mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 73549c501f
			
		
	
	
		73549c501f
		
	
	
	
	
		
			
			I was wrong at r65753. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@65755 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			7171 lines
		
	
	
	
		
			182 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7171 lines
		
	
	
	
		
			182 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   bignum.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Fri Jun 10 00:48:55 JST 1994
 | |
| 
 | |
|   Copyright (C) 1993-2007 Yukihiro Matsumoto
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "ruby/thread.h"
 | |
| #include "ruby/util.h"
 | |
| #include "id.h"
 | |
| 
 | |
| #ifdef HAVE_STRINGS_H
 | |
| #include <strings.h>
 | |
| #endif
 | |
| #include <math.h>
 | |
| #include <float.h>
 | |
| #include <ctype.h>
 | |
| #ifdef HAVE_IEEEFP_H
 | |
| #include <ieeefp.h>
 | |
| #endif
 | |
| #include "ruby_assert.h"
 | |
| 
 | |
| #if defined(HAVE_LIBGMP) && defined(HAVE_GMP_H)
 | |
| #define USE_GMP
 | |
| #include <gmp.h>
 | |
| #endif
 | |
| 
 | |
| #define RB_BIGNUM_TYPE_P(x) RB_TYPE_P((x), T_BIGNUM)
 | |
| 
 | |
| #ifndef RUBY_INTEGER_UNIFICATION
 | |
| VALUE rb_cBignum;
 | |
| #endif
 | |
| const char ruby_digitmap[] = "0123456789abcdefghijklmnopqrstuvwxyz";
 | |
| 
 | |
| #ifndef SIZEOF_BDIGIT_DBL
 | |
| # if SIZEOF_INT*2 <= SIZEOF_LONG_LONG
 | |
| #  define SIZEOF_BDIGIT_DBL SIZEOF_LONG_LONG
 | |
| # else
 | |
| #  define SIZEOF_BDIGIT_DBL SIZEOF_LONG
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| STATIC_ASSERT(sizeof_bdigit_dbl, sizeof(BDIGIT_DBL) == SIZEOF_BDIGIT_DBL);
 | |
| STATIC_ASSERT(sizeof_bdigit_dbl_signed, sizeof(BDIGIT_DBL_SIGNED) == SIZEOF_BDIGIT_DBL);
 | |
| STATIC_ASSERT(sizeof_bdigit, SIZEOF_BDIGIT <= sizeof(BDIGIT));
 | |
| STATIC_ASSERT(sizeof_bdigit_and_dbl, SIZEOF_BDIGIT*2 <= SIZEOF_BDIGIT_DBL);
 | |
| STATIC_ASSERT(bdigit_signedness, 0 < (BDIGIT)-1);
 | |
| STATIC_ASSERT(bdigit_dbl_signedness, 0 < (BDIGIT_DBL)-1);
 | |
| STATIC_ASSERT(bdigit_dbl_signed_signedness, 0 > (BDIGIT_DBL_SIGNED)-1);
 | |
| STATIC_ASSERT(rbignum_embed_len_max, BIGNUM_EMBED_LEN_MAX <= (BIGNUM_EMBED_LEN_MASK >> BIGNUM_EMBED_LEN_SHIFT));
 | |
| 
 | |
| #if SIZEOF_BDIGIT < SIZEOF_LONG
 | |
| STATIC_ASSERT(sizeof_long_and_sizeof_bdigit, SIZEOF_LONG % SIZEOF_BDIGIT == 0);
 | |
| #else
 | |
| STATIC_ASSERT(sizeof_long_and_sizeof_bdigit, SIZEOF_BDIGIT % SIZEOF_LONG == 0);
 | |
| #endif
 | |
| 
 | |
| #ifdef WORDS_BIGENDIAN
 | |
| #   define HOST_BIGENDIAN_P 1
 | |
| #else
 | |
| #   define HOST_BIGENDIAN_P 0
 | |
| #endif
 | |
| /* (!LSHIFTABLE(d, n) ? 0 : (n)) is same as n but suppress a warning, C4293, by Visual Studio.  */
 | |
| #define LSHIFTABLE(d, n) ((n) < sizeof(d) * CHAR_BIT)
 | |
| #define LSHIFTX(d, n) (!LSHIFTABLE(d, n) ? 0 : ((d) << (!LSHIFTABLE(d, n) ? 0 : (n))))
 | |
| #define CLEAR_LOWBITS(d, numbits) ((d) & LSHIFTX(~((d)*0), (numbits)))
 | |
| #define FILL_LOWBITS(d, numbits) ((d) | (LSHIFTX(((d)*0+1), (numbits))-1))
 | |
| #define POW2_P(x) (((x)&((x)-1))==0)
 | |
| 
 | |
| #define BDIGITS(x) (BIGNUM_DIGITS(x))
 | |
| #define BITSPERDIG (SIZEOF_BDIGIT*CHAR_BIT)
 | |
| #define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG)
 | |
| #define BIGRAD_HALF ((BDIGIT)(BIGRAD >> 1))
 | |
| #define BDIGIT_MSB(d) (((d) & BIGRAD_HALF) != 0)
 | |
| #define BIGUP(x) LSHIFTX(((x) + (BDIGIT_DBL)0), BITSPERDIG)
 | |
| #define BIGDN(x) RSHIFT((x),BITSPERDIG)
 | |
| #define BIGLO(x) ((BDIGIT)((x) & BDIGMAX))
 | |
| #define BDIGMAX ((BDIGIT)(BIGRAD-1))
 | |
| #define BDIGIT_DBL_MAX (~(BDIGIT_DBL)0)
 | |
| 
 | |
| #if SIZEOF_BDIGIT == 2
 | |
| #   define swap_bdigit(x) swap16(x)
 | |
| #elif SIZEOF_BDIGIT == 4
 | |
| #   define swap_bdigit(x) swap32(x)
 | |
| #elif SIZEOF_BDIGIT == 8
 | |
| #   define swap_bdigit(x) swap64(x)
 | |
| #endif
 | |
| 
 | |
| #define BIGZEROP(x) (BIGNUM_LEN(x) == 0 || \
 | |
| 		     (BDIGITS(x)[0] == 0 && \
 | |
| 		      (BIGNUM_LEN(x) == 1 || bigzero_p(x))))
 | |
| #define BIGSIZE(x) (BIGNUM_LEN(x) == 0 ? (size_t)0 : \
 | |
|     BDIGITS(x)[BIGNUM_LEN(x)-1] ? \
 | |
|         (size_t)(BIGNUM_LEN(x)*SIZEOF_BDIGIT - nlz(BDIGITS(x)[BIGNUM_LEN(x)-1])/CHAR_BIT) : \
 | |
|     rb_absint_size(x, NULL))
 | |
| 
 | |
| #define BIGDIVREM_EXTRA_WORDS 1
 | |
| #define bdigit_roomof(n) roomof(n, SIZEOF_BDIGIT)
 | |
| #define BARY_ARGS(ary) ary, numberof(ary)
 | |
| 
 | |
| #define BARY_ADD(z, x, y) bary_add(BARY_ARGS(z), BARY_ARGS(x), BARY_ARGS(y))
 | |
| #define BARY_SUB(z, x, y) bary_sub(BARY_ARGS(z), BARY_ARGS(x), BARY_ARGS(y))
 | |
| #define BARY_SHORT_MUL(z, x, y) bary_short_mul(BARY_ARGS(z), BARY_ARGS(x), BARY_ARGS(y))
 | |
| #define BARY_DIVMOD(q, r, x, y) bary_divmod(BARY_ARGS(q), BARY_ARGS(r), BARY_ARGS(x), BARY_ARGS(y))
 | |
| #define BARY_ZERO_P(x) bary_zero_p(BARY_ARGS(x))
 | |
| 
 | |
| #define BIGNUM_SET_NEGATIVE_SIGN(b) BIGNUM_SET_SIGN(b, 0)
 | |
| #define BIGNUM_SET_POSITIVE_SIGN(b) BIGNUM_SET_SIGN(b, 1)
 | |
| 
 | |
| #define bignew(len,sign) bignew_1(rb_cInteger,(len),(sign))
 | |
| 
 | |
| #define BDIGITS_ZERO(ptr, n) do { \
 | |
|   BDIGIT *bdigitz_zero_ptr = (ptr); \
 | |
|   size_t bdigitz_zero_n = (n); \
 | |
|   while (bdigitz_zero_n) { \
 | |
|     *bdigitz_zero_ptr++ = 0; \
 | |
|     bdigitz_zero_n--; \
 | |
|   } \
 | |
| } while (0)
 | |
| 
 | |
| #define BARY_TRUNC(ds, n) do { \
 | |
|         while (0 < (n) && (ds)[(n)-1] == 0) \
 | |
|             (n)--; \
 | |
|     } while (0)
 | |
| 
 | |
| #define KARATSUBA_BALANCED(xn, yn) ((yn)/2 < (xn))
 | |
| #define TOOM3_BALANCED(xn, yn) (((yn)+2)/3 * 2 < (xn))
 | |
| 
 | |
| #define GMP_MUL_DIGITS 20
 | |
| #define KARATSUBA_MUL_DIGITS 70
 | |
| #define TOOM3_MUL_DIGITS 150
 | |
| 
 | |
| #define GMP_DIV_DIGITS 20
 | |
| #define GMP_BIG2STR_DIGITS 20
 | |
| #define GMP_STR2BIG_DIGITS 20
 | |
| #ifdef USE_GMP
 | |
| # define NAIVE_MUL_DIGITS GMP_MUL_DIGITS
 | |
| #else
 | |
| # define NAIVE_MUL_DIGITS KARATSUBA_MUL_DIGITS
 | |
| #endif
 | |
| 
 | |
| typedef void (mulfunc_t)(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn);
 | |
| 
 | |
| static mulfunc_t bary_mul_toom3_start;
 | |
| static mulfunc_t bary_mul_karatsuba_start;
 | |
| static BDIGIT bigdivrem_single(BDIGIT *qds, const BDIGIT *xds, size_t xn, BDIGIT y);
 | |
| static void bary_divmod(BDIGIT *qds, size_t qn, BDIGIT *rds, size_t rn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn);
 | |
| 
 | |
| static VALUE bigmul0(VALUE x, VALUE y);
 | |
| static void bary_mul_toom3(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn);
 | |
| static VALUE bignew_1(VALUE klass, size_t len, int sign);
 | |
| static inline VALUE bigtrunc(VALUE x);
 | |
| 
 | |
| static VALUE bigsq(VALUE x);
 | |
| static void bigdivmod(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp);
 | |
| static inline VALUE power_cache_get_power(int base, int power_level, size_t *numdigits_ret);
 | |
| 
 | |
| #if SIZEOF_BDIGIT <= SIZEOF_INT
 | |
| static int nlz(BDIGIT x) { return nlz_int((unsigned int)x) - (SIZEOF_INT-SIZEOF_BDIGIT) * CHAR_BIT; }
 | |
| #elif SIZEOF_BDIGIT <= SIZEOF_LONG
 | |
| static int nlz(BDIGIT x) { return nlz_long((unsigned long)x) - (SIZEOF_LONG-SIZEOF_BDIGIT) * CHAR_BIT; }
 | |
| #elif SIZEOF_BDIGIT <= SIZEOF_LONG_LONG
 | |
| static int nlz(BDIGIT x) { return nlz_long_long((unsigned LONG_LONG)x) - (SIZEOF_LONG_LONG-SIZEOF_BDIGIT) * CHAR_BIT; }
 | |
| #elif SIZEOF_BDIGIT <= SIZEOF_INT128_T
 | |
| static int nlz(BDIGIT x) { return nlz_int128((uint128_t)x) - (SIZEOF_INT128_T-SIZEOF_BDIGIT) * CHAR_BIT; }
 | |
| #endif
 | |
| 
 | |
| #define U16(a) ((uint16_t)(a))
 | |
| #define U32(a) ((uint32_t)(a))
 | |
| #ifdef HAVE_UINT64_T
 | |
| #define U64(a,b) (((uint64_t)(a) << 32) | (b))
 | |
| #endif
 | |
| #ifdef HAVE_UINT128_T
 | |
| #define U128(a,b,c,d) (((uint128_t)U64(a,b) << 64) | U64(c,d))
 | |
| #endif
 | |
| 
 | |
| /* The following script, maxpow.rb, generates the tables follows.
 | |
| 
 | |
| def big(n, bits)
 | |
|   ns = []
 | |
|   ((bits+31)/32).times {
 | |
|     ns << sprintf("0x%08x", n & 0xffff_ffff)
 | |
|     n >>= 32
 | |
|   }
 | |
|   "U#{bits}(" + ns.reverse.join(",") + ")"
 | |
| end
 | |
| def values(ary, width, indent)
 | |
|   lines = [""]
 | |
|   ary.each {|e|
 | |
|     lines << "" if !ary.last.empty? && width < (lines.last + e + ", ").length
 | |
|     lines.last << e + ", "
 | |
|   }
 | |
|   lines.map {|line| " " * indent + line.chomp(" ") + "\n" }.join
 | |
| end
 | |
| [16,32,64,128].each {|bits|
 | |
|   max = 2**bits-1
 | |
|   exps = []
 | |
|   nums = []
 | |
|   2.upto(36) {|base|
 | |
|     exp = 0
 | |
|     n = 1
 | |
|     while n * base <= max
 | |
|       exp += 1
 | |
|       n *= base
 | |
|     end
 | |
|     exps << exp.to_s
 | |
|     nums << big(n, bits)
 | |
|   }
 | |
|   puts "#ifdef HAVE_UINT#{bits}_T"
 | |
|   puts "static const int maxpow#{bits}_exp[35] = {"
 | |
|   print values(exps, 70, 4)
 | |
|   puts "};"
 | |
|   puts "static const uint#{bits}_t maxpow#{bits}_num[35] = {"
 | |
|   print values(nums, 70, 4)
 | |
|   puts "};"
 | |
|   puts "#endif"
 | |
| }
 | |
| 
 | |
|  */
 | |
| 
 | |
| #if SIZEOF_BDIGIT_DBL == 2
 | |
| static const int maxpow16_exp[35] = {
 | |
|     15, 10, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3,
 | |
|     3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 | |
| };
 | |
| static const uint16_t maxpow16_num[35] = {
 | |
|     U16(0x00008000), U16(0x0000e6a9), U16(0x00004000), U16(0x00003d09),
 | |
|     U16(0x0000b640), U16(0x000041a7), U16(0x00008000), U16(0x0000e6a9),
 | |
|     U16(0x00002710), U16(0x00003931), U16(0x00005100), U16(0x00006f91),
 | |
|     U16(0x00009610), U16(0x0000c5c1), U16(0x00001000), U16(0x00001331),
 | |
|     U16(0x000016c8), U16(0x00001acb), U16(0x00001f40), U16(0x0000242d),
 | |
|     U16(0x00002998), U16(0x00002f87), U16(0x00003600), U16(0x00003d09),
 | |
|     U16(0x000044a8), U16(0x00004ce3), U16(0x000055c0), U16(0x00005f45),
 | |
|     U16(0x00006978), U16(0x0000745f), U16(0x00008000), U16(0x00008c61),
 | |
|     U16(0x00009988), U16(0x0000a77b), U16(0x0000b640),
 | |
| };
 | |
| #elif SIZEOF_BDIGIT_DBL == 4
 | |
| static const int maxpow32_exp[35] = {
 | |
|     31, 20, 15, 13, 12, 11, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 | |
| };
 | |
| static const uint32_t maxpow32_num[35] = {
 | |
|     U32(0x80000000), U32(0xcfd41b91), U32(0x40000000), U32(0x48c27395),
 | |
|     U32(0x81bf1000), U32(0x75db9c97), U32(0x40000000), U32(0xcfd41b91),
 | |
|     U32(0x3b9aca00), U32(0x8c8b6d2b), U32(0x19a10000), U32(0x309f1021),
 | |
|     U32(0x57f6c100), U32(0x98c29b81), U32(0x10000000), U32(0x18754571),
 | |
|     U32(0x247dbc80), U32(0x3547667b), U32(0x4c4b4000), U32(0x6b5a6e1d),
 | |
|     U32(0x94ace180), U32(0xcaf18367), U32(0x0b640000), U32(0x0e8d4a51),
 | |
|     U32(0x1269ae40), U32(0x17179149), U32(0x1cb91000), U32(0x23744899),
 | |
|     U32(0x2b73a840), U32(0x34e63b41), U32(0x40000000), U32(0x4cfa3cc1),
 | |
|     U32(0x5c13d840), U32(0x6d91b519), U32(0x81bf1000),
 | |
| };
 | |
| #elif SIZEOF_BDIGIT_DBL == 8 && defined HAVE_UINT64_T
 | |
| static const int maxpow64_exp[35] = {
 | |
|     63, 40, 31, 27, 24, 22, 21, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15,
 | |
|     15, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12,
 | |
|     12,
 | |
| };
 | |
| static const uint64_t maxpow64_num[35] = {
 | |
|     U64(0x80000000,0x00000000), U64(0xa8b8b452,0x291fe821),
 | |
|     U64(0x40000000,0x00000000), U64(0x6765c793,0xfa10079d),
 | |
|     U64(0x41c21cb8,0xe1000000), U64(0x36427987,0x50226111),
 | |
|     U64(0x80000000,0x00000000), U64(0xa8b8b452,0x291fe821),
 | |
|     U64(0x8ac72304,0x89e80000), U64(0x4d28cb56,0xc33fa539),
 | |
|     U64(0x1eca170c,0x00000000), U64(0x780c7372,0x621bd74d),
 | |
|     U64(0x1e39a505,0x7d810000), U64(0x5b27ac99,0x3df97701),
 | |
|     U64(0x10000000,0x00000000), U64(0x27b95e99,0x7e21d9f1),
 | |
|     U64(0x5da0e1e5,0x3c5c8000), U64(0xd2ae3299,0xc1c4aedb),
 | |
|     U64(0x16bcc41e,0x90000000), U64(0x2d04b7fd,0xd9c0ef49),
 | |
|     U64(0x5658597b,0xcaa24000), U64(0xa0e20737,0x37609371),
 | |
|     U64(0x0c29e980,0x00000000), U64(0x14adf4b7,0x320334b9),
 | |
|     U64(0x226ed364,0x78bfa000), U64(0x383d9170,0xb85ff80b),
 | |
|     U64(0x5a3c23e3,0x9c000000), U64(0x8e651373,0x88122bcd),
 | |
|     U64(0xdd41bb36,0xd259e000), U64(0x0aee5720,0xee830681),
 | |
|     U64(0x10000000,0x00000000), U64(0x172588ad,0x4f5f0981),
 | |
|     U64(0x211e44f7,0xd02c1000), U64(0x2ee56725,0xf06e5c71),
 | |
|     U64(0x41c21cb8,0xe1000000),
 | |
| };
 | |
| #elif SIZEOF_BDIGIT_DBL == 16 && defined HAVE_UINT128_T
 | |
| static const int maxpow128_exp[35] = {
 | |
|     127, 80, 63, 55, 49, 45, 42, 40, 38, 37, 35, 34, 33, 32, 31, 31, 30,
 | |
|     30, 29, 29, 28, 28, 27, 27, 27, 26, 26, 26, 26, 25, 25, 25, 25, 24,
 | |
|     24,
 | |
| };
 | |
| static const uint128_t maxpow128_num[35] = {
 | |
|     U128(0x80000000,0x00000000,0x00000000,0x00000000),
 | |
|     U128(0x6f32f1ef,0x8b18a2bc,0x3cea5978,0x9c79d441),
 | |
|     U128(0x40000000,0x00000000,0x00000000,0x00000000),
 | |
|     U128(0xd0cf4b50,0xcfe20765,0xfff4b4e3,0xf741cf6d),
 | |
|     U128(0x6558e2a0,0x921fe069,0x42860000,0x00000000),
 | |
|     U128(0x5080c7b7,0xd0e31ba7,0x5911a67d,0xdd3d35e7),
 | |
|     U128(0x40000000,0x00000000,0x00000000,0x00000000),
 | |
|     U128(0x6f32f1ef,0x8b18a2bc,0x3cea5978,0x9c79d441),
 | |
|     U128(0x4b3b4ca8,0x5a86c47a,0x098a2240,0x00000000),
 | |
|     U128(0xffd1390a,0x0adc2fb8,0xdabbb817,0x4d95c99b),
 | |
|     U128(0x2c6fdb36,0x4c25e6c0,0x00000000,0x00000000),
 | |
|     U128(0x384bacd6,0x42c343b4,0xe90c4272,0x13506d29),
 | |
|     U128(0x31f5db32,0xa34aced6,0x0bf13a0e,0x00000000),
 | |
|     U128(0x20753ada,0xfd1e839f,0x53686d01,0x3143ee01),
 | |
|     U128(0x10000000,0x00000000,0x00000000,0x00000000),
 | |
|     U128(0x68ca11d6,0xb4f6d1d1,0xfaa82667,0x8073c2f1),
 | |
|     U128(0x223e493b,0xb3bb69ff,0xa4b87d6c,0x40000000),
 | |
|     U128(0xad62418d,0x14ea8247,0x01c4b488,0x6cc66f59),
 | |
|     U128(0x2863c1f5,0xcdae42f9,0x54000000,0x00000000),
 | |
|     U128(0xa63fd833,0xb9386b07,0x36039e82,0xbe651b25),
 | |
|     U128(0x1d1f7a9c,0xd087a14d,0x28cdf3d5,0x10000000),
 | |
|     U128(0x651b5095,0xc2ea8fc1,0xb30e2c57,0x77aaf7e1),
 | |
|     U128(0x0ddef20e,0xff760000,0x00000000,0x00000000),
 | |
|     U128(0x29c30f10,0x29939b14,0x6664242d,0x97d9f649),
 | |
|     U128(0x786a435a,0xe9558b0e,0x6aaf6d63,0xa8000000),
 | |
|     U128(0x0c5afe6f,0xf302bcbf,0x94fd9829,0xd87f5079),
 | |
|     U128(0x1fce575c,0xe1692706,0x07100000,0x00000000),
 | |
|     U128(0x4f34497c,0x8597e144,0x36e91802,0x00528229),
 | |
|     U128(0xbf3a8e1d,0x41ef2170,0x7802130d,0x84000000),
 | |
|     U128(0x0e7819e1,0x7f1eb0fb,0x6ee4fb89,0x01d9531f),
 | |
|     U128(0x20000000,0x00000000,0x00000000,0x00000000),
 | |
|     U128(0x4510460d,0xd9e879c0,0x14a82375,0x2f22b321),
 | |
|     U128(0x91abce3c,0x4b4117ad,0xe76d35db,0x22000000),
 | |
|     U128(0x08973ea3,0x55d75bc2,0x2e42c391,0x727d69e1),
 | |
|     U128(0x10e425c5,0x6daffabc,0x35c10000,0x00000000),
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static BDIGIT_DBL
 | |
| maxpow_in_bdigit_dbl(int base, int *exp_ret)
 | |
| {
 | |
|     BDIGIT_DBL maxpow;
 | |
|     int exponent;
 | |
| 
 | |
|     assert(2 <= base && base <= 36);
 | |
| 
 | |
|     {
 | |
| #if SIZEOF_BDIGIT_DBL == 2
 | |
|         maxpow = maxpow16_num[base-2];
 | |
|         exponent = maxpow16_exp[base-2];
 | |
| #elif SIZEOF_BDIGIT_DBL == 4
 | |
|         maxpow = maxpow32_num[base-2];
 | |
|         exponent = maxpow32_exp[base-2];
 | |
| #elif SIZEOF_BDIGIT_DBL == 8 && defined HAVE_UINT64_T
 | |
|         maxpow = maxpow64_num[base-2];
 | |
|         exponent = maxpow64_exp[base-2];
 | |
| #elif SIZEOF_BDIGIT_DBL == 16 && defined HAVE_UINT128_T
 | |
|         maxpow = maxpow128_num[base-2];
 | |
|         exponent = maxpow128_exp[base-2];
 | |
| #else
 | |
|         maxpow = base;
 | |
|         exponent = 1;
 | |
|         while (maxpow <= BDIGIT_DBL_MAX / base) {
 | |
|             maxpow *= base;
 | |
|             exponent++;
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     *exp_ret = exponent;
 | |
|     return maxpow;
 | |
| }
 | |
| 
 | |
| static inline BDIGIT_DBL
 | |
| bary2bdigitdbl(const BDIGIT *ds, size_t n)
 | |
| {
 | |
|     assert(n <= 2);
 | |
| 
 | |
|     if (n == 2)
 | |
|         return ds[0] | BIGUP(ds[1]);
 | |
|     if (n == 1)
 | |
|         return ds[0];
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| bdigitdbl2bary(BDIGIT *ds, size_t n, BDIGIT_DBL num)
 | |
| {
 | |
|     assert(n == 2);
 | |
| 
 | |
|     ds[0] = BIGLO(num);
 | |
|     ds[1] = (BDIGIT)BIGDN(num);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_cmp(const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     size_t i;
 | |
|     BARY_TRUNC(xds, xn);
 | |
|     BARY_TRUNC(yds, yn);
 | |
| 
 | |
|     if (xn < yn)
 | |
|         return -1;
 | |
|     if (xn > yn)
 | |
|         return 1;
 | |
| 
 | |
|     for (i = 0; i < xn; i++)
 | |
|         if (xds[xn - i - 1] != yds[yn - i - 1])
 | |
|             break;
 | |
|     if (i == xn)
 | |
|         return 0;
 | |
|     return xds[xn - i - 1] < yds[yn - i - 1] ? -1 : 1;
 | |
| }
 | |
| 
 | |
| static BDIGIT
 | |
| bary_small_lshift(BDIGIT *zds, const BDIGIT *xds, size_t n, int shift)
 | |
| {
 | |
|     size_t i;
 | |
|     BDIGIT_DBL num = 0;
 | |
|     assert(0 <= shift && shift < BITSPERDIG);
 | |
| 
 | |
|     for (i=0; i<n; i++) {
 | |
| 	num = num | (BDIGIT_DBL)*xds++ << shift;
 | |
| 	*zds++ = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     return BIGLO(num);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_small_rshift(BDIGIT *zds, const BDIGIT *xds, size_t n, int shift, BDIGIT higher_bdigit)
 | |
| {
 | |
|     size_t i;
 | |
|     BDIGIT_DBL num = 0;
 | |
| 
 | |
|     assert(0 <= shift && shift < BITSPERDIG);
 | |
| 
 | |
|     num = BIGUP(higher_bdigit);
 | |
|     for (i = 0; i < n; i++) {
 | |
|         BDIGIT x = xds[n - i - 1];
 | |
| 	num = (num | x) >> shift;
 | |
|         zds[n - i - 1] = BIGLO(num);
 | |
| 	num = BIGUP(x);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_zero_p(const BDIGIT *xds, size_t xn)
 | |
| {
 | |
|     if (xn == 0)
 | |
|         return 1;
 | |
|     do {
 | |
| 	if (xds[--xn]) return 0;
 | |
|     } while (xn);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_neg(BDIGIT *ds, size_t n)
 | |
| {
 | |
|     size_t i;
 | |
|     for (i = 0; i < n; i++)
 | |
|         ds[n - i - 1] = BIGLO(~ds[n - i - 1]);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_2comp(BDIGIT *ds, size_t n)
 | |
| {
 | |
|     size_t i;
 | |
|     i = 0;
 | |
|     for (i = 0; i < n; i++) {
 | |
|         if (ds[i] != 0) {
 | |
|             goto non_zero;
 | |
|         }
 | |
|     }
 | |
|     return 1;
 | |
| 
 | |
|   non_zero:
 | |
|     ds[i] = BIGLO(~ds[i] + 1);
 | |
|     i++;
 | |
|     for (; i < n; i++) {
 | |
|         ds[i] = BIGLO(~ds[i]);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_swap(BDIGIT *ds, size_t num_bdigits)
 | |
| {
 | |
|     BDIGIT *p1 = ds;
 | |
|     BDIGIT *p2 = ds + num_bdigits - 1;
 | |
|     for (; p1 < p2; p1++, p2--) {
 | |
|         BDIGIT tmp = *p1;
 | |
|         *p1 = *p2;
 | |
|         *p2 = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define INTEGER_PACK_WORDORDER_MASK \
 | |
|     (INTEGER_PACK_MSWORD_FIRST | \
 | |
|      INTEGER_PACK_LSWORD_FIRST)
 | |
| #define INTEGER_PACK_BYTEORDER_MASK \
 | |
|     (INTEGER_PACK_MSBYTE_FIRST | \
 | |
|      INTEGER_PACK_LSBYTE_FIRST | \
 | |
|      INTEGER_PACK_NATIVE_BYTE_ORDER)
 | |
| 
 | |
| static void
 | |
| validate_integer_pack_format(size_t numwords, size_t wordsize, size_t nails, int flags, int supported_flags)
 | |
| {
 | |
|     int wordorder_bits = flags & INTEGER_PACK_WORDORDER_MASK;
 | |
|     int byteorder_bits = flags & INTEGER_PACK_BYTEORDER_MASK;
 | |
| 
 | |
|     if (flags & ~supported_flags) {
 | |
|         rb_raise(rb_eArgError, "unsupported flags specified");
 | |
|     }
 | |
|     if (wordorder_bits == 0) {
 | |
|         if (1 < numwords)
 | |
|             rb_raise(rb_eArgError, "word order not specified");
 | |
|     }
 | |
|     else if (wordorder_bits != INTEGER_PACK_MSWORD_FIRST &&
 | |
|         wordorder_bits != INTEGER_PACK_LSWORD_FIRST)
 | |
|         rb_raise(rb_eArgError, "unexpected word order");
 | |
|     if (byteorder_bits == 0) {
 | |
|         rb_raise(rb_eArgError, "byte order not specified");
 | |
|     }
 | |
|     else if (byteorder_bits != INTEGER_PACK_MSBYTE_FIRST &&
 | |
|         byteorder_bits != INTEGER_PACK_LSBYTE_FIRST &&
 | |
|         byteorder_bits != INTEGER_PACK_NATIVE_BYTE_ORDER)
 | |
|         rb_raise(rb_eArgError, "unexpected byte order");
 | |
|     if (wordsize == 0)
 | |
|         rb_raise(rb_eArgError, "invalid wordsize: %"PRI_SIZE_PREFIX"u", wordsize);
 | |
|     if (SSIZE_MAX < wordsize)
 | |
|         rb_raise(rb_eArgError, "too big wordsize: %"PRI_SIZE_PREFIX"u", wordsize);
 | |
|     if (wordsize <= nails / CHAR_BIT)
 | |
|         rb_raise(rb_eArgError, "too big nails: %"PRI_SIZE_PREFIX"u", nails);
 | |
|     if (SIZE_MAX / wordsize < numwords)
 | |
|         rb_raise(rb_eArgError, "too big numwords * wordsize: %"PRI_SIZE_PREFIX"u * %"PRI_SIZE_PREFIX"u", numwords, wordsize);
 | |
| }
 | |
| 
 | |
| static void
 | |
| integer_pack_loop_setup(
 | |
|     size_t numwords, size_t wordsize, size_t nails, int flags,
 | |
|     size_t *word_num_fullbytes_ret,
 | |
|     int *word_num_partialbits_ret,
 | |
|     size_t *word_start_ret,
 | |
|     ssize_t *word_step_ret,
 | |
|     size_t *word_last_ret,
 | |
|     size_t *byte_start_ret,
 | |
|     int *byte_step_ret)
 | |
| {
 | |
|     int wordorder_bits = flags & INTEGER_PACK_WORDORDER_MASK;
 | |
|     int byteorder_bits = flags & INTEGER_PACK_BYTEORDER_MASK;
 | |
|     size_t word_num_fullbytes;
 | |
|     int word_num_partialbits;
 | |
|     size_t word_start;
 | |
|     ssize_t word_step;
 | |
|     size_t word_last;
 | |
|     size_t byte_start;
 | |
|     int byte_step;
 | |
| 
 | |
|     word_num_partialbits = CHAR_BIT - (int)(nails % CHAR_BIT);
 | |
|     if (word_num_partialbits == CHAR_BIT)
 | |
|         word_num_partialbits = 0;
 | |
|     word_num_fullbytes = wordsize - (nails / CHAR_BIT);
 | |
|     if (word_num_partialbits != 0) {
 | |
|         word_num_fullbytes--;
 | |
|     }
 | |
| 
 | |
|     if (wordorder_bits == INTEGER_PACK_MSWORD_FIRST) {
 | |
|         word_start = wordsize*(numwords-1);
 | |
|         word_step = -(ssize_t)wordsize;
 | |
|         word_last = 0;
 | |
|     }
 | |
|     else {
 | |
|         word_start = 0;
 | |
|         word_step = wordsize;
 | |
|         word_last = wordsize*(numwords-1);
 | |
|     }
 | |
| 
 | |
|     if (byteorder_bits == INTEGER_PACK_NATIVE_BYTE_ORDER) {
 | |
| #ifdef WORDS_BIGENDIAN
 | |
|         byteorder_bits = INTEGER_PACK_MSBYTE_FIRST;
 | |
| #else
 | |
|         byteorder_bits = INTEGER_PACK_LSBYTE_FIRST;
 | |
| #endif
 | |
|     }
 | |
|     if (byteorder_bits == INTEGER_PACK_MSBYTE_FIRST) {
 | |
|         byte_start = wordsize-1;
 | |
|         byte_step = -1;
 | |
|     }
 | |
|     else {
 | |
|         byte_start = 0;
 | |
|         byte_step = 1;
 | |
|     }
 | |
| 
 | |
|     *word_num_partialbits_ret = word_num_partialbits;
 | |
|     *word_num_fullbytes_ret = word_num_fullbytes;
 | |
|     *word_start_ret = word_start;
 | |
|     *word_step_ret = word_step;
 | |
|     *word_last_ret = word_last;
 | |
|     *byte_start_ret = byte_start;
 | |
|     *byte_step_ret = byte_step;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| integer_pack_fill_dd(BDIGIT **dpp, BDIGIT **dep, BDIGIT_DBL *ddp, int *numbits_in_dd_p)
 | |
| {
 | |
|     if (*dpp < *dep && BITSPERDIG <= (int)sizeof(*ddp) * CHAR_BIT - *numbits_in_dd_p) {
 | |
|         *ddp |= (BDIGIT_DBL)(*(*dpp)++) << *numbits_in_dd_p;
 | |
|         *numbits_in_dd_p += BITSPERDIG;
 | |
|     }
 | |
|     else if (*dpp == *dep) {
 | |
|         /* higher bits are infinity zeros */
 | |
|         *numbits_in_dd_p = (int)sizeof(*ddp) * CHAR_BIT;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline BDIGIT_DBL
 | |
| integer_pack_take_lowbits(int n, BDIGIT_DBL *ddp, int *numbits_in_dd_p)
 | |
| {
 | |
|     BDIGIT_DBL ret;
 | |
|     ret = (*ddp) & (((BDIGIT_DBL)1 << n) - 1);
 | |
|     *ddp >>= n;
 | |
|     *numbits_in_dd_p -= n;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #if !defined(WORDS_BIGENDIAN)
 | |
| static int
 | |
| bytes_2comp(unsigned char *buf, size_t len)
 | |
| {
 | |
|     size_t i;
 | |
|     for (i = 0; i < len; i++) {
 | |
|         signed char c = buf[i];
 | |
|         signed int d = ~c;
 | |
|         unsigned int e = d & 0xFF;
 | |
|         buf[i] = e;
 | |
|     }
 | |
|     for (i = 0; i < len; i++) {
 | |
|         buf[i]++;
 | |
|         if (buf[i] != 0)
 | |
|             return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| bary_pack(int sign, BDIGIT *ds, size_t num_bdigits, void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
 | |
| {
 | |
|     BDIGIT *dp, *de;
 | |
|     unsigned char *buf, *bufend;
 | |
| 
 | |
|     dp = ds;
 | |
|     de = ds + num_bdigits;
 | |
| 
 | |
|     validate_integer_pack_format(numwords, wordsize, nails, flags,
 | |
|             INTEGER_PACK_MSWORD_FIRST|
 | |
|             INTEGER_PACK_LSWORD_FIRST|
 | |
|             INTEGER_PACK_MSBYTE_FIRST|
 | |
|             INTEGER_PACK_LSBYTE_FIRST|
 | |
|             INTEGER_PACK_NATIVE_BYTE_ORDER|
 | |
|             INTEGER_PACK_2COMP|
 | |
|             INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION);
 | |
| 
 | |
|     while (dp < de && de[-1] == 0)
 | |
|         de--;
 | |
|     if (dp == de) {
 | |
|         sign = 0;
 | |
|     }
 | |
| 
 | |
|     if (!(flags & INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION)) {
 | |
|         if (sign == 0) {
 | |
|             MEMZERO(words, unsigned char, numwords * wordsize);
 | |
|             return 0;
 | |
|         }
 | |
|         if (nails == 0 && numwords == 1) {
 | |
|             int need_swap = wordsize != 1 &&
 | |
|                 (flags & INTEGER_PACK_BYTEORDER_MASK) != INTEGER_PACK_NATIVE_BYTE_ORDER &&
 | |
|                 ((flags & INTEGER_PACK_MSBYTE_FIRST) ? !HOST_BIGENDIAN_P : HOST_BIGENDIAN_P);
 | |
|             if (0 < sign || !(flags & INTEGER_PACK_2COMP)) {
 | |
|                 BDIGIT d;
 | |
|                 if (wordsize == 1) {
 | |
|                     *((unsigned char *)words) = (unsigned char)(d = dp[0]);
 | |
|                     return ((1 < de - dp || CLEAR_LOWBITS(d, 8) != 0) ? 2 : 1) * sign;
 | |
|                 }
 | |
| #if defined(HAVE_UINT16_T) && 2 <= SIZEOF_BDIGIT
 | |
|                 if (wordsize == 2 && (uintptr_t)words % RUBY_ALIGNOF(uint16_t) == 0) {
 | |
|                     uint16_t u = (uint16_t)(d = dp[0]);
 | |
|                     if (need_swap) u = swap16(u);
 | |
|                     *((uint16_t *)words) = u;
 | |
|                     return ((1 < de - dp || CLEAR_LOWBITS(d, 16) != 0) ? 2 : 1) * sign;
 | |
|                 }
 | |
| #endif
 | |
| #if defined(HAVE_UINT32_T) && 4 <= SIZEOF_BDIGIT
 | |
|                 if (wordsize == 4 && (uintptr_t)words % RUBY_ALIGNOF(uint32_t) == 0) {
 | |
|                     uint32_t u = (uint32_t)(d = dp[0]);
 | |
|                     if (need_swap) u = swap32(u);
 | |
|                     *((uint32_t *)words) = u;
 | |
|                     return ((1 < de - dp || CLEAR_LOWBITS(d, 32) != 0) ? 2 : 1) * sign;
 | |
|                 }
 | |
| #endif
 | |
| #if defined(HAVE_UINT64_T) && 8 <= SIZEOF_BDIGIT
 | |
|                 if (wordsize == 8 && (uintptr_t)words % RUBY_ALIGNOF(uint64_t) == 0) {
 | |
|                     uint64_t u = (uint64_t)(d = dp[0]);
 | |
|                     if (need_swap) u = swap64(u);
 | |
|                     *((uint64_t *)words) = u;
 | |
|                     return ((1 < de - dp || CLEAR_LOWBITS(d, 64) != 0) ? 2 : 1) * sign;
 | |
|                 }
 | |
| #endif
 | |
|             }
 | |
|             else { /* sign < 0 && (flags & INTEGER_PACK_2COMP) */
 | |
|                 BDIGIT_DBL_SIGNED d;
 | |
|                 if (wordsize == 1) {
 | |
|                     *((unsigned char *)words) = (unsigned char)(d = -(BDIGIT_DBL_SIGNED)dp[0]);
 | |
|                     return (1 < de - dp || FILL_LOWBITS(d, 8) != -1) ? -2 : -1;
 | |
|                 }
 | |
| #if defined(HAVE_UINT16_T) && 2 <= SIZEOF_BDIGIT
 | |
|                 if (wordsize == 2 && (uintptr_t)words % RUBY_ALIGNOF(uint16_t) == 0) {
 | |
|                     uint16_t u = (uint16_t)(d = -(BDIGIT_DBL_SIGNED)dp[0]);
 | |
|                     if (need_swap) u = swap16(u);
 | |
|                     *((uint16_t *)words) = u;
 | |
|                     return (wordsize == SIZEOF_BDIGIT && de - dp == 2 && dp[1] == 1 && dp[0] == 0) ? -1 :
 | |
|                         (1 < de - dp || FILL_LOWBITS(d, 16) != -1) ? -2 : -1;
 | |
|                 }
 | |
| #endif
 | |
| #if defined(HAVE_UINT32_T) && 4 <= SIZEOF_BDIGIT
 | |
|                 if (wordsize == 4 && (uintptr_t)words % RUBY_ALIGNOF(uint32_t) == 0) {
 | |
|                     uint32_t u = (uint32_t)(d = -(BDIGIT_DBL_SIGNED)dp[0]);
 | |
|                     if (need_swap) u = swap32(u);
 | |
|                     *((uint32_t *)words) = u;
 | |
|                     return (wordsize == SIZEOF_BDIGIT && de - dp == 2 && dp[1] == 1 && dp[0] == 0) ? -1 :
 | |
|                         (1 < de - dp || FILL_LOWBITS(d, 32) != -1) ? -2 : -1;
 | |
|                 }
 | |
| #endif
 | |
| #if defined(HAVE_UINT64_T) && 8 <= SIZEOF_BDIGIT
 | |
|                 if (wordsize == 8 && (uintptr_t)words % RUBY_ALIGNOF(uint64_t) == 0) {
 | |
|                     uint64_t u = (uint64_t)(d = -(BDIGIT_DBL_SIGNED)dp[0]);
 | |
|                     if (need_swap) u = swap64(u);
 | |
|                     *((uint64_t *)words) = u;
 | |
|                     return (wordsize == SIZEOF_BDIGIT && de - dp == 2 && dp[1] == 1 && dp[0] == 0) ? -1 :
 | |
|                         (1 < de - dp || FILL_LOWBITS(d, 64) != -1) ? -2 : -1;
 | |
|                 }
 | |
| #endif
 | |
|             }
 | |
|         }
 | |
| #if !defined(WORDS_BIGENDIAN)
 | |
|         if (nails == 0 && SIZEOF_BDIGIT == sizeof(BDIGIT) &&
 | |
|             (flags & INTEGER_PACK_WORDORDER_MASK) == INTEGER_PACK_LSWORD_FIRST &&
 | |
|             (flags & INTEGER_PACK_BYTEORDER_MASK) != INTEGER_PACK_MSBYTE_FIRST) {
 | |
|             size_t src_size = (de - dp) * SIZEOF_BDIGIT;
 | |
|             size_t dst_size = numwords * wordsize;
 | |
|             int overflow = 0;
 | |
|             while (0 < src_size && ((unsigned char *)ds)[src_size-1] == 0)
 | |
|                 src_size--;
 | |
|             if (src_size <= dst_size) {
 | |
|                 MEMCPY(words, dp, char, src_size);
 | |
|                 MEMZERO((char*)words + src_size, char, dst_size - src_size);
 | |
|             }
 | |
|             else {
 | |
|                 MEMCPY(words, dp, char, dst_size);
 | |
|                 overflow = 1;
 | |
|             }
 | |
|             if (sign < 0 && (flags & INTEGER_PACK_2COMP)) {
 | |
|                 int zero_p = bytes_2comp(words, dst_size);
 | |
|                 if (zero_p && overflow) {
 | |
|                     unsigned char *p = (unsigned char *)dp;
 | |
|                     if (dst_size == src_size-1 &&
 | |
|                         p[dst_size] == 1) {
 | |
|                         overflow = 0;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (overflow)
 | |
|                 sign *= 2;
 | |
|             return sign;
 | |
|         }
 | |
| #endif
 | |
|         if (nails == 0 && SIZEOF_BDIGIT == sizeof(BDIGIT) &&
 | |
|             wordsize % SIZEOF_BDIGIT == 0 && (uintptr_t)words % RUBY_ALIGNOF(BDIGIT) == 0) {
 | |
|             size_t bdigits_per_word = wordsize / SIZEOF_BDIGIT;
 | |
|             size_t src_num_bdigits = de - dp;
 | |
|             size_t dst_num_bdigits = numwords * bdigits_per_word;
 | |
|             int overflow = 0;
 | |
|             int mswordfirst_p = (flags & INTEGER_PACK_MSWORD_FIRST) != 0;
 | |
|             int msbytefirst_p = (flags & INTEGER_PACK_NATIVE_BYTE_ORDER) ? HOST_BIGENDIAN_P :
 | |
|                 (flags & INTEGER_PACK_MSBYTE_FIRST) != 0;
 | |
|             if (src_num_bdigits <= dst_num_bdigits) {
 | |
|                 MEMCPY(words, dp, BDIGIT, src_num_bdigits);
 | |
|                 BDIGITS_ZERO((BDIGIT*)words + src_num_bdigits, dst_num_bdigits - src_num_bdigits);
 | |
|             }
 | |
|             else {
 | |
|                 MEMCPY(words, dp, BDIGIT, dst_num_bdigits);
 | |
|                 overflow = 1;
 | |
|             }
 | |
|             if (sign < 0 && (flags & INTEGER_PACK_2COMP)) {
 | |
|                 int zero_p = bary_2comp(words, dst_num_bdigits);
 | |
|                 if (zero_p && overflow &&
 | |
|                     dst_num_bdigits == src_num_bdigits-1 &&
 | |
|                     dp[dst_num_bdigits] == 1)
 | |
|                     overflow = 0;
 | |
|             }
 | |
|             if (msbytefirst_p != HOST_BIGENDIAN_P) {
 | |
