing a thread, sleeping in the
* current thread, and raising an exception) may cause a thread to be scheduled
* even when in a critical section. <code>Thread::critical</code> is not
* intended for daily use: it is primarily there to support folks writing
* threading libraries.
*/
/*
* Document-class: Continuation
*
* Continuation objects are generated by
* <code>Kernel#callcc</code>. They hold a return address and execution
* context, allowing a nonlocal return to the end of the
* <code>callcc</code> block from anywhere within a program.
* Continuations are somewhat analogous to a structured version of C's
* <code>setjmp/longjmp</code> (although they contain more state, so
* you might consider them closer to threads).
*
* For instance:
*
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
* callcc{|$cc|}
* puts(message = arr.shift)
* $cc.call unless message =~ /Max/
*
* <em>produces:</em>
*
* Freddie
* Herbie
* Ron
* Max
*
* This (somewhat contrived) example allows the inner loop to abandon
* processing early:
*
* callcc {|cont|
* for i in 0..4
* print "\n#{i}: "
* for j in i*5...(i+1)*5
* cont.call() if j == 17
* printf "%3d", j
* end
* end
* }
* print "\n"
*
* <em>produces:</em>
*
* 0: 0 1 2 3 4
* 1: 5 6 7 8 9
* 2: 10 11 12 13 14
* 3: 15 16
*/
VALUE rb_cCont;
/*
* call-seq:
* callcc {|cont| block } => obj
*
* Generates a <code>Continuation</code> object, which it passes to the
* associated block. Performing a <em>cont</em><code>.call</code> will
* cause the <code>callcc</code> to return (as will falling through the
* end of the block). The value returned by the <code>callcc</code> is
* the value of the block, or the value passed to
* <em>cont</em><code>.call</code>. See class <code>Continuation</code>
* for more details. Also see <code>Kernel::throw</code> for
* an alternative mechanism for unwinding a call stack.
*/
static VALUE
rb_callcc(self)
VALUE self;
{
UNSUPPORTED(rb_callcc);
}
/*
* call-seq:
* cont.call(args, ...)
* cont[args, ...]
*
* Invokes the continuation. The program continues from the end of the
* <code>callcc</code> block. If no arguments are given, the original
* <code>callcc</code> returns <code>nil</code>. If one argument is
* given, <code>callcc</code> returns it. Otherwise, an array
* containing <i>args</i> is returned.
*
* callcc {|cont| cont.call } #=> nil
* callcc {|cont| cont.call 1 } #=> 1
* callcc {|cont| cont.call 1, 2, 3 } #=> [1, 2, 3]
*/
static VALUE
rb_cont_call(argc, argv, cont)
int argc;
VALUE *argv;
VALUE cont;
{
UNSUPPORTED(rb_cont_call);
}
/* variables for recursive traversals */
static ID recursive_key;
/*
* +Thread+ encapsulates the behavior of a thread of
* execution, including the main thread of the Ruby script.
*
* In the descriptions of the methods in this class, the parameter _sym_
* refers to a symbol, which is either a quoted string or a
* +Symbol+ (such as <code>:name</code>).
*/
void
Init_Thread()
{
recursive_key = rb_intern("__recursive_key__");
rb_eThreadError = rb_define_class("ThreadError", rb_eStandardError);
rb_cCont = rb_define_class("Continuation", rb_cObject);
}
static VALUE
recursive_check(obj)
VALUE obj;
{
VALUE hash = rb_thread_local_aref(rb_thread_current(), recursive_key);
if (NIL_P(hash) || TYPE(hash) != T_HASH) {
return Qfalse;
}
else {
VALUE list = rb_hash_aref(hash, ID2SYM(rb_frame_this_func()));
if (NIL_P(list) || TYPE(list) != T_ARRAY)
return Qfalse;
return rb_ary_includes(list, rb_obj_id(obj));
}
}
static void
recursive_push(obj)
VALUE obj;
{
VALUE hash = rb_thread_local_aref(rb_thread_current(), recursive_key);
VALUE list, sym;
sym = ID2SYM(rb_frame_this_func());
if (NIL_P(hash) || TYPE(hash) != T_HASH) {
hash = rb_hash_new();
rb_thread_local_aset(rb_thread_current(), recursive_key, hash);
list = Qnil;
}
else {
list = rb_hash_aref(hash, sym);
}
if (NIL_P(list) || TYPE(list) != T_ARRAY) {
list = rb_ary_new();
rb_hash_aset(hash, sym, list);
}
rb_ary_push(list, rb_obj_id(obj));
}
static void
recursive_pop()
{
VALUE hash = rb_thread_local_aref(rb_thread_current(), recursive_key);
VALUE list, sym;
sym = ID2SYM(rb_frame_this_func());
if (NIL_P(hash) || TYPE(hash) != T_HASH) {
VALUE symname;
VALUE thrname;
symname = rb_inspect(sym);
thrname = rb_inspect(rb_thread_current());
rb_raise(rb_eTypeError, "invalid inspect_tbl hash for %s in %s",
StringValuePtr(symname), StringValuePtr(thrname));
}
list = rb_hash_aref(hash, sym);
if (NIL_P(list) || TYPE(list) != T_ARRAY) {
VALUE symname = rb_inspect(sym);
VALUE thrname = rb_inspect(rb_thread_current());
rb_raise(rb_eTypeError, "invalid inspect_tbl list for %s in %s",
StringValuePtr(symname), StringValuePtr(thrname));
}
rb_ary_pop(list);
}
VALUE
rb_exec_recursive(VALUE (*func) (VALUE, VALUE, int), VALUE obj, VALUE arg)
{
if (recursive_check(obj)) {
return (*func) (obj, arg, Qtrue);
}
else {
VALUE result = Qundef;
int state;
recursive_push(obj);
PUSH_TAG(PROT_NONE);
if ((state = EXEC_TAG()) == 0) {
result = (*func) (obj, arg, Qfalse);
}
POP_TAG();
recursive_pop();
if (state)
JUMP_TAG(state);
return result;
}
}
/* flush_register_windows must not be inlined because flushrs doesn't flush
* current frame in register stack. */
#ifdef __ia64__
void
flush_register_windows(void)
{
__asm__("flushrs");
}
#endif