|                 size_t i;
 | |
|                 for (i = 0; i < dst_num_bdigits; i++) {
 | |
|                     BDIGIT d = ((BDIGIT*)words)[i];
 | |
|                     ((BDIGIT*)words)[i] = swap_bdigit(d);
 | |
|                 }
 | |
|             }
 | |
|             if (mswordfirst_p ? !msbytefirst_p : msbytefirst_p) {
 | |
|                 size_t i;
 | |
|                 BDIGIT *p = words;
 | |
|                 for (i = 0; i < numwords; i++) {
 | |
|                     bary_swap(p, bdigits_per_word);
 | |
|                     p += bdigits_per_word;
 | |
|                 }
 | |
|             }
 | |
|             if (mswordfirst_p) {
 | |
|                 bary_swap(words, dst_num_bdigits);
 | |
|             }
 | |
|             if (overflow)
 | |
|                 sign *= 2;
 | |
|             return sign;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     buf = words;
 | |
|     bufend = buf + numwords * wordsize;
 | |
| 
 | |
|     if (buf == bufend) {
 | |
|         /* overflow if non-zero*/
 | |
|         if (!(flags & INTEGER_PACK_2COMP) || 0 <= sign)
 | |
|             sign *= 2;
 | |
|         else {
 | |
|             if (de - dp == 1 && dp[0] == 1)
 | |
|                 sign = -1; /* val == -1 == -2**(numwords*(wordsize*CHAR_BIT-nails)) */
 | |
|             else
 | |
|                 sign = -2; /* val < -1 == -2**(numwords*(wordsize*CHAR_BIT-nails)) */
 | |
|         }
 | |
|     }
 | |
|     else if (dp == de) {
 | |
|         memset(buf, '\0', bufend - buf);
 | |
|     }
 | |
|     else if (dp < de && buf < bufend) {
 | |
|         int word_num_partialbits;
 | |
|         size_t word_num_fullbytes;
 | |
| 
 | |
|         ssize_t word_step;
 | |
|         size_t byte_start;
 | |
|         int byte_step;
 | |
| 
 | |
|         size_t word_start, word_last;
 | |
|         unsigned char *wordp, *last_wordp;
 | |
|         BDIGIT_DBL dd;
 | |
|         int numbits_in_dd;
 | |
| 
 | |
|         integer_pack_loop_setup(numwords, wordsize, nails, flags,
 | |
|             &word_num_fullbytes, &word_num_partialbits,
 | |
|             &word_start, &word_step, &word_last, &byte_start, &byte_step);
 | |
| 
 | |
|         wordp = buf + word_start;
 | |
|         last_wordp = buf + word_last;
 | |
| 
 | |
|         dd = 0;
 | |
|         numbits_in_dd = 0;
 | |
| 
 | |
| #define FILL_DD \
 | |
|     integer_pack_fill_dd(&dp, &de, &dd, &numbits_in_dd)
 | |
| #define TAKE_LOWBITS(n) \
 | |
|     integer_pack_take_lowbits(n, &dd, &numbits_in_dd)
 | |
| 
 | |
|         while (1) {
 | |
|             size_t index_in_word = 0;
 | |
|             unsigned char *bytep = wordp + byte_start;
 | |
|             while (index_in_word < word_num_fullbytes) {
 | |
|                 FILL_DD;
 | |
|                 *bytep = TAKE_LOWBITS(CHAR_BIT);
 | |
|                 bytep += byte_step;
 | |
|                 index_in_word++;
 | |
|             }
 | |
|             if (word_num_partialbits) {
 | |
|                 FILL_DD;
 | |
|                 *bytep = TAKE_LOWBITS(word_num_partialbits);
 | |
|                 bytep += byte_step;
 | |
|                 index_in_word++;
 | |
|             }
 | |
|             while (index_in_word < wordsize) {
 | |
|                 *bytep = 0;
 | |
|                 bytep += byte_step;
 | |
|                 index_in_word++;
 | |
|             }
 | |
| 
 | |
|             if (wordp == last_wordp)
 | |
|                 break;
 | |
| 
 | |
|             wordp += word_step;
 | |
|         }
 | |
|         FILL_DD;
 | |
|         /* overflow tests */
 | |
|         if (dp != de || 1 < dd) {
 | |
|             /* 2**(numwords*(wordsize*CHAR_BIT-nails)+1) <= abs(val) */
 | |
|             sign *= 2;
 | |
|         }
 | |
|         else if (dd == 1) {
 | |
|             /* 2**(numwords*(wordsize*CHAR_BIT-nails)) <= abs(val) < 2**(numwords*(wordsize*CHAR_BIT-nails)+1) */
 | |
|             if (!(flags & INTEGER_PACK_2COMP) || 0 <= sign)
 | |
|                 sign *= 2;
 | |
|             else { /* overflow_2comp && sign == -1 */
 | |
|                 /* test lower bits are all zero. */
 | |
|                 dp = ds;
 | |
|                 while (dp < de && *dp == 0)
 | |
|                     dp++;
 | |
|                 if (de - dp == 1 && /* only one non-zero word. */
 | |
|                     POW2_P(*dp)) /* *dp contains only one bit set. */
 | |
|                     sign = -1; /* val == -2**(numwords*(wordsize*CHAR_BIT-nails)) */
 | |
|                 else
 | |
|                     sign = -2; /* val < -2**(numwords*(wordsize*CHAR_BIT-nails)) */
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((flags & INTEGER_PACK_2COMP) && (sign < 0 && numwords != 0)) {
 | |
|         int word_num_partialbits;
 | |
|         size_t word_num_fullbytes;
 | |
| 
 | |
|         ssize_t word_step;
 | |
|         size_t byte_start;
 | |
|         int byte_step;
 | |
| 
 | |
|         size_t word_start, word_last;
 | |
|         unsigned char *wordp, *last_wordp;
 | |
| 
 | |
|         unsigned int partialbits_mask;
 | |
|         int carry;
 | |
| 
 | |
|         integer_pack_loop_setup(numwords, wordsize, nails, flags,
 | |
|             &word_num_fullbytes, &word_num_partialbits,
 | |
|             &word_start, &word_step, &word_last, &byte_start, &byte_step);
 | |
| 
 | |
|         partialbits_mask = (1 << word_num_partialbits) - 1;
 | |
| 
 | |
|         buf = words;
 | |
|         wordp = buf + word_start;
 | |
|         last_wordp = buf + word_last;
 | |
| 
 | |
|         carry = 1;
 | |
|         while (1) {
 | |
|             size_t index_in_word = 0;
 | |
|             unsigned char *bytep = wordp + byte_start;
 | |
|             while (index_in_word < word_num_fullbytes) {
 | |
|                 carry += (unsigned char)~*bytep;
 | |
|                 *bytep = (unsigned char)carry;
 | |
|                 carry >>= CHAR_BIT;
 | |
|                 bytep += byte_step;
 | |
|                 index_in_word++;
 | |
|             }
 | |
|             if (word_num_partialbits) {
 | |
|                 carry += (*bytep & partialbits_mask) ^ partialbits_mask;
 | |
|                 *bytep = carry & partialbits_mask;
 | |
|                 carry >>= word_num_partialbits;
 | |
|                 bytep += byte_step;
 | |
|                 index_in_word++;
 | |
|             }
 | |
| 
 | |
|             if (wordp == last_wordp)
 | |
|                 break;
 | |
| 
 | |
|             wordp += word_step;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return sign;
 | |
| #undef FILL_DD
 | |
| #undef TAKE_LOWBITS
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| integer_unpack_num_bdigits_small(size_t numwords, size_t wordsize, size_t nails, int *nlp_bits_ret)
 | |
| {
 | |
|     /* nlp_bits stands for number of leading padding bits */
 | |
|     size_t num_bits = (wordsize * CHAR_BIT - nails) * numwords;
 | |
|     size_t num_bdigits = (num_bits + BITSPERDIG - 1) / BITSPERDIG;
 | |
|     *nlp_bits_ret = (int)(num_bdigits * BITSPERDIG - num_bits);
 | |
|     return num_bdigits;
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| integer_unpack_num_bdigits_generic(size_t numwords, size_t wordsize, size_t nails, int *nlp_bits_ret)
 | |
| {
 | |
|     /* BITSPERDIG = SIZEOF_BDIGIT * CHAR_BIT */
 | |
|     /* num_bits = (wordsize * CHAR_BIT - nails) * numwords */
 | |
|     /* num_bdigits = (num_bits + BITSPERDIG - 1) / BITSPERDIG */
 | |
| 
 | |
|     /* num_bits = CHAR_BIT * (wordsize * numwords) - nails * numwords = CHAR_BIT * num_bytes1 - nails * numwords */
 | |
|     size_t num_bytes1 = wordsize * numwords;
 | |
| 
 | |
|     /* q1 * CHAR_BIT + r1 = numwords */
 | |
|     size_t q1 = numwords / CHAR_BIT;
 | |
|     size_t r1 = numwords % CHAR_BIT;
 | |
| 
 | |
|     /* num_bits = CHAR_BIT * num_bytes1 - nails * (q1 * CHAR_BIT + r1) = CHAR_BIT * num_bytes2 - nails * r1 */
 | |
|     size_t num_bytes2 = num_bytes1 - nails * q1;
 | |
| 
 | |
|     /* q2 * CHAR_BIT + r2 = nails */
 | |
|     size_t q2 = nails / CHAR_BIT;
 | |
|     size_t r2 = nails % CHAR_BIT;
 | |
| 
 | |
|     /* num_bits = CHAR_BIT * num_bytes2 - (q2 * CHAR_BIT + r2) * r1 = CHAR_BIT * num_bytes3 - r1 * r2 */
 | |
|     size_t num_bytes3 = num_bytes2 - q2 * r1;
 | |
| 
 | |
|     /* q3 * BITSPERDIG + r3 = num_bytes3 */
 | |
|     size_t q3 = num_bytes3 / BITSPERDIG;
 | |
|     size_t r3 = num_bytes3 % BITSPERDIG;
 | |
| 
 | |
|     /* num_bits = CHAR_BIT * (q3 * BITSPERDIG + r3) - r1 * r2 = BITSPERDIG * num_digits1 + CHAR_BIT * r3 - r1 * r2 */
 | |
|     size_t num_digits1 = CHAR_BIT * q3;
 | |
| 
 | |
|     /*
 | |
|      * if CHAR_BIT * r3 >= r1 * r2
 | |
|      *   CHAR_BIT * r3 - r1 * r2 = CHAR_BIT * BITSPERDIG - (CHAR_BIT * BITSPERDIG - (CHAR_BIT * r3 - r1 * r2))
 | |
|      *   q4 * BITSPERDIG + r4 = CHAR_BIT * BITSPERDIG - (CHAR_BIT * r3 - r1 * r2)
 | |
|      *   num_bits = BITSPERDIG * num_digits1 + CHAR_BIT * BITSPERDIG - (q4 * BITSPERDIG + r4) = BITSPERDIG * num_digits2 - r4
 | |
|      * else
 | |
|      *   q4 * BITSPERDIG + r4 = -(CHAR_BIT * r3 - r1 * r2)
 | |
|      *   num_bits = BITSPERDIG * num_digits1 - (q4 * BITSPERDIG + r4) = BITSPERDIG * num_digits2 - r4
 | |
|      * end
 | |
|      */
 | |
| 
 | |
|     if (CHAR_BIT * r3 >= r1 * r2) {
 | |
|         size_t tmp1 = CHAR_BIT * BITSPERDIG - (CHAR_BIT * r3 - r1 * r2);
 | |
|         size_t q4 = tmp1 / BITSPERDIG;
 | |
|         int r4 = (int)(tmp1 % BITSPERDIG);
 | |
|         size_t num_digits2 = num_digits1 + CHAR_BIT - q4;
 | |
|         *nlp_bits_ret = r4;
 | |
|         return num_digits2;
 | |
|     }
 | |
|     else {
 | |
|         size_t tmp1 = r1 * r2 - CHAR_BIT * r3;
 | |
|         size_t q4 = tmp1 / BITSPERDIG;
 | |
|         int r4 = (int)(tmp1 % BITSPERDIG);
 | |
|         size_t num_digits2 = num_digits1 - q4;
 | |
|         *nlp_bits_ret = r4;
 | |
|         return num_digits2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| integer_unpack_num_bdigits(size_t numwords, size_t wordsize, size_t nails, int *nlp_bits_ret)
 | |
| {
 | |
|     size_t num_bdigits;
 | |
| 
 | |
|     if (numwords <= (SIZE_MAX - (BITSPERDIG-1)) / CHAR_BIT / wordsize) {
 | |
|         num_bdigits = integer_unpack_num_bdigits_small(numwords, wordsize, nails, nlp_bits_ret);
 | |
| #ifdef DEBUG_INTEGER_PACK
 | |
|         {
 | |
|             int nlp_bits1;
 | |
|             size_t num_bdigits1 = integer_unpack_num_bdigits_generic(numwords, wordsize, nails, &nlp_bits1);
 | |
|             assert(num_bdigits == num_bdigits1);
 | |
|             assert(*nlp_bits_ret == nlp_bits1);
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
|         num_bdigits = integer_unpack_num_bdigits_generic(numwords, wordsize, nails, nlp_bits_ret);
 | |
|     }
 | |
|     return num_bdigits;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| integer_unpack_push_bits(int data, int numbits, BDIGIT_DBL *ddp, int *numbits_in_dd_p, BDIGIT **dpp)
 | |
| {
 | |
|     (*ddp) |= ((BDIGIT_DBL)data) << (*numbits_in_dd_p);
 | |
|     *numbits_in_dd_p += numbits;
 | |
|     while (BITSPERDIG <= *numbits_in_dd_p) {
 | |
|         *(*dpp)++ = BIGLO(*ddp);
 | |
|         *ddp = BIGDN(*ddp);
 | |
|         *numbits_in_dd_p -= BITSPERDIG;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int
 | |
| integer_unpack_single_bdigit(BDIGIT u, size_t size, int flags, BDIGIT *dp)
 | |
| {
 | |
|     int sign;
 | |
|     if (flags & INTEGER_PACK_2COMP) {
 | |
|         sign = (flags & INTEGER_PACK_NEGATIVE) ?
 | |
|             ((size == SIZEOF_BDIGIT && u == 0) ? -2 : -1) :
 | |
|             ((u >> (size * CHAR_BIT - 1)) ? -1 : 1);
 | |
|         if (sign < 0) {
 | |
|             u |= LSHIFTX(BDIGMAX, size * CHAR_BIT);
 | |
|             u = BIGLO(1 + ~u);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|         sign = (flags & INTEGER_PACK_NEGATIVE) ? -1 : 1;
 | |
|     *dp = u;
 | |
|     return sign;
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_BUILTIN___BUILTIN_ASSUME_ALIGNED
 | |
| #define reinterpret_cast(type, value) (type) \
 | |
|     __builtin_assume_aligned((value), sizeof(*(type)NULL));
 | |
| #else
 | |
| #define reinterpret_cast(type, value) (type)value
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| bary_unpack_internal(BDIGIT *bdigits, size_t num_bdigits, const void *words, size_t numwords, size_t wordsize, size_t nails, int flags, int nlp_bits)
 | |
| {
 | |
|     int sign;
 | |
|     const unsigned char *buf = words;
 | |
|     BDIGIT *dp;
 | |
|     BDIGIT *de;
 | |
| 
 | |
|     dp = bdigits;
 | |
|     de = dp + num_bdigits;
 | |
| 
 | |
|     if (!(flags & INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION)) {
 | |
|         if (nails == 0 && numwords == 1) {
 | |
|             int need_swap = wordsize != 1 &&
 | |
|                 (flags & INTEGER_PACK_BYTEORDER_MASK) != INTEGER_PACK_NATIVE_BYTE_ORDER &&
 | |
|                 ((flags & INTEGER_PACK_MSBYTE_FIRST) ? !HOST_BIGENDIAN_P : HOST_BIGENDIAN_P);
 | |
|             if (wordsize == 1) {
 | |
|                 return integer_unpack_single_bdigit(*(uint8_t *)buf, sizeof(uint8_t), flags, dp);
 | |
|             }
 | |
| #if defined(HAVE_UINT16_T) && 2 <= SIZEOF_BDIGIT
 | |
|             if (wordsize == 2 && (uintptr_t)words % RUBY_ALIGNOF(uint16_t) == 0) {
 | |
|                 uint16_t u = *reinterpret_cast(const uint16_t *, buf);
 | |
|                 return integer_unpack_single_bdigit(need_swap ? swap16(u) : u, sizeof(uint16_t), flags, dp);
 | |
|             }
 | |
| #endif
 | |
| #if defined(HAVE_UINT32_T) && 4 <= SIZEOF_BDIGIT
 | |
|             if (wordsize == 4 && (uintptr_t)words % RUBY_ALIGNOF(uint32_t) == 0) {
 | |
|                 uint32_t u = *reinterpret_cast(const uint32_t *, buf);
 | |
|                 return integer_unpack_single_bdigit(need_swap ? swap32(u) : u, sizeof(uint32_t), flags, dp);
 | |
|             }
 | |
| #endif
 | |
| #if defined(HAVE_UINT64_T) && 8 <= SIZEOF_BDIGIT
 | |
|             if (wordsize == 8 && (uintptr_t)words % RUBY_ALIGNOF(uint64_t) == 0) {
 | |
|                 uint64_t u = *reinterpret_cast(const uint64_t *, buf);
 | |
|                 return integer_unpack_single_bdigit(need_swap ? swap64(u) : u, sizeof(uint64_t), flags, dp);
 | |
|             }
 | |
| #endif
 | |
| #undef reinterpret_cast
 | |
|         }
 | |
| #if !defined(WORDS_BIGENDIAN)
 | |
|         if (nails == 0 && SIZEOF_BDIGIT == sizeof(BDIGIT) &&
 | |
|             (flags & INTEGER_PACK_WORDORDER_MASK) == INTEGER_PACK_LSWORD_FIRST &&
 | |
|             (flags & INTEGER_PACK_BYTEORDER_MASK) != INTEGER_PACK_MSBYTE_FIRST) {
 | |
|             size_t src_size = numwords * wordsize;
 | |
|             size_t dst_size = num_bdigits * SIZEOF_BDIGIT;
 | |
|             MEMCPY(dp, words, char, src_size);
 | |
|             if (flags & INTEGER_PACK_2COMP) {
 | |
|                 if (flags & INTEGER_PACK_NEGATIVE) {
 | |
|                     int zero_p;
 | |
|                     memset((char*)dp + src_size, 0xff, dst_size - src_size);
 | |
|                     zero_p = bary_2comp(dp, num_bdigits);
 | |
|                     sign = zero_p ? -2 : -1;
 | |
|                 }
 | |
|                 else if (buf[src_size-1] >> (CHAR_BIT-1)) {
 | |
|                     memset((char*)dp + src_size, 0xff, dst_size - src_size);
 | |
|                     bary_2comp(dp, num_bdigits);
 | |
|                     sign = -1;
 | |
|                 }
 | |
|                 else {
 | |
|                     MEMZERO((char*)dp + src_size, char, dst_size - src_size);
 | |
|                     sign = 1;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 MEMZERO((char*)dp + src_size, char, dst_size - src_size);
 | |
|                 sign = (flags & INTEGER_PACK_NEGATIVE) ? -1 : 1;
 | |
|             }
 | |
|             return sign;
 | |
|         }
 | |
| #endif
 | |
|         if (nails == 0 && SIZEOF_BDIGIT == sizeof(BDIGIT) &&
 | |
|             wordsize % SIZEOF_BDIGIT == 0) {
 | |
|             size_t bdigits_per_word = wordsize / SIZEOF_BDIGIT;
 | |
|             int mswordfirst_p = (flags & INTEGER_PACK_MSWORD_FIRST) != 0;
 | |
|             int msbytefirst_p = (flags & INTEGER_PACK_NATIVE_BYTE_ORDER) ? HOST_BIGENDIAN_P :
 | |
|                 (flags & INTEGER_PACK_MSBYTE_FIRST) != 0;
 | |
|             MEMCPY(dp, words, BDIGIT, numwords*bdigits_per_word);
 | |
|             if (mswordfirst_p) {
 | |
|                 bary_swap(dp, num_bdigits);
 | |
|             }
 | |
|             if (mswordfirst_p ? !msbytefirst_p : msbytefirst_p) {
 | |
|                 size_t i;
 | |
|                 BDIGIT *p = dp;
 | |
|                 for (i = 0; i < numwords; i++) {
 | |
|                     bary_swap(p, bdigits_per_word);
 | |
|                     p += bdigits_per_word;
 | |
|                 }
 | |
|             }
 | |
|             if (msbytefirst_p != HOST_BIGENDIAN_P) {
 | |
|                 BDIGIT *p;
 | |
|                 for (p = dp; p < de; p++) {
 | |
|                     BDIGIT d = *p;
 | |
|                     *p = swap_bdigit(d);
 | |
|                 }
 | |
|             }
 | |
|             if (flags & INTEGER_PACK_2COMP) {
 | |
|                 if (flags & INTEGER_PACK_NEGATIVE) {
 | |
|                     int zero_p = bary_2comp(dp, num_bdigits);
 | |
|                     sign = zero_p ? -2 : -1;
 | |
|                 }
 | |
|                 else if (BDIGIT_MSB(de[-1])) {
 | |
|                     bary_2comp(dp, num_bdigits);
 | |
|                     sign = -1;
 | |
|                 }
 | |
|                 else {
 | |
|                     sign = 1;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 sign = (flags & INTEGER_PACK_NEGATIVE) ? -1 : 1;
 | |
|             }
 | |
|             return sign;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (num_bdigits != 0) {
 | |
|         int word_num_partialbits;
 | |
|         size_t word_num_fullbytes;
 | |
| 
 | |
|         ssize_t word_step;
 | |
|         size_t byte_start;
 | |
|         int byte_step;
 | |
| 
 | |
|         size_t word_start, word_last;
 | |
|         const unsigned char *wordp, *last_wordp;
 | |
|         BDIGIT_DBL dd;
 | |
|         int numbits_in_dd;
 | |
| 
 | |
|         integer_pack_loop_setup(numwords, wordsize, nails, flags,
 | |
|             &word_num_fullbytes, &word_num_partialbits,
 | |
|             &word_start, &word_step, &word_last, &byte_start, &byte_step);
 | |
| 
 | |
|         wordp = buf + word_start;
 | |
|         last_wordp = buf + word_last;
 | |
| 
 | |
|         dd = 0;
 | |
|         numbits_in_dd = 0;
 | |
| 
 | |
| #define PUSH_BITS(data, numbits) \
 | |
|         integer_unpack_push_bits(data, numbits, &dd, &numbits_in_dd, &dp)
 | |
| 
 | |
|         while (1) {
 | |
|             size_t index_in_word = 0;
 | |
|             const unsigned char *bytep = wordp + byte_start;
 | |
|             while (index_in_word < word_num_fullbytes) {
 | |
|                 PUSH_BITS(*bytep, CHAR_BIT);
 | |
|                 bytep += byte_step;
 | |
|                 index_in_word++;
 | |
|             }
 | |
|             if (word_num_partialbits) {
 | |
|                 PUSH_BITS(*bytep & ((1 << word_num_partialbits) - 1), word_num_partialbits);
 | |
|                 bytep += byte_step;
 | |
|                 index_in_word++;
 | |
|             }
 | |
| 
 | |
|             if (wordp == last_wordp)
 | |
|                 break;
 | |
| 
 | |
|             wordp += word_step;
 | |
|         }
 | |
|         if (dd)
 | |
|             *dp++ = (BDIGIT)dd;
 | |
|         assert(dp <= de);
 | |
|         while (dp < de)
 | |
|             *dp++ = 0;
 | |
| #undef PUSH_BITS
 | |
|     }
 | |
| 
 | |
|     if (!(flags & INTEGER_PACK_2COMP)) {
 | |
|         sign = (flags & INTEGER_PACK_NEGATIVE) ? -1 : 1;
 | |
|     }
 | |
|     else {
 | |
|         if (nlp_bits) {
 | |
|             if ((flags & INTEGER_PACK_NEGATIVE) ||
 | |
|                 (bdigits[num_bdigits-1] >> (BITSPERDIG - nlp_bits - 1))) {
 | |
|                 bdigits[num_bdigits-1] |= BIGLO(BDIGMAX << (BITSPERDIG - nlp_bits));
 | |
|                 sign = -1;
 | |
|             }
 | |
|             else {
 | |
|                 sign = 1;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             if (flags & INTEGER_PACK_NEGATIVE) {
 | |
|                 sign = bary_zero_p(bdigits, num_bdigits) ? -2 : -1;
 | |
|             }
 | |
|             else {
 | |
|                 if (num_bdigits != 0 && BDIGIT_MSB(bdigits[num_bdigits-1]))
 | |
|                     sign = -1;
 | |
|                 else
 | |
|                     sign = 1;
 | |
|             }
 | |
|         }
 | |
|         if (sign == -1 && num_bdigits != 0) {
 | |
|             bary_2comp(bdigits, num_bdigits);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return sign;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_unpack(BDIGIT *bdigits, size_t num_bdigits, const void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
 | |
| {
 | |
|     size_t num_bdigits0;
 | |
|     int nlp_bits;
 | |
|     int sign;
 | |
| 
 | |
|     validate_integer_pack_format(numwords, wordsize, nails, flags,
 | |
|             INTEGER_PACK_MSWORD_FIRST|
 | |
|             INTEGER_PACK_LSWORD_FIRST|
 | |
|             INTEGER_PACK_MSBYTE_FIRST|
 | |
|             INTEGER_PACK_LSBYTE_FIRST|
 | |
|             INTEGER_PACK_NATIVE_BYTE_ORDER|
 | |
|             INTEGER_PACK_2COMP|
 | |
|             INTEGER_PACK_FORCE_BIGNUM|
 | |
|             INTEGER_PACK_NEGATIVE|
 | |
|             INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION);
 | |
| 
 | |
|     num_bdigits0 = integer_unpack_num_bdigits(numwords, wordsize, nails, &nlp_bits);
 | |
| 
 | |
|     assert(num_bdigits0 <= num_bdigits);
 | |
| 
 | |
|     sign = bary_unpack_internal(bdigits, num_bdigits0, words, numwords, wordsize, nails, flags, nlp_bits);
 | |
| 
 | |
|     if (num_bdigits0 < num_bdigits) {
 | |
|         BDIGITS_ZERO(bdigits + num_bdigits0, num_bdigits - num_bdigits0);
 | |
|         if (sign == -2) {
 | |
|             bdigits[num_bdigits0] = 1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_subb(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, int borrow)
 | |
| {
 | |
|     BDIGIT_DBL_SIGNED num;
 | |
|     size_t i;
 | |
|     size_t sn;
 | |
| 
 | |
|     assert(xn <= zn);
 | |
|     assert(yn <= zn);
 | |
| 
 | |
|     sn = xn < yn ? xn : yn;
 | |
| 
 | |
|     num = borrow ? -1 : 0;
 | |
|     for (i = 0; i < sn; i++) {
 | |
| 	num += (BDIGIT_DBL_SIGNED)xds[i] - yds[i];
 | |
| 	zds[i] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     if (yn <= xn) {
 | |
|         for (; i < xn; i++) {
 | |
|             if (num == 0) goto num_is_zero;
 | |
|             num += xds[i];
 | |
|             zds[i] = BIGLO(num);
 | |
|             num = BIGDN(num);
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         for (; i < yn; i++) {
 | |
|             num -= yds[i];
 | |
|             zds[i] = BIGLO(num);
 | |
|             num = BIGDN(num);
 | |
|         }
 | |
|     }
 | |
|     if (num == 0) goto num_is_zero;
 | |
|     for (; i < zn; i++) {
 | |
| 	zds[i] = BDIGMAX;
 | |
|     }
 | |
|     return 1;
 | |
| 
 | |
|   num_is_zero:
 | |
|     if (xds == zds && xn == zn)
 | |
|         return 0;
 | |
|     for (; i < xn; i++) {
 | |
| 	zds[i] = xds[i];
 | |
|     }
 | |
|     for (; i < zn; i++) {
 | |
| 	zds[i] = 0;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_sub(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     return bary_subb(zds, zn, xds, xn, yds, yn, 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_sub_one(BDIGIT *zds, size_t zn)
 | |
| {
 | |
|     return bary_subb(zds, zn, zds, zn, NULL, 0, 1);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_addc(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, int carry)
 | |
| {
 | |
|     BDIGIT_DBL num;
 | |
|     size_t i;
 | |
| 
 | |
|     assert(xn <= zn);
 | |
|     assert(yn <= zn);
 | |
| 
 | |
|     if (xn > yn) {
 | |
| 	const BDIGIT *tds;
 | |
| 	tds = xds; xds = yds; yds = tds;
 | |
| 	i = xn; xn = yn; yn = i;
 | |
|     }
 | |
| 
 | |
|     num = carry ? 1 : 0;
 | |
|     for (i = 0; i < xn; i++) {
 | |
| 	num += (BDIGIT_DBL)xds[i] + yds[i];
 | |
| 	zds[i] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     for (; i < yn; i++) {
 | |
|         if (num == 0) goto num_is_zero;
 | |
| 	num += yds[i];
 | |
| 	zds[i] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     for (; i < zn; i++) {
 | |
|         if (num == 0) goto num_is_zero;
 | |
| 	zds[i] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     return num != 0;
 | |
| 
 | |
|   num_is_zero:
 | |
|     if (yds == zds && yn == zn)
 | |
|         return 0;
 | |
|     for (; i < yn; i++) {
 | |
| 	zds[i] = yds[i];
 | |
|     }
 | |
|     for (; i < zn; i++) {
 | |
| 	zds[i] = 0;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_add(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     return bary_addc(zds, zn, xds, xn, yds, yn, 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_add_one(BDIGIT *ds, size_t n)
 | |
| {
 | |
|     size_t i;
 | |
|     for (i = 0; i < n; i++) {
 | |
|         BDIGIT_DBL n = ds[i];
 | |
|         n += 1;
 | |
|         ds[i] = BIGLO(n);
 | |
|         if (ds[i] != 0)
 | |
|             return 0;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_mul_single(BDIGIT *zds, size_t zn, BDIGIT x, BDIGIT y)
 | |
| {
 | |
|     BDIGIT_DBL n;
 | |
| 
 | |
|     assert(2 <= zn);
 | |
| 
 | |
|     n = (BDIGIT_DBL)x * y;
 | |
|     bdigitdbl2bary(zds, 2, n);
 | |
|     BDIGITS_ZERO(zds + 2, zn - 2);
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_muladd_1xN(BDIGIT *zds, size_t zn, BDIGIT x, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     BDIGIT_DBL n;
 | |
|     BDIGIT_DBL dd;
 | |
|     size_t j;
 | |
| 
 | |
|     assert(zn > yn);
 | |
| 
 | |
|     if (x == 0)
 | |
|         return 0;
 | |
|     dd = x;
 | |
|     n = 0;
 | |
|     for (j = 0; j < yn; j++) {
 | |
|         BDIGIT_DBL ee = n + dd * yds[j];
 | |
|         if (ee) {
 | |
|             n = zds[j] + ee;
 | |
|             zds[j] = BIGLO(n);
 | |
|             n = BIGDN(n);
 | |
|         }
 | |
|         else {
 | |
|             n = 0;
 | |
|         }
 | |
| 
 | |
|     }
 | |
|     for (; j < zn; j++) {
 | |
|         if (n == 0)
 | |
|             break;
 | |
|         n += zds[j];
 | |
|         zds[j] = BIGLO(n);
 | |
|         n = BIGDN(n);
 | |
|     }
 | |
|     return n != 0;
 | |
| }
 | |
| 
 | |
| static BDIGIT_DBL_SIGNED
 | |
| bigdivrem_mulsub(BDIGIT *zds, size_t zn, BDIGIT x, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     size_t i;
 | |
|     BDIGIT_DBL t2;
 | |
|     BDIGIT_DBL_SIGNED num;
 | |
| 
 | |
|     assert(zn == yn + 1);
 | |
| 
 | |
|     num = 0;
 | |
|     t2 = 0;
 | |
|     i = 0;
 | |
| 
 | |
|     do {
 | |
|         BDIGIT_DBL_SIGNED ee;
 | |
|         t2 += (BDIGIT_DBL)yds[i] * x;
 | |
|         ee = num - BIGLO(t2);
 | |
|         num = (BDIGIT_DBL_SIGNED)zds[i] + ee;
 | |
|         if (ee) zds[i] = BIGLO(num);
 | |
|         num = BIGDN(num);
 | |
|         t2 = BIGDN(t2);
 | |
|     } while (++i < yn);
 | |
|     num -= (BDIGIT_DBL_SIGNED)t2;
 | |
|     num += (BDIGIT_DBL_SIGNED)zds[yn]; /* borrow from high digit; don't update */
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_mulsub_1xN(BDIGIT *zds, size_t zn, BDIGIT x, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     BDIGIT_DBL_SIGNED num;
 | |
| 
 | |
|     assert(zn == yn + 1);
 | |
| 
 | |
|     num = bigdivrem_mulsub(zds, zn, x, yds, yn);
 | |
|     zds[yn] = BIGLO(num);
 | |
|     if (BIGDN(num))
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_mul_normal(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     assert(xn + yn <= zn);
 | |
| 
 | |
|     BDIGITS_ZERO(zds, zn);
 | |
|     for (i = 0; i < xn; i++) {
 | |
|         bary_muladd_1xN(zds+i, zn-i, xds[i], yds, yn);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_mul_normal(VALUE x, VALUE y)
 | |
| {
 | |
|     size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), zn = xn + yn;
 | |
|     VALUE z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
 | |
|     bary_mul_normal(BDIGITS(z), zn, BDIGITS(x), xn, BDIGITS(y), yn);
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /* efficient squaring (2 times faster than normal multiplication)
 | |
|  * ref: Handbook of Applied Cryptography, Algorithm 14.16
 | |
|  *      http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
 | |
|  */
 | |
| static void
 | |
| bary_sq_fast(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn)
 | |
| {
 | |
|     size_t i, j;
 | |
|     BDIGIT_DBL c, v, w;
 | |
|     BDIGIT vl;
 | |
|     int vh;
 | |
| 
 | |
|     assert(xn * 2 <= zn);
 | |
| 
 | |
|     BDIGITS_ZERO(zds, zn);
 | |
| 
 | |
|     if (xn == 0)
 | |
|         return;
 | |
| 
 | |
|     for (i = 0; i < xn-1; i++) {
 | |
| 	v = (BDIGIT_DBL)xds[i];
 | |
| 	if (!v)
 | |
|             continue;
 | |
| 	c = (BDIGIT_DBL)zds[i + i] + v * v;
 | |
| 	zds[i + i] = BIGLO(c);
 | |
| 	c = BIGDN(c);
 | |
| 	v *= 2;
 | |
|         vl = BIGLO(v);
 | |
|         vh = (int)BIGDN(v);
 | |
| 	for (j = i + 1; j < xn; j++) {
 | |
| 	    w = (BDIGIT_DBL)xds[j];
 | |
| 	    c += (BDIGIT_DBL)zds[i + j] + vl * w;
 | |
| 	    zds[i + j] = BIGLO(c);
 | |
| 	    c = BIGDN(c);
 | |
| 	    if (vh)
 | |
|                 c += w;
 | |
| 	}
 | |
| 	if (c) {
 | |
| 	    c += (BDIGIT_DBL)zds[i + xn];
 | |
| 	    zds[i + xn] = BIGLO(c);
 | |
| 	    c = BIGDN(c);
 | |
|             if (c)
 | |
|                 zds[i + xn + 1] += (BDIGIT)c;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     /* i == xn-1 */
 | |
|     v = (BDIGIT_DBL)xds[i];
 | |
|     if (!v)
 | |
|         return;
 | |
|     c = (BDIGIT_DBL)zds[i + i] + v * v;
 | |
|     zds[i + i] = BIGLO(c);
 | |
|     c = BIGDN(c);
 | |
|     if (c) {
 | |
|         zds[i + xn] += BIGLO(c);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_sq_fast(VALUE x)
 | |
| {
 | |
|     size_t xn = BIGNUM_LEN(x), zn = 2 * xn;
 | |
|     VALUE z = bignew(zn, 1);
 | |
|     bary_sq_fast(BDIGITS(z), zn, BDIGITS(x), xn);
 | |
|     RB_GC_GUARD(x);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /* balancing multiplication by slicing larger argument */
 | |
| static void
 | |
| bary_mul_balance_with_mulfunc(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn, mulfunc_t *mulfunc)
 | |
| {
 | |
|     VALUE work = 0;
 | |
|     size_t yn0 = yn;
 | |
|     size_t r, n;
 | |
| 
 | |
|     assert(xn + yn <= zn);
 | |
|     assert(xn <= yn);
 | |
|     assert(!KARATSUBA_BALANCED(xn, yn) || !TOOM3_BALANCED(xn, yn));
 | |
| 
 | |
|     BDIGITS_ZERO(zds, xn);
 | |
| 
 | |
|     n = 0;
 | |
|     while (yn > 0) {
 | |
|         BDIGIT *tds;
 | |
|         size_t tn;
 | |
| 	r = xn > yn ? yn : xn;
 | |
|         tn = xn + r;
 | |
|         if (2 * (xn + r) <= zn - n) {
 | |
|             tds = zds + n + xn + r;
 | |
|             mulfunc(tds, tn, xds, xn, yds + n, r, wds, wn);
 | |
|             BDIGITS_ZERO(zds + n + xn, r);
 | |
|             bary_add(zds + n, tn,
 | |
|                      zds + n, tn,
 | |
|                      tds, tn);
 | |
|         }
 | |
|         else {
 | |
|             if (wn < xn) {
 | |
|                 wn = xn;
 | |
|                 wds = ALLOCV_N(BDIGIT, work, wn);
 | |
|             }
 | |
|             tds = zds + n;
 | |
|             MEMCPY(wds, zds + n, BDIGIT, xn);
 | |
|             mulfunc(tds, tn, xds, xn, yds + n, r, wds+xn, wn-xn);
 | |
|             bary_add(zds + n, tn,
 | |
|                      zds + n, tn,
 | |
|                      wds, xn);
 | |
|         }
 | |
| 	yn -= r;
 | |
| 	n += r;
 | |
|     }
 | |
|     BDIGITS_ZERO(zds+xn+yn0, zn - (xn+yn0));
 | |
| 
 | |
|     if (work)
 | |
|         ALLOCV_END(work);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_mul_balance(VALUE x, VALUE y)
 | |
| {
 | |
|     size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), zn = xn + yn;
 | |
|     VALUE z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
 | |
|     bary_mul_balance_with_mulfunc(BDIGITS(z), zn, BDIGITS(x), xn, BDIGITS(y), yn, NULL, 0, bary_mul_toom3_start);
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /* multiplication by karatsuba method */
 | |
| static void
 | |
| bary_mul_karatsuba(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
 | |
| {
 | |
|     VALUE work = 0;
 | |
| 
 | |
|     size_t n;
 | |
|     int sub_p, borrow, carry1, carry2, carry3;
 | |
| 
 | |
|     int odd_y = 0;
 | |
|     int odd_xy = 0;
 | |
|     int sq;
 | |
| 
 | |
|     const BDIGIT *xds0, *xds1, *yds0, *yds1;
 | |
|     BDIGIT *zds0, *zds1, *zds2, *zds3;
 | |
| 
 | |
|     assert(xn + yn <= zn);
 | |
|     assert(xn <= yn);
 | |
|     assert(yn < 2 * xn);
 | |
| 
 | |
|     sq = xds == yds && xn == yn;
 | |
| 
 | |
|     if (yn & 1) {
 | |
|         odd_y = 1;
 | |
|         yn--;
 | |
|         if (yn < xn) {
 | |
|             odd_xy = 1;
 | |
|             xn--;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     n = yn / 2;
 | |
| 
 | |
|     assert(n < xn);
 | |
| 
 | |
|     if (wn < n) {
 | |
|         /* This function itself needs only n BDIGITs for work area.
 | |
|          * However this function calls bary_mul_karatsuba and
 | |
|          * bary_mul_balance recursively.
 | |
|          * 2n BDIGITs are enough to avoid allocations in
 | |
|          * the recursively called functions.
 | |
|          */
 | |
|         wn = 2*n;
 | |
|         wds = ALLOCV_N(BDIGIT, work, wn);
 | |
|     }
 | |
| 
 | |
|     /* Karatsuba algorithm:
 | |
|      *
 | |
|      * x = x0 + r*x1
 | |
|      * y = y0 + r*y1
 | |
|      * z = x*y
 | |
|      *   = (x0 + r*x1) * (y0 + r*y1)
 | |
|      *   = x0*y0 + r*(x1*y0 + x0*y1) + r*r*x1*y1
 | |
|      *   = x0*y0 + r*(x0*y0 + x1*y1 - (x1-x0)*(y1-y0)) + r*r*x1*y1
 | |
|      *   = x0*y0 + r*(x0*y0 + x1*y1 - (x0-x1)*(y0-y1)) + r*r*x1*y1
 | |
|      */
 | |
| 
 | |
|     xds0 = xds;
 | |
|     xds1 = xds + n;
 | |
|     yds0 = yds;
 | |
|     yds1 = yds + n;
 | |
|     zds0 = zds;
 | |
|     zds1 = zds + n;
 | |
|     zds2 = zds + 2*n;
 | |
|     zds3 = zds + 3*n;
 | |
| 
 | |
|     sub_p = 1;
 | |
| 
 | |
|     /* zds0:? zds1:? zds2:? zds3:? wds:? */
 | |
| 
 | |
|     if (bary_sub(zds0, n, xds, n, xds+n, xn-n)) {
 | |
|         bary_2comp(zds0, n);
 | |
|         sub_p = !sub_p;
 | |
|     }
 | |
| 
 | |
|     /* zds0:|x1-x0| zds1:? zds2:? zds3:? wds:? */
 | |
| 
 | |
|     if (sq) {
 | |
|         sub_p = 1;
 | |
|         bary_mul_karatsuba_start(zds1, 2*n, zds0, n, zds0, n, wds, wn);
 | |
|     }
 | |
|     else {
 | |
|         if (bary_sub(wds, n, yds, n, yds+n, n)) {
 | |
|             bary_2comp(wds, n);
 | |
|             sub_p = !sub_p;
 | |
|         }
 | |
| 
 | |
|         /* zds0:|x1-x0| zds1:? zds2:? zds3:? wds:|y1-y0| */
 | |
| 
 | |
|         bary_mul_karatsuba_start(zds1, 2*n, zds0, n, wds, n, wds+n, wn-n);
 | |
|     }
 | |
| 
 | |
|     /* zds0:|x1-x0| zds1,zds2:|x1-x0|*|y1-y0| zds3:? wds:|y1-y0| */
 | |
| 
 | |
|     borrow = 0;
 | |
|     if (sub_p) {
 | |
|         borrow = !bary_2comp(zds1, 2*n);
 | |
|     }
 | |
|     /* zds0:|x1-x0| zds1,zds2:-?|x1-x0|*|y1-y0| zds3:? wds:|y1-y0| */
 | |
| 
 | |
|     MEMCPY(wds, zds1, BDIGIT, n);
 | |
| 
 | |
|     /* zds0:|x1-x0| zds1,zds2:-?|x1-x0|*|y1-y0| zds3:? wds:lo(-?|x1-x0|*|y1-y0|) */
 | |
| 
 | |
|     bary_mul_karatsuba_start(zds0, 2*n, xds0, n, yds0, n, wds+n, wn-n);
 | |
| 
 | |
|     /* zds0,zds1:x0*y0 zds2:hi(-?|x1-x0|*|y1-y0|) zds3:? wds:lo(-?|x1-x0|*|y1-y0|) */
 | |
| 
 | |
|     carry1 = bary_add(wds, n, wds, n, zds0, n);
 | |
|     carry1 = bary_addc(zds2, n, zds2, n, zds1, n, carry1);
 | |
| 
 | |
|     /* zds0,zds1:x0*y0 zds2:hi(x0*y0-?|x1-x0|*|y1-y0|) zds3:? wds:lo(x0*y0-?|x1-x0|*|y1-y0|) */
 | |
| 
 | |
|     carry2 = bary_add(zds1, n, zds1, n, wds, n);
 | |
| 
 | |
|     /* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|) zds2:hi(x0*y0-?|x1-x0|*|y1-y0|) zds3:? wds:lo(x0*y0-?|x1-x0|*|y1-y0|) */
 | |
| 
 | |
|     MEMCPY(wds, zds2, BDIGIT, n);
 | |
| 
 | |
|     /* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|) zds2:_ zds3:? wds:hi(x0*y0-?|x1-x0|*|y1-y0|) */
 | |
| 
 | |
|     bary_mul_karatsuba_start(zds2, zn-2*n, xds1, xn-n, yds1, n, wds+n, wn-n);
 | |
| 
 | |
|     /* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|) zds2,zds3:x1*y1 wds:hi(x0*y0-?|x1-x0|*|y1-y0|) */
 | |
| 
 | |
|     carry3 = bary_add(zds1, n, zds1, n, zds2, n);
 | |
| 
 | |
|     /* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|)+lo(x1*y1) zds2,zds3:x1*y1 wds:hi(x0*y0-?|x1-x0|*|y1-y0|) */
 | |
| 
 | |
|     carry3 = bary_addc(zds2, n, zds2, n, zds3, (4*n < zn ? n : zn-3*n), carry3);
 | |
| 
 | |
|     /* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|)+lo(x1*y1) zds2,zds3:x1*y1+hi(x1*y1) wds:hi(x0*y0-?|x1-x0|*|y1-y0|) */
 | |
| 
 | |
|     bary_add(zds2, zn-2*n, zds2, zn-2*n, wds, n);
 | |
| 
 | |
|     /* zds0:lo(x0*y0) zds1:hi(x0*y0)+lo(x0*y0-?|x1-x0|*|y1-y0|)+lo(x1*y1) zds2,zds3:x1*y1+hi(x1*y1)+hi(x0*y0-?|x1-x0|*|y1-y0|) wds:_ */
 | |
| 
 | |
|     if (carry2)
 | |
|         bary_add_one(zds2, zn-2*n);
 | |
| 
 | |
|     if (carry1 + carry3 - borrow < 0)
 | |
|         bary_sub_one(zds3, zn-3*n);
 | |
|     else if (carry1 + carry3 - borrow > 0) {
 | |
|         BDIGIT c = carry1 + carry3 - borrow;
 | |
|         bary_add(zds3, zn-3*n, zds3, zn-3*n, &c, 1);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|     if (SIZEOF_BDIGIT * zn <= 16) {
 | |
|         uint128_t z, x, y;
 | |
|         ssize_t i;
 | |
|         for (x = 0, i = xn-1; 0 <= i; i--) { x <<= SIZEOF_BDIGIT*CHAR_BIT; x |= xds[i]; }
 | |
|         for (y = 0, i = yn-1; 0 <= i; i--) { y <<= SIZEOF_BDIGIT*CHAR_BIT; y |= yds[i]; }
 | |
|         for (z = 0, i = zn-1; 0 <= i; i--) { z <<= SIZEOF_BDIGIT*CHAR_BIT; z |= zds[i]; }
 | |
|         assert(z == x * y);
 | |
|     }
 | |
|     */
 | |
| 
 | |
|     if (odd_xy) {
 | |
|         bary_muladd_1xN(zds+yn, zn-yn, yds[yn], xds, xn);
 | |
|         bary_muladd_1xN(zds+xn, zn-xn, xds[xn], yds, yn+1);
 | |
|     }
 | |
|     else if (odd_y) {
 | |
|         bary_muladd_1xN(zds+yn, zn-yn, yds[yn], xds, xn);
 | |
|     }
 | |
| 
 | |
|     if (work)
 | |
|         ALLOCV_END(work);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_mul_karatsuba(VALUE x, VALUE y)
 | |
| {
 | |
|     size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), zn = xn + yn;
 | |
|     VALUE z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
 | |
|     if (!((xn <= yn && yn < 2) || KARATSUBA_BALANCED(xn, yn)))
 | |
|         rb_raise(rb_eArgError, "unexpected bignum length for karatsuba");
 | |
|     bary_mul_karatsuba(BDIGITS(z), zn, BDIGITS(x), xn, BDIGITS(y), yn, NULL, 0);
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_mul_toom3(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
 | |
| {
 | |
|     size_t n;
 | |
|     size_t wnc;
 | |
|     VALUE work = 0;
 | |
| 
 | |
|     /* "p" stands for "positive".  Actually it means "non-negative", though. */
 | |
|     size_t x0n; const BDIGIT *x0ds;
 | |
|     size_t x1n; const BDIGIT *x1ds;
 | |
|     size_t x2n; const BDIGIT *x2ds;
 | |
|     size_t y0n; const BDIGIT *y0ds;
 | |
|     size_t y1n; const BDIGIT *y1ds;
 | |
|     size_t y2n; const BDIGIT *y2ds;
 | |
| 
 | |
|     size_t u1n; BDIGIT *u1ds; int u1p;
 | |
|     size_t u2n; BDIGIT *u2ds; int u2p;
 | |
|     size_t u3n; BDIGIT *u3ds; int u3p;
 | |
| 
 | |
|     size_t v1n; BDIGIT *v1ds; int v1p;
 | |
|     size_t v2n; BDIGIT *v2ds; int v2p;
 | |
|     size_t v3n; BDIGIT *v3ds; int v3p;
 | |
| 
 | |
|     size_t t0n; BDIGIT *t0ds; int t0p;
 | |
|     size_t t1n; BDIGIT *t1ds; int t1p;
 | |
|     size_t t2n; BDIGIT *t2ds; int t2p;
 | |
|     size_t t3n; BDIGIT *t3ds; int t3p;
 | |
|     size_t t4n; BDIGIT *t4ds; int t4p;
 | |
| 
 | |
|     size_t z0n; BDIGIT *z0ds;
 | |
|     size_t z1n; BDIGIT *z1ds; int z1p;
 | |
|     size_t z2n; BDIGIT *z2ds; int z2p;
 | |
|     size_t z3n; BDIGIT *z3ds; int z3p;
 | |
|     size_t z4n; BDIGIT *z4ds;
 | |
| 
 | |
|     size_t zzn; BDIGIT *zzds;
 | |
| 
 | |
|     int sq = xds == yds && xn == yn;
 | |
| 
 | |
|     assert(xn <= yn);  /* assume y >= x */
 | |
|     assert(xn + yn <= zn);
 | |
| 
 | |
|     n = (yn + 2) / 3;
 | |
|     assert(2*n < xn);
 | |
| 
 | |
|     wnc = 0;
 | |
| 
 | |
|     wnc += (u1n = n+1); /* BITSPERDIG*n+2 bits */
 | |
|     wnc += (u2n = n+1); /* BITSPERDIG*n+1 bits */
 | |
|     wnc += (u3n = n+1); /* BITSPERDIG*n+3 bits */
 | |
|     wnc += (v1n = n+1); /* BITSPERDIG*n+2 bits */
 | |
|     wnc += (v2n = n+1); /* BITSPERDIG*n+1 bits */
 | |
|     wnc += (v3n = n+1); /* BITSPERDIG*n+3 bits */
 | |
| 
 | |
|     wnc += (t0n = 2*n); /* BITSPERDIG*2*n bits */
 | |
|     wnc += (t1n = 2*n+2); /* BITSPERDIG*2*n+4 bits but bary_mul needs u1n+v1n */
 | |
|     wnc += (t2n = 2*n+2); /* BITSPERDIG*2*n+2 bits but bary_mul needs u2n+v2n */
 | |
|     wnc += (t3n = 2*n+2); /* BITSPERDIG*2*n+6 bits but bary_mul needs u3n+v3n */
 | |
|     wnc += (t4n = 2*n); /* BITSPERDIG*2*n bits */
 | |
| 
 | |
|     wnc += (z1n = 2*n+1); /* BITSPERDIG*2*n+5 bits */
 | |
|     wnc += (z2n = 2*n+1); /* BITSPERDIG*2*n+6 bits */
 | |
|     wnc += (z3n = 2*n+1); /* BITSPERDIG*2*n+8 bits */
 | |
| 
 | |
|     if (wn < wnc) {
 | |
|         wn = wnc * 3 / 2; /* Allocate working memory for whole recursion at once. */
 | |
|         wds = ALLOCV_N(BDIGIT, work, wn);
 | |
|     }
 | |
| 
 | |
|     u1ds = wds; wds += u1n;
 | |
|     u2ds = wds; wds += u2n;
 | |
|     u3ds = wds; wds += u3n;
 | |
| 
 | |
|     v1ds = wds; wds += v1n;
 | |
|     v2ds = wds; wds += v2n;
 | |
|     v3ds = wds; wds += v3n;
 | |
| 
 | |
|     t0ds = wds; wds += t0n;
 | |
|     t1ds = wds; wds += t1n;
 | |
|     t2ds = wds; wds += t2n;
 | |
|     t3ds = wds; wds += t3n;
 | |
|     t4ds = wds; wds += t4n;
 | |
| 
 | |
|     z1ds = wds; wds += z1n;
 | |
|     z2ds = wds; wds += z2n;
 | |
|     z3ds = wds; wds += z3n;
 | |
| 
 | |
|     wn -= wnc;
 | |
| 
 | |
|     zzds = u1ds;
 | |
|     zzn = 6*n+1;
 | |
| 
 | |
|     x0n = n;
 | |
|     x1n = n;
 | |
|     x2n = xn - 2*n;
 | |
|     x0ds = xds;
 | |
|     x1ds = xds + n;
 | |
|     x2ds = xds + 2*n;
 | |
| 
 | |
|     if (sq) {
 | |
|         y0n = x0n;
 | |
|         y1n = x1n;
 | |
|         y2n = x2n;
 | |
|         y0ds = x0ds;
 | |
|         y1ds = x1ds;
 | |
|         y2ds = x2ds;
 | |
|     }
 | |
|     else {
 | |
|         y0n = n;
 | |
|         y1n = n;
 | |
|         y2n = yn - 2*n;
 | |
|         y0ds = yds;
 | |
|         y1ds = yds + n;
 | |
|         y2ds = yds + 2*n;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * ref. http://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication
 | |
|      *
 | |
|      * x(b) = x0 * b^0 + x1 * b^1 + x2 * b^2
 | |
|      * y(b) = y0 * b^0 + y1 * b^1 + y2 * b^2
 | |
|      *
 | |
|      * z(b) = x(b) * y(b)
 | |
|      * z(b) = z0 * b^0 + z1 * b^1 + z2 * b^2 + z3 * b^3 + z4 * b^4
 | |
|      * where:
 | |
|      *   z0 = x0 * y0
 | |
|      *   z1 = x0 * y1 + x1 * y0
 | |
|      *   z2 = x0 * y2 + x1 * y1 + x2 * y0
 | |
|      *   z3 = x1 * y2 + x2 * y1
 | |
|      *   z4 = x2 * y2
 | |
|      *
 | |
|      * Toom3 method (a.k.a. Toom-Cook method):
 | |
|      * (Step1) calculating 5 points z(b0), z(b1), z(b2), z(b3), z(b4),
 | |
|      * where:
 | |
|      *   b0 = 0, b1 = 1, b2 = -1, b3 = -2, b4 = inf,
 | |
|      *   z(0)   = x(0)   * y(0)   = x0 * y0
 | |
|      *   z(1)   = x(1)   * y(1)   = (x0 + x1 + x2) * (y0 + y1 + y2)
 | |
|      *   z(-1)  = x(-1)  * y(-1)  = (x0 - x1 + x2) * (y0 - y1 + y2)
 | |
|      *   z(-2)  = x(-2)  * y(-2)  = (x0 - 2 * (x1 - 2 * x2)) * (y0 - 2 * (y1 - 2 * y2))
 | |
|      *   z(inf) = x(inf) * y(inf) = x2 * y2
 | |
|      *
 | |
|      * (Step2) interpolating z0, z1, z2, z3 and z4.
 | |
|      *
 | |
|      * (Step3) Substituting base value into b of the polynomial z(b),
 | |
|      */
 | |
| 
 | |
|     /*
 | |
|      * [Step1] calculating 5 points z(b0), z(b1), z(b2), z(b3), z(b4)
 | |
|      */
 | |
| 
 | |
|     /* u1 <- x0 + x2 */
 | |
|     bary_add(u1ds, u1n, x0ds, x0n, x2ds, x2n);
 | |
|     u1p = 1;
 | |
| 
 | |
|     /* x(-1) : u2 <- u1 - x1 = x0 - x1 + x2 */
 | |
|     if (bary_sub(u2ds, u2n, u1ds, u1n, x1ds, x1n)) {
 | |
|         bary_2comp(u2ds, u2n);
 | |
|         u2p = 0;
 | |
|     }
 | |
|     else {
 | |
|         u2p = 1;
 | |
|     }
 | |
| 
 | |
|     /* x(1) : u1 <- u1 + x1 = x0 + x1 + x2 */
 | |
|     bary_add(u1ds, u1n, u1ds, u1n, x1ds, x1n);
 | |
| 
 | |
|     /* x(-2) : u3 <- 2 * (u2 + x2) - x0 = x0 - 2 * (x1 - 2 * x2) */
 | |
|     u3p = 1;
 | |
|     if (u2p) {
 | |
|         bary_add(u3ds, u3n, u2ds, u2n, x2ds, x2n);
 | |
|     }
 | |
|     else if (bary_sub(u3ds, u3n, x2ds, x2n, u2ds, u2n)) {
 | |
|         bary_2comp(u3ds, u3n);
 | |
|         u3p = 0;
 | |
|     }
 | |
|     bary_small_lshift(u3ds, u3ds, u3n, 1);
 | |
|     if (!u3p) {
 | |
|         bary_add(u3ds, u3n, u3ds, u3n, x0ds, x0n);
 | |
|     }
 | |
|     else if (bary_sub(u3ds, u3n, u3ds, u3n, x0ds, x0n)) {
 | |
|         bary_2comp(u3ds, u3n);
 | |
|         u3p = 0;
 | |
|     }
 | |
| 
 | |
|     if (sq) {
 | |
|         v1n = u1n; v1ds = u1ds; v1p = u1p;
 | |
|         v2n = u2n; v2ds = u2ds; v2p = u2p;
 | |
|         v3n = u3n; v3ds = u3ds; v3p = u3p;
 | |
|     }
 | |
|     else {
 | |
| 	/* v1 <- y0 + y2 */
 | |
|         bary_add(v1ds, v1n, y0ds, y0n, y2ds, y2n);
 | |
|         v1p = 1;
 | |
| 
 | |
| 	/* y(-1) : v2 <- v1 - y1 = y0 - y1 + y2 */
 | |
|         v2p = 1;
 | |
|         if (bary_sub(v2ds, v2n, v1ds, v1n, y1ds, y1n)) {
 | |
|             bary_2comp(v2ds, v2n);
 | |
|             v2p = 0;
 | |
|         }
 | |
| 
 | |
| 	/* y(1) : v1 <- v1 + y1 = y0 + y1 + y2 */
 | |
|         bary_add(v1ds, v1n, v1ds, v1n, y1ds, y1n);
 | |
| 
 | |
| 	/* y(-2) : v3 <- 2 * (v2 + y2) - y0 = y0 - 2 * (y1 - 2 * y2) */
 | |
|         v3p = 1;
 | |
|         if (v2p) {
 | |
|             bary_add(v3ds, v3n, v2ds, v2n, y2ds, y2n);
 | |
|         }
 | |
|         else if (bary_sub(v3ds, v3n, y2ds, y2n, v2ds, v2n)) {
 | |
|             bary_2comp(v3ds, v3n);
 | |
|             v3p = 0;
 | |
|         }
 | |
|         bary_small_lshift(v3ds, v3ds, v3n, 1);
 | |
|         if (!v3p) {
 | |
|             bary_add(v3ds, v3n, v3ds, v3n, y0ds, y0n);
 | |
|         }
 | |
|         else if (bary_sub(v3ds, v3n, v3ds, v3n, y0ds, y0n)) {
 | |
|             bary_2comp(v3ds, v3n);
 | |
|             v3p = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* z(0) : t0 <- x0 * y0 */
 | |
|     bary_mul_toom3_start(t0ds, t0n, x0ds, x0n, y0ds, y0n, wds, wn);
 | |
|     t0p = 1;
 | |
| 
 | |
|     /* z(1) : t1 <- u1 * v1 */
 | |
|     bary_mul_toom3_start(t1ds, t1n, u1ds, u1n, v1ds, v1n, wds, wn);
 | |
|     t1p = u1p == v1p;
 | |
|     assert(t1ds[t1n-1] == 0);
 | |
|     t1n--;
 | |
| 
 | |
|     /* z(-1) : t2 <- u2 * v2 */
 | |
|     bary_mul_toom3_start(t2ds, t2n, u2ds, u2n, v2ds, v2n, wds, wn);
 | |
|     t2p = u2p == v2p;
 | |
|     assert(t2ds[t2n-1] == 0);
 | |
|     t2n--;
 | |
| 
 | |
|     /* z(-2) : t3 <- u3 * v3 */
 | |
|     bary_mul_toom3_start(t3ds, t3n, u3ds, u3n, v3ds, v3n, wds, wn);
 | |
|     t3p = u3p == v3p;
 | |
|     assert(t3ds[t3n-1] == 0);
 | |
|     t3n--;
 | |
| 
 | |
|     /* z(inf) : t4 <- x2 * y2 */
 | |
|     bary_mul_toom3_start(t4ds, t4n, x2ds, x2n, y2ds, y2n, wds, wn);
 | |
|     t4p = 1;
 | |
| 
 | |
|     /*
 | |
|      * [Step2] interpolating z0, z1, z2, z3 and z4.
 | |
|      */
 | |
| 
 | |
|     /* z0 <- z(0) == t0 */
 | |
|     z0n = t0n; z0ds = t0ds;
 | |
| 
 | |
|     /* z4 <- z(inf) == t4 */
 | |
|     z4n = t4n; z4ds = t4ds;
 | |
| 
 | |
|     /* z3 <- (z(-2) - z(1)) / 3 == (t3 - t1) / 3 */
 | |
|     if (t3p == t1p) {
 | |
|         z3p = t3p;
 | |
|         if (bary_sub(z3ds, z3n, t3ds, t3n, t1ds, t1n)) {
 | |
|             bary_2comp(z3ds, z3n);
 | |
|             z3p = !z3p;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         z3p = t3p;
 | |
|         bary_add(z3ds, z3n, t3ds, t3n, t1ds, t1n);
 | |
|     }
 | |
|     bigdivrem_single(z3ds, z3ds, z3n, 3);
 | |
| 
 | |
|     /* z1 <- (z(1) - z(-1)) / 2 == (t1 - t2) / 2 */
 | |
|     if (t1p == t2p) {
 | |
|         z1p = t1p;
 | |
|         if (bary_sub(z1ds, z1n, t1ds, t1n, t2ds, t2n)) {
 | |
|             bary_2comp(z1ds, z1n);
 | |
|             z1p = !z1p;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         z1p = t1p;
 | |
|         bary_add(z1ds, z1n, t1ds, t1n, t2ds, t2n);
 | |
|     }
 | |
|     bary_small_rshift(z1ds, z1ds, z1n, 1, 0);
 | |
| 
 | |
|     /* z2 <- z(-1) - z(0) == t2 - t0 */
 | |
|     if (t2p == t0p) {
 | |
|         z2p = t2p;
 | |
|         if (bary_sub(z2ds, z2n, t2ds, t2n, t0ds, t0n)) {
 | |
|             bary_2comp(z2ds, z2n);
 | |
|             z2p = !z2p;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         z2p = t2p;
 | |
|         bary_add(z2ds, z2n, t2ds, t2n, t0ds, t0n);
 | |
|     }
 | |
| 
 | |
|     /* z3 <- (z2 - z3) / 2 + 2 * z(inf) == (z2 - z3) / 2 + 2 * t4 */
 | |
|     if (z2p == z3p) {
 | |
|         z3p = z2p;
 | |
|         if (bary_sub(z3ds, z3n, z2ds, z2n, z3ds, z3n)) {
 | |
|             bary_2comp(z3ds, z3n);
 | |
|             z3p = !z3p;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         z3p = z2p;
 | |
|         bary_add(z3ds, z3n, z2ds, z2n, z3ds, z3n);
 | |
|     }
 | |
|     bary_small_rshift(z3ds, z3ds, z3n, 1, 0);
 | |
|     if (z3p == t4p) {
 | |
|         bary_muladd_1xN(z3ds, z3n, 2, t4ds, t4n);
 | |
|     }
 | |
|     else {
 | |
|         if (bary_mulsub_1xN(z3ds, z3n, 2, t4ds, t4n)) {
 | |
|             bary_2comp(z3ds, z3n);
 | |
|             z3p = !z3p;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* z2 <- z2 + z1 - z(inf) == z2 + z1 - t4 */
 | |
|     if (z2p == z1p) {
 | |
|         bary_add(z2ds, z2n, z2ds, z2n, z1ds, z1n);
 | |
|     }
 | |
|     else {
 | |
|         if (bary_sub(z2ds, z2n, z2ds, z2n, z1ds, z1n)) {
 | |
|             bary_2comp(z2ds, z2n);
 | |
|             z2p = !z2p;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (z2p == t4p) {
 | |
|         if (bary_sub(z2ds, z2n, z2ds, z2n, t4ds, t4n)) {
 | |
|             bary_2comp(z2ds, z2n);
 | |
|             z2p = !z2p;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         bary_add(z2ds, z2n, z2ds, z2n, t4ds, t4n);
 | |
|     }
 | |
| 
 | |
|     /* z1 <- z1 - z3 */
 | |
|     if (z1p == z3p) {
 | |
|         if (bary_sub(z1ds, z1n, z1ds, z1n, z3ds, z3n)) {
 | |
|             bary_2comp(z1ds, z1n);
 | |
|             z1p = !z1p;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         bary_add(z1ds, z1n, z1ds, z1n, z3ds, z3n);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * [Step3] Substituting base value into b of the polynomial z(b),
 | |
|      */
 | |
| 
 | |
|     MEMCPY(zzds, z0ds, BDIGIT, z0n);
 | |
|     BDIGITS_ZERO(zzds + z0n, 4*n - z0n);
 | |
|     MEMCPY(zzds + 4*n, z4ds, BDIGIT, z4n);
 | |
|     BDIGITS_ZERO(zzds + 4*n + z4n, zzn - (4*n + z4n));
 | |
|     if (z1p)
 | |
|         bary_add(zzds +   n, zzn -   n, zzds +   n, zzn -   n, z1ds, z1n);
 | |
|     else
 | |
|         bary_sub(zzds +   n, zzn -   n, zzds +   n, zzn -   n, z1ds, z1n);
 | |
|     if (z2p)
 | |
|         bary_add(zzds + 2*n, zzn - 2*n, zzds + 2*n, zzn - 2*n, z2ds, z2n);
 | |
|     else
 | |
|         bary_sub(zzds + 2*n, zzn - 2*n, zzds + 2*n, zzn - 2*n, z2ds, z2n);
 | |
|     if (z3p)
 | |
|         bary_add(zzds + 3*n, zzn - 3*n, zzds + 3*n, zzn - 3*n, z3ds, z3n);
 | |
|     else
 | |
|         bary_sub(zzds + 3*n, zzn - 3*n, zzds + 3*n, zzn - 3*n, z3ds, z3n);
 | |
| 
 | |
|     BARY_TRUNC(zzds, zzn);
 | |
|     MEMCPY(zds, zzds, BDIGIT, zzn);
 | |
|     BDIGITS_ZERO(zds + zzn, zn - zzn);
 | |
| 
 | |
|     if (work)
 | |
|         ALLOCV_END(work);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_mul_toom3(VALUE x, VALUE y)
 | |
| {
 | |
|     size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), zn = xn + yn;
 | |
|     VALUE z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
 | |
|     if (xn > yn || yn < 3 || !TOOM3_BALANCED(xn,yn))
 | |
|         rb_raise(rb_eArgError, "unexpected bignum length for toom3");
 | |
|     bary_mul_toom3(BDIGITS(z), zn, BDIGITS(x), xn, BDIGITS(y), yn, NULL, 0);
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| #ifdef USE_GMP
 | |
| static void
 | |
| bary_mul_gmp(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
 | |
|     mpz_t x, y, z;
 | |
|     size_t count;
 | |
| 
 | |
|     assert(xn + yn <= zn);
 | |
| 
 | |
|     mpz_init(x);
 | |
|     mpz_init(y);
 | |
|     mpz_init(z);
 | |
|     mpz_import(x, xn, -1, sizeof(BDIGIT), 0, nails, xds);
 | |
|     if (xds == yds && xn == yn) {
 | |
|         mpz_mul(z, x, x);
 | |
|     }
 | |
|     else {
 | |
|         mpz_import(y, yn, -1, sizeof(BDIGIT), 0, nails, yds);
 | |
|         mpz_mul(z, x, y);
 | |
|     }
 | |
|     mpz_export(zds, &count, -1, sizeof(BDIGIT), 0, nails, z);
 | |
|     BDIGITS_ZERO(zds+count, zn-count);
 | |
|     mpz_clear(x);
 | |
|     mpz_clear(y);
 | |
|     mpz_clear(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_mul_gmp(VALUE x, VALUE y)
 | |
| {
 | |
|     size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), zn = xn + yn;
 | |
|     VALUE z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
 | |
|     bary_mul_gmp(BDIGITS(z), zn, BDIGITS(x), xn, BDIGITS(y), yn);
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
|     return z;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| bary_short_mul(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     assert(xn + yn <= zn);
 | |
| 
 | |
|     if (xn == 1 && yn == 1) {
 | |
|         bary_mul_single(zds, zn, xds[0], yds[0]);
 | |
|     }
 | |
|     else {
 | |
|         bary_mul_normal(zds, zn, xds, xn, yds, yn);
 | |
|         rb_thread_check_ints();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* determine whether a bignum is sparse or not by random sampling */
 | |
| static inline int
 | |
| bary_sparse_p(const BDIGIT *ds, size_t n)
 | |
| {
 | |
|     long c = 0;
 | |
| 
 | |
|     if (          ds[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
 | |
|     if (c <= 1 && ds[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
 | |
|     if (c <= 1 && ds[rb_genrand_ulong_limited(n / 2) + n / 4]) c++;
 | |
| 
 | |
|     return (c <= 1) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bary_mul_precheck(BDIGIT **zdsp, size_t *znp, const BDIGIT **xdsp, size_t *xnp, const BDIGIT **ydsp, size_t *ynp)
 | |
| {
 | |
|     size_t nlsz; /* number of least significant zero BDIGITs */
 | |
| 
 | |
|     BDIGIT *zds = *zdsp;
 | |
|     size_t zn = *znp;
 | |
|     const BDIGIT *xds = *xdsp;
 | |
|     size_t xn = *xnp;
 | |
|     const BDIGIT *yds = *ydsp;
 | |
|     size_t yn = *ynp;
 | |
| 
 | |
|     assert(xn + yn <= zn);
 | |
| 
 | |
|     nlsz = 0;
 | |
| 
 | |
|     while (0 < xn) {
 | |
|         if (xds[xn-1] == 0) {
 | |
|             xn--;
 | |
|         }
 | |
|         else {
 | |
|             do {
 | |
|                 if (xds[0] != 0)
 | |
|                     break;
 | |
|                 xds++;
 | |
|                 xn--;
 | |
|                 nlsz++;
 | |
|             } while (0 < xn);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (0 < yn) {
 | |
|         if (yds[yn-1] == 0) {
 | |
|             yn--;
 | |
|         }
 | |
|         else {
 | |
|             do {
 | |
|                 if (yds[0] != 0)
 | |
|                     break;
 | |
|                 yds++;
 | |
|                 yn--;
 | |
|                 nlsz++;
 | |
|             } while (0 < yn);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (nlsz) {
 | |
|         BDIGITS_ZERO(zds, nlsz);
 | |
|         zds += nlsz;
 | |
|         zn -= nlsz;
 | |
|     }
 | |
| 
 | |
|     /* make sure that y is longer than x */
 | |
|     if (xn > yn) {
 | |
|         const BDIGIT *tds;
 | |
|         size_t tn;
 | |
| 	tds = xds; xds = yds; yds = tds;
 | |
| 	tn = xn; xn = yn; yn = tn;
 | |
|     }
 | |
|     assert(xn <= yn);
 | |
| 
 | |
|     if (xn <= 1) {
 | |
|         if (xn == 0) {
 | |
|             BDIGITS_ZERO(zds, zn);
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         if (xds[0] == 1) {
 | |
|             MEMCPY(zds, yds, BDIGIT, yn);
 | |
|             BDIGITS_ZERO(zds+yn, zn-yn);
 | |
|             return 1;
 | |
|         }
 | |
|         if (POW2_P(xds[0])) {
 | |
|             zds[yn] = bary_small_lshift(zds, yds, yn, bit_length(xds[0])-1);
 | |
|             BDIGITS_ZERO(zds+yn+1, zn-yn-1);
 | |
|             return 1;
 | |
|         }
 | |
|         if (yn == 1 && yds[0] == 1) {
 | |
|             zds[0] = xds[0];
 | |
|             BDIGITS_ZERO(zds+1, zn-1);
 | |
|             return 1;
 | |
|         }
 | |
|         bary_mul_normal(zds, zn, xds, xn, yds, yn);
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     *zdsp = zds;
 | |
|     *znp = zn;
 | |
|     *xdsp = xds;
 | |
|     *xnp = xn;
 | |
|     *ydsp = yds;
 | |
|     *ynp = yn;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_mul_karatsuba_branch(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
 | |
| {
 | |
|     /* normal multiplication when x is small */
 | |
|     if (xn < KARATSUBA_MUL_DIGITS) {
 | |
|       normal:
 | |
|         if (xds == yds && xn == yn)
 | |
|             bary_sq_fast(zds, zn, xds, xn);
 | |
|         else
 | |
|             bary_short_mul(zds, zn, xds, xn, yds, yn);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* normal multiplication when x or y is a sparse bignum */
 | |
|     if (bary_sparse_p(xds, xn)) goto normal;
 | |
|     if (bary_sparse_p(yds, yn)) {
 | |
|         bary_short_mul(zds, zn, yds, yn, xds, xn);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* balance multiplication by slicing y when x is much smaller than y */
 | |
|     if (!KARATSUBA_BALANCED(xn, yn)) {
 | |
|         bary_mul_balance_with_mulfunc(zds, zn, xds, xn, yds, yn, wds, wn, bary_mul_karatsuba_start);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* multiplication by karatsuba method */
 | |
|     bary_mul_karatsuba(zds, zn, xds, xn, yds, yn, wds, wn);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_mul_karatsuba_start(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
 | |
| {
 | |
|     if (bary_mul_precheck(&zds, &zn, &xds, &xn, &yds, &yn))
 | |
|         return;
 | |
| 
 | |
|     bary_mul_karatsuba_branch(zds, zn, xds, xn, yds, yn, wds, wn);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_mul_toom3_branch(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
 | |
| {
 | |
|     if (xn < TOOM3_MUL_DIGITS) {
 | |
|         bary_mul_karatsuba_branch(zds, zn, xds, xn, yds, yn, wds, wn);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!TOOM3_BALANCED(xn, yn)) {
 | |
|         bary_mul_balance_with_mulfunc(zds, zn, xds, xn, yds, yn, wds, wn, bary_mul_toom3_start);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bary_mul_toom3(zds, zn, xds, xn, yds, yn, wds, wn);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_mul_toom3_start(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, BDIGIT *wds, size_t wn)
 | |
| {
 | |
|     if (bary_mul_precheck(&zds, &zn, &xds, &xn, &yds, &yn))
 | |
|         return;
 | |
| 
 | |
|     bary_mul_toom3_branch(zds, zn, xds, xn, yds, yn, wds, wn);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_mul(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     if (xn <= yn) {
 | |
|         if (xn < NAIVE_MUL_DIGITS) {
 | |
|             if (xds == yds && xn == yn)
 | |
|                 bary_sq_fast(zds, zn, xds, xn);
 | |
|             else
 | |
|                 bary_short_mul(zds, zn, xds, xn, yds, yn);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if (yn < NAIVE_MUL_DIGITS) {
 | |
|             bary_short_mul(zds, zn, yds, yn, xds, xn);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #ifdef USE_GMP
 | |
|     bary_mul_gmp(zds, zn, xds, xn, yds, yn);
 | |
| #else
 | |
|     bary_mul_toom3_start(zds, zn, xds, xn, yds, yn, NULL, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| struct big_div_struct {
 | |
|     size_t yn, zn;
 | |
|     BDIGIT *yds, *zds;
 | |
|     volatile VALUE stop;
 | |
| };
 | |
| 
 | |
| static void *
 | |
| bigdivrem1(void *ptr)
 | |
| {
 | |
|     struct big_div_struct *bds = (struct big_div_struct*)ptr;
 | |
|     size_t yn = bds->yn;
 | |
|     size_t zn = bds->zn;
 | |
|     BDIGIT *yds = bds->yds, *zds = bds->zds;
 | |
|     BDIGIT_DBL_SIGNED num;
 | |
|     BDIGIT q;
 | |
| 
 | |
|     do {
 | |
| 	if (bds->stop) {
 | |
| 	    bds->zn = zn;
 | |
| 	    return 0;
 | |
|         }
 | |
| 	if (zds[zn-1] == yds[yn-1]) q = BDIGMAX;
 | |
| 	else q = (BDIGIT)((BIGUP(zds[zn-1]) + zds[zn-2])/yds[yn-1]);
 | |
| 	if (q) {
 | |
|             num = bigdivrem_mulsub(zds+zn-(yn+1), yn+1,
 | |
|                                    q,
 | |
|                                    yds, yn);
 | |
| 	    while (num) { /* "add back" required */
 | |
| 		q--;
 | |
|                 num = bary_add(zds+zn-(yn+1), yn,
 | |
|                                zds+zn-(yn+1), yn,
 | |
|                                yds, yn);
 | |
|                 num--;
 | |
| 	    }
 | |
| 	}
 | |
|         zn--;
 | |
| 	zds[zn] = q;
 | |
|     } while (zn > yn);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_big_stop(void *ptr)
 | |
| {
 | |
|     struct big_div_struct *bds = ptr;
 | |
|     bds->stop = Qtrue;
 | |
| }
 | |
| 
 | |
| static BDIGIT
 | |
| bigdivrem_single1(BDIGIT *qds, const BDIGIT *xds, size_t xn, BDIGIT x_higher_bdigit, BDIGIT y)
 | |
| {
 | |
|     assert(0 < xn);
 | |
|     assert(x_higher_bdigit < y);
 | |
|     if (POW2_P(y)) {
 | |
|         BDIGIT r;
 | |
|         r = xds[0] & (y-1);
 | |
|         bary_small_rshift(qds, xds, xn, bit_length(y)-1, x_higher_bdigit);
 | |
|         return r;
 | |
|     }
 | |
|     else {
 | |
|         size_t i;
 | |
|         BDIGIT_DBL t2;
 | |
|         t2 = x_higher_bdigit;
 | |
|         for (i = 0; i < xn; i++) {
 | |
|             t2 = BIGUP(t2) + xds[xn - i - 1];
 | |
|             qds[xn - i - 1] = (BDIGIT)(t2 / y);
 | |
|             t2 %= y;
 | |
|         }
 | |
|         return (BDIGIT)t2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static BDIGIT
 | |
| bigdivrem_single(BDIGIT *qds, const BDIGIT *xds, size_t xn, BDIGIT y)
 | |
| {
 | |
|     return bigdivrem_single1(qds, xds, xn, 0, y);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bigdivrem_restoring(BDIGIT *zds, size_t zn, BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     struct big_div_struct bds;
 | |
|     size_t ynzero;
 | |
| 
 | |
|     assert(yn < zn);
 | |
|     assert(BDIGIT_MSB(yds[yn-1]));
 | |
|     assert(zds[zn-1] < yds[yn-1]);
 | |
| 
 | |
|     for (ynzero = 0; !yds[ynzero]; ynzero++);
 | |
| 
 | |
|     if (ynzero+1 == yn) {
 | |
|         BDIGIT r;
 | |
|         r = bigdivrem_single1(zds+yn, zds+ynzero, zn-yn, zds[zn-1], yds[ynzero]);
 | |
|         zds[ynzero] = r;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bds.yn = yn - ynzero;
 | |
|     bds.zds = zds + ynzero;
 | |
|     bds.yds = yds + ynzero;
 | |
|     bds.stop = Qfalse;
 | |
|     bds.zn = zn - ynzero;
 | |
|     if (bds.zn > 10000 || bds.yn > 10000) {
 | |
|       retry:
 | |
| 	bds.stop = Qfalse;
 | |
| 	rb_thread_call_without_gvl(bigdivrem1, &bds, rb_big_stop, &bds);
 | |
| 
 | |
| 	if (bds.stop == Qtrue) {
 | |
| 	    /* execute trap handler, but exception was not raised. */
 | |
| 	    goto retry;
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	bigdivrem1(&bds);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_divmod_normal(BDIGIT *qds, size_t qn, BDIGIT *rds, size_t rn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     int shift;
 | |
|     BDIGIT *zds, *yyds;
 | |
|     size_t zn;
 | |
|     VALUE tmpyz = 0;
 | |
| 
 | |
|     assert(yn < xn || (xn == yn && yds[yn - 1] <= xds[xn - 1]));
 | |
|     assert(qds ? (xn - yn + 1) <= qn : 1);
 | |
|     assert(rds ? yn <= rn : 1);
 | |
| 
 | |
|     zn = xn + BIGDIVREM_EXTRA_WORDS;
 | |
| 
 | |
|     shift = nlz(yds[yn-1]);
 | |
|     if (shift) {
 | |
|         int alloc_y = !rds;
 | |
|         int alloc_z = !qds || qn < zn;
 | |
|         if (alloc_y && alloc_z) {
 | |
|             yyds = ALLOCV_N(BDIGIT, tmpyz, yn+zn);
 | |
|             zds = yyds + yn;
 | |
|         }
 | |
|         else {
 | |
|             yyds = alloc_y ? ALLOCV_N(BDIGIT, tmpyz, yn) : rds;
 | |
|             zds = alloc_z ? ALLOCV_N(BDIGIT, tmpyz, zn) : qds;
 | |
|         }
 | |
|         zds[xn] = bary_small_lshift(zds, xds, xn, shift);
 | |
|         bary_small_lshift(yyds, yds, yn, shift);
 | |
|     }
 | |
|     else {
 | |
|         if (qds && zn <= qn)
 | |
|             zds = qds;
 | |
|         else
 | |
|             zds = ALLOCV_N(BDIGIT, tmpyz, zn);
 | |
|         MEMCPY(zds, xds, BDIGIT, xn);
 | |
|         zds[xn] = 0;
 | |
|         /* bigdivrem_restoring will not modify y.
 | |
|          * So use yds directly.  */
 | |
|         yyds = (BDIGIT *)yds;
 | |
|     }
 | |
| 
 | |
|     bigdivrem_restoring(zds, zn, yyds, yn);
 | |
| 
 | |
|     if (rds) {
 | |
|         if (shift)
 | |
|             bary_small_rshift(rds, zds, yn, shift, 0);
 | |
|         else
 | |
|             MEMCPY(rds, zds, BDIGIT, yn);
 | |
|         BDIGITS_ZERO(rds+yn, rn-yn);
 | |
|     }
 | |
| 
 | |
|     if (qds) {
 | |
|         size_t j = zn - yn;
 | |
|         MEMMOVE(qds, zds+yn, BDIGIT, j);
 | |
|         BDIGITS_ZERO(qds+j, qn-j);
 | |
|     }
 | |
| 
 | |
|     if (tmpyz)
 | |
|         ALLOCV_END(tmpyz);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_divrem_normal(VALUE x, VALUE y)
 | |
| {
 | |
|     size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), qn, rn;
 | |
|     BDIGIT *xds = BDIGITS(x), *yds = BDIGITS(y), *qds, *rds;
 | |
|     VALUE q, r;
 | |
| 
 | |
|     BARY_TRUNC(yds, yn);
 | |
|     if (yn == 0)
 | |
|         rb_num_zerodiv();
 | |
|     BARY_TRUNC(xds, xn);
 | |
| 
 | |
|     if (xn < yn || (xn == yn && xds[xn - 1] < yds[yn - 1]))
 | |
|         return rb_assoc_new(LONG2FIX(0), x);
 | |
| 
 | |
|     qn = xn + BIGDIVREM_EXTRA_WORDS;
 | |
|     q = bignew(qn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
 | |
|     qds = BDIGITS(q);
 | |
| 
 | |
|     rn = yn;
 | |
|     r = bignew(rn, BIGNUM_SIGN(x));
 | |
|     rds = BDIGITS(r);
 | |
| 
 | |
|     bary_divmod_normal(qds, qn, rds, rn, xds, xn, yds, yn);
 | |
| 
 | |
|     bigtrunc(q);
 | |
|     bigtrunc(r);
 | |
| 
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
| 
 | |
|     return rb_assoc_new(q, r);
 | |
| }
 | |
| 
 | |
| #ifdef USE_GMP
 | |
| static void
 | |
| bary_divmod_gmp(BDIGIT *qds, size_t qn, BDIGIT *rds, size_t rn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
 | |
|     mpz_t x, y, q, r;
 | |
|     size_t count;
 | |
| 
 | |
|     assert(yn < xn || (xn == yn && yds[yn - 1] <= xds[xn - 1]));
 | |
|     assert(qds ? (xn - yn + 1) <= qn : 1);
 | |
|     assert(rds ? yn <= rn : 1);
 | |
|     assert(qds || rds);
 | |
| 
 | |
|     mpz_init(x);
 | |
|     mpz_init(y);
 | |
|     if (qds) mpz_init(q);
 | |
|     if (rds) mpz_init(r);
 | |
| 
 | |
|     mpz_import(x, xn, -1, sizeof(BDIGIT), 0, nails, xds);
 | |
|     mpz_import(y, yn, -1, sizeof(BDIGIT), 0, nails, yds);
 | |
| 
 | |
|     if (!rds) {
 | |
|         mpz_fdiv_q(q, x, y);
 | |
|     }
 | |
|     else if (!qds) {
 | |
|         mpz_fdiv_r(r, x, y);
 | |
|     }
 | |
|     else {
 | |
|         mpz_fdiv_qr(q, r, x, y);
 | |
|     }
 | |
| 
 | |
|     mpz_clear(x);
 | |
|     mpz_clear(y);
 | |
| 
 | |
|     if (qds) {
 | |
|         mpz_export(qds, &count, -1, sizeof(BDIGIT), 0, nails, q);
 | |
|         BDIGITS_ZERO(qds+count, qn-count);
 | |
|         mpz_clear(q);
 | |
|     }
 | |
| 
 | |
|     if (rds) {
 | |
|         mpz_export(rds, &count, -1, sizeof(BDIGIT), 0, nails, r);
 | |
|         BDIGITS_ZERO(rds+count, rn-count);
 | |
|         mpz_clear(r);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_divrem_gmp(VALUE x, VALUE y)
 | |
| {
 | |
|     size_t xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y), qn, rn;
 | |
|     BDIGIT *xds = BDIGITS(x), *yds = BDIGITS(y), *qds, *rds;
 | |
|     VALUE q, r;
 | |
| 
 | |
|     BARY_TRUNC(yds, yn);
 | |
|     if (yn == 0)
 | |
|         rb_num_zerodiv();
 | |
|     BARY_TRUNC(xds, xn);
 | |
| 
 | |
|     if (xn < yn || (xn == yn && xds[xn - 1] < yds[yn - 1]))
 | |
|         return rb_assoc_new(LONG2FIX(0), x);
 | |
| 
 | |
|     qn = xn - yn + 1;
 | |
|     q = bignew(qn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
 | |
|     qds = BDIGITS(q);
 | |
| 
 | |
|     rn = yn;
 | |
|     r = bignew(rn, BIGNUM_SIGN(x));
 | |
|     rds = BDIGITS(r);
 | |
| 
 | |
|     bary_divmod_gmp(qds, qn, rds, rn, xds, xn, yds, yn);
 | |
| 
 | |
|     bigtrunc(q);
 | |
|     bigtrunc(r);
 | |
| 
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
| 
 | |
|     return rb_assoc_new(q, r);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| bary_divmod_branch(BDIGIT *qds, size_t qn, BDIGIT *rds, size_t rn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
| #ifdef USE_GMP
 | |
|     if (GMP_DIV_DIGITS < xn) {
 | |
|         bary_divmod_gmp(qds, qn, rds, rn, xds, xn, yds, yn);
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
|     bary_divmod_normal(qds, qn, rds, rn, xds, xn, yds, yn);
 | |
| }
 | |
| 
 | |
| static void
 | |
| bary_divmod(BDIGIT *qds, size_t qn, BDIGIT *rds, size_t rn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn)
 | |
| {
 | |
|     assert(xn <= qn);
 | |
|     assert(yn <= rn);
 | |
| 
 | |
|     BARY_TRUNC(yds, yn);
 | |
|     if (yn == 0)
 | |
|         rb_num_zerodiv();
 | |
| 
 | |
|     BARY_TRUNC(xds, xn);
 | |
|     if (xn == 0) {
 | |
|         BDIGITS_ZERO(qds, qn);
 | |
|         BDIGITS_ZERO(rds, rn);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (xn < yn || (xn == yn && xds[xn - 1] < yds[yn - 1])) {
 | |
|         MEMCPY(rds, xds, BDIGIT, xn);
 | |
|         BDIGITS_ZERO(rds+xn, rn-xn);
 | |
|         BDIGITS_ZERO(qds, qn);
 | |
|     }
 | |
|     else if (yn == 1) {
 | |
|         MEMCPY(qds, xds, BDIGIT, xn);
 | |
|         BDIGITS_ZERO(qds+xn, qn-xn);
 | |
|         rds[0] = bigdivrem_single(qds, xds, xn, yds[0]);
 | |
|         BDIGITS_ZERO(rds+1, rn-1);
 | |
|     }
 | |
|     else if (xn == 2 && yn == 2) {
 | |
|         BDIGIT_DBL x = bary2bdigitdbl(xds, 2);
 | |
|         BDIGIT_DBL y = bary2bdigitdbl(yds, 2);
 | |
|         BDIGIT_DBL q = x / y;
 | |
|         BDIGIT_DBL r = x % y;
 | |
|         qds[0] = BIGLO(q);
 | |
|         qds[1] = BIGLO(BIGDN(q));
 | |
|         BDIGITS_ZERO(qds+2, qn-2);
 | |
|         rds[0] = BIGLO(r);
 | |
|         rds[1] = BIGLO(BIGDN(r));
 | |
|         BDIGITS_ZERO(rds+2, rn-2);
 | |
|     }
 | |
|     else {
 | |
|         bary_divmod_branch(qds, qn, rds, rn, xds, xn, yds, yn);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| #define BIGNUM_DEBUG 0
 | |
| #if BIGNUM_DEBUG
 | |
| #define ON_DEBUG(x) do { x; } while (0)
 | |
| static void
 | |
| dump_bignum(VALUE x)
 | |
| {
 | |
|     long i;
 | |
|     printf("%c0x0", BIGNUM_SIGN(x) ? '+' : '-');
 | |
|     for (i = BIGNUM_LEN(x); i--; ) {
 | |
|         printf("_%0*"PRIxBDIGIT, SIZEOF_BDIGIT*2, BDIGITS(x)[i]);
 | |
|     }
 | |
|     printf(", len=%"PRIuSIZE, BIGNUM_LEN(x));
 | |
|     puts("");
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_big_dump(VALUE x)
 | |
| {
 | |
|     dump_bignum(x);
 | |
|     return x;
 | |
| }
 | |
| #else
 | |
| #define ON_DEBUG(x)
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| bigzero_p(VALUE x)
 | |
| {
 | |
|     return bary_zero_p(BDIGITS(x), BIGNUM_LEN(x));
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_bigzero_p(VALUE x)
 | |
| {
 | |
|     return BIGZEROP(x);
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_cmpint(VALUE val, VALUE a, VALUE b)
 | |
| {
 | |
|     if (NIL_P(val)) {
 | |
| 	rb_cmperr(a, b);
 | |
|     }
 | |
|     if (FIXNUM_P(val)) {
 | |
|         long l = FIX2LONG(val);
 | |
|         if (l > 0) return 1;
 | |
|         if (l < 0) return -1;
 | |
|         return 0;
 | |
|     }
 | |
|     if (RB_BIGNUM_TYPE_P(val)) {
 | |
| 	if (BIGZEROP(val)) return 0;
 | |
| 	if (BIGNUM_SIGN(val)) return 1;
 | |
| 	return -1;
 | |
|     }
 | |
|     if (RTEST(rb_funcall(val, '>', 1, INT2FIX(0)))) return 1;
 | |
|     if (RTEST(rb_funcall(val, '<', 1, INT2FIX(0)))) return -1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define BIGNUM_SET_LEN(b,l) \
 | |
|     ((RBASIC(b)->flags & BIGNUM_EMBED_FLAG) ? \
 | |
|      (void)(RBASIC(b)->flags = \
 | |
| 	    (RBASIC(b)->flags & ~BIGNUM_EMBED_LEN_MASK) | \
 | |
| 	    ((l) << BIGNUM_EMBED_LEN_SHIFT)) : \
 | |
|      (void)(RBIGNUM(b)->as.heap.len = (l)))
 | |
| 
 | |
| static void
 | |
| rb_big_realloc(VALUE big, size_t len)
 | |
| {
 | |
|     BDIGIT *ds;
 | |
|     if (RBASIC(big)->flags & BIGNUM_EMBED_FLAG) {
 | |
| 	if (BIGNUM_EMBED_LEN_MAX < len) {
 | |
| 	    ds = ALLOC_N(BDIGIT, len);
 | |
| 	    MEMCPY(ds, RBIGNUM(big)->as.ary, BDIGIT, BIGNUM_EMBED_LEN_MAX);
 | |
| 	    RBIGNUM(big)->as.heap.len = BIGNUM_LEN(big);
 | |
| 	    RBIGNUM(big)->as.heap.digits = ds;
 | |
| 	    RBASIC(big)->flags &= ~BIGNUM_EMBED_FLAG;
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	if (len <= BIGNUM_EMBED_LEN_MAX) {
 | |
| 	    ds = RBIGNUM(big)->as.heap.digits;
 | |
| 	    RBASIC(big)->flags |= BIGNUM_EMBED_FLAG;
 | |
| 	    BIGNUM_SET_LEN(big, len);
 | |
|             (void)VALGRIND_MAKE_MEM_UNDEFINED((void*)RBIGNUM(big)->as.ary, sizeof(RBIGNUM(big)->as.ary));
 | |
| 	    if (ds) {
 | |
| 		MEMCPY(RBIGNUM(big)->as.ary, ds, BDIGIT, len);
 | |
| 		xfree(ds);
 | |
| 	    }
 | |
| 	}
 | |
| 	else {
 | |
| 	    if (BIGNUM_LEN(big) == 0) {
 | |
| 		RBIGNUM(big)->as.heap.digits = ALLOC_N(BDIGIT, len);
 | |
| 	    }
 | |
| 	    else {
 | |
| 		REALLOC_N(RBIGNUM(big)->as.heap.digits, BDIGIT, len);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_big_resize(VALUE big, size_t len)
 | |
| {
 | |
|     rb_big_realloc(big, len);
 | |
|     BIGNUM_SET_LEN(big, len);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bignew_1(VALUE klass, size_t len, int sign)
 | |
| {
 | |
|     NEWOBJ_OF(big, struct RBignum, klass, T_BIGNUM | (RGENGC_WB_PROTECTED_BIGNUM ? FL_WB_PROTECTED : 0));
 | |
|     BIGNUM_SET_SIGN(big, sign);
 | |
|     if (len <= BIGNUM_EMBED_LEN_MAX) {
 | |
| 	RBASIC(big)->flags |= BIGNUM_EMBED_FLAG;
 | |
| 	BIGNUM_SET_LEN(big, len);
 | |
|         (void)VALGRIND_MAKE_MEM_UNDEFINED((void*)RBIGNUM(big)->as.ary, sizeof(RBIGNUM(big)->as.ary));
 | |
|     }
 | |
|     else {
 | |
| 	RBIGNUM(big)->as.heap.digits = ALLOC_N(BDIGIT, len);
 | |
| 	RBIGNUM(big)->as.heap.len = len;
 | |
|     }
 | |
|     OBJ_FREEZE(big);
 | |
|     return (VALUE)big;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_new(size_t len, int sign)
 | |
| {
 | |
|     return bignew(len, sign != 0);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_clone(VALUE x)
 | |
| {
 | |
|     size_t len = BIGNUM_LEN(x);
 | |
|     VALUE z = bignew_1(CLASS_OF(x), len, BIGNUM_SIGN(x));
 | |
| 
 | |
|     MEMCPY(BDIGITS(z), BDIGITS(x), BDIGIT, len);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| static void
 | |
| big_extend_carry(VALUE x)
 | |
| {
 | |
|     rb_big_resize(x, BIGNUM_LEN(x)+1);
 | |
|     BDIGITS(x)[BIGNUM_LEN(x)-1] = 1;
 | |
| }
 | |
| 
 | |
| /* modify a bignum by 2's complement */
 | |
| static void
 | |
| get2comp(VALUE x)
 | |
| {
 | |
|     long i = BIGNUM_LEN(x);
 | |
|     BDIGIT *ds = BDIGITS(x);
 | |
| 
 | |
|     if (bary_2comp(ds, i)) {
 | |
|         big_extend_carry(x);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_big_2comp(VALUE x)			/* get 2's complement */
 | |
| {
 | |
|     get2comp(x);
 | |
| }
 | |
| 
 | |
| static BDIGIT
 | |
| abs2twocomp(VALUE *xp, long *n_ret)
 | |
| {
 | |
|     VALUE x = *xp;
 | |
|     long n = BIGNUM_LEN(x);
 | |
|     BDIGIT *ds = BDIGITS(x);
 | |
|     BDIGIT hibits = 0;
 | |
| 
 | |
|     BARY_TRUNC(ds, n);
 | |
| 
 | |
|     if (n != 0 && BIGNUM_NEGATIVE_P(x)) {
 | |
|         VALUE z = bignew_1(CLASS_OF(x), n, 0);
 | |
|         MEMCPY(BDIGITS(z), ds, BDIGIT, n);
 | |
|         bary_2comp(BDIGITS(z), n);
 | |
|         hibits = BDIGMAX;
 | |
| 	*xp = z;
 | |
|     }
 | |
|     *n_ret = n;
 | |
|     return hibits;
 | |
| }
 | |
| 
 | |
| static void
 | |
| twocomp2abs_bang(VALUE x, int hibits)
 | |
| {
 | |
|     BIGNUM_SET_SIGN(x, !hibits);
 | |
|     if (hibits) {
 | |
|         get2comp(x);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| bigtrunc(VALUE x)
 | |
| {
 | |
|     size_t len = BIGNUM_LEN(x);
 | |
|     BDIGIT *ds = BDIGITS(x);
 | |
| 
 | |
|     if (len == 0) return x;
 | |
|     while (--len && !ds[len]);
 | |
|     if (BIGNUM_LEN(x) > len+1) {
 | |
| 	rb_big_resize(x, len+1);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| bigfixize(VALUE x)
 | |
| {
 | |
|     size_t n = BIGNUM_LEN(x);
 | |
|     BDIGIT *ds = BDIGITS(x);
 | |
| #if SIZEOF_BDIGIT < SIZEOF_LONG
 | |
|     unsigned long u;
 | |
| #else
 | |
|     BDIGIT u;
 | |
| #endif
 | |
| 
 | |
|     BARY_TRUNC(ds, n);
 | |
| 
 | |
|     if (n == 0) return INT2FIX(0);
 | |
| 
 | |
| #if SIZEOF_BDIGIT < SIZEOF_LONG
 | |
|     if (sizeof(long)/SIZEOF_BDIGIT < n)
 | |
|         goto return_big;
 | |
|     else {
 | |
|         int i = (int)n;
 | |
|         u = 0;
 | |
|         while (i--) {
 | |
|             u = (unsigned long)(BIGUP(u) + ds[i]);
 | |
|         }
 | |
|     }
 | |
| #else /* SIZEOF_BDIGIT >= SIZEOF_LONG */
 | |
|     if (1 < n)
 | |
|         goto return_big;
 | |
|     else
 | |
|         u = ds[0];
 | |
| #endif
 | |
| 
 | |
|     if (BIGNUM_POSITIVE_P(x)) {
 | |
|         if (POSFIXABLE(u)) return LONG2FIX((long)u);
 | |
|     }
 | |
|     else {
 | |
|         if (u <= -FIXNUM_MIN) return LONG2FIX(-(long)u);
 | |
|     }
 | |
| 
 | |
|   return_big:
 | |
|     rb_big_resize(x, n);
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bignorm(VALUE x)
 | |
| {
 | |
|     if (RB_BIGNUM_TYPE_P(x)) {
 | |
| 	x = bigfixize(x);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_norm(VALUE x)
 | |
| {
 | |
|     return bignorm(x);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_uint2big(uintptr_t n)
 | |
| {
 | |
|     long i;
 | |
|     VALUE big = bignew(bdigit_roomof(SIZEOF_VALUE), 1);
 | |
|     BDIGIT *digits = BDIGITS(big);
 | |
| 
 | |
| #if SIZEOF_BDIGIT >= SIZEOF_VALUE
 | |
|     digits[0] = n;
 | |
| #else
 | |
|     for (i = 0; i < bdigit_roomof(SIZEOF_VALUE); i++) {
 | |
| 	digits[i] = BIGLO(n);
 | |
| 	n = BIGDN(n);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     i = bdigit_roomof(SIZEOF_VALUE);
 | |
|     while (--i && !digits[i]) ;
 | |
|     BIGNUM_SET_LEN(big, i+1);
 | |
|     return big;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int2big(intptr_t n)
 | |
| {
 | |
|     long neg = 0;
 | |
|     VALUE u;
 | |
|     VALUE big;
 | |
| 
 | |
|     if (n < 0) {
 | |
|         u = 1 + (VALUE)(-(n + 1)); /* u = -n avoiding overflow */
 | |
| 	neg = 1;
 | |
|     }
 | |
|     else {
 | |
|         u = n;
 | |
|     }
 | |
|     big = rb_uint2big(u);
 | |
|     if (neg) {
 | |
| 	BIGNUM_SET_NEGATIVE_SIGN(big);
 | |
|     }
 | |
|     return big;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_uint2inum(uintptr_t n)
 | |
| {
 | |
|     if (POSFIXABLE(n)) return LONG2FIX(n);
 | |
|     return rb_uint2big(n);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_int2inum(intptr_t n)
 | |
| {
 | |
|     if (FIXABLE(n)) return LONG2FIX(n);
 | |
|     return rb_int2big(n);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_big_pack(VALUE val, unsigned long *buf, long num_longs)
 | |
| {
 | |
|     rb_integer_pack(val, buf, num_longs, sizeof(long), 0,
 | |
|             INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER|
 | |
|             INTEGER_PACK_2COMP);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_unpack(unsigned long *buf, long num_longs)
 | |
| {
 | |
|     return rb_integer_unpack(buf, num_longs, sizeof(long), 0,
 | |
|             INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER|
 | |
|             INTEGER_PACK_2COMP);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the number of bytes to be required to represent
 | |
|  * the absolute value of the integer given as _val_.
 | |
|  *
 | |
|  * [val] an integer.
 | |
|  * [nlz_bits_ret] number of leading zero bits in the most significant byte is returned if not NULL.
 | |
|  *
 | |
|  * This function returns ((val_numbits * CHAR_BIT + CHAR_BIT - 1) / CHAR_BIT)
 | |
|  * where val_numbits is the number of bits of abs(val).
 | |
|  * This function should not overflow.
 | |
|  *
 | |
|  * If nlz_bits_ret is not NULL,
 | |
|  * (return_value * CHAR_BIT - val_numbits) is stored in *nlz_bits_ret.
 | |
|  * In this case, 0 <= *nlz_bits_ret < CHAR_BIT.
 | |
|  *
 | |
|  */
 | |
| size_t
 | |
| rb_absint_size(VALUE val, int *nlz_bits_ret)
 | |
| {
 | |
|     BDIGIT *dp;
 | |
|     BDIGIT *de;
 | |
|     BDIGIT fixbuf[bdigit_roomof(sizeof(long))];
 | |
| 
 | |
|     int num_leading_zeros;
 | |
| 
 | |
|     val = rb_to_int(val);
 | |
| 
 | |
|     if (FIXNUM_P(val)) {
 | |
|         long v = FIX2LONG(val);
 | |
|         if (v < 0) {
 | |
|             v = -v;
 | |
|         }
 | |
| #if SIZEOF_BDIGIT >= SIZEOF_LONG
 | |
|         fixbuf[0] = v;
 | |
| #else
 | |
|         {
 | |
|             int i;
 | |
|             for (i = 0; i < numberof(fixbuf); i++) {
 | |
|                 fixbuf[i] = BIGLO(v);
 | |
|                 v = BIGDN(v);
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         dp = fixbuf;
 | |
|         de = fixbuf + numberof(fixbuf);
 | |
|     }
 | |
|     else {
 | |
|         dp = BDIGITS(val);
 | |
|         de = dp + BIGNUM_LEN(val);
 | |
|     }
 | |
|     while (dp < de && de[-1] == 0)
 | |
|         de--;
 | |
|     if (dp == de) {
 | |
|         if (nlz_bits_ret)
 | |
|             *nlz_bits_ret = 0;
 | |
|         return 0;
 | |
|     }
 | |
|     num_leading_zeros = nlz(de[-1]);
 | |
|     if (nlz_bits_ret)
 | |
|         *nlz_bits_ret = num_leading_zeros % CHAR_BIT;
 | |
|     return (de - dp) * SIZEOF_BDIGIT - num_leading_zeros / CHAR_BIT;
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| absint_numwords_small(size_t numbytes, int nlz_bits_in_msbyte, size_t word_numbits, size_t *nlz_bits_ret)
 | |
| {
 | |
|     size_t val_numbits = numbytes * CHAR_BIT - nlz_bits_in_msbyte;
 | |
|     size_t div = val_numbits / word_numbits;
 | |
|     size_t mod = val_numbits % word_numbits;
 | |
|     size_t numwords;
 | |
|     size_t nlz_bits;
 | |
|     numwords = mod == 0 ? div : div + 1;
 | |
|     nlz_bits = mod == 0 ? 0 : word_numbits - mod;
 | |
|     *nlz_bits_ret = nlz_bits;
 | |
|     return numwords;
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| absint_numwords_generic(size_t numbytes, int nlz_bits_in_msbyte, size_t word_numbits, size_t *nlz_bits_ret)
 | |
| {
 | |
|     static const BDIGIT char_bit[1] = { CHAR_BIT };
 | |
|     BDIGIT numbytes_bary[bdigit_roomof(sizeof(numbytes))];
 | |
|     BDIGIT val_numbits_bary[bdigit_roomof(sizeof(numbytes) + 1)];
 | |
|     BDIGIT nlz_bits_in_msbyte_bary[1];
 | |
|     BDIGIT word_numbits_bary[bdigit_roomof(sizeof(word_numbits))];
 | |
|     BDIGIT div_bary[numberof(val_numbits_bary) + BIGDIVREM_EXTRA_WORDS];
 | |
|     BDIGIT mod_bary[numberof(word_numbits_bary)];
 | |
|     BDIGIT one[1] = { 1 };
 | |
|     size_t nlz_bits;
 | |
|     size_t mod;
 | |
|     int sign;
 | |
|     size_t numwords;
 | |
| 
 | |
|     nlz_bits_in_msbyte_bary[0] = nlz_bits_in_msbyte;
 | |
| 
 | |
|     /*
 | |
|      * val_numbits = numbytes * CHAR_BIT - nlz_bits_in_msbyte
 | |
|      * div, mod = val_numbits.divmod(word_numbits)
 | |
|      * numwords = mod == 0 ? div : div + 1
 | |
|      * nlz_bits = mod == 0 ? 0 : word_numbits - mod
 | |
|      */
 | |
| 
 | |
|     bary_unpack(BARY_ARGS(numbytes_bary), &numbytes, 1, sizeof(numbytes), 0,
 | |
|         INTEGER_PACK_NATIVE_BYTE_ORDER);
 | |
|     BARY_SHORT_MUL(val_numbits_bary, numbytes_bary, char_bit);
 | |
|     if (nlz_bits_in_msbyte)
 | |
|         BARY_SUB(val_numbits_bary, val_numbits_bary, nlz_bits_in_msbyte_bary);
 | |
|     bary_unpack(BARY_ARGS(word_numbits_bary), &word_numbits, 1, sizeof(word_numbits), 0,
 | |
|         INTEGER_PACK_NATIVE_BYTE_ORDER);
 | |
|     BARY_DIVMOD(div_bary, mod_bary, val_numbits_bary, word_numbits_bary);
 | |
|     if (BARY_ZERO_P(mod_bary)) {
 | |
|         nlz_bits = 0;
 | |
|     }
 | |
|     else {
 | |
|         BARY_ADD(div_bary, div_bary, one);
 | |
|         bary_pack(+1, BARY_ARGS(mod_bary), &mod, 1, sizeof(mod), 0,
 | |
|             INTEGER_PACK_NATIVE_BYTE_ORDER);
 | |
|         nlz_bits = word_numbits - mod;
 | |
|     }
 | |
|     sign = bary_pack(+1, BARY_ARGS(div_bary), &numwords, 1, sizeof(numwords), 0,
 | |
|         INTEGER_PACK_NATIVE_BYTE_ORDER);
 | |
| 
 | |
|     if (sign == 2) {
 | |
| #if defined __GNUC__ && (__GNUC__ == 4 && __GNUC_MINOR__ == 4)
 | |
| 	*nlz_bits_ret = 0;
 | |
| #endif
 | |
|         return (size_t)-1;
 | |
|     }
 | |
|     *nlz_bits_ret = nlz_bits;
 | |
|     return numwords;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the number of words to be required to represent
 | |
|  * the absolute value of the integer given as _val_.
 | |
|  *
 | |
|  * [val] an integer.
 | |
|  * [word_numbits] number of bits in a word.
 | |
|  * [nlz_bits_ret] number of leading zero bits in the most significant word is returned if not NULL.
 | |
|  *
 | |
|  * This function returns ((val_numbits * CHAR_BIT + word_numbits - 1) / word_numbits)
 | |
|  * where val_numbits is the number of bits of abs(val).
 | |
|  *
 | |
|  * This function can overflow.
 | |
|  * When overflow occur, (size_t)-1 is returned.
 | |
|  *
 | |
|  * If nlz_bits_ret is not NULL and overflow is not occur,
 | |
|  * (return_value * word_numbits - val_numbits) is stored in *nlz_bits_ret.
 | |
|  * In this case, 0 <= *nlz_bits_ret < word_numbits.
 | |
|  *
 | |
|  */
 | |
| size_t
 | |
| rb_absint_numwords(VALUE val, size_t word_numbits, size_t *nlz_bits_ret)
 | |
| {
 | |
|     size_t numbytes;
 | |
|     int nlz_bits_in_msbyte;
 | |
|     size_t numwords;
 | |
|     size_t nlz_bits;
 | |
| 
 | |
|     if (word_numbits == 0)
 | |
|         return (size_t)-1;
 | |
| 
 | |
|     numbytes = rb_absint_size(val, &nlz_bits_in_msbyte);
 | |
| 
 | |
|     if (numbytes <= SIZE_MAX / CHAR_BIT) {
 | |
|         numwords = absint_numwords_small(numbytes, nlz_bits_in_msbyte, word_numbits, &nlz_bits);
 | |
| #ifdef DEBUG_INTEGER_PACK
 | |
|         {
 | |
|             size_t numwords0, nlz_bits0;
 | |
|             numwords0 = absint_numwords_generic(numbytes, nlz_bits_in_msbyte, word_numbits, &nlz_bits0);
 | |
|             assert(numwords0 == numwords);
 | |
|             assert(nlz_bits0 == nlz_bits);
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
|         numwords = absint_numwords_generic(numbytes, nlz_bits_in_msbyte, word_numbits, &nlz_bits);
 | |
|     }
 | |
|     if (numwords == (size_t)-1)
 | |
|         return numwords;
 | |
| 
 | |
|     if (nlz_bits_ret)
 | |
|         *nlz_bits_ret = nlz_bits;
 | |
| 
 | |
|     return numwords;
 | |
| }
 | |
| 
 | |
| /* Test abs(val) consists only a bit or not.
 | |
|  *
 | |
|  * Returns 1 if abs(val) == 1 << n for some n >= 0.
 | |
|  * Returns 0 otherwise.
 | |
|  *
 | |
|  * rb_absint_singlebit_p can be used to determine required buffer size
 | |
|  * for rb_integer_pack used with INTEGER_PACK_2COMP (two's complement).
 | |
|  *
 | |
|  * Following example calculates number of bits required to
 | |
|  * represent val in two's complement number, without sign bit.
 | |
|  *
 | |
|  *   size_t size;
 | |
|  *   int neg = FIXNUM_P(val) ? FIX2LONG(val) < 0 : BIGNUM_NEGATIVE_P(val);
 | |
|  *   size = rb_absint_numwords(val, 1, NULL)
 | |
|  *   if (size == (size_t)-1) ...overflow...
 | |
|  *   if (neg && rb_absint_singlebit_p(val))
 | |
|  *     size--;
 | |
|  *
 | |
|  * Following example calculates number of bytes required to
 | |
|  * represent val in two's complement number, with sign bit.
 | |
|  *
 | |
|  *   size_t size;
 | |
|  *   int neg = FIXNUM_P(val) ? FIX2LONG(val) < 0 : BIGNUM_NEGATIVE_P(val);
 | |
|  *   int nlz_bits;
 | |
|  *   size = rb_absint_size(val, &nlz_bits);
 | |
|  *   if (nlz_bits == 0 && !(neg && rb_absint_singlebit_p(val)))
 | |
|  *     size++;
 | |
|  */
 | |
| int
 | |
| rb_absint_singlebit_p(VALUE val)
 | |
| {
 | |
|     BDIGIT *dp;
 | |
|     BDIGIT *de;
 | |
|     BDIGIT fixbuf[bdigit_roomof(sizeof(long))];
 | |
|     BDIGIT d;
 | |
| 
 | |
|     val = rb_to_int(val);
 | |
| 
 | |
|     if (FIXNUM_P(val)) {
 | |
|         long v = FIX2LONG(val);
 | |
|         if (v < 0) {
 | |
|             v = -v;
 | |
|         }
 | |
| #if SIZEOF_BDIGIT >= SIZEOF_LONG
 | |
|         fixbuf[0] = v;
 | |
| #else
 | |
|         {
 | |
|             int i;
 | |
|             for (i = 0; i < numberof(fixbuf); i++) {
 | |
|                 fixbuf[i] = BIGLO(v);
 | |
|                 v = BIGDN(v);
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         dp = fixbuf;
 | |
|         de = fixbuf + numberof(fixbuf);
 | |
|     }
 | |
|     else {
 | |
|         dp = BDIGITS(val);
 | |
|         de = dp + BIGNUM_LEN(val);
 | |
|     }
 | |
|     while (dp < de && de[-1] == 0)
 | |
|         de--;
 | |
|     while (dp < de && dp[0] == 0)
 | |
|         dp++;
 | |
|     if (dp == de) /* no bit set. */
 | |
|         return 0;
 | |
|     if (dp != de-1) /* two non-zero words. two bits set, at least. */
 | |
|         return 0;
 | |
|     d = *dp;
 | |
|     return POW2_P(d);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Export an integer into a buffer.
 | |
|  *
 | |
|  * This function fills the buffer specified by _words_ and _numwords_ as
 | |
|  * val in the format specified by _wordsize_, _nails_ and _flags_.
 | |
|  *
 | |
|  * [val] Fixnum, Bignum or another integer like object which has to_int method.
 | |
|  * [words] buffer to export abs(val).
 | |
|  * [numwords] the size of given buffer as number of words.
 | |
|  * [wordsize] the size of word as number of bytes.
 | |
|  * [nails] number of padding bits in a word.
 | |
|  *   Most significant nails bits of each word are filled by zero.
 | |
|  * [flags] bitwise or of constants which name starts "INTEGER_PACK_".
 | |
|  *
 | |
|  * flags:
 | |
|  * [INTEGER_PACK_MSWORD_FIRST] Store the most significant word as the first word.
 | |
|  * [INTEGER_PACK_LSWORD_FIRST] Store the least significant word as the first word.
 | |
|  * [INTEGER_PACK_MSBYTE_FIRST] Store the most significant byte in a word as the first byte in the word.
 | |
|  * [INTEGER_PACK_LSBYTE_FIRST] Store the least significant byte in a word as the first byte in the word.
 | |
|  * [INTEGER_PACK_NATIVE_BYTE_ORDER] INTEGER_PACK_MSBYTE_FIRST or INTEGER_PACK_LSBYTE_FIRST corresponding to the host's endian.
 | |
|  * [INTEGER_PACK_2COMP] Use 2's complement representation.
 | |
|  * [INTEGER_PACK_LITTLE_ENDIAN] Same as INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_LSBYTE_FIRST
 | |
|  * [INTEGER_PACK_BIG_ENDIAN] Same as INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_MSBYTE_FIRST
 | |
|  * [INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION] Use generic implementation (for test and debug).
 | |
|  *
 | |
|  * This function fills the buffer specified by _words_
 | |
|  * as abs(val) if INTEGER_PACK_2COMP is not specified in _flags_.
 | |
|  * If INTEGER_PACK_2COMP is specified, 2's complement representation of val is
 | |
|  * filled in the buffer.
 | |
|  *
 | |
|  * This function returns the signedness and overflow condition.
 | |
|  * The overflow condition depends on INTEGER_PACK_2COMP.
 | |
|  *
 | |
|  * INTEGER_PACK_2COMP is not specified:
 | |
|  *   -2 : negative overflow.  val <= -2**(numwords*(wordsize*CHAR_BIT-nails))
 | |
|  *   -1 : negative without overflow.  -2**(numwords*(wordsize*CHAR_BIT-nails)) < val < 0
 | |
|  *   0 : zero.  val == 0
 | |
|  *   1 : positive without overflow.  0 < val < 2**(numwords*(wordsize*CHAR_BIT-nails))
 | |
|  *   2 : positive overflow.  2**(numwords*(wordsize*CHAR_BIT-nails)) <= val
 | |
|  *
 | |
|  * INTEGER_PACK_2COMP is specified:
 | |
|  *   -2 : negative overflow.  val < -2**(numwords*(wordsize*CHAR_BIT-nails))
 | |
|  *   -1 : negative without overflow.  -2**(numwords*(wordsize*CHAR_BIT-nails)) <= val < 0
 | |
|  *   0 : zero.  val == 0
 | |
|  *   1 : positive without overflow.  0 < val < 2**(numwords*(wordsize*CHAR_BIT-nails))
 | |
|  *   2 : positive overflow.  2**(numwords*(wordsize*CHAR_BIT-nails)) <= val
 | |
|  *
 | |
|  * The value, -2**(numwords*(wordsize*CHAR_BIT-nails)), is representable
 | |
|  * in 2's complement representation but not representable in absolute value.
 | |
|  * So -1 is returned for the value if INTEGER_PACK_2COMP is specified
 | |
|  * but returns -2 if INTEGER_PACK_2COMP is not specified.
 | |
|  *
 | |
|  * The least significant words are filled in the buffer when overflow occur.
 | |
|  */
 | |
| 
 | |
| int
 | |
| rb_integer_pack(VALUE val, void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
 | |
| {
 | |
|     int sign;
 | |
|     BDIGIT *ds;
 | |
|     size_t num_bdigits;
 | |
|     BDIGIT fixbuf[bdigit_roomof(sizeof(long))];
 | |
| 
 | |
|     RB_GC_GUARD(val) = rb_to_int(val);
 | |
| 
 | |
|     if (FIXNUM_P(val)) {
 | |
|         long v = FIX2LONG(val);
 | |
|         if (v < 0) {
 | |
|             sign = -1;
 | |
|             v = -v;
 | |
|         }
 | |
|         else {
 | |
|             sign = 1;
 | |
|         }
 | |
| #if SIZEOF_BDIGIT >= SIZEOF_LONG
 | |
|         fixbuf[0] = v;
 | |
| #else
 | |
|         {
 | |
|             int i;
 | |
|             for (i = 0; i < numberof(fixbuf); i++) {
 | |
|                 fixbuf[i] = BIGLO(v);
 | |
|                 v = BIGDN(v);
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         ds = fixbuf;
 | |
|         num_bdigits = numberof(fixbuf);
 | |
|     }
 | |
|     else {
 | |
|         sign = BIGNUM_POSITIVE_P(val) ? 1 : -1;
 | |
|         ds = BDIGITS(val);
 | |
|         num_bdigits = BIGNUM_LEN(val);
 | |
|     }
 | |
| 
 | |
|     return bary_pack(sign, ds, num_bdigits, words, numwords, wordsize, nails, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import an integer into a buffer.
 | |
|  *
 | |
|  * [words] buffer to import.
 | |
|  * [numwords] the size of given buffer as number of words.
 | |
|  * [wordsize] the size of word as number of bytes.
 | |
|  * [nails] number of padding bits in a word.
 | |
|  *   Most significant nails bits of each word are ignored.
 | |
|  * [flags] bitwise or of constants which name starts "INTEGER_PACK_".
 | |
|  *
 | |
|  * flags:
 | |
|  * [INTEGER_PACK_MSWORD_FIRST] Interpret the first word as the most significant word.
 | |
|  * [INTEGER_PACK_LSWORD_FIRST] Interpret the first word as the least significant word.
 | |
|  * [INTEGER_PACK_MSBYTE_FIRST] Interpret the first byte in a word as the most significant byte in the word.
 | |
|  * [INTEGER_PACK_LSBYTE_FIRST] Interpret the first byte in a word as the least significant byte in the word.
 | |
|  * [INTEGER_PACK_NATIVE_BYTE_ORDER] INTEGER_PACK_MSBYTE_FIRST or INTEGER_PACK_LSBYTE_FIRST corresponding to the host's endian.
 | |
|  * [INTEGER_PACK_2COMP] Use 2's complement representation.
 | |
|  * [INTEGER_PACK_LITTLE_ENDIAN] Same as INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_LSBYTE_FIRST
 | |
|  * [INTEGER_PACK_BIG_ENDIAN] Same as INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_MSBYTE_FIRST
 | |
|  * [INTEGER_PACK_FORCE_BIGNUM] the result will be a Bignum
 | |
|  *   even if it is representable as a Fixnum.
 | |
|  * [INTEGER_PACK_NEGATIVE] Returns non-positive value.
 | |
|  *   (Returns non-negative value if not specified.)
 | |
|  * [INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION] Use generic implementation (for test and debug).
 | |
|  *
 | |
|  * This function returns the imported integer as Fixnum or Bignum.
 | |
|  *
 | |
|  * The range of the result value depends on INTEGER_PACK_2COMP and INTEGER_PACK_NEGATIVE.
 | |
|  *
 | |
|  * INTEGER_PACK_2COMP is not set:
 | |
|  *   0 <= val < 2**(numwords*(wordsize*CHAR_BIT-nails)) if !INTEGER_PACK_NEGATIVE
 | |
|  *   -2**(numwords*(wordsize*CHAR_BIT-nails)) < val <= 0 if INTEGER_PACK_NEGATIVE
 | |
|  *
 | |
|  * INTEGER_PACK_2COMP is set:
 | |
|  *   -2**(numwords*(wordsize*CHAR_BIT-nails)-1) <= val <= 2**(numwords*(wordsize*CHAR_BIT-nails)-1)-1 if !INTEGER_PACK_NEGATIVE
 | |
|  *   -2**(numwords*(wordsize*CHAR_BIT-nails)) <= val <= -1 if INTEGER_PACK_NEGATIVE
 | |
|  *
 | |
|  * INTEGER_PACK_2COMP without INTEGER_PACK_NEGATIVE means sign extension.
 | |
|  * INTEGER_PACK_2COMP with INTEGER_PACK_NEGATIVE mean assuming the higher bits are 1.
 | |
|  *
 | |
|  * Note that this function returns 0 when numwords is zero and
 | |
|  * INTEGER_PACK_2COMP is set but INTEGER_PACK_NEGATIVE is not set.
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_integer_unpack(const void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
 | |
| {
 | |
|     VALUE val;
 | |
|     size_t num_bdigits;
 | |
|     int sign;
 | |
|     int nlp_bits;
 | |
|     BDIGIT *ds;
 | |
|     BDIGIT fixbuf[2] = { 0, 0 };
 | |
| 
 | |
|     validate_integer_pack_format(numwords, wordsize, nails, flags,
 | |
|             INTEGER_PACK_MSWORD_FIRST|
 | |
|             INTEGER_PACK_LSWORD_FIRST|
 | |
|             INTEGER_PACK_MSBYTE_FIRST|
 | |
|             INTEGER_PACK_LSBYTE_FIRST|
 | |
|             INTEGER_PACK_NATIVE_BYTE_ORDER|
 | |
|             INTEGER_PACK_2COMP|
 | |
|             INTEGER_PACK_FORCE_BIGNUM|
 | |
|             INTEGER_PACK_NEGATIVE|
 | |
|             INTEGER_PACK_FORCE_GENERIC_IMPLEMENTATION);
 | |
| 
 | |
|     num_bdigits = integer_unpack_num_bdigits(numwords, wordsize, nails, &nlp_bits);
 | |
| 
 | |
|     if (LONG_MAX-1 < num_bdigits)
 | |
|         rb_raise(rb_eArgError, "too big to unpack as an integer");
 | |
|     if (num_bdigits <= numberof(fixbuf) && !(flags & INTEGER_PACK_FORCE_BIGNUM)) {
 | |
|         val = Qfalse;
 | |
|         ds = fixbuf;
 | |
|     }
 | |
|     else {
 | |
|         val = bignew((long)num_bdigits, 0);
 | |
|         ds = BDIGITS(val);
 | |
|     }
 | |
|     sign = bary_unpack_internal(ds, num_bdigits, words, numwords, wordsize, nails, flags, nlp_bits);
 | |
| 
 | |
|     if (sign == -2) {
 | |
|         if (val) {
 | |
|             big_extend_carry(val);
 | |
|         }
 | |
|         else if (num_bdigits == numberof(fixbuf)) {
 | |
|             val = bignew((long)num_bdigits+1, 0);
 | |
| 	    MEMCPY(BDIGITS(val), fixbuf, BDIGIT, num_bdigits);
 | |
|             BDIGITS(val)[num_bdigits++] = 1;
 | |
|         }
 | |
|         else {
 | |
|             ds[num_bdigits++] = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!val) {
 | |
|         BDIGIT_DBL u = fixbuf[0] + BIGUP(fixbuf[1]);
 | |
|         if (u == 0)
 | |
|             return LONG2FIX(0);
 | |
| 	if (0 < sign && POSFIXABLE(u))
 | |
|             return LONG2FIX(u);
 | |
| 	if (sign < 0 && BDIGIT_MSB(fixbuf[1]) == 0 &&
 | |
|                 NEGFIXABLE(-(BDIGIT_DBL_SIGNED)u))
 | |
|             return LONG2FIX(-(BDIGIT_DBL_SIGNED)u);
 | |
|         val = bignew((long)num_bdigits, 0 <= sign);
 | |
|         MEMCPY(BDIGITS(val), fixbuf, BDIGIT, num_bdigits);
 | |
|     }
 | |
| 
 | |
|     if ((flags & INTEGER_PACK_FORCE_BIGNUM) && sign != 0 &&
 | |
|         bary_zero_p(BDIGITS(val), BIGNUM_LEN(val)))
 | |
|         sign = 0;
 | |
|     BIGNUM_SET_SIGN(val, 0 <= sign);
 | |
| 
 | |
|     if (flags & INTEGER_PACK_FORCE_BIGNUM)
 | |
|         return bigtrunc(val);
 | |
|     return bignorm(val);
 | |
| }
 | |
| 
 | |
| #define conv_digit(c) (ruby_digit36_to_number_table[(unsigned char)(c)])
 | |
| 
 | |
| NORETURN(static inline void invalid_radix(int base));
 | |
| NORETURN(static inline void invalid_integer(VALUE s));
 | |
| 
 | |
| static inline int
 | |
| valid_radix_p(int base)
 | |
| {
 | |
|     return (1 < base && base <= 36);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| invalid_radix(int base)
 | |
| {
 | |
|     rb_raise(rb_eArgError, "invalid radix %d", base);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| invalid_integer(VALUE s)
 | |
| {
 | |
|     rb_raise(rb_eArgError, "invalid value for Integer(): %+"PRIsVALUE, s);
 | |
| }
 | |
| 
 | |
| static int
 | |
| str2big_scan_digits(const char *s, const char *str, int base, int badcheck, size_t *num_digits_p, ssize_t *len_p)
 | |
| {
 | |
|     char nondigit = 0;
 | |
|     size_t num_digits = 0;
 | |
|     const char *digits_start = str;
 | |
|     const char *digits_end = str;
 | |
|     ssize_t len = *len_p;
 | |
| 
 | |
|     int c;
 | |
| 
 | |
|     if (!len) {
 | |
| 	*num_digits_p = 0;
 | |
| 	*len_p = 0;
 | |
| 	return TRUE;
 | |
|     }
 | |
| 
 | |
|     if (badcheck && *str == '_') goto bad;
 | |
| 
 | |
|     while ((c = *str++) != 0) {
 | |
| 	if (c == '_') {
 | |
| 	    if (nondigit) {
 | |
| 		if (badcheck) goto bad;
 | |
| 		break;
 | |
| 	    }
 | |
| 	    nondigit = (char) c;
 | |
| 	}
 | |
| 	else if ((c = conv_digit(c)) < 0 || c >= base) {
 | |
| 	    break;
 | |
| 	}
 | |
| 	else {
 | |
| 	    nondigit = 0;
 | |
| 	    num_digits++;
 | |
| 	    digits_end = str;
 | |
| 	}
 | |
| 	if (len > 0 && !--len) break;
 | |
|     }
 | |
|     if (badcheck && nondigit) goto bad;
 | |
|     if (badcheck && len) {
 | |
| 	str--;
 | |
| 	while (*str && ISSPACE(*str)) {
 | |
| 	    str++;
 | |
| 	    if (len > 0 && !--len) break;
 | |
| 	}
 | |
| 	if (len && *str) {
 | |
| 	  bad:
 | |
| 	    return FALSE;
 | |
| 	}
 | |
|     }
 | |
|     *num_digits_p = num_digits;
 | |
|     *len_p = digits_end - digits_start;
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| str2big_poweroftwo(
 | |
|     int sign,
 | |
|     const char *digits_start,
 | |
|     const char *digits_end,
 | |
|     size_t num_digits,
 | |
|     int bits_per_digit)
 | |
| {
 | |
|     BDIGIT *dp;
 | |
|     BDIGIT_DBL dd;
 | |
|     int numbits;
 | |
| 
 | |
|     size_t num_bdigits;
 | |
|     const char *p;
 | |
|     int c;
 | |
|     VALUE z;
 | |
| 
 | |
|     num_bdigits = (num_digits / BITSPERDIG) * bits_per_digit + roomof((num_digits % BITSPERDIG) * bits_per_digit, BITSPERDIG);
 | |
|     z = bignew(num_bdigits, sign);
 | |
|     dp = BDIGITS(z);
 | |
|     dd = 0;
 | |
|     numbits = 0;
 | |
|     for (p = digits_end; digits_start < p; p--) {
 | |
|         if ((c = conv_digit(p[-1])) < 0)
 | |
|             continue;
 | |
|         dd |= (BDIGIT_DBL)c << numbits;
 | |
|         numbits += bits_per_digit;
 | |
|         if (BITSPERDIG <= numbits) {
 | |
|             *dp++ = BIGLO(dd);
 | |
|             dd = BIGDN(dd);
 | |
|             numbits -= BITSPERDIG;
 | |
|         }
 | |
|     }
 | |
|     if (numbits) {
 | |
|         *dp++ = BIGLO(dd);
 | |
|     }
 | |
|     assert((size_t)(dp - BDIGITS(z)) == num_bdigits);
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| str2big_normal(
 | |
|     int sign,
 | |
|     const char *digits_start,
 | |
|     const char *digits_end,
 | |
|     size_t num_bdigits,
 | |
|     int base)
 | |
| {
 | |
|     size_t blen = 1;
 | |
|     BDIGIT *zds;
 | |
|     BDIGIT_DBL num;
 | |
| 
 | |
|     size_t i;
 | |
|     const char *p;
 | |
|     int c;
 | |
|     VALUE z;
 | |
| 
 | |
|     z = bignew(num_bdigits, sign);
 | |
|     zds = BDIGITS(z);
 | |
|     BDIGITS_ZERO(zds, num_bdigits);
 | |
| 
 | |
|     for (p = digits_start; p < digits_end; p++) {
 | |
|         if ((c = conv_digit(*p)) < 0)
 | |
|             continue;
 | |
|         num = c;
 | |
|         i = 0;
 | |
|         for (;;) {
 | |
|             while (i<blen) {
 | |
|                 num += (BDIGIT_DBL)zds[i]*base;
 | |
|                 zds[i++] = BIGLO(num);
 | |
|                 num = BIGDN(num);
 | |
|             }
 | |
|             if (num) {
 | |
|                 blen++;
 | |
|                 continue;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         assert(blen <= num_bdigits);
 | |
|     }
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| str2big_karatsuba(
 | |
|     int sign,
 | |
|     const char *digits_start,
 | |
|     const char *digits_end,
 | |
|     size_t num_digits,
 | |
|     size_t num_bdigits,
 | |
|     int digits_per_bdigits_dbl,
 | |
|     int base)
 | |
| {
 | |
|     VALUE powerv;
 | |
|     size_t unit;
 | |
|     VALUE tmpuv = 0;
 | |
|     BDIGIT *uds, *vds, *tds;
 | |
|     BDIGIT_DBL dd;
 | |
|     BDIGIT_DBL current_base;
 | |
|     int m;
 | |
|     int power_level = 0;
 | |
| 
 | |
|     size_t i;
 | |
|     const char *p;
 | |
|     int c;
 | |
|     VALUE z;
 | |
| 
 | |
|     uds = ALLOCV_N(BDIGIT, tmpuv, 2*num_bdigits);
 | |
|     vds = uds + num_bdigits;
 | |
| 
 | |
|     powerv = power_cache_get_power(base, power_level, NULL);
 | |
| 
 | |
|     i = 0;
 | |
|     dd = 0;
 | |
|     current_base = 1;
 | |
|     m = digits_per_bdigits_dbl;
 | |
|     if (num_digits < (size_t)m)
 | |
|         m = (int)num_digits;
 | |
|     for (p = digits_end; digits_start < p; p--) {
 | |
|         if ((c = conv_digit(p[-1])) < 0)
 | |
|             continue;
 | |
|         dd = dd + c * current_base;
 | |
|         current_base *= base;
 | |
|         num_digits--;
 | |
|         m--;
 | |
|         if (m == 0) {
 | |
|             uds[i++] = BIGLO(dd);
 | |
|             uds[i++] = (BDIGIT)BIGDN(dd);
 | |
|             dd = 0;
 | |
|             m = digits_per_bdigits_dbl;
 | |
|             if (num_digits < (size_t)m)
 | |
|                 m = (int)num_digits;
 | |
|             current_base = 1;
 | |
|         }
 | |
|     }
 | |
|     assert(i == num_bdigits);
 | |
|     for (unit = 2; unit < num_bdigits; unit *= 2) {
 | |
|         for (i = 0; i < num_bdigits; i += unit*2) {
 | |
|             if (2*unit <= num_bdigits - i) {
 | |
|                 bary_mul(vds+i, unit*2, BDIGITS(powerv), BIGNUM_LEN(powerv), uds+i+unit, unit);
 | |
|                 bary_add(vds+i, unit*2, vds+i, unit*2, uds+i, unit);
 | |
|             }
 | |
|             else if (unit <= num_bdigits - i) {
 | |
|                 bary_mul(vds+i, num_bdigits-i, BDIGITS(powerv), BIGNUM_LEN(powerv), uds+i+unit, num_bdigits-(i+unit));
 | |
|                 bary_add(vds+i, num_bdigits-i, vds+i, num_bdigits-i, uds+i, unit);
 | |
|             }
 | |
|             else {
 | |
|                 MEMCPY(vds+i, uds+i, BDIGIT, num_bdigits-i);
 | |
|             }
 | |
|         }
 | |
|         power_level++;
 | |
|         powerv = power_cache_get_power(base, power_level, NULL);
 | |
|         tds = vds;
 | |
|         vds = uds;
 | |
|         uds = tds;
 | |
|     }
 | |
|     BARY_TRUNC(uds, num_bdigits);
 | |
|     z = bignew(num_bdigits, sign);
 | |
|     MEMCPY(BDIGITS(z), uds, BDIGIT, num_bdigits);
 | |
| 
 | |
|     if (tmpuv)
 | |
|         ALLOCV_END(tmpuv);
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| #ifdef USE_GMP
 | |
| static VALUE
 | |
| str2big_gmp(
 | |
|     int sign,
 | |
|     const char *digits_start,
 | |
|     const char *digits_end,
 | |
|     size_t num_digits,
 | |
|     size_t num_bdigits,
 | |
|     int base)
 | |
| {
 | |
|     const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
 | |
|     char *buf, *p;
 | |
|     const char *q;
 | |
|     VALUE tmps;
 | |
|     mpz_t mz;
 | |
|     VALUE z;
 | |
|     BDIGIT *zds;
 | |
|     size_t zn, count;
 | |
| 
 | |
|     buf = ALLOCV_N(char, tmps, num_digits+1);
 | |
|     p = buf;
 | |
|     for (q = digits_start; q < digits_end; q++) {
 | |
|         if (conv_digit(*q) < 0)
 | |
|             continue;
 | |
|         *p++ = *q;
 | |
|     }
 | |
|     *p = '\0';
 | |
| 
 | |
|     mpz_init(mz);
 | |
|     mpz_set_str(mz, buf, base);
 | |
|     zn = num_bdigits;
 | |
|     z = bignew(zn, sign);
 | |
|     zds = BDIGITS(z);
 | |
|     mpz_export(BDIGITS(z), &count, -1, sizeof(BDIGIT), 0, nails, mz);
 | |
|     BDIGITS_ZERO(zds+count, zn-count);
 | |
|     mpz_clear(mz);
 | |
| 
 | |
|     if (tmps)
 | |
|         ALLOCV_END(tmps);
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Parse +str+ as Ruby Integer, i.e., underscores, 0d and 0b prefixes.
 | |
|  *
 | |
|  * str:      pointer to the string to be parsed.
 | |
|  *	     should be NUL-terminated.
 | |
|  * base:     base of conversion, must be 2..36, or -36..0.
 | |
|  *           if +base+ > 0, the conversion is done according to the +base+
 | |
|  *           and unmatched prefix is parsed as a part of the result if
 | |
|  *           present.
 | |
|  *           if +base+ <= 0, the conversion is done according to the
 | |
|  *           prefix if present, in base <code>-base</code> if +base+ < -1,
 | |
|  *           or in base 10.
 | |
|  * badcheck: if non-zero, +ArgumentError+ is raised when +str+ is not
 | |
|  *           valid as an Integer.  if zero, Fixnum 0 is returned in
 | |
|  *           that case.
 | |
|  */
 | |
| VALUE
 | |
| rb_cstr_to_inum(const char *str, int base, int badcheck)
 | |
| {
 | |
|     char *end;
 | |
|     VALUE ret = rb_cstr_parse_inum(str, -1, (badcheck ? NULL : &end), base);
 | |
|     if (NIL_P(ret)) {
 | |
| 	if (badcheck) rb_invalid_str(str, "Integer()");
 | |
| 	ret = INT2FIX(0);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse +str+ as Ruby Integer, i.e., underscores, 0d and 0b prefixes.
 | |
|  *
 | |
|  * str:  pointer to the string to be parsed.
 | |
|  *       should be NUL-terminated if +len+ is negative.
 | |
|  * len:  length of +str+ if >= 0.  if +len+ is negative, +str+ should
 | |
|  *       be NUL-terminated.
 | |
|  * endp: if non-NULL, the address after parsed part is stored.  if
 | |
|  *       NULL, Qnil is returned when +str+ is not valid as an Integer.
 | |
|  * ndigits: if non-NULL, the number of parsed digits is stored.
 | |
|  * base: see +rb_cstr_to_inum+
 | |
|  * flags: bitwise OR of below flags:
 | |
|  *       RB_INT_PARSE_SIGN: allow preceding spaces and +/- sign
 | |
|  *       RB_INT_PARSE_UNDERSCORE: allow an underscore between digits
 | |
|  *       RB_INT_PARSE_PREFIX: allow preceding prefix
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_int_parse_cstr(const char *str, ssize_t len, char **endp, size_t *ndigits,
 | |
| 		  int base, int flags)
 | |
| {
 | |
|     const char *const s = str;
 | |
|     char sign = 1;
 | |
|     int c;
 | |
|     VALUE z = Qnil;
 | |
| 
 | |
|     unsigned long val;
 | |
|     int ov;
 | |
| 
 | |
|     const char *digits_start, *digits_end;
 | |
|     size_t num_digits = 0;
 | |
|     size_t num_bdigits;
 | |
|     const ssize_t len0 = len;
 | |
|     const int badcheck = !endp;
 | |
| 
 | |
| #define ADV(n) do {\
 | |
| 	if (len > 0 && len <= (n)) goto bad; \
 | |
| 	str += (n); \
 | |
| 	len -= (n); \
 | |
|     } while (0)
 | |
| #define ASSERT_LEN() do {\
 | |
| 	assert(len != 0); \
 | |
| 	if (len0 >= 0) assert(s + len0 == str + len); \
 | |
|     } while (0)
 | |
| 
 | |
|     if (!str) {
 | |
|       bad:
 | |
| 	if (endp) *endp = (char *)str;
 | |
| 	if (ndigits) *ndigits = num_digits;
 | |
| 	return z;
 | |
|     }
 | |
|     if (len && (flags & RB_INT_PARSE_SIGN)) {
 | |
| 	while (ISSPACE(*str)) ADV(1);
 | |
| 
 | |
| 	if (str[0] == '+') {
 | |
| 	    ADV(1);
 | |
| 	}
 | |
| 	else if (str[0] == '-') {
 | |
| 	    ADV(1);
 | |
| 	    sign = 0;
 | |
| 	}
 | |
| 	ASSERT_LEN();
 | |
|     }
 | |
|     if (base <= 0) {
 | |
| 	if (str[0] == '0' && len > 1) {
 | |
| 	    switch (str[1]) {
 | |
| 	      case 'x': case 'X':
 | |
| 		base = 16;
 | |
| 		ADV(2);
 | |
| 		break;
 | |
| 	      case 'b': case 'B':
 | |
| 		base = 2;
 | |
| 		ADV(2);
 | |
| 		break;
 | |
| 	      case 'o': case 'O':
 | |
| 		base = 8;
 | |
| 		ADV(2);
 | |
| 		break;
 | |
| 	      case 'd': case 'D':
 | |
| 		base = 10;
 | |
| 		ADV(2);
 | |
| 		break;
 | |
| 	      default:
 | |
| 		base = 8;
 | |
| 	    }
 | |
| 	}
 | |
| 	else if (base < -1) {
 | |
| 	    base = -base;
 | |
| 	}
 | |
| 	else {
 | |
| 	    base = 10;
 | |
| 	}
 | |
|     }
 | |
|     else if (len == 1 || !(flags & RB_INT_PARSE_PREFIX)) {
 | |
| 	/* no prefix */
 | |
|     }
 | |
|     else if (base == 2) {
 | |
| 	if (str[0] == '0' && (str[1] == 'b'||str[1] == 'B')) {
 | |
| 	    ADV(2);
 | |
| 	}
 | |
|     }
 | |
|     else if (base == 8) {
 | |
| 	if (str[0] == '0' && (str[1] == 'o'||str[1] == 'O')) {
 | |
| 	    ADV(2);
 | |
| 	}
 | |
|     }
 | |
|     else if (base == 10) {
 | |
| 	if (str[0] == '0' && (str[1] == 'd'||str[1] == 'D')) {
 | |
| 	    ADV(2);
 | |
| 	}
 | |
|     }
 | |
|     else if (base == 16) {
 | |
| 	if (str[0] == '0' && (str[1] == 'x'||str[1] == 'X')) {
 | |
| 	    ADV(2);
 | |
| 	}
 | |
|     }
 | |
|     if (!valid_radix_p(base)) {
 | |
|         invalid_radix(base);
 | |
|     }
 | |
|     if (!len) goto bad;
 | |
|     num_digits = str - s;
 | |
|     if (*str == '0' && len != 1) { /* squeeze preceding 0s */
 | |
| 	int us = 0;
 | |
| 	const char *end = len < 0 ? NULL : str + len;
 | |
| 	++num_digits;
 | |
| 	while ((c = *++str) == '0' ||
 | |
| 	       ((flags & RB_INT_PARSE_UNDERSCORE) && c == '_')) {
 | |
| 	    if (c == '_') {
 | |
| 		if (++us >= 2)
 | |
| 		    break;
 | |
| 	    }
 | |
| 	    else {
 | |
| 		++num_digits;
 | |
| 		us = 0;
 | |
| 	    }
 | |
| 	    if (str == end) break;
 | |
| 	}
 | |
| 	if (!c || ISSPACE(c)) --str;
 | |
| 	if (end) len = end - str;
 | |
| 	ASSERT_LEN();
 | |
|     }
 | |
|     c = *str;
 | |
|     c = conv_digit(c);
 | |
|     if (c < 0 || c >= base) {
 | |
| 	if (!badcheck && num_digits) z = INT2FIX(0);
 | |
| 	goto bad;
 | |
|     }
 | |
| 
 | |
|     if (ndigits) *ndigits = num_digits;
 | |
|     val = ruby_scan_digits(str, len, base, &num_digits, &ov);
 | |
|     if (!ov) {
 | |
| 	const char *end = &str[num_digits];
 | |
| 	if (num_digits > 0 && *end == '_' && (flags & RB_INT_PARSE_UNDERSCORE))
 | |
| 	    goto bigparse;
 | |
| 	if (endp) *endp = (char *)end;
 | |
| 	if (ndigits) *ndigits += num_digits;
 | |
| 	if (badcheck) {
 | |
| 	    if (num_digits == 0) return Qnil; /* no number */
 | |
| 	    while (len < 0 ? *end : end < str + len) {
 | |
| 		if (!ISSPACE(*end)) return Qnil; /* trailing garbage */
 | |
| 		end++;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (POSFIXABLE(val)) {
 | |
| 	    if (sign) return LONG2FIX(val);
 | |
| 	    else {
 | |
| 		long result = -(long)val;
 | |
| 		return LONG2FIX(result);
 | |
| 	    }
 | |
| 	}
 | |
| 	else {
 | |
| 	    VALUE big = rb_uint2big(val);
 | |
| 	    BIGNUM_SET_SIGN(big, sign);
 | |
| 	    return bignorm(big);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   bigparse:
 | |
|     digits_start = str;
 | |
|     if (!str2big_scan_digits(s, str, base, badcheck, &num_digits, &len))
 | |
| 	goto bad;
 | |
|     if (endp) *endp = (char *)(str + len);
 | |
|     if (ndigits) *ndigits += num_digits;
 | |
|     digits_end = digits_start + len;
 | |
| 
 | |
|     if (POW2_P(base)) {
 | |
|         z = str2big_poweroftwo(sign, digits_start, digits_end, num_digits,
 | |
| 			       bit_length(base-1));
 | |
|     }
 | |
|     else {
 | |
|         int digits_per_bdigits_dbl;
 | |
|         maxpow_in_bdigit_dbl(base, &digits_per_bdigits_dbl);
 | |
|         num_bdigits = roomof(num_digits, digits_per_bdigits_dbl)*2;
 | |
| 
 | |
| #ifdef USE_GMP
 | |
|         if (GMP_STR2BIG_DIGITS < num_bdigits) {
 | |
|             z = str2big_gmp(sign, digits_start, digits_end, num_digits,
 | |
|                     num_bdigits, base);
 | |
|         }
 | |
|         else
 | |
| #endif
 | |
|         if (num_bdigits < KARATSUBA_MUL_DIGITS) {
 | |
|             z = str2big_normal(sign, digits_start, digits_end,
 | |
|                     num_bdigits, base);
 | |
|         }
 | |
|         else {
 | |
|             z = str2big_karatsuba(sign, digits_start, digits_end, num_digits,
 | |
|                     num_bdigits, digits_per_bdigits_dbl, base);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_cstr_parse_inum(const char *str, ssize_t len, char **endp, int base)
 | |
| {
 | |
|     return rb_int_parse_cstr(str, len, endp, NULL, base,
 | |
| 			     RB_INT_PARSE_DEFAULT);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_str_convert_to_inum(VALUE str, int base, int badcheck, int raise_exception)
 | |
| {
 | |
|     VALUE ret;
 | |
|     const char *s;
 | |
|     long len;
 | |
|     char *end;
 | |
| 
 | |
|     StringValue(str);
 | |
|     rb_must_asciicompat(str);
 | |
|     RSTRING_GETMEM(str, s, len);
 | |
|     ret = rb_cstr_parse_inum(s, len, (badcheck ? NULL : &end), base);
 | |
|     if (NIL_P(ret)) {
 | |
|         if (badcheck) {
 | |
|             if (!raise_exception) return Qnil;
 | |
|             invalid_integer(str);
 | |
|         }
 | |
|         ret = INT2FIX(0);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_str_to_inum(VALUE str, int base, int badcheck)
 | |
| {
 | |
|     return rb_str_convert_to_inum(str, base, badcheck, TRUE);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_str2big_poweroftwo(VALUE arg, int base, int badcheck)
 | |
| {
 | |
|     int positive_p = 1;
 | |
|     const char *s, *str;
 | |
|     const char *digits_start, *digits_end;
 | |
|     size_t num_digits;
 | |
|     ssize_t len;
 | |
|     VALUE z;
 | |
| 
 | |
|     if (!valid_radix_p(base) || !POW2_P(base)) {
 | |
|         invalid_radix(base);
 | |
|     }
 | |
| 
 | |
|     rb_must_asciicompat(arg);
 | |
|     s = str = StringValueCStr(arg);
 | |
|     len = RSTRING_LEN(arg);
 | |
|     if (*str == '-') {
 | |
| 	len--;
 | |
|         str++;
 | |
|         positive_p = 0;
 | |
|     }
 | |
| 
 | |
|     digits_start = str;
 | |
|     if (!str2big_scan_digits(s, str, base, badcheck, &num_digits, &len))
 | |
| 	invalid_integer(arg);
 | |
|     digits_end = digits_start + len;
 | |
| 
 | |
|     z = str2big_poweroftwo(positive_p, digits_start, digits_end, num_digits,
 | |
|             bit_length(base-1));
 | |
| 
 | |
|     RB_GC_GUARD(arg);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_str2big_normal(VALUE arg, int base, int badcheck)
 | |
| {
 | |
|     int positive_p = 1;
 | |
|     const char *s, *str;
 | |
|     const char *digits_start, *digits_end;
 | |
|     size_t num_digits;
 | |
|     ssize_t len;
 | |
|     VALUE z;
 | |
| 
 | |
|     int digits_per_bdigits_dbl;
 | |
|     size_t num_bdigits;
 | |
| 
 | |
|     if (!valid_radix_p(base)) {
 | |
|         invalid_radix(base);
 | |
|     }
 | |
| 
 | |
|     rb_must_asciicompat(arg);
 | |
|     s = str = StringValuePtr(arg);
 | |
|     len = RSTRING_LEN(arg);
 | |
|     if (len > 0 && *str == '-') {
 | |
| 	len--;
 | |
|         str++;
 | |
|         positive_p = 0;
 | |
|     }
 | |
| 
 | |
|     digits_start = str;
 | |
|     if (!str2big_scan_digits(s, str, base, badcheck, &num_digits, &len))
 | |
| 	invalid_integer(arg);
 | |
|     digits_end = digits_start + len;
 | |
| 
 | |
|     maxpow_in_bdigit_dbl(base, &digits_per_bdigits_dbl);
 | |
|     num_bdigits = roomof(num_digits, digits_per_bdigits_dbl)*2;
 | |
| 
 | |
|     z = str2big_normal(positive_p, digits_start, digits_end,
 | |
|             num_bdigits, base);
 | |
| 
 | |
|     RB_GC_GUARD(arg);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_str2big_karatsuba(VALUE arg, int base, int badcheck)
 | |
| {
 | |
|     int positive_p = 1;
 | |
|     const char *s, *str;
 | |
|     const char *digits_start, *digits_end;
 | |
|     size_t num_digits;
 | |
|     ssize_t len;
 | |
|     VALUE z;
 | |
| 
 | |
|     int digits_per_bdigits_dbl;
 | |
|     size_t num_bdigits;
 | |
| 
 | |
|     if (!valid_radix_p(base)) {
 | |
|         invalid_radix(base);
 | |
|     }
 | |
| 
 | |
|     rb_must_asciicompat(arg);
 | |
|     s = str = StringValuePtr(arg);
 | |
|     len = RSTRING_LEN(arg);
 | |
|     if (len > 0 && *str == '-') {
 | |
| 	len--;
 | |
|         str++;
 | |
|         positive_p = 0;
 | |
|     }
 | |
| 
 | |
|     digits_start = str;
 | |
|     if (!str2big_scan_digits(s, str, base, badcheck, &num_digits, &len))
 | |
| 	invalid_integer(arg);
 | |
|     digits_end = digits_start + len;
 | |
| 
 | |
|     maxpow_in_bdigit_dbl(base, &digits_per_bdigits_dbl);
 | |
|     num_bdigits = roomof(num_digits, digits_per_bdigits_dbl)*2;
 | |
| 
 | |
|     z = str2big_karatsuba(positive_p, digits_start, digits_end, num_digits,
 | |
|             num_bdigits, digits_per_bdigits_dbl, base);
 | |
| 
 | |
|     RB_GC_GUARD(arg);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| #ifdef USE_GMP
 | |
| VALUE
 | |
| rb_str2big_gmp(VALUE arg, int base, int badcheck)
 | |
| {
 | |
|     int positive_p = 1;
 | |
|     const char *s, *str;
 | |
|     const char *digits_start, *digits_end;
 | |
|     size_t num_digits;
 | |
|     ssize_t len;
 | |
|     VALUE z;
 | |
| 
 | |
|     int digits_per_bdigits_dbl;
 | |
|     size_t num_bdigits;
 | |
| 
 | |
|     if (!valid_radix_p(base)) {
 | |
|         invalid_radix(base);
 | |
|     }
 | |
| 
 | |
|     rb_must_asciicompat(arg);
 | |
|     s = str = StringValuePtr(arg);
 | |
|     len = RSTRING_LEN(arg);
 | |
|     if (len > 0 && *str == '-') {
 | |
| 	len--;
 | |
|         str++;
 | |
|         positive_p = 0;
 | |
|     }
 | |
| 
 | |
|     digits_start = str;
 | |
|     if (!str2big_scan_digits(s, str, base, badcheck, &num_digits, &len))
 | |
| 	invalid_integer(arg);
 | |
|     digits_end = digits_start + len;
 | |
| 
 | |
|     maxpow_in_bdigit_dbl(base, &digits_per_bdigits_dbl);
 | |
|     num_bdigits = roomof(num_digits, digits_per_bdigits_dbl)*2;
 | |
| 
 | |
|     z = str2big_gmp(positive_p, digits_start, digits_end, num_digits, num_bdigits, base);
 | |
| 
 | |
|     RB_GC_GUARD(arg);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if HAVE_LONG_LONG
 | |
| 
 | |
| static VALUE
 | |
| rb_ull2big(unsigned LONG_LONG n)
 | |
| {
 | |
|     long i;
 | |
|     VALUE big = bignew(bdigit_roomof(SIZEOF_LONG_LONG), 1);
 | |
|     BDIGIT *digits = BDIGITS(big);
 | |
| 
 | |
| #if SIZEOF_BDIGIT >= SIZEOF_LONG_LONG
 | |
|     digits[0] = n;
 | |
| #else
 | |
|     for (i = 0; i < bdigit_roomof(SIZEOF_LONG_LONG); i++) {
 | |
| 	digits[i] = BIGLO(n);
 | |
| 	n = BIGDN(n);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     i = bdigit_roomof(SIZEOF_LONG_LONG);
 | |
|     while (i-- && !digits[i]) ;
 | |
|     BIGNUM_SET_LEN(big, i+1);
 | |
|     return big;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| rb_ll2big(LONG_LONG n)
 | |
| {
 | |
|     long neg = 0;
 | |
|     unsigned LONG_LONG u;
 | |
|     VALUE big;
 | |
| 
 | |
|     if (n < 0) {
 | |
|         u = 1 + (unsigned LONG_LONG)(-(n + 1)); /* u = -n avoiding overflow */
 | |
| 	neg = 1;
 | |
|     }
 | |
|     else {
 | |
|         u = n;
 | |
|     }
 | |
|     big = rb_ull2big(u);
 | |
|     if (neg) {
 | |
| 	BIGNUM_SET_NEGATIVE_SIGN(big);
 | |
|     }
 | |
|     return big;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ull2inum(unsigned LONG_LONG n)
 | |
| {
 | |
|     if (POSFIXABLE(n)) return LONG2FIX(n);
 | |
|     return rb_ull2big(n);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_ll2inum(LONG_LONG n)
 | |
| {
 | |
|     if (FIXABLE(n)) return LONG2FIX(n);
 | |
|     return rb_ll2big(n);
 | |
| }
 | |
| 
 | |
| #endif  /* HAVE_LONG_LONG */
 | |
| 
 | |
| #ifdef HAVE_INT128_T
 | |
| static VALUE
 | |
| rb_uint128t2big(uint128_t n)
 | |
| {
 | |
|     long i;
 | |
|     VALUE big = bignew(bdigit_roomof(SIZEOF_INT128_T), 1);
 | |
|     BDIGIT *digits = BDIGITS(big);
 | |
| 
 | |
|     for (i = 0; i < bdigit_roomof(SIZEOF_INT128_T); i++) {
 | |
| 	digits[i] = BIGLO(RSHIFT(n ,BITSPERDIG*i));
 | |
|     }
 | |
| 
 | |
|     i = bdigit_roomof(SIZEOF_INT128_T);
 | |
|     while (i-- && !digits[i]) ;
 | |
|     BIGNUM_SET_LEN(big, i+1);
 | |
|     return big;
 | |
| }
 | |
| 
 | |
| MJIT_FUNC_EXPORTED VALUE
 | |
| rb_int128t2big(int128_t n)
 | |
| {
 | |
|     int neg = 0;
 | |
|     uint128_t u;
 | |
|     VALUE big;
 | |
| 
 | |
|     if (n < 0) {
 | |
|         u = 1 + (uint128_t)(-(n + 1)); /* u = -n avoiding overflow */
 | |
| 	neg = 1;
 | |
|     }
 | |
|     else {
 | |
|         u = n;
 | |
|     }
 | |
|     big = rb_uint128t2big(u);
 | |
|     if (neg) {
 | |
| 	BIGNUM_SET_NEGATIVE_SIGN(big);
 | |
|     }
 | |
|     return big;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| VALUE
 | |
| rb_cstr2inum(const char *str, int base)
 | |
| {
 | |
|     return rb_cstr_to_inum(str, base, base==0);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_str2inum(VALUE str, int base)
 | |
| {
 | |
|     return rb_str_to_inum(str, base, base==0);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| big_shift3(VALUE x, int lshift_p, size_t shift_numdigits, int shift_numbits)
 | |
| {
 | |
|     BDIGIT *xds, *zds;
 | |
|     long s1;
 | |
|     int s2;
 | |
|     VALUE z;
 | |
|     long xn;
 | |
| 
 | |
|     if (lshift_p) {
 | |
|         if (LONG_MAX < shift_numdigits) {
 | |
|             rb_raise(rb_eArgError, "too big number");
 | |
|         }
 | |
|         s1 = shift_numdigits;
 | |
|         s2 = shift_numbits;
 | |
|         xn = BIGNUM_LEN(x);
 | |
|         z = bignew(xn+s1+1, BIGNUM_SIGN(x));
 | |
|         zds = BDIGITS(z);
 | |
|         BDIGITS_ZERO(zds, s1);
 | |
|         xds = BDIGITS(x);
 | |
|         zds[xn+s1] = bary_small_lshift(zds+s1, xds, xn, s2);
 | |
|     }
 | |
|     else {
 | |
|         long zn;
 | |
|         BDIGIT hibitsx;
 | |
|         if (LONG_MAX < shift_numdigits || (size_t)BIGNUM_LEN(x) <= shift_numdigits) {
 | |
|             if (BIGNUM_POSITIVE_P(x) ||
 | |
|                 bary_zero_p(BDIGITS(x), BIGNUM_LEN(x)))
 | |
|                 return INT2FIX(0);
 | |
|             else
 | |
|                 return INT2FIX(-1);
 | |
|         }
 | |
|         s1 = shift_numdigits;
 | |
|         s2 = shift_numbits;
 | |
|         hibitsx = abs2twocomp(&x, &xn);
 | |
|         xds = BDIGITS(x);
 | |
|         if (xn <= s1) {
 | |
|             return hibitsx ? INT2FIX(-1) : INT2FIX(0);
 | |
|         }
 | |
|         zn = xn - s1;
 | |
|         z = bignew(zn, 0);
 | |
|         zds = BDIGITS(z);
 | |
|         bary_small_rshift(zds, xds+s1, zn, s2, hibitsx != 0 ? BDIGMAX : 0);
 | |
|         twocomp2abs_bang(z, hibitsx != 0);
 | |
|     }
 | |
|     RB_GC_GUARD(x);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| big_shift2(VALUE x, int lshift_p, VALUE y)
 | |
| {
 | |
|     int sign;
 | |
|     size_t lens[2];
 | |
|     size_t shift_numdigits;
 | |
|     int shift_numbits;
 | |
| 
 | |
|     assert(POW2_P(CHAR_BIT));
 | |
|     assert(POW2_P(BITSPERDIG));
 | |
| 
 | |
|     if (BIGZEROP(x))
 | |
|         return INT2FIX(0);
 | |
|     sign = rb_integer_pack(y, lens, numberof(lens), sizeof(size_t), 0,
 | |
|         INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
 | |
|     if (sign < 0) {
 | |
|         lshift_p = !lshift_p;
 | |
|         sign = -sign;
 | |
|     }
 | |
|     if (lshift_p) {
 | |
|         if (1 < sign || CHAR_BIT <= lens[1])
 | |
|             rb_raise(rb_eRangeError, "shift width too big");
 | |
|     }
 | |
|     else {
 | |
|         if (1 < sign || CHAR_BIT <= lens[1])
 | |
|             return BIGNUM_POSITIVE_P(x) ? INT2FIX(0) : INT2FIX(-1);
 | |
|     }
 | |
|     shift_numbits = (int)(lens[0] & (BITSPERDIG-1));
 | |
|     shift_numdigits = (lens[0] >> bit_length(BITSPERDIG-1)) |
 | |
|       (lens[1] << (CHAR_BIT*SIZEOF_SIZE_T - bit_length(BITSPERDIG-1)));
 | |
|     return big_shift3(x, lshift_p, shift_numdigits, shift_numbits);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| big_lshift(VALUE x, unsigned long shift)
 | |
| {
 | |
|     long s1 = shift/BITSPERDIG;
 | |
|     int s2 = (int)(shift%BITSPERDIG);
 | |
|     return big_shift3(x, 1, s1, s2);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| big_rshift(VALUE x, unsigned long shift)
 | |
| {
 | |
|     long s1 = shift/BITSPERDIG;
 | |
|     int s2 = (int)(shift%BITSPERDIG);
 | |
|     return big_shift3(x, 0, s1, s2);
 | |
| }
 | |
| 
 | |
| #define MAX_BASE36_POWER_TABLE_ENTRIES (SIZEOF_SIZE_T * CHAR_BIT + 1)
 | |
| 
 | |
| static VALUE base36_power_cache[35][MAX_BASE36_POWER_TABLE_ENTRIES];
 | |
| static size_t base36_numdigits_cache[35][MAX_BASE36_POWER_TABLE_ENTRIES];
 | |
| 
 | |
| static void
 | |
| power_cache_init(void)
 | |
| {
 | |
|     int i, j;
 | |
|     for (i = 0; i < 35; ++i) {
 | |
| 	for (j = 0; j < MAX_BASE36_POWER_TABLE_ENTRIES; ++j) {
 | |
| 	    base36_power_cache[i][j] = Qnil;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| power_cache_get_power(int base, int power_level, size_t *numdigits_ret)
 | |
| {
 | |
|     /*
 | |
|      * MAX_BASE36_POWER_TABLE_ENTRIES is big enough to that
 | |
|      * base36_power_cache[base][MAX_BASE36_POWER_TABLE_ENTRIES-1] fills whole memory.
 | |
|      * So MAX_BASE36_POWER_TABLE_ENTRIES <= power_level is not possible to calculate.
 | |
|      *
 | |
|      * number-of-bytes =
 | |
|      * log256(base36_power_cache[base][MAX_BASE36_POWER_TABLE_ENTRIES-1]) =
 | |
|      * log256(maxpow_in_bdigit_dbl(base)**(2**(MAX_BASE36_POWER_TABLE_ENTRIES-1))) =
 | |
|      * log256(maxpow_in_bdigit_dbl(base)**(2**(SIZEOF_SIZE_T*CHAR_BIT))) =
 | |
|      * (2**(SIZEOF_SIZE_T*CHAR_BIT))*log256(maxpow_in_bdigit_dbl(base)) =
 | |
|      * (256**SIZEOF_SIZE_T)*log256(maxpow_in_bdigit_dbl(base)) >
 | |
|      * (256**SIZEOF_SIZE_T)*(sizeof(BDIGIT_DBL)-1) >
 | |
|      * 256**SIZEOF_SIZE_T
 | |
|      */
 | |
|     if (MAX_BASE36_POWER_TABLE_ENTRIES <= power_level)
 | |
|         rb_bug("too big power number requested: maxpow_in_bdigit_dbl(%d)**(2**%d)", base, power_level);
 | |
| 
 | |
|     if (NIL_P(base36_power_cache[base - 2][power_level])) {
 | |
|         VALUE power;
 | |
|         size_t numdigits;
 | |
|         if (power_level == 0) {
 | |
|             int numdigits0;
 | |
|             BDIGIT_DBL dd = maxpow_in_bdigit_dbl(base, &numdigits0);
 | |
|             power = bignew(2, 1);
 | |
|             bdigitdbl2bary(BDIGITS(power), 2, dd);
 | |
|             numdigits = numdigits0;
 | |
|         }
 | |
|         else {
 | |
|             power = bigtrunc(bigsq(power_cache_get_power(base, power_level - 1, &numdigits)));
 | |
|             numdigits *= 2;
 | |
|         }
 | |
|         rb_obj_hide(power);
 | |
|         base36_power_cache[base - 2][power_level] = power;
 | |
|         base36_numdigits_cache[base - 2][power_level] = numdigits;
 | |
| 	rb_gc_register_mark_object(power);
 | |
|     }
 | |
|     if (numdigits_ret)
 | |
|         *numdigits_ret = base36_numdigits_cache[base - 2][power_level];
 | |
|     return base36_power_cache[base - 2][power_level];
 | |
| }
 | |
| 
 | |
| struct big2str_struct {
 | |
|     int negative;
 | |
|     int base;
 | |
|     BDIGIT_DBL hbase2;
 | |
|     int hbase2_numdigits;
 | |
|     VALUE result;
 | |
|     char *ptr;
 | |
| };
 | |
| 
 | |
| static void
 | |
| big2str_alloc(struct big2str_struct *b2s, size_t len)
 | |
| {
 | |
|     if (LONG_MAX-1 < len)
 | |
|         rb_raise(rb_eArgError, "too big number");
 | |
|     b2s->result = rb_usascii_str_new(0, (long)(len + 1)); /* plus one for sign */
 | |
|     b2s->ptr = RSTRING_PTR(b2s->result);
 | |
|     if (b2s->negative)
 | |
|         *b2s->ptr++ = '-';
 | |
| }
 | |
| 
 | |
| static void
 | |
| big2str_2bdigits(struct big2str_struct *b2s, BDIGIT *xds, size_t xn, size_t taillen)
 | |
| {
 | |
|     size_t j;
 | |
|     BDIGIT_DBL num;
 | |
|     char buf[SIZEOF_BDIGIT_DBL*CHAR_BIT], *p;
 | |
|     int beginning = !b2s->ptr;
 | |
|     size_t len = 0;
 | |
| 
 | |
|     assert(xn <= 2);
 | |
|     num = bary2bdigitdbl(xds, xn);
 | |
| 
 | |
|     if (beginning) {
 | |
|         if (num == 0)
 | |
|             return;
 | |
|         p = buf;
 | |
|         j = sizeof(buf);
 | |
|         do {
 | |
|             BDIGIT_DBL idx = num % b2s->base;
 | |
|             num /= b2s->base;
 | |
|             p[--j] = ruby_digitmap[idx];
 | |
|         } while (num);
 | |
|         len = sizeof(buf) - j;
 | |
|         big2str_alloc(b2s, len + taillen);
 | |
| 	MEMCPY(b2s->ptr, buf + j, char, len);
 | |
|     }
 | |
|     else {
 | |
|         p = b2s->ptr;
 | |
|         j = b2s->hbase2_numdigits;
 | |
|         do {
 | |
|             BDIGIT_DBL idx = num % b2s->base;
 | |
|             num /= b2s->base;
 | |
|             p[--j] = ruby_digitmap[idx];
 | |
|         } while (j);
 | |
|         len = b2s->hbase2_numdigits;
 | |
|     }
 | |
|     b2s->ptr += len;
 | |
| }
 | |
| 
 | |
| static void
 | |
| big2str_karatsuba(struct big2str_struct *b2s, BDIGIT *xds, size_t xn, size_t wn,
 | |
| 		  int power_level, size_t taillen)
 | |
| {
 | |
|     VALUE b;
 | |
|     size_t half_numdigits, lower_numdigits;
 | |
|     int lower_power_level;
 | |
|     size_t bn;
 | |
|     const BDIGIT *bds;
 | |
|     size_t len;
 | |
| 
 | |
|     /*
 | |
|      * Precondition:
 | |
|      * abs(x) < maxpow**(2**power_level)
 | |
|      * where
 | |
|      *   maxpow = maxpow_in_bdigit_dbl(base, &numdigits)
 | |
|      *
 | |
|      * This function generates sequence of zeros, and then stringized abs(x) into b2s->ptr.
 | |
|      *
 | |
|      * b2s->ptr can be NULL.
 | |
|      * It is allocated when the first character is generated via big2str_alloc.
 | |
|      *
 | |
|      * The prefix zeros should be generated if and only if b2s->ptr is not NULL.
 | |
|      * When the zeros are generated, the zeros and abs(x) consists
 | |
|      * numdigits*(2**power_level) characters at total.
 | |
|      *
 | |
|      * Note:
 | |
|      * power_cache_get_power(base, power_level, &len) may not be cached yet. It should not be called.
 | |
|      * power_cache_get_power(base, power_level-1, &len) should be cached already if 0 <= power_level-1.
 | |
|      */
 | |
| 
 | |
|     if (xn == 0 || bary_zero_p(xds, xn)) {
 | |
| 	if (b2s->ptr) {
 | |
|             /* When x is zero, power_cache_get_power(base, power_level) should be cached already. */
 | |
|             power_cache_get_power(b2s->base, power_level, &len);
 | |
| 	    memset(b2s->ptr, '0', len);
 | |
|             b2s->ptr += len;
 | |
| 	}
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (power_level == 0) {
 | |
| 	big2str_2bdigits(b2s, xds, xn, taillen);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     lower_power_level = power_level-1;
 | |
|     b = power_cache_get_power(b2s->base, lower_power_level, &lower_numdigits);
 | |
|     bn = BIGNUM_LEN(b);
 | |
|     bds = BDIGITS(b);
 | |
| 
 | |
|     half_numdigits = lower_numdigits;
 | |
| 
 | |
|     while (0 < lower_power_level &&
 | |
|             (xn < bn ||
 | |
|              (xn == bn && bary_cmp(xds, xn, bds, bn) < 0))) {
 | |
|         lower_power_level--;
 | |
|         b = power_cache_get_power(b2s->base, lower_power_level, &lower_numdigits);
 | |
|         bn = BIGNUM_LEN(b);
 | |
|         bds = BDIGITS(b);
 | |
|     }
 | |
| 
 | |
|     if (lower_power_level == 0 &&
 | |
|             (xn < bn ||
 | |
|              (xn == bn && bary_cmp(xds, xn, bds, bn) < 0))) {
 | |
|         if (b2s->ptr) {
 | |
|             len = half_numdigits * 2 - lower_numdigits;
 | |
|             memset(b2s->ptr, '0', len);
 | |
|             b2s->ptr += len;
 | |
|         }
 | |
| 	big2str_2bdigits(b2s, xds, xn, taillen);
 | |
|     }
 | |
|     else {
 | |
|         BDIGIT *qds, *rds;
 | |
|         size_t qn, rn;
 | |
|         BDIGIT *tds;
 | |
|         int shift;
 | |
| 
 | |
|         if (lower_power_level != power_level-1 && b2s->ptr) {
 | |
|             len = (half_numdigits - lower_numdigits) * 2;
 | |
|             memset(b2s->ptr, '0', len);
 | |
|             b2s->ptr += len;
 | |
|         }
 | |
| 
 | |
|         shift = nlz(bds[bn-1]);
 | |
| 
 | |
|         qn = xn + BIGDIVREM_EXTRA_WORDS;
 | |
| 
 | |
|         if (shift == 0) {
 | |
|             /* bigdivrem_restoring will not modify y.
 | |
|              * So use bds directly.  */
 | |
|             tds = (BDIGIT *)bds;
 | |
|             xds[xn] = 0;
 | |
|         }
 | |
|         else {
 | |
|             /* bigdivrem_restoring will modify y.
 | |
|              * So use temporary buffer.  */
 | |
|             tds = xds + qn;
 | |
|             assert(qn + bn <= xn + wn);
 | |
|             bary_small_lshift(tds, bds, bn, shift);
 | |
|             xds[xn] = bary_small_lshift(xds, xds, xn, shift);
 | |
|         }
 | |
| 
 | |
|         bigdivrem_restoring(xds, qn, tds, bn);
 | |
| 
 | |
|         rds = xds;
 | |
|         rn = bn;
 | |
| 
 | |
|         qds = xds + bn;
 | |
|         qn = qn - bn;
 | |
| 
 | |
|         if (shift) {
 | |
|             bary_small_rshift(rds, rds, rn, shift, 0);
 | |
|         }
 | |
| 
 | |
|         BARY_TRUNC(qds, qn);
 | |
|         assert(qn <= bn);
 | |
|         big2str_karatsuba(b2s, qds, qn, xn+wn - (rn+qn), lower_power_level, lower_numdigits+taillen);
 | |
|         BARY_TRUNC(rds, rn);
 | |
|         big2str_karatsuba(b2s, rds, rn, xn+wn - rn, lower_power_level, taillen);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| big2str_base_poweroftwo(VALUE x, int base)
 | |
| {
 | |
|     int word_numbits = ffs(base) - 1;
 | |
|     size_t numwords;
 | |
|     VALUE result;
 | |
|     char *ptr;
 | |
|     numwords = rb_absint_numwords(x, word_numbits, NULL);
 | |
|     if (BIGNUM_NEGATIVE_P(x)) {
 | |
|         if (LONG_MAX-1 < numwords)
 | |
|             rb_raise(rb_eArgError, "too big number");
 | |
|         result = rb_usascii_str_new(0, 1+numwords);
 | |
|         ptr = RSTRING_PTR(result);
 | |
|         *ptr++ = BIGNUM_POSITIVE_P(x) ? '+' : '-';
 | |
|     }
 | |
|     else {
 | |
|         if (LONG_MAX < numwords)
 | |
|             rb_raise(rb_eArgError, "too big number");
 | |
|         result = rb_usascii_str_new(0, numwords);
 | |
|         ptr = RSTRING_PTR(result);
 | |
|     }
 | |
|     rb_integer_pack(x, ptr, numwords, 1, CHAR_BIT-word_numbits,
 | |
|                     INTEGER_PACK_BIG_ENDIAN);
 | |
|     while (0 < numwords) {
 | |
|         *ptr = ruby_digitmap[*(unsigned char *)ptr];
 | |
|         ptr++;
 | |
|         numwords--;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big2str_poweroftwo(VALUE x, int base)
 | |
| {
 | |
|     return big2str_base_poweroftwo(x, base);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| big2str_generic(VALUE x, int base)
 | |
| {
 | |
|     BDIGIT *xds;
 | |
|     size_t xn;
 | |
|     struct big2str_struct b2s_data;
 | |
|     int power_level;
 | |
|     VALUE power;
 | |
| 
 | |
|     xds = BDIGITS(x);
 | |
|     xn = BIGNUM_LEN(x);
 | |
|     BARY_TRUNC(xds, xn);
 | |
| 
 | |
|     if (xn == 0) {
 | |
| 	return rb_usascii_str_new2("0");
 | |
|     }
 | |
| 
 | |
|     if (!valid_radix_p(base))
 | |
| 	invalid_radix(base);
 | |
| 
 | |
|     if (xn >= LONG_MAX/BITSPERDIG) {
 | |
|         rb_raise(rb_eRangeError, "bignum too big to convert into `string'");
 | |
|     }
 | |
| 
 | |
|     power_level = 0;
 | |
|     power = power_cache_get_power(base, power_level, NULL);
 | |
|     while (power_level < MAX_BASE36_POWER_TABLE_ENTRIES &&
 | |
|            (size_t)BIGNUM_LEN(power) <= (xn+1)/2) {
 | |
|         power_level++;
 | |
|         power = power_cache_get_power(base, power_level, NULL);
 | |
|     }
 | |
|     assert(power_level != MAX_BASE36_POWER_TABLE_ENTRIES);
 | |
| 
 | |
|     if ((size_t)BIGNUM_LEN(power) <= xn) {
 | |
|         /*
 | |
|          * This increment guarantees x < power_cache_get_power(base, power_level)
 | |
|          * without invoking it actually.
 | |
|          * (power_cache_get_power(base, power_level) can be slow and not used
 | |
|          * in big2str_karatsuba.)
 | |
|          *
 | |
|          * Although it is possible that x < power_cache_get_power(base, power_level-1),
 | |
|          * it is no problem because big2str_karatsuba checks it and
 | |
|          * doesn't affect the result when b2s_data.ptr is NULL.
 | |
|          */
 | |
|         power_level++;
 | |
|     }
 | |
| 
 | |
|     b2s_data.negative = BIGNUM_NEGATIVE_P(x);
 | |
|     b2s_data.base = base;
 | |
|     b2s_data.hbase2 = maxpow_in_bdigit_dbl(base, &b2s_data.hbase2_numdigits);
 | |
| 
 | |
|     b2s_data.result = Qnil;
 | |
|     b2s_data.ptr = NULL;
 | |
| 
 | |
|     if (power_level == 0) {
 | |
| 	big2str_2bdigits(&b2s_data, xds, xn, 0);
 | |
|     }
 | |
|     else {
 | |
|         VALUE tmpw = 0;
 | |
|         BDIGIT *wds;
 | |
|         size_t wn;
 | |
|         wn = power_level * BIGDIVREM_EXTRA_WORDS + BIGNUM_LEN(power);
 | |
|         wds = ALLOCV_N(BDIGIT, tmpw, xn + wn);
 | |
|         MEMCPY(wds, xds, BDIGIT, xn);
 | |
| 	big2str_karatsuba(&b2s_data, wds, xn, wn, power_level, 0);
 | |
|         if (tmpw)
 | |
|             ALLOCV_END(tmpw);
 | |
|     }
 | |
|     RB_GC_GUARD(x);
 | |
| 
 | |
|     *b2s_data.ptr = '\0';
 | |
|     rb_str_resize(b2s_data.result, (long)(b2s_data.ptr - RSTRING_PTR(b2s_data.result)));
 | |
| 
 | |
|     RB_GC_GUARD(x);
 | |
|     return b2s_data.result;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big2str_generic(VALUE x, int base)
 | |
| {
 | |
|     return big2str_generic(x, base);
 | |
| }
 | |
| 
 | |
| #ifdef USE_GMP
 | |
| static VALUE
 | |
| big2str_gmp(VALUE x, int base)
 | |
| {
 | |
|     const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
 | |
|     mpz_t mx;
 | |
|     size_t size;
 | |
|     VALUE str;
 | |
|     BDIGIT *xds = BDIGITS(x);
 | |
|     size_t xn = BIGNUM_LEN(x);
 | |
| 
 | |
|     mpz_init(mx);
 | |
|     mpz_import(mx, xn, -1, sizeof(BDIGIT), 0, nails, xds);
 | |
| 
 | |
|     size = mpz_sizeinbase(mx, base);
 | |
| 
 | |
|     if (BIGNUM_NEGATIVE_P(x)) {
 | |
|         mpz_neg(mx, mx);
 | |
|         str = rb_usascii_str_new(0, size+1);
 | |
|     }
 | |
|     else {
 | |
|         str = rb_usascii_str_new(0, size);
 | |
|     }
 | |
|     mpz_get_str(RSTRING_PTR(str), base, mx);
 | |
|     mpz_clear(mx);
 | |
| 
 | |
|     if (RSTRING_PTR(str)[RSTRING_LEN(str)-1] == '\0') {
 | |
|         rb_str_set_len(str, RSTRING_LEN(str)-1);
 | |
|     }
 | |
| 
 | |
|     RB_GC_GUARD(x);
 | |
|     return str;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big2str_gmp(VALUE x, int base)
 | |
| {
 | |
|     return big2str_gmp(x, base);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static VALUE
 | |
| rb_big2str1(VALUE x, int base)
 | |
| {
 | |
|     BDIGIT *xds;
 | |
|     size_t xn;
 | |
| 
 | |
|     if (FIXNUM_P(x)) {
 | |
| 	return rb_fix2str(x, base);
 | |
|     }
 | |
| 
 | |
|     bigtrunc(x);
 | |
|     xds = BDIGITS(x);
 | |
|     xn = BIGNUM_LEN(x);
 | |
|     BARY_TRUNC(xds, xn);
 | |
| 
 | |
|     if (xn == 0) {
 | |
| 	return rb_usascii_str_new2("0");
 | |
|     }
 | |
| 
 | |
|     if (!valid_radix_p(base))
 | |
| 	invalid_radix(base);
 | |
| 
 | |
|     if (xn >= LONG_MAX/BITSPERDIG) {
 | |
|         rb_raise(rb_eRangeError, "bignum too big to convert into `string'");
 | |
|     }
 | |
| 
 | |
|     if (POW2_P(base)) {
 | |
|         /* base == 2 || base == 4 || base == 8 || base == 16 || base == 32 */
 | |
|         return big2str_base_poweroftwo(x, base);
 | |
|     }
 | |
| 
 | |
| #ifdef USE_GMP
 | |
|     if (GMP_BIG2STR_DIGITS < xn) {
 | |
|         return big2str_gmp(x, base);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return big2str_generic(x, base);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big2str(VALUE x, int base)
 | |
| {
 | |
|     return rb_big2str1(x, base);
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| big2ulong(VALUE x, const char *type)
 | |
| {
 | |
| #if SIZEOF_LONG > SIZEOF_BDIGIT
 | |
|     size_t i;
 | |
| #endif
 | |
|     size_t len = BIGNUM_LEN(x);
 | |
|     unsigned long num;
 | |
|     BDIGIT *ds;
 | |
| 
 | |
|     if (len == 0)
 | |
|         return 0;
 | |
|     if (BIGSIZE(x) > sizeof(long)) {
 | |
|         rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type);
 | |
|     }
 | |
|     ds = BDIGITS(x);
 | |
| #if SIZEOF_LONG <= SIZEOF_BDIGIT
 | |
|     num = (unsigned long)ds[0];
 | |
| #else
 | |
|     num = 0;
 | |
|     for (i = 0; i < len; i++) {
 | |
| 	num <<= BITSPERDIG;
 | |
|         num += (unsigned long)ds[len - i - 1]; /* overflow is already checked */
 | |
|     }
 | |
| #endif
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| unsigned long
 | |
| rb_big2ulong(VALUE x)
 | |
| {
 | |
|     unsigned long num = big2ulong(x, "unsigned long");
 | |
| 
 | |
|     if (BIGNUM_POSITIVE_P(x)) {
 | |
|         return num;
 | |
|     }
 | |
|     else {
 | |
|         if (num <= 1+(unsigned long)(-(LONG_MIN+1)))
 | |
|             return -(long)(num-1)-1;
 | |
|     }
 | |
|     rb_raise(rb_eRangeError, "bignum out of range of unsigned long");
 | |
| }
 | |
| 
 | |
| long
 | |
| rb_big2long(VALUE x)
 | |
| {
 | |
|     unsigned long num = big2ulong(x, "long");
 | |
| 
 | |
|     if (BIGNUM_POSITIVE_P(x)) {
 | |
|         if (num <= LONG_MAX)
 | |
|             return num;
 | |
|     }
 | |
|     else {
 | |
|         if (num <= 1+(unsigned long)(-(LONG_MIN+1)))
 | |
|             return -(long)(num-1)-1;
 | |
|     }
 | |
|     rb_raise(rb_eRangeError, "bignum too big to convert into `long'");
 | |
| }
 | |
| 
 | |
| #if HAVE_LONG_LONG
 | |
| 
 | |
| static unsigned LONG_LONG
 | |
| big2ull(VALUE x, const char *type)
 | |
| {
 | |
| #if SIZEOF_LONG_LONG > SIZEOF_BDIGIT
 | |
|     size_t i;
 | |
| #endif
 | |
|     size_t len = BIGNUM_LEN(x);
 | |
|     unsigned LONG_LONG num;
 | |
|     BDIGIT *ds = BDIGITS(x);
 | |
| 
 | |
|     if (len == 0)
 | |
|         return 0;
 | |
|     if (BIGSIZE(x) > SIZEOF_LONG_LONG)
 | |
| 	rb_raise(rb_eRangeError, "bignum too big to convert into `%s'", type);
 | |
| #if SIZEOF_LONG_LONG <= SIZEOF_BDIGIT
 | |
|     num = (unsigned LONG_LONG)ds[0];
 | |
| #else
 | |
|     num = 0;
 | |
|     for (i = 0; i < len; i++) {
 | |
| 	num = BIGUP(num);
 | |
|         num += ds[len - i - 1];
 | |
|     }
 | |
| #endif
 | |
|     return num;
 | |
| }
 | |
| 
 | |
| unsigned LONG_LONG
 | |
| rb_big2ull(VALUE x)
 | |
| {
 | |
|     unsigned LONG_LONG num = big2ull(x, "unsigned long long");
 | |
| 
 | |
|     if (BIGNUM_POSITIVE_P(x)) {
 | |
|         return num;
 | |
|     }
 | |
|     else {
 | |
|         if (num <= 1+(unsigned LONG_LONG)(-(LLONG_MIN+1)))
 | |
|             return -(LONG_LONG)(num-1)-1;
 | |
|     }
 | |
|     rb_raise(rb_eRangeError, "bignum out of range of unsigned long long");
 | |
| }
 | |
| 
 | |
| LONG_LONG
 | |
| rb_big2ll(VALUE x)
 | |
| {
 | |
|     unsigned LONG_LONG num = big2ull(x, "long long");
 | |
| 
 | |
|     if (BIGNUM_POSITIVE_P(x)) {
 | |
|         if (num <= LLONG_MAX)
 | |
|             return num;
 | |
|     }
 | |
|     else {
 | |
|         if (num <= 1+(unsigned LONG_LONG)(-(LLONG_MIN+1)))
 | |
|             return -(LONG_LONG)(num-1)-1;
 | |
|     }
 | |
|     rb_raise(rb_eRangeError, "bignum too big to convert into `long long'");
 | |
| }
 | |
| 
 | |
| #endif  /* HAVE_LONG_LONG */
 | |
| 
 | |
| static VALUE
 | |
| dbl2big(double d)
 | |
| {
 | |
|     long i = 0;
 | |
|     BDIGIT c;
 | |
|     BDIGIT *digits;
 | |
|     VALUE z;
 | |
|     double u = (d < 0)?-d:d;
 | |
| 
 | |
|     if (isinf(d)) {
 | |
| 	rb_raise(rb_eFloatDomainError, d < 0 ? "-Infinity" : "Infinity");
 | |
|     }
 | |
|     if (isnan(d)) {
 | |
| 	rb_raise(rb_eFloatDomainError, "NaN");
 | |
|     }
 | |
| 
 | |
|     while (1.0 <= u) {
 | |
| 	u /= (double)(BIGRAD);
 | |
| 	i++;
 | |
|     }
 | |
|     z = bignew(i, d>=0);
 | |
|     digits = BDIGITS(z);
 | |
|     while (i--) {
 | |
| 	u *= BIGRAD;
 | |
| 	c = (BDIGIT)u;
 | |
| 	u -= c;
 | |
| 	digits[i] = c;
 | |
|     }
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_dbl2big(double d)
 | |
| {
 | |
|     return bignorm(dbl2big(d));
 | |
| }
 | |
| 
 | |
| static double
 | |
| big2dbl(VALUE x)
 | |
| {
 | |
|     double d = 0.0;
 | |
|     long i = (bigtrunc(x), BIGNUM_LEN(x)), lo = 0, bits;
 | |
|     BDIGIT *ds = BDIGITS(x), dl;
 | |
| 
 | |
|     if (i) {
 | |
| 	bits = i * BITSPERDIG - nlz(ds[i-1]);
 | |
| 	if (bits > DBL_MANT_DIG+DBL_MAX_EXP) {
 | |
| 	    d = HUGE_VAL;
 | |
| 	}
 | |
| 	else {
 | |
| 	    if (bits > DBL_MANT_DIG+1)
 | |
| 		lo = (bits -= DBL_MANT_DIG+1) / BITSPERDIG;
 | |
| 	    else
 | |
| 		bits = 0;
 | |
| 	    while (--i > lo) {
 | |
| 		d = ds[i] + BIGRAD*d;
 | |
| 	    }
 | |
| 	    dl = ds[i];
 | |
| 	    if (bits && (dl & ((BDIGIT)1 << (bits %= BITSPERDIG)))) {
 | |
| 		int carry = (dl & ~(BDIGMAX << bits)) != 0;
 | |
| 		if (!carry) {
 | |
| 		    while (i-- > 0) {
 | |
| 			carry = ds[i] != 0;
 | |
| 			if (carry) break;
 | |
| 		    }
 | |
| 		}
 | |
| 		if (carry) {
 | |
|                     BDIGIT mask = BDIGMAX;
 | |
|                     BDIGIT bit = 1;
 | |
|                     mask <<= bits;
 | |
|                     bit <<= bits;
 | |
|                     dl &= mask;
 | |
|                     dl += bit;
 | |
|                     dl = BIGLO(dl);
 | |
| 		    if (!dl) d += 1;
 | |
| 		}
 | |
| 	    }
 | |
| 	    d = dl + BIGRAD*d;
 | |
| 	    if (lo) {
 | |
| 		if (lo > INT_MAX / BITSPERDIG)
 | |
| 		    d = HUGE_VAL;
 | |
| 		else if (lo < INT_MIN / BITSPERDIG)
 | |
| 		    d = 0.0;
 | |
| 		else
 | |
| 		    d = ldexp(d, (int)(lo * BITSPERDIG));
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     if (BIGNUM_NEGATIVE_P(x)) d = -d;
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| double
 | |
| rb_big2dbl(VALUE x)
 | |
| {
 | |
|     double d = big2dbl(x);
 | |
| 
 | |
|     if (isinf(d)) {
 | |
| 	rb_warning("Bignum out of Float range");
 | |
| 	if (d < 0.0)
 | |
| 	    d = -HUGE_VAL;
 | |
| 	else
 | |
| 	    d = HUGE_VAL;
 | |
|     }
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_integer_float_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     double yd = RFLOAT_VALUE(y);
 | |
|     double yi, yf;
 | |
|     VALUE rel;
 | |
| 
 | |
|     if (isnan(yd))
 | |
|         return Qnil;
 | |
|     if (isinf(yd)) {
 | |
|         if (yd > 0.0) return INT2FIX(-1);
 | |
|         else return INT2FIX(1);
 | |
|     }
 | |
|     yf = modf(yd, &yi);
 | |
|     if (FIXNUM_P(x)) {
 | |
| #if SIZEOF_LONG * CHAR_BIT < DBL_MANT_DIG /* assume FLT_RADIX == 2 */
 | |
|         double xd = (double)FIX2LONG(x);
 | |
|         if (xd < yd)
 | |
|             return INT2FIX(-1);
 | |
|         if (xd > yd)
 | |
|             return INT2FIX(1);
 | |
|         return INT2FIX(0);
 | |
| #else
 | |
|         long xn, yn;
 | |
|         if (yi < FIXNUM_MIN)
 | |
|             return INT2FIX(1);
 | |
|         if (FIXNUM_MAX+1 <= yi)
 | |
|             return INT2FIX(-1);
 | |
|         xn = FIX2LONG(x);
 | |
|         yn = (long)yi;
 | |
|         if (xn < yn)
 | |
|             return INT2FIX(-1);
 | |
|         if (xn > yn)
 | |
|             return INT2FIX(1);
 | |
|         if (yf < 0.0)
 | |
|             return INT2FIX(1);
 | |
|         if (0.0 < yf)
 | |
|             return INT2FIX(-1);
 | |
|         return INT2FIX(0);
 | |
| #endif
 | |
|     }
 | |
|     y = rb_dbl2big(yi);
 | |
|     rel = rb_big_cmp(x, y);
 | |
|     if (yf == 0.0 || rel != INT2FIX(0))
 | |
|         return rel;
 | |
|     if (yf < 0.0)
 | |
|         return INT2FIX(1);
 | |
|     return INT2FIX(-1);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_integer_float_eq(VALUE x, VALUE y)
 | |
| {
 | |
|     double yd = RFLOAT_VALUE(y);
 | |
|     double yi, yf;
 | |
| 
 | |
|     if (isnan(yd) || isinf(yd))
 | |
|         return Qfalse;
 | |
|     yf = modf(yd, &yi);
 | |
|     if (yf != 0)
 | |
|         return Qfalse;
 | |
|     if (FIXNUM_P(x)) {
 | |
| #if SIZEOF_LONG * CHAR_BIT < DBL_MANT_DIG /* assume FLT_RADIX == 2 */
 | |
|         double xd = (double)FIX2LONG(x);
 | |
|         if (xd != yd)
 | |
|             return Qfalse;
 | |
|         return Qtrue;
 | |
| #else
 | |
|         long xn, yn;
 | |
|         if (yi < LONG_MIN || LONG_MAX < yi)
 | |
|             return Qfalse;
 | |
|         xn = FIX2LONG(x);
 | |
|         yn = (long)yi;
 | |
|         if (xn != yn)
 | |
|             return Qfalse;
 | |
|         return Qtrue;
 | |
| #endif
 | |
|     }
 | |
|     y = rb_dbl2big(yi);
 | |
|     return rb_big_eq(x, y);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_cmp(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	x = bigfixize(x);
 | |
|         if (FIXNUM_P(x)) {
 | |
| 	    /* SIGNED_VALUE and Fixnum have same sign-bits, same
 | |
| 	     * order */
 | |
| 	    SIGNED_VALUE sx = (SIGNED_VALUE)x, sy = (SIGNED_VALUE)y;
 | |
| 	    if (sx < sy) return INT2FIX(-1);
 | |
| 	    return INT2FIX(sx > sy);
 | |
|         }
 | |
|     }
 | |
|     else if (RB_BIGNUM_TYPE_P(y)) {
 | |
| 	if (BIGNUM_SIGN(x) == BIGNUM_SIGN(y)) {
 | |
| 	    int cmp = bary_cmp(BDIGITS(x), BIGNUM_LEN(x), BDIGITS(y), BIGNUM_LEN(y));
 | |
| 	    return INT2FIX(BIGNUM_SIGN(x) ? cmp : -cmp);
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(y)) {
 | |
|         return rb_integer_float_cmp(x, y);
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_cmp(x, y, idCmp);
 | |
|     }
 | |
|     return INT2FIX(BIGNUM_SIGN(x) ? 1 : -1);
 | |
| }
 | |
| 
 | |
| enum big_op_t {
 | |
|     big_op_gt,
 | |
|     big_op_ge,
 | |
|     big_op_lt,
 | |
|     big_op_le
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| big_op(VALUE x, VALUE y, enum big_op_t op)
 | |
| {
 | |
|     VALUE rel;
 | |
|     int n;
 | |
| 
 | |
|     if (RB_INTEGER_TYPE_P(y)) {
 | |
| 	rel = rb_big_cmp(x, y);
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(y)) {
 | |
|         rel = rb_integer_float_cmp(x, y);
 | |
|     }
 | |
|     else {
 | |
| 	ID id = 0;
 | |
| 	switch (op) {
 | |
| 	  case big_op_gt: id = '>'; break;
 | |
| 	  case big_op_ge: id = idGE; break;
 | |
| 	  case big_op_lt: id = '<'; break;
 | |
| 	  case big_op_le: id = idLE; break;
 | |
| 	}
 | |
| 	return rb_num_coerce_relop(x, y, id);
 | |
|     }
 | |
| 
 | |
|     if (NIL_P(rel)) return Qfalse;
 | |
|     n = FIX2INT(rel);
 | |
| 
 | |
|     switch (op) {
 | |
| 	case big_op_gt: return n >  0 ? Qtrue : Qfalse;
 | |
| 	case big_op_ge: return n >= 0 ? Qtrue : Qfalse;
 | |
| 	case big_op_lt: return n <  0 ? Qtrue : Qfalse;
 | |
| 	case big_op_le: return n <= 0 ? Qtrue : Qfalse;
 | |
|     }
 | |
|     return Qundef;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_gt(VALUE x, VALUE y)
 | |
| {
 | |
|     return big_op(x, y, big_op_gt);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_ge(VALUE x, VALUE y)
 | |
| {
 | |
|     return big_op(x, y, big_op_ge);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_lt(VALUE x, VALUE y)
 | |
| {
 | |
|     return big_op(x, y, big_op_lt);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_le(VALUE x, VALUE y)
 | |
| {
 | |
|     return big_op(x, y, big_op_le);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     big == obj  -> true or false
 | |
|  *
 | |
|  *  Returns <code>true</code> only if <i>obj</i> has the same value
 | |
|  *  as <i>big</i>. Contrast this with <code>Integer#eql?</code>, which
 | |
|  *  requires <i>obj</i> to be a <code>Integer</code>.
 | |
|  *
 | |
|  *     68719476736 == 68719476736.0   #=> true
 | |
|  */
 | |
| 
 | |
| VALUE
 | |
| rb_big_eq(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	return bignorm(x) == y ? Qtrue : Qfalse;
 | |
|     }
 | |
|     else if (RB_BIGNUM_TYPE_P(y)) {
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(y)) {
 | |
|         return rb_integer_float_eq(x, y);
 | |
|     }
 | |
|     else {
 | |
| 	return rb_equal(y, x);
 | |
|     }
 | |
|     if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y)) return Qfalse;
 | |
|     if (BIGNUM_LEN(x) != BIGNUM_LEN(y)) return Qfalse;
 | |
|     if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,BIGNUM_LEN(y)) != 0) return Qfalse;
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_eql(VALUE x, VALUE y)
 | |
| {
 | |
|     if (!RB_BIGNUM_TYPE_P(y)) return Qfalse;
 | |
|     if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y)) return Qfalse;
 | |
|     if (BIGNUM_LEN(x) != BIGNUM_LEN(y)) return Qfalse;
 | |
|     if (MEMCMP(BDIGITS(x),BDIGITS(y),BDIGIT,BIGNUM_LEN(y)) != 0) return Qfalse;
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_uminus(VALUE x)
 | |
| {
 | |
|     VALUE z = rb_big_clone(x);
 | |
| 
 | |
|     BIGNUM_NEGATE(z);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_comp(VALUE x)
 | |
| {
 | |
|     VALUE z = rb_big_clone(x);
 | |
|     BDIGIT *ds = BDIGITS(z);
 | |
|     long n = BIGNUM_LEN(z);
 | |
| 
 | |
|     if (!n) return INT2FIX(-1);
 | |
| 
 | |
|     if (BIGNUM_POSITIVE_P(z)) {
 | |
|         if (bary_add_one(ds, n)) {
 | |
|             big_extend_carry(z);
 | |
|         }
 | |
|         BIGNUM_SET_NEGATIVE_SIGN(z);
 | |
|     }
 | |
|     else {
 | |
|         bary_neg(ds, n);
 | |
|         if (bary_add_one(ds, n))
 | |
|             return INT2FIX(-1);
 | |
|         bary_neg(ds, n);
 | |
|         BIGNUM_SET_POSITIVE_SIGN(z);
 | |
|     }
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigsub(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
|     BDIGIT *xds, *yds, *zds;
 | |
|     long xn, yn, zn;
 | |
| 
 | |
|     xn = BIGNUM_LEN(x);
 | |
|     yn = BIGNUM_LEN(y);
 | |
|     zn = xn < yn ? yn : xn;
 | |
| 
 | |
|     z = bignew(zn, 1);
 | |
| 
 | |
|     xds = BDIGITS(x);
 | |
|     yds = BDIGITS(y);
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
|     if (bary_sub(zds, zn, xds, xn, yds, yn)) {
 | |
|         bary_2comp(zds, zn);
 | |
|         BIGNUM_SET_NEGATIVE_SIGN(z);
 | |
|     }
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| static VALUE bigadd_int(VALUE x, long y);
 | |
| 
 | |
| static VALUE
 | |
| bigsub_int(VALUE x, long y0)
 | |
| {
 | |
|     VALUE z;
 | |
|     BDIGIT *xds, *zds;
 | |
|     long xn, zn;
 | |
|     BDIGIT_DBL_SIGNED num;
 | |
|     long i, y;
 | |
| 
 | |
|     y = y0;
 | |
|     xds = BDIGITS(x);
 | |
|     xn = BIGNUM_LEN(x);
 | |
| 
 | |
|     if (xn == 0)
 | |
|         return LONG2NUM(-y0);
 | |
| 
 | |
|     zn = xn;
 | |
| #if SIZEOF_BDIGIT < SIZEOF_LONG
 | |
|     if (zn < bdigit_roomof(SIZEOF_LONG))
 | |
|         zn = bdigit_roomof(SIZEOF_LONG);
 | |
| #endif
 | |
|     z = bignew(zn, BIGNUM_SIGN(x));
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
| #if SIZEOF_BDIGIT >= SIZEOF_LONG
 | |
|     assert(xn == zn);
 | |
|     num = (BDIGIT_DBL_SIGNED)xds[0] - y;
 | |
|     if (xn == 1 && num < 0) {
 | |
| 	BIGNUM_NEGATE(z);
 | |
| 	zds[0] = (BDIGIT)-num;
 | |
| 	RB_GC_GUARD(x);
 | |
| 	return bignorm(z);
 | |
|     }
 | |
|     zds[0] = BIGLO(num);
 | |
|     num = BIGDN(num);
 | |
|     i = 1;
 | |
|     if (i < xn)
 | |
|         goto y_is_zero_x;
 | |
|     goto finish;
 | |
| #else
 | |
|     num = 0;
 | |
|     for (i=0; i < xn; i++) {
 | |
|         if (y == 0) goto y_is_zero_x;
 | |
| 	num += (BDIGIT_DBL_SIGNED)xds[i] - BIGLO(y);
 | |
| 	zds[i] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
| 	y = BIGDN(y);
 | |
|     }
 | |
|     for (; i < zn; i++) {
 | |
|         if (y == 0) goto y_is_zero_z;
 | |
|         num -= BIGLO(y);
 | |
|         zds[i] = BIGLO(num);
 | |
|         num = BIGDN(num);
 | |
|         y = BIGDN(y);
 | |
|     }
 | |
|     goto finish;
 | |
| #endif
 | |
| 
 | |
|     for (; i < xn; i++) {
 | |
|       y_is_zero_x:
 | |
|         if (num == 0) goto num_is_zero_x;
 | |
| 	num += xds[i];
 | |
| 	zds[i] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
| #if SIZEOF_BDIGIT < SIZEOF_LONG
 | |
|     for (; i < zn; i++) {
 | |
|       y_is_zero_z:
 | |
|         if (num == 0) goto num_is_zero_z;
 | |
|         zds[i] = BIGLO(num);
 | |
|         num = BIGDN(num);
 | |
|     }
 | |
| #endif
 | |
|     goto finish;
 | |
| 
 | |
|     for (; i < xn; i++) {
 | |
|       num_is_zero_x:
 | |
| 	zds[i] = xds[i];
 | |
|     }
 | |
| #if SIZEOF_BDIGIT < SIZEOF_LONG
 | |
|     for (; i < zn; i++) {
 | |
|       num_is_zero_z:
 | |
|         zds[i] = 0;
 | |
|     }
 | |
| #endif
 | |
|     goto finish;
 | |
| 
 | |
|   finish:
 | |
|     assert(num == 0 || num == -1);
 | |
|     if (num < 0) {
 | |
|         get2comp(z);
 | |
| 	BIGNUM_NEGATE(z);
 | |
|     }
 | |
|     RB_GC_GUARD(x);
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigadd_int(VALUE x, long y)
 | |
| {
 | |
|     VALUE z;
 | |
|     BDIGIT *xds, *zds;
 | |
|     long xn, zn;
 | |
|     BDIGIT_DBL num;
 | |
|     long i;
 | |
| 
 | |
|     xds = BDIGITS(x);
 | |
|     xn = BIGNUM_LEN(x);
 | |
| 
 | |
|     if (xn == 0)
 | |
|         return LONG2NUM(y);
 | |
| 
 | |
|     zn = xn;
 | |
| #if SIZEOF_BDIGIT < SIZEOF_LONG
 | |
|     if (zn < bdigit_roomof(SIZEOF_LONG))
 | |
|         zn = bdigit_roomof(SIZEOF_LONG);
 | |
| #endif
 | |
|     zn++;
 | |
| 
 | |
|     z = bignew(zn, BIGNUM_SIGN(x));
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
| #if SIZEOF_BDIGIT >= SIZEOF_LONG
 | |
|     num = (BDIGIT_DBL)xds[0] + y;
 | |
|     zds[0] = BIGLO(num);
 | |
|     num = BIGDN(num);
 | |
|     i = 1;
 | |
|     if (i < xn)
 | |
|         goto y_is_zero_x;
 | |
|     goto y_is_zero_z;
 | |
| #else
 | |
|     num = 0;
 | |
|     for (i=0; i < xn; i++) {
 | |
|         if (y == 0) goto y_is_zero_x;
 | |
| 	num += (BDIGIT_DBL)xds[i] + BIGLO(y);
 | |
| 	zds[i] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
| 	y = BIGDN(y);
 | |
|     }
 | |
|     for (; i < zn; i++) {
 | |
|         if (y == 0) goto y_is_zero_z;
 | |
| 	num += BIGLO(y);
 | |
| 	zds[i] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
| 	y = BIGDN(y);
 | |
|     }
 | |
|     goto finish;
 | |
| 
 | |
| #endif
 | |
| 
 | |
|     for (;i < xn; i++) {
 | |
|       y_is_zero_x:
 | |
|         if (num == 0) goto num_is_zero_x;
 | |
| 	num += (BDIGIT_DBL)xds[i];
 | |
| 	zds[i] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     for (; i < zn; i++) {
 | |
|       y_is_zero_z:
 | |
|         if (num == 0) goto num_is_zero_z;
 | |
| 	zds[i] = BIGLO(num);
 | |
| 	num = BIGDN(num);
 | |
|     }
 | |
|     goto finish;
 | |
| 
 | |
|     for (;i < xn; i++) {
 | |
|       num_is_zero_x:
 | |
| 	zds[i] = xds[i];
 | |
|     }
 | |
|     for (; i < zn; i++) {
 | |
|       num_is_zero_z:
 | |
| 	zds[i] = 0;
 | |
|     }
 | |
|     goto finish;
 | |
| 
 | |
|   finish:
 | |
|     RB_GC_GUARD(x);
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigadd(VALUE x, VALUE y, int sign)
 | |
| {
 | |
|     VALUE z;
 | |
|     size_t len;
 | |
| 
 | |
|     sign = (sign == BIGNUM_SIGN(y));
 | |
|     if (BIGNUM_SIGN(x) != sign) {
 | |
| 	if (sign) return bigsub(y, x);
 | |
| 	return bigsub(x, y);
 | |
|     }
 | |
| 
 | |
|     if (BIGNUM_LEN(x) > BIGNUM_LEN(y)) {
 | |
| 	len = BIGNUM_LEN(x) + 1;
 | |
|     }
 | |
|     else {
 | |
| 	len = BIGNUM_LEN(y) + 1;
 | |
|     }
 | |
|     z = bignew(len, sign);
 | |
| 
 | |
|     bary_add(BDIGITS(z), BIGNUM_LEN(z),
 | |
|              BDIGITS(x), BIGNUM_LEN(x),
 | |
|              BDIGITS(y), BIGNUM_LEN(y));
 | |
| 
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_plus(VALUE x, VALUE y)
 | |
| {
 | |
|     long n;
 | |
| 
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	n = FIX2LONG(y);
 | |
| 	if ((n > 0) != BIGNUM_SIGN(x)) {
 | |
| 	    if (n < 0) {
 | |
| 		n = -n;
 | |
| 	    }
 | |
| 	    return bigsub_int(x, n);
 | |
| 	}
 | |
| 	if (n < 0) {
 | |
| 	    n = -n;
 | |
| 	}
 | |
| 	return bigadd_int(x, n);
 | |
|     }
 | |
|     else if (RB_BIGNUM_TYPE_P(y)) {
 | |
| 	return bignorm(bigadd(x, y, 1));
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(y)) {
 | |
| 	return DBL2NUM(rb_big2dbl(x) + RFLOAT_VALUE(y));
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '+');
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_minus(VALUE x, VALUE y)
 | |
| {
 | |
|     long n;
 | |
| 
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	n = FIX2LONG(y);
 | |
| 	if ((n > 0) != BIGNUM_SIGN(x)) {
 | |
| 	    if (n < 0) {
 | |
| 		n = -n;
 | |
| 	    }
 | |
| 	    return bigadd_int(x, n);
 | |
| 	}
 | |
| 	if (n < 0) {
 | |
| 	    n = -n;
 | |
| 	}
 | |
| 	return bigsub_int(x, n);
 | |
|     }
 | |
|     else if (RB_BIGNUM_TYPE_P(y)) {
 | |
| 	return bignorm(bigadd(x, y, 0));
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(y)) {
 | |
| 	return DBL2NUM(rb_big2dbl(x) - RFLOAT_VALUE(y));
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '-');
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigsq(VALUE x)
 | |
| {
 | |
|     long xn, zn;
 | |
|     VALUE z;
 | |
|     BDIGIT *xds, *zds;
 | |
| 
 | |
|     xn = BIGNUM_LEN(x);
 | |
|     zn = 2 * xn;
 | |
| 
 | |
|     z = bignew(zn, 1);
 | |
| 
 | |
|     xds = BDIGITS(x);
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
|     if (xn < NAIVE_MUL_DIGITS)
 | |
|         bary_sq_fast(zds, zn, xds, xn);
 | |
|     else
 | |
|         bary_mul(zds, zn, xds, xn, xds, xn);
 | |
| 
 | |
|     RB_GC_GUARD(x);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigmul0(VALUE x, VALUE y)
 | |
| {
 | |
|     long xn, yn, zn;
 | |
|     VALUE z;
 | |
|     BDIGIT *xds, *yds, *zds;
 | |
| 
 | |
|     if (x == y)
 | |
|         return bigsq(x);
 | |
| 
 | |
|     xn = BIGNUM_LEN(x);
 | |
|     yn = BIGNUM_LEN(y);
 | |
|     zn = xn + yn;
 | |
| 
 | |
|     z = bignew(zn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
 | |
| 
 | |
|     xds = BDIGITS(x);
 | |
|     yds = BDIGITS(y);
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
|     bary_mul(zds, zn, xds, xn, yds, yn);
 | |
| 
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_mul(VALUE x, VALUE y)
 | |
| {
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
|     }
 | |
|     else if (RB_BIGNUM_TYPE_P(y)) {
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(y)) {
 | |
| 	return DBL2NUM(rb_big2dbl(x) * RFLOAT_VALUE(y));
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, '*');
 | |
|     }
 | |
| 
 | |
|     return bignorm(bigmul0(x, y));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigdivrem(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp)
 | |
| {
 | |
|     long xn = BIGNUM_LEN(x), yn = BIGNUM_LEN(y);
 | |
|     VALUE z;
 | |
|     BDIGIT *xds, *yds, *zds;
 | |
|     BDIGIT dd;
 | |
| 
 | |
|     VALUE q = Qnil, r = Qnil;
 | |
|     BDIGIT *qds, *rds;
 | |
|     long qn, rn;
 | |
| 
 | |
|     yds = BDIGITS(y);
 | |
|     BARY_TRUNC(yds, yn);
 | |
|     if (yn == 0)
 | |
|         rb_num_zerodiv();
 | |
| 
 | |
|     xds = BDIGITS(x);
 | |
|     BARY_TRUNC(xds, xn);
 | |
| 
 | |
|     if (xn < yn || (xn == yn && xds[xn - 1] < yds[yn - 1])) {
 | |
| 	if (divp) *divp = rb_int2big(0);
 | |
| 	if (modp) *modp = x;
 | |
| 	return Qnil;
 | |
|     }
 | |
|     if (yn == 1) {
 | |
| 	dd = yds[0];
 | |
| 	z = bignew(xn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
 | |
| 	zds = BDIGITS(z);
 | |
|         dd = bigdivrem_single(zds, xds, xn, dd);
 | |
| 	if (modp) {
 | |
| 	    *modp = rb_uint2big((uintptr_t)dd);
 | |
| 	    BIGNUM_SET_SIGN(*modp, BIGNUM_SIGN(x));
 | |
| 	}
 | |
| 	if (divp) *divp = z;
 | |
| 	return Qnil;
 | |
|     }
 | |
|     if (xn == 2 && yn == 2) {
 | |
|         BDIGIT_DBL x0 = bary2bdigitdbl(xds, 2);
 | |
|         BDIGIT_DBL y0 = bary2bdigitdbl(yds, 2);
 | |
|         BDIGIT_DBL q0 = x0 / y0;
 | |
|         BDIGIT_DBL r0 = x0 % y0;
 | |
|         if (divp) {
 | |
|             z = bignew(bdigit_roomof(sizeof(BDIGIT_DBL)), BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
 | |
|             zds = BDIGITS(z);
 | |
|             zds[0] = BIGLO(q0);
 | |
|             zds[1] = BIGLO(BIGDN(q0));
 | |
|             *divp = z;
 | |
|         }
 | |
|         if (modp) {
 | |
|             z = bignew(bdigit_roomof(sizeof(BDIGIT_DBL)), BIGNUM_SIGN(x));
 | |
|             zds = BDIGITS(z);
 | |
|             zds[0] = BIGLO(r0);
 | |
|             zds[1] = BIGLO(BIGDN(r0));
 | |
|             *modp = z;
 | |
|         }
 | |
|         return Qnil;
 | |
|     }
 | |
| 
 | |
|     if (divp) {
 | |
|         qn = xn + BIGDIVREM_EXTRA_WORDS;
 | |
|         q = bignew(qn, BIGNUM_SIGN(x)==BIGNUM_SIGN(y));
 | |
|         qds = BDIGITS(q);
 | |
|     }
 | |
|     else {
 | |
|         qn = 0;
 | |
|         qds = NULL;
 | |
|     }
 | |
| 
 | |
|     if (modp) {
 | |
|         rn = yn;
 | |
|         r = bignew(rn, BIGNUM_SIGN(x));
 | |
|         rds = BDIGITS(r);
 | |
|     }
 | |
|     else {
 | |
|         rn = 0;
 | |
|         rds = NULL;
 | |
|     }
 | |
| 
 | |
|     bary_divmod_branch(qds, qn, rds, rn, xds, xn, yds, yn);
 | |
| 
 | |
|     if (divp) {
 | |
|         bigtrunc(q);
 | |
|         *divp = q;
 | |
|     }
 | |
|     if (modp) {
 | |
|         bigtrunc(r);
 | |
|         *modp = r;
 | |
|     }
 | |
| 
 | |
|     return Qnil;
 | |
| }
 | |
| 
 | |
| static void
 | |
| bigdivmod(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp)
 | |
| {
 | |
|     VALUE mod;
 | |
| 
 | |
|     bigdivrem(x, y, divp, &mod);
 | |
|     if (BIGNUM_SIGN(x) != BIGNUM_SIGN(y) && !BIGZEROP(mod)) {
 | |
| 	if (divp) *divp = bigadd(*divp, rb_int2big(1), 0);
 | |
| 	if (modp) *modp = bigadd(mod, y, 1);
 | |
|     }
 | |
|     else if (modp) {
 | |
| 	*modp = mod;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static VALUE
 | |
| rb_big_divide(VALUE x, VALUE y, ID op)
 | |
| {
 | |
|     VALUE z;
 | |
| 
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
|     }
 | |
|     else if (RB_BIGNUM_TYPE_P(y)) {
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(y)) {
 | |
| 	if (op == '/') {
 | |
|             double dx = rb_big2dbl(x);
 | |
|             return rb_flo_div_flo(DBL2NUM(dx), y);
 | |
| 	}
 | |
| 	else {
 | |
|             VALUE v;
 | |
| 	    double dy = RFLOAT_VALUE(y);
 | |
| 	    if (dy == 0.0) rb_num_zerodiv();
 | |
|             v = rb_big_divide(x, y, '/');
 | |
|             return rb_dbl2big(RFLOAT_VALUE(v));
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, op);
 | |
|     }
 | |
|     bigdivmod(x, y, &z, 0);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_div(VALUE x, VALUE y)
 | |
| {
 | |
|     return rb_big_divide(x, y, '/');
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_idiv(VALUE x, VALUE y)
 | |
| {
 | |
|     return rb_big_divide(x, y, rb_intern("div"));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_modulo(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
| 
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
|     }
 | |
|     else if (!RB_BIGNUM_TYPE_P(y)) {
 | |
| 	return rb_num_coerce_bin(x, y, '%');
 | |
|     }
 | |
|     bigdivmod(x, y, 0, &z);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_remainder(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
| 
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
|     }
 | |
|     else if (!RB_BIGNUM_TYPE_P(y)) {
 | |
| 	return rb_num_coerce_bin(x, y, rb_intern("remainder"));
 | |
|     }
 | |
|     bigdivrem(x, y, 0, &z);
 | |
| 
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_divmod(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE div, mod;
 | |
| 
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	y = rb_int2big(FIX2LONG(y));
 | |
|     }
 | |
|     else if (!RB_BIGNUM_TYPE_P(y)) {
 | |
| 	return rb_num_coerce_bin(x, y, rb_intern("divmod"));
 | |
|     }
 | |
|     bigdivmod(x, y, &div, &mod);
 | |
| 
 | |
|     return rb_assoc_new(bignorm(div), bignorm(mod));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| big_shift(VALUE x, long n)
 | |
| {
 | |
|     if (n < 0)
 | |
| 	return big_lshift(x, 1+(unsigned long)(-(n+1)));
 | |
|     else if (n > 0)
 | |
| 	return big_rshift(x, (unsigned long)n);
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| enum {DBL_BIGDIG = ((DBL_MANT_DIG + BITSPERDIG) / BITSPERDIG)};
 | |
| 
 | |
| static double
 | |
| big_fdiv(VALUE x, VALUE y, long ey)
 | |
| {
 | |
|     VALUE z;
 | |
|     long l, ex;
 | |
| 
 | |
|     bigtrunc(x);
 | |
|     l = BIGNUM_LEN(x);
 | |
|     ex = l * BITSPERDIG - nlz(BDIGITS(x)[l-1]);
 | |
|     ex -= 2 * DBL_BIGDIG * BITSPERDIG;
 | |
|     if (ex > BITSPERDIG) ex -= BITSPERDIG;
 | |
|     else if (ex > 0) ex = 0;
 | |
|     if (ex) x = big_shift(x, ex);
 | |
| 
 | |
|     bigdivrem(x, y, &z, 0);
 | |
|     l = ex - ey;
 | |
| #if SIZEOF_LONG > SIZEOF_INT
 | |
|     {
 | |
| 	/* Visual C++ can't be here */
 | |
| 	if (l > INT_MAX) return HUGE_VAL;
 | |
| 	if (l < INT_MIN) return 0.0;
 | |
|     }
 | |
| #endif
 | |
|     return ldexp(big2dbl(z), (int)l);
 | |
| }
 | |
| 
 | |
| static double
 | |
| big_fdiv_int(VALUE x, VALUE y)
 | |
| {
 | |
|     long l, ey;
 | |
|     bigtrunc(y);
 | |
|     l = BIGNUM_LEN(y);
 | |
|     ey = l * BITSPERDIG - nlz(BDIGITS(y)[l-1]);
 | |
|     ey -= DBL_BIGDIG * BITSPERDIG;
 | |
|     if (ey) y = big_shift(y, ey);
 | |
|     return big_fdiv(x, y, ey);
 | |
| }
 | |
| 
 | |
| static double
 | |
| big_fdiv_float(VALUE x, VALUE y)
 | |
| {
 | |
|     int i;
 | |
|     y = dbl2big(ldexp(frexp(RFLOAT_VALUE(y), &i), DBL_MANT_DIG));
 | |
|     return big_fdiv(x, y, i - DBL_MANT_DIG);
 | |
| }
 | |
| 
 | |
| double
 | |
| rb_big_fdiv_double(VALUE x, VALUE y)
 | |
| {
 | |
|     double dx, dy;
 | |
|     VALUE v;
 | |
| 
 | |
|     dx = big2dbl(x);
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	dy = (double)FIX2LONG(y);
 | |
| 	if (isinf(dx))
 | |
| 	    return big_fdiv_int(x, rb_int2big(FIX2LONG(y)));
 | |
|     }
 | |
|     else if (RB_BIGNUM_TYPE_P(y)) {
 | |
| 	return big_fdiv_int(x, y);
 | |
|     }
 | |
|     else if (RB_FLOAT_TYPE_P(y)) {
 | |
| 	dy = RFLOAT_VALUE(y);
 | |
| 	if (isnan(dy))
 | |
| 	    return dy;
 | |
| 	if (isinf(dx))
 | |
| 	    return big_fdiv_float(x, y);
 | |
|     }
 | |
|     else {
 | |
| 	return NUM2DBL(rb_num_coerce_bin(x, y, rb_intern("fdiv")));
 | |
|     }
 | |
|     v = rb_flo_div_flo(DBL2NUM(dx), DBL2NUM(dy));
 | |
|     return NUM2DBL(v);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_fdiv(VALUE x, VALUE y)
 | |
| {
 | |
|     return DBL2NUM(rb_big_fdiv_double(x, y));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_pow(VALUE x, VALUE y)
 | |
| {
 | |
|     double d;
 | |
|     SIGNED_VALUE yy;
 | |
| 
 | |
|   again:
 | |
|     if (y == INT2FIX(0)) return INT2FIX(1);
 | |
|     if (y == INT2FIX(1)) return x;
 | |
|     if (RB_FLOAT_TYPE_P(y)) {
 | |
| 	d = RFLOAT_VALUE(y);
 | |
| 	if ((BIGNUM_NEGATIVE_P(x) && !BIGZEROP(x))) {
 | |
|             return rb_dbl_complex_polar_pi(pow(-rb_big2dbl(x), d), d);
 | |
| 	}
 | |
|     }
 | |
|     else if (RB_BIGNUM_TYPE_P(y)) {
 | |
| 	y = bignorm(y);
 | |
| 	if (FIXNUM_P(y))
 | |
| 	    goto again;
 | |
| 	rb_warn("in a**b, b may be too big");
 | |
| 	d = rb_big2dbl(y);
 | |
|     }
 | |
|     else if (FIXNUM_P(y)) {
 | |
| 	yy = FIX2LONG(y);
 | |
| 
 | |
|         if (yy < 0) {
 | |
|             x = rb_big_pow(x, INT2NUM(-yy));
 | |
|             if (RB_INTEGER_TYPE_P(x))
 | |
|                 return rb_rational_raw(INT2FIX(1), x);
 | |
|             else
 | |
|                 return DBL2NUM(1.0 / NUM2DBL(x));
 | |
|         }
 | |
| 	else {
 | |
| 	    VALUE z = 0;
 | |
| 	    SIGNED_VALUE mask;
 | |
|             const size_t xbits = rb_absint_numwords(x, 1, NULL);
 | |
| 	    const size_t BIGLEN_LIMIT = 32*1024*1024;
 | |
| 
 | |
| 	    if (xbits == (size_t)-1 ||
 | |
|                 (xbits > BIGLEN_LIMIT) ||
 | |
|                 (xbits * yy > BIGLEN_LIMIT)) {
 | |
| 		rb_warn("in a**b, b may be too big");
 | |
| 		d = (double)yy;
 | |
| 	    }
 | |
| 	    else {
 | |
| 		for (mask = FIXNUM_MAX + 1; mask; mask >>= 1) {
 | |
| 		    if (z) z = bigsq(z);
 | |
| 		    if (yy & mask) {
 | |
| 			z = z ? bigtrunc(bigmul0(z, x)) : x;
 | |
| 		    }
 | |
| 		}
 | |
| 		return bignorm(z);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	return rb_num_coerce_bin(x, y, idPow);
 | |
|     }
 | |
|     return DBL2NUM(pow(rb_big2dbl(x), d));
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigand_int(VALUE x, long xn, BDIGIT hibitsx, long y)
 | |
| {
 | |
|     VALUE z;
 | |
|     BDIGIT *xds, *zds;
 | |
|     long zn;
 | |
|     long i;
 | |
|     BDIGIT hibitsy;
 | |
| 
 | |
|     if (y == 0) return INT2FIX(0);
 | |
|     if (xn == 0) return hibitsx ? LONG2NUM(y) : 0;
 | |
|     hibitsy = 0 <= y ? 0 : BDIGMAX;
 | |
|     xds = BDIGITS(x);
 | |
| #if SIZEOF_BDIGIT >= SIZEOF_LONG
 | |
|     if (!hibitsy) {
 | |
| 	y &= xds[0];
 | |
| 	return LONG2NUM(y);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     zn = xn;
 | |
| #if SIZEOF_BDIGIT < SIZEOF_LONG
 | |
|     if (hibitsx && zn < bdigit_roomof(SIZEOF_LONG))
 | |
|         zn = bdigit_roomof(SIZEOF_LONG);
 | |
| #endif
 | |
| 
 | |
|     z = bignew(zn, 0);
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
| #if SIZEOF_BDIGIT >= SIZEOF_LONG
 | |
|     i = 1;
 | |
|     zds[0] = xds[0] & BIGLO(y);
 | |
| #else
 | |
|     for (i=0; i < xn; i++) {
 | |
|         if (y == 0 || y == -1) break;
 | |
|         zds[i] = xds[i] & BIGLO(y);
 | |
|         y = BIGDN(y);
 | |
|     }
 | |
|     for (; i < zn; i++) {
 | |
|         if (y == 0 || y == -1) break;
 | |
|         zds[i] = hibitsx & BIGLO(y);
 | |
|         y = BIGDN(y);
 | |
|     }
 | |
| #endif
 | |
|     for (;i < xn; i++) {
 | |
| 	zds[i] = xds[i] & hibitsy;
 | |
|     }
 | |
|     for (;i < zn; i++) {
 | |
| 	zds[i] = hibitsx & hibitsy;
 | |
|     }
 | |
|     twocomp2abs_bang(z, hibitsx && hibitsy);
 | |
|     RB_GC_GUARD(x);
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_and(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
|     BDIGIT *ds1, *ds2, *zds;
 | |
|     long i, xn, yn, n1, n2;
 | |
|     BDIGIT hibitsx, hibitsy;
 | |
|     BDIGIT hibits1, hibits2;
 | |
|     VALUE tmpv;
 | |
|     BDIGIT tmph;
 | |
|     long tmpn;
 | |
| 
 | |
|     if (!RB_INTEGER_TYPE_P(y)) {
 | |
| 	return rb_num_coerce_bit(x, y, '&');
 | |
|     }
 | |
| 
 | |
|     hibitsx = abs2twocomp(&x, &xn);
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	return bigand_int(x, xn, hibitsx, FIX2LONG(y));
 | |
|     }
 | |
|     hibitsy = abs2twocomp(&y, &yn);
 | |
|     if (xn > yn) {
 | |
|         tmpv = x; x = y; y = tmpv;
 | |
|         tmpn = xn; xn = yn; yn = tmpn;
 | |
|         tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
 | |
|     }
 | |
|     n1 = xn;
 | |
|     n2 = yn;
 | |
|     ds1 = BDIGITS(x);
 | |
|     ds2 = BDIGITS(y);
 | |
|     hibits1 = hibitsx;
 | |
|     hibits2 = hibitsy;
 | |
| 
 | |
|     if (!hibits1)
 | |
|         n2 = n1;
 | |
| 
 | |
|     z = bignew(n2, 0);
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
|     for (i=0; i<n1; i++) {
 | |
| 	zds[i] = ds1[i] & ds2[i];
 | |
|     }
 | |
|     for (; i<n2; i++) {
 | |
| 	zds[i] = hibits1 & ds2[i];
 | |
|     }
 | |
|     twocomp2abs_bang(z, hibits1 && hibits2);
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigor_int(VALUE x, long xn, BDIGIT hibitsx, long y)
 | |
| {
 | |
|     VALUE z;
 | |
|     BDIGIT *xds, *zds;
 | |
|     long zn;
 | |
|     long i;
 | |
|     BDIGIT hibitsy;
 | |
| 
 | |
|     if (y == -1) return INT2FIX(-1);
 | |
|     if (xn == 0) return hibitsx ? INT2FIX(-1) : LONG2FIX(y);
 | |
|     hibitsy = 0 <= y ? 0 : BDIGMAX;
 | |
|     xds = BDIGITS(x);
 | |
| 
 | |
|     zn = BIGNUM_LEN(x);
 | |
| #if SIZEOF_BDIGIT < SIZEOF_LONG
 | |
|     if (zn < bdigit_roomof(SIZEOF_LONG))
 | |
|         zn = bdigit_roomof(SIZEOF_LONG);
 | |
| #endif
 | |
|     z = bignew(zn, 0);
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
| #if SIZEOF_BDIGIT >= SIZEOF_LONG
 | |
|     i = 1;
 | |
|     zds[0] = xds[0] | BIGLO(y);
 | |
|     if (i < zn)
 | |
|         goto y_is_fixed_point;
 | |
|     goto finish;
 | |
| #else
 | |
|     for (i=0; i < xn; i++) {
 | |
|         if (y == 0 || y == -1) goto y_is_fixed_point;
 | |
|         zds[i] = xds[i] | BIGLO(y);
 | |
|         y = BIGDN(y);
 | |
|     }
 | |
|     if (hibitsx)
 | |
|         goto fill_hibits;
 | |
|     for (; i < zn; i++) {
 | |
|         if (y == 0 || y == -1) goto y_is_fixed_point;
 | |
|         zds[i] = BIGLO(y);
 | |
|         y = BIGDN(y);
 | |
|     }
 | |
|   goto finish;
 | |
| #endif
 | |
| 
 | |
|   y_is_fixed_point:
 | |
|     if (hibitsy)
 | |
|         goto fill_hibits;
 | |
|     for (; i < xn; i++) {
 | |
|         zds[i] = xds[i];
 | |
|     }
 | |
|     if (hibitsx)
 | |
|         goto fill_hibits;
 | |
|     for (; i < zn; i++) {
 | |
|         zds[i] = 0;
 | |
|     }
 | |
|   goto finish;
 | |
| 
 | |
|   fill_hibits:
 | |
|     for (; i < zn; i++) {
 | |
|         zds[i] = BDIGMAX;
 | |
|     }
 | |
| 
 | |
|   finish:
 | |
|     twocomp2abs_bang(z, hibitsx || hibitsy);
 | |
|     RB_GC_GUARD(x);
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_or(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
|     BDIGIT *ds1, *ds2, *zds;
 | |
|     long i, xn, yn, n1, n2;
 | |
|     BDIGIT hibitsx, hibitsy;
 | |
|     BDIGIT hibits1, hibits2;
 | |
|     VALUE tmpv;
 | |
|     BDIGIT tmph;
 | |
|     long tmpn;
 | |
| 
 | |
|     if (!RB_INTEGER_TYPE_P(y)) {
 | |
| 	return rb_num_coerce_bit(x, y, '|');
 | |
|     }
 | |
| 
 | |
|     hibitsx = abs2twocomp(&x, &xn);
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	return bigor_int(x, xn, hibitsx, FIX2LONG(y));
 | |
|     }
 | |
|     hibitsy = abs2twocomp(&y, &yn);
 | |
|     if (xn > yn) {
 | |
|         tmpv = x; x = y; y = tmpv;
 | |
|         tmpn = xn; xn = yn; yn = tmpn;
 | |
|         tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
 | |
|     }
 | |
|     n1 = xn;
 | |
|     n2 = yn;
 | |
|     ds1 = BDIGITS(x);
 | |
|     ds2 = BDIGITS(y);
 | |
|     hibits1 = hibitsx;
 | |
|     hibits2 = hibitsy;
 | |
| 
 | |
|     if (hibits1)
 | |
|         n2 = n1;
 | |
| 
 | |
|     z = bignew(n2, 0);
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
|     for (i=0; i<n1; i++) {
 | |
| 	zds[i] = ds1[i] | ds2[i];
 | |
|     }
 | |
|     for (; i<n2; i++) {
 | |
| 	zds[i] = hibits1 | ds2[i];
 | |
|     }
 | |
|     twocomp2abs_bang(z, hibits1 || hibits2);
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| bigxor_int(VALUE x, long xn, BDIGIT hibitsx, long y)
 | |
| {
 | |
|     VALUE z;
 | |
|     BDIGIT *xds, *zds;
 | |
|     long zn;
 | |
|     long i;
 | |
|     BDIGIT hibitsy;
 | |
| 
 | |
|     hibitsy = 0 <= y ? 0 : BDIGMAX;
 | |
|     xds = BDIGITS(x);
 | |
|     zn = BIGNUM_LEN(x);
 | |
| #if SIZEOF_BDIGIT < SIZEOF_LONG
 | |
|     if (zn < bdigit_roomof(SIZEOF_LONG))
 | |
|         zn = bdigit_roomof(SIZEOF_LONG);
 | |
| #endif
 | |
|     z = bignew(zn, 0);
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
| #if SIZEOF_BDIGIT >= SIZEOF_LONG
 | |
|     i = 1;
 | |
|     zds[0] = xds[0] ^ BIGLO(y);
 | |
| #else
 | |
|     for (i = 0; i < xn; i++) {
 | |
|         zds[i] = xds[i] ^ BIGLO(y);
 | |
|         y = BIGDN(y);
 | |
|     }
 | |
|     for (; i < zn; i++) {
 | |
|         zds[i] = hibitsx ^ BIGLO(y);
 | |
|         y = BIGDN(y);
 | |
|     }
 | |
| #endif
 | |
|     for (; i < xn; i++) {
 | |
|         zds[i] = xds[i] ^ hibitsy;
 | |
|     }
 | |
|     for (; i < zn; i++) {
 | |
|         zds[i] = hibitsx ^ hibitsy;
 | |
|     }
 | |
|     twocomp2abs_bang(z, (hibitsx ^ hibitsy) != 0);
 | |
|     RB_GC_GUARD(x);
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_xor(VALUE x, VALUE y)
 | |
| {
 | |
|     VALUE z;
 | |
|     BDIGIT *ds1, *ds2, *zds;
 | |
|     long i, xn, yn, n1, n2;
 | |
|     BDIGIT hibitsx, hibitsy;
 | |
|     BDIGIT hibits1, hibits2;
 | |
|     VALUE tmpv;
 | |
|     BDIGIT tmph;
 | |
|     long tmpn;
 | |
| 
 | |
|     if (!RB_INTEGER_TYPE_P(y)) {
 | |
| 	return rb_num_coerce_bit(x, y, '^');
 | |
|     }
 | |
| 
 | |
|     hibitsx = abs2twocomp(&x, &xn);
 | |
|     if (FIXNUM_P(y)) {
 | |
| 	return bigxor_int(x, xn, hibitsx, FIX2LONG(y));
 | |
|     }
 | |
|     hibitsy = abs2twocomp(&y, &yn);
 | |
|     if (xn > yn) {
 | |
|         tmpv = x; x = y; y = tmpv;
 | |
|         tmpn = xn; xn = yn; yn = tmpn;
 | |
|         tmph = hibitsx; hibitsx = hibitsy; hibitsy = tmph;
 | |
|     }
 | |
|     n1 = xn;
 | |
|     n2 = yn;
 | |
|     ds1 = BDIGITS(x);
 | |
|     ds2 = BDIGITS(y);
 | |
|     hibits1 = hibitsx;
 | |
|     hibits2 = hibitsy;
 | |
| 
 | |
|     z = bignew(n2, 0);
 | |
|     zds = BDIGITS(z);
 | |
| 
 | |
|     for (i=0; i<n1; i++) {
 | |
| 	zds[i] = ds1[i] ^ ds2[i];
 | |
|     }
 | |
|     for (; i<n2; i++) {
 | |
| 	zds[i] = hibitsx ^ ds2[i];
 | |
|     }
 | |
|     twocomp2abs_bang(z, (hibits1 ^ hibits2) != 0);
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
|     return bignorm(z);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_lshift(VALUE x, VALUE y)
 | |
| {
 | |
|     int lshift_p;
 | |
|     size_t shift_numdigits;
 | |
|     int shift_numbits;
 | |
| 
 | |
|     for (;;) {
 | |
| 	if (FIXNUM_P(y)) {
 | |
| 	    long l = FIX2LONG(y);
 | |
|             unsigned long shift;
 | |
| 	    if (0 <= l) {
 | |
| 		lshift_p = 1;
 | |
|                 shift = l;
 | |
|             }
 | |
|             else {
 | |
| 		lshift_p = 0;
 | |
| 		shift = 1+(unsigned long)(-(l+1));
 | |
| 	    }
 | |
|             shift_numbits = (int)(shift & (BITSPERDIG-1));
 | |
|             shift_numdigits = shift >> bit_length(BITSPERDIG-1);
 | |
|             return bignorm(big_shift3(x, lshift_p, shift_numdigits, shift_numbits));
 | |
| 	}
 | |
| 	else if (RB_BIGNUM_TYPE_P(y)) {
 | |
|             return bignorm(big_shift2(x, 1, y));
 | |
| 	}
 | |
| 	y = rb_to_int(y);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_rshift(VALUE x, VALUE y)
 | |
| {
 | |
|     int lshift_p;
 | |
|     size_t shift_numdigits;
 | |
|     int shift_numbits;
 | |
| 
 | |
|     for (;;) {
 | |
| 	if (FIXNUM_P(y)) {
 | |
| 	    long l = FIX2LONG(y);
 | |
|             unsigned long shift;
 | |
|             if (0 <= l) {
 | |
|                 lshift_p = 0;
 | |
|                 shift = l;
 | |
|             }
 | |
|             else {
 | |
|                 lshift_p = 1;
 | |
| 		shift = 1+(unsigned long)(-(l+1));
 | |
| 	    }
 | |
|             shift_numbits = (int)(shift & (BITSPERDIG-1));
 | |
|             shift_numdigits = shift >> bit_length(BITSPERDIG-1);
 | |
|             return bignorm(big_shift3(x, lshift_p, shift_numdigits, shift_numbits));
 | |
| 	}
 | |
| 	else if (RB_BIGNUM_TYPE_P(y)) {
 | |
|             return bignorm(big_shift2(x, 0, y));
 | |
| 	}
 | |
| 	y = rb_to_int(y);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_aref(VALUE x, VALUE y)
 | |
| {
 | |
|     BDIGIT *xds;
 | |
|     size_t shift;
 | |
|     size_t i, s1, s2;
 | |
|     long l;
 | |
|     BDIGIT bit;
 | |
| 
 | |
|     if (RB_BIGNUM_TYPE_P(y)) {
 | |
| 	if (BIGNUM_NEGATIVE_P(y))
 | |
| 	    return INT2FIX(0);
 | |
| 	bigtrunc(y);
 | |
| 	if (BIGSIZE(y) > sizeof(size_t)) {
 | |
| 	  out_of_range:
 | |
| 	    return BIGNUM_SIGN(x) ? INT2FIX(0) : INT2FIX(1);
 | |
| 	}
 | |
| #if SIZEOF_SIZE_T <= SIZEOF_LONG
 | |
| 	shift = big2ulong(y, "long");
 | |
| #else
 | |
| 	shift = big2ull(y, "long long");
 | |
| #endif
 | |
|     }
 | |
|     else {
 | |
| 	l = NUM2LONG(y);
 | |
| 	if (l < 0) return INT2FIX(0);
 | |
| 	shift = (size_t)l;
 | |
|     }
 | |
|     s1 = shift/BITSPERDIG;
 | |
|     s2 = shift%BITSPERDIG;
 | |
|     bit = (BDIGIT)1 << s2;
 | |
| 
 | |
|     if (s1 >= BIGNUM_LEN(x)) goto out_of_range;
 | |
| 
 | |
|     xds = BDIGITS(x);
 | |
|     if (BIGNUM_POSITIVE_P(x))
 | |
|         return (xds[s1] & bit) ? INT2FIX(1) : INT2FIX(0);
 | |
|     if (xds[s1] & (bit-1))
 | |
|         return (xds[s1] & bit) ? INT2FIX(0) : INT2FIX(1);
 | |
|     for (i = 0; i < s1; i++)
 | |
|         if (xds[i])
 | |
|             return (xds[s1] & bit) ? INT2FIX(0) : INT2FIX(1);
 | |
|     return (xds[s1] & bit) ? INT2FIX(1) : INT2FIX(0);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_hash(VALUE x)
 | |
| {
 | |
|     st_index_t hash;
 | |
| 
 | |
|     hash = rb_memhash(BDIGITS(x), sizeof(BDIGIT)*BIGNUM_LEN(x)) ^ BIGNUM_SIGN(x);
 | |
|     return ST2FIX(hash);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   big.coerce(numeric)  ->  array
 | |
|  *
 | |
|  * Returns an array with both a +numeric+ and a +big+ represented as Bignum
 | |
|  * objects.
 | |
|  *
 | |
|  * This is achieved by converting +numeric+ to a Bignum.
 | |
|  *
 | |
|  * A TypeError is raised if the +numeric+ is not a Fixnum or Bignum type.
 | |
|  *
 | |
|  *     (0x3FFFFFFFFFFFFFFF+1).coerce(42)   #=> [42, 4611686018427387904]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_int_coerce(VALUE x, VALUE y)
 | |
| {
 | |
|     if (RB_INTEGER_TYPE_P(y)) {
 | |
|         return rb_assoc_new(y, x);
 | |
|     }
 | |
|     else {
 | |
|         x = rb_Float(x);
 | |
|         y = rb_Float(y);
 | |
|         return rb_assoc_new(y, x);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_abs(VALUE x)
 | |
| {
 | |
|     if (BIGNUM_NEGATIVE_P(x)) {
 | |
| 	x = rb_big_clone(x);
 | |
| 	BIGNUM_SET_POSITIVE_SIGN(x);
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| int
 | |
| rb_big_sign(VALUE x)
 | |
| {
 | |
|     return BIGNUM_SIGN(x);
 | |
| }
 | |
| 
 | |
| size_t
 | |
| rb_big_size(VALUE big)
 | |
| {
 | |
|     return BIGSIZE(big);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_size_m(VALUE big)
 | |
| {
 | |
|     return SIZET2NUM(rb_big_size(big));
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_bit_length(VALUE big)
 | |
| {
 | |
|     int nlz_bits;
 | |
|     size_t numbytes;
 | |
| 
 | |
|     static const BDIGIT char_bit[1] = { CHAR_BIT };
 | |
|     BDIGIT numbytes_bary[bdigit_roomof(sizeof(size_t))];
 | |
|     BDIGIT nlz_bary[1];
 | |
|     BDIGIT result_bary[bdigit_roomof(sizeof(size_t)+1)];
 | |
| 
 | |
|     numbytes = rb_absint_size(big, &nlz_bits);
 | |
| 
 | |
|     if (numbytes == 0)
 | |
|         return LONG2FIX(0);
 | |
| 
 | |
|     if (BIGNUM_NEGATIVE_P(big) && rb_absint_singlebit_p(big)) {
 | |
|         if (nlz_bits != CHAR_BIT-1) {
 | |
|             nlz_bits++;
 | |
|         }
 | |
|         else {
 | |
|             nlz_bits = 0;
 | |
|             numbytes--;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (numbytes <= SIZE_MAX / CHAR_BIT) {
 | |
|         return SIZET2NUM(numbytes * CHAR_BIT - nlz_bits);
 | |
|     }
 | |
| 
 | |
|     nlz_bary[0] = nlz_bits;
 | |
| 
 | |
|     bary_unpack(BARY_ARGS(numbytes_bary), &numbytes, 1, sizeof(numbytes), 0,
 | |
|             INTEGER_PACK_NATIVE_BYTE_ORDER);
 | |
|     BARY_SHORT_MUL(result_bary, numbytes_bary, char_bit);
 | |
|     BARY_SUB(result_bary, result_bary, nlz_bary);
 | |
| 
 | |
|     return rb_integer_unpack(result_bary, numberof(result_bary), sizeof(BDIGIT), 0,
 | |
|             INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_odd_p(VALUE num)
 | |
| {
 | |
|     if (BIGNUM_LEN(num) != 0 && BDIGITS(num)[0] & 1) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     return Qfalse;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_even_p(VALUE num)
 | |
| {
 | |
|     if (BIGNUM_LEN(num) != 0 && BDIGITS(num)[0] & 1) {
 | |
| 	return Qfalse;
 | |
|     }
 | |
|     return Qtrue;
 | |
| }
 | |
| 
 | |
| unsigned long rb_ulong_isqrt(unsigned long);
 | |
| #if SIZEOF_BDIGIT*2 > SIZEOF_LONG
 | |
| BDIGIT rb_bdigit_dbl_isqrt(BDIGIT_DBL);
 | |
| # ifdef ULL_TO_DOUBLE
 | |
| #   define BDIGIT_DBL_TO_DOUBLE(n) ULL_TO_DOUBLE(n)
 | |
| # endif
 | |
| #else
 | |
| # define rb_bdigit_dbl_isqrt(x) (BDIGIT)rb_ulong_isqrt(x)
 | |
| #endif
 | |
| #ifndef BDIGIT_DBL_TO_DOUBLE
 | |
| # define BDIGIT_DBL_TO_DOUBLE(n) (double)(n)
 | |
| #endif
 | |
| 
 | |
| static BDIGIT *
 | |
| estimate_initial_sqrt(VALUE *xp, const size_t xn, const BDIGIT *nds, size_t len)
 | |
| {
 | |
|     enum {dbl_per_bdig = roomof(DBL_MANT_DIG,BITSPERDIG)};
 | |
|     const int zbits = nlz(nds[len-1]);
 | |
|     VALUE x = *xp = bignew_1(0, xn, 1); /* division may release the GVL */
 | |
|     BDIGIT *xds = BDIGITS(x);
 | |
|     BDIGIT_DBL d = bary2bdigitdbl(nds+len-dbl_per_bdig, dbl_per_bdig);
 | |
|     BDIGIT lowbits = 1;
 | |
|     int rshift = (int)((BITSPERDIG*2-zbits+(len&BITSPERDIG&1) - DBL_MANT_DIG + 1) & ~1);
 | |
|     double f;
 | |
| 
 | |
|     if (rshift > 0) {
 | |
| 	lowbits = (BDIGIT)d & ~(~(BDIGIT)1U << rshift);
 | |
| 	d >>= rshift;
 | |
|     }
 | |
|     else if (rshift < 0) {
 | |
| 	d <<= -rshift;
 | |
| 	d |= nds[len-dbl_per_bdig-1] >> (BITSPERDIG+rshift);
 | |
|     }
 | |
|     f = sqrt(BDIGIT_DBL_TO_DOUBLE(d));
 | |
|     d = (BDIGIT_DBL)ceil(f);
 | |
|     if (BDIGIT_DBL_TO_DOUBLE(d) == f) {
 | |
| 	if (lowbits || (lowbits = !bary_zero_p(nds, len-dbl_per_bdig)))
 | |
| 	    ++d;
 | |
|     }
 | |
|     else {
 | |
| 	lowbits = 1;
 | |
|     }
 | |
|     rshift /= 2;
 | |
|     rshift += (2-(len&1))*BITSPERDIG/2;
 | |
|     if (rshift >= 0) {
 | |
| 	d <<= rshift;
 | |
|     }
 | |
|     BDIGITS_ZERO(xds, xn-2);
 | |
|     bdigitdbl2bary(&xds[xn-2], 2, d);
 | |
| 
 | |
|     if (!lowbits) return NULL; /* special case, exact result */
 | |
|     return xds;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_big_isqrt(VALUE n)
 | |
| {
 | |
|     BDIGIT *nds = BDIGITS(n);
 | |
|     size_t len = BIGNUM_LEN(n);
 | |
|     size_t xn = (len+1) / 2;
 | |
|     VALUE x;
 | |
|     BDIGIT *xds;
 | |
| 
 | |
|     if (len <= 2) {
 | |
| 	BDIGIT sq = rb_bdigit_dbl_isqrt(bary2bdigitdbl(nds, len));
 | |
| #if SIZEOF_BDIGIT > SIZEOF_LONG
 | |
| 	return ULL2NUM(sq);
 | |
| #else
 | |
| 	return ULONG2NUM(sq);
 | |
| #endif
 | |
|     }
 | |
|     else if ((xds = estimate_initial_sqrt(&x, xn, nds, len)) != 0) {
 | |
| 	size_t tn = xn + BIGDIVREM_EXTRA_WORDS;
 | |
| 	VALUE t = bignew_1(0, tn, 1);
 | |
| 	BDIGIT *tds = BDIGITS(t);
 | |
| 	tn = BIGNUM_LEN(t);
 | |
| 
 | |
| 	/* t = n/x */
 | |
| 	while (bary_divmod_branch(tds, tn, NULL, 0, nds, len, xds, xn),
 | |
| 	       bary_cmp(tds, tn, xds, xn) < 0) {
 | |
| 	    int carry;
 | |
| 	    BARY_TRUNC(tds, tn);
 | |
| 	    /* x = (x+t)/2 */
 | |
| 	    carry = bary_add(xds, xn, xds, xn, tds, tn);
 | |
| 	    bary_small_rshift(xds, xds, xn, 1, carry);
 | |
| 	    tn = BIGNUM_LEN(t);
 | |
| 	}
 | |
| 	rb_big_realloc(t, 0);
 | |
| 	rb_gc_force_recycle(t);
 | |
|     }
 | |
|     RBASIC_SET_CLASS_RAW(x, rb_cInteger);
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| #ifdef USE_GMP
 | |
| static void
 | |
| bary_powm_gmp(BDIGIT *zds, size_t zn, const BDIGIT *xds, size_t xn, const BDIGIT *yds, size_t yn, const BDIGIT *mds, size_t mn)
 | |
| {
 | |
|     const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
 | |
|     mpz_t z, x, y, m;
 | |
|     size_t count;
 | |
|     mpz_init(x);
 | |
|     mpz_init(y);
 | |
|     mpz_init(m);
 | |
|     mpz_init(z);
 | |
|     mpz_import(x, xn, -1, sizeof(BDIGIT), 0, nails, xds);
 | |
|     mpz_import(y, yn, -1, sizeof(BDIGIT), 0, nails, yds);
 | |
|     mpz_import(m, mn, -1, sizeof(BDIGIT), 0, nails, mds);
 | |
|     mpz_powm(z, x, y, m);
 | |
|     mpz_export(zds, &count, -1, sizeof(BDIGIT), 0, nails, z);
 | |
|     BDIGITS_ZERO(zds+count, zn-count);
 | |
|     mpz_clear(x);
 | |
|     mpz_clear(y);
 | |
|     mpz_clear(m);
 | |
|     mpz_clear(z);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static VALUE
 | |
| int_pow_tmp3(VALUE x, VALUE y, VALUE m, int nega_flg)
 | |
| {
 | |
| #ifdef USE_GMP
 | |
|     VALUE z;
 | |
|     size_t xn, yn, mn, zn;
 | |
| 
 | |
|     if (FIXNUM_P(x)) {
 | |
|        x = rb_int2big(FIX2LONG(x));
 | |
|     }
 | |
|     if (FIXNUM_P(y)) {
 | |
|        y = rb_int2big(FIX2LONG(y));
 | |
|     }
 | |
|     assert(RB_BIGNUM_TYPE_P(m));
 | |
|     xn = BIGNUM_LEN(x);
 | |
|     yn = BIGNUM_LEN(y);
 | |
|     mn = BIGNUM_LEN(m);
 | |
|     zn = mn;
 | |
|     z = bignew(zn, 1);
 | |
|     bary_powm_gmp(BDIGITS(z), zn, BDIGITS(x), xn, BDIGITS(y), yn, BDIGITS(m), mn);
 | |
|     if (nega_flg & BIGNUM_POSITIVE_P(z)) {
 | |
|         z = rb_big_minus(z, m);
 | |
|     }
 | |
|     RB_GC_GUARD(x);
 | |
|     RB_GC_GUARD(y);
 | |
|     RB_GC_GUARD(m);
 | |
|     return rb_big_norm(z);
 | |
| #else
 | |
|     VALUE tmp = LONG2FIX(1L);
 | |
|     long yy;
 | |
| 
 | |
|     for (/*NOP*/; ! FIXNUM_P(y); y = rb_big_rshift(y, LONG2FIX(1L))) {
 | |
|         if (RTEST(rb_int_odd_p(y))) {
 | |
|             tmp = rb_int_mul(tmp, x);
 | |
|             tmp = rb_int_modulo(tmp, m);
 | |
|         }
 | |
|         x = rb_int_mul(x, x);
 | |
|         x = rb_int_modulo(x, m);
 | |
|     }
 | |
|     for (yy = FIX2LONG(y); yy; yy >>= 1L) {
 | |
|         if (yy & 1L) {
 | |
|             tmp = rb_int_mul(tmp, x);
 | |
|             tmp = rb_int_modulo(tmp, m);
 | |
|         }
 | |
|         x = rb_int_mul(x, x);
 | |
|         x = rb_int_modulo(x, m);
 | |
|     }
 | |
| 
 | |
|     if (nega_flg && rb_int_positive_p(tmp)) {
 | |
|         tmp = rb_int_minus(tmp, m);
 | |
|     }
 | |
|     return tmp;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Integer#pow
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| int_pow_tmp1(VALUE x, VALUE y, long mm, int nega_flg)
 | |
| {
 | |
|     long xx = FIX2LONG(x);
 | |
|     long tmp = 1L;
 | |
|     long yy;
 | |
| 
 | |
|     for (/*NOP*/; ! FIXNUM_P(y); y = rb_big_rshift(y, LONG2FIX(1L))) {
 | |
|         if (RTEST(rb_int_odd_p(y))) {
 | |
|             tmp = (tmp * xx) % mm;
 | |
|         }
 | |
|         xx = (xx * xx) % mm;
 | |
|     }
 | |
|     for (yy = FIX2LONG(y); yy; yy >>= 1L) {
 | |
|         if (yy & 1L) {
 | |
|             tmp = (tmp * xx) % mm;
 | |
|         }
 | |
|         xx = (xx * xx) % mm;
 | |
|     }
 | |
| 
 | |
|     if (nega_flg && tmp) {
 | |
|         tmp -= mm;
 | |
|     }
 | |
|     return LONG2FIX(tmp);
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| int_pow_tmp2(VALUE x, VALUE y, long mm, int nega_flg)
 | |
| {
 | |
|     long tmp = 1L;
 | |
|     long yy;
 | |
| #ifdef DLONG
 | |
|     const DLONG m = mm;
 | |
|     long tmp2 = tmp;
 | |
|     long xx = FIX2LONG(x);
 | |
| # define MUL_MODULO(a, b, c) (long)(((DLONG)(a) * (DLONG)(b)) % (c))
 | |
| #else
 | |
|     const VALUE m = LONG2FIX(mm);
 | |
|     VALUE tmp2 = LONG2FIX(tmp);
 | |
|     VALUE xx = x;
 | |
| # define MUL_MODULO(a, b, c) rb_int_modulo(rb_fix_mul_fix((a), (b)), (c))
 | |
| #endif
 | |
| 
 | |
|     for (/*NOP*/; ! FIXNUM_P(y); y = rb_big_rshift(y, LONG2FIX(1L))) {
 | |
|         if (RTEST(rb_int_odd_p(y))) {
 | |
|             tmp2 = MUL_MODULO(tmp2, xx, m);
 | |
|         }
 | |
|         xx = MUL_MODULO(xx, xx, m);
 | |
|     }
 | |
|     for (yy = FIX2LONG(y); yy; yy >>= 1L) {
 | |
|         if (yy & 1L) {
 | |
|             tmp2 = MUL_MODULO(tmp2, xx, m);
 | |
|         }
 | |
|         xx = MUL_MODULO(xx, xx, m);
 | |
|     }
 | |
| 
 | |
| #ifdef DLONG
 | |
|     tmp = tmp2;
 | |
| #else
 | |
|     tmp = FIX2LONG(tmp2);
 | |
| #endif
 | |
|     if (nega_flg && tmp) {
 | |
|         tmp -= mm;
 | |
|     }
 | |
|     return LONG2FIX(tmp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Document-method: Integer#pow
 | |
|  * call-seq:
 | |
|  *    integer.pow(numeric)           ->  numeric
 | |
|  *    integer.pow(integer, integer)  ->  integer
 | |
|  *
 | |
|  * Returns (modular) exponentiation as:
 | |
|  *
 | |
|  *   a.pow(b)     #=> same as a**b
 | |
|  *   a.pow(b, m)  #=> same as (a**b) % m, but avoids huge temporary values
 | |
|  */
 | |
| VALUE
 | |
| rb_int_powm(int const argc, VALUE * const argv, VALUE const num)
 | |
| {
 | |
|     rb_check_arity(argc, 1, 2);
 | |
| 
 | |
|     if (argc == 1) {
 | |
|         return rb_int_pow(num, argv[0]);
 | |
|     }
 | |
|     else {
 | |
|         VALUE const a = num;
 | |
|         VALUE const b = argv[0];
 | |
|         VALUE m = argv[1];
 | |
|         int nega_flg = 0;
 | |
|         if ( ! RB_INTEGER_TYPE_P(b)) {
 | |
|             rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless a 1st argument is integer");
 | |
|         }
 | |
|         if (rb_int_negative_p(b)) {
 | |
|             rb_raise(rb_eRangeError, "Integer#pow() 1st argument cannot be negative when 2nd argument specified");
 | |
|         }
 | |
|         if (!RB_INTEGER_TYPE_P(m)) {
 | |
|             rb_raise(rb_eTypeError, "Integer#pow() 2nd argument not allowed unless all arguments are integers");
 | |
|         }
 | |
| 
 | |
|         if (rb_int_negative_p(m)) {
 | |
|             m = rb_int_uminus(m);
 | |
|             nega_flg = 1;
 | |
|         }
 | |
| 
 | |
|         if (FIXNUM_P(m)) {
 | |
|             long const half_val = (long)HALF_LONG_MSB;
 | |
|             long const mm = FIX2LONG(m);
 | |
|             if (!mm) rb_num_zerodiv();
 | |
|             if (mm <= half_val) {
 | |
|                 return int_pow_tmp1(rb_int_modulo(a, m), b, mm, nega_flg);
 | |
|             }
 | |
|             else {
 | |
|                 return int_pow_tmp2(rb_int_modulo(a, m), b, mm, nega_flg);
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             if (rb_bigzero_p(m)) rb_num_zerodiv();
 | |
|             return int_pow_tmp3(rb_int_modulo(a, m), b, m, nega_flg);
 | |
|         }
 | |
|     }
 | |
|     UNREACHABLE_RETURN(Qnil);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Bignum objects hold integers outside the range of
 | |
|  *  Fixnum. Bignum objects are created
 | |
|  *  automatically when integer calculations would otherwise overflow a
 | |
|  *  Fixnum. When a calculation involving
 | |
|  *  Bignum objects returns a result that will fit in a
 | |
|  *  Fixnum, the result is automatically converted.
 | |
|  *
 | |
|  *  For the purposes of the bitwise operations and <code>[]</code>, a
 | |
|  *  Bignum is treated as if it were an infinite-length
 | |
|  *  bitstring with 2's complement representation.
 | |
|  *
 | |
|  *  While Fixnum values are immediate, Bignum
 | |
|  *  objects are not---assignment and parameter passing work with
 | |
|  *  references to objects, not the objects themselves.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| void
 | |
| Init_Bignum(void)
 | |
| {
 | |
| #ifndef RUBY_INTEGER_UNIFICATION
 | |
|     rb_cBignum = rb_cInteger;
 | |
| #endif
 | |
|     /* An obsolete class, use Integer */
 | |
|     rb_define_const(rb_cObject, "Bignum", rb_cInteger);
 | |
|     rb_deprecate_constant(rb_cObject, "Bignum");
 | |
| 
 | |
|     rb_define_method(rb_cInteger, "coerce", rb_int_coerce, 1);
 | |
| 
 | |
| #ifdef USE_GMP
 | |
|     /* The version of loaded GMP. */
 | |
|     rb_define_const(rb_cInteger, "GMP_VERSION", rb_sprintf("GMP %s", gmp_version));
 | |
| #endif
 | |
| 
 | |
|     power_cache_init();
 | |
| }
 